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Abstract 
Ali, Abdul Aziz (2018). On the use of wavelets in unit root and cointegration tests, 
Linnaeus University Dissertations No 309/2018, ISBN: 978-91-88761-26-2 
(print), 978-91-88761-27-9 (pdf). Written in English. 
This thesis consists of four essays linked with the use of wavelet methodologies in 
unit root testing and in the estimation of the cointegrating parameters of bivariate 
models.  
In papers I and II, we examine the performance of some existing unit root tests in 
the presence of error distortions. We suggest wavelet-based unit root tests that have 
better size fidelity and size-adjusted power in the presence of conditional 
heteroscedasticity and additive measurement errors. We obtain the limiting 
distribution of the proposed test statistic in each case and examine the small sample 
performance of the tests using Monte Carlo simulations.  
In paper III, we suggest a wavelet-based filtering method to improve the small 
sample estimation of the cointegrating parameters of bivariate models. We show, 
using Monte Carlo simulations, that wavelet filtering reduces the small sample 
estimation bias.  
In paper IV, we propose a wavelet variance ratio unit root test for a system of 
equations. We obtain the limiting distributions of the test statistics under different 
specifications of the deterministic components of the estimating equations. We also 
investigate the small sample properties of the test by conducting Monte Carlo 
simulations. Results from the Monte Carlo simulations show that the test has good 
size fidelity for small sample sizes (of up to 100 observations per equation, and up 
to 10 equations), and has better size-adjusted power for these sample sizes, 
compared the Cross-sectionally Augmented Dickey-Fuller test.  
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Chapter 1

Introduction

1.1 Summary

This thesis consists of four essays linked with the use of wavelet method-
ologies in the analysis of non-stationary time series, focusing on small
sample sizes. In two of the essays, the performance of unit root tests
has been examined in the presence of conditionally heteroscedastic and
additive measurement errors. Wavelet filters that remove the periodic
components, which correspond to these error distortions are suggested
together with wavelet variance ratio unit root test statistics. In both cases,
we obtain the limiting distribution of the test statistics theoretically, and
use Monte Carlo simulation for the assessment of size and size-adjusted
power of the suggested unit root tests. In the third essay we examine
the small sample bias present in the estimation of the cointegrating co-
efficient of bivariate cointegration models. The results from simulation
studies, using a variety of Data Generating Processes (DGPs) show that
the wavelet filters, when used in conjunction with three standard esti-
mation methods, considerably improve the signal-to-noise ratios in bi-
variate cointegration models, thereby reducing the small sample bias. In
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run relationships between time series. Correspondingly, unit root tests
are intended for this purpose.

The unit root tests of the Dickey-Fuller framework (Dickey and Fuller,
1979, 1981) use autoregressive estimating equations. The original Dickey-
Fuller unit root test, also called the standard Dickey-Fuller test (Dickey
and Fuller, 1979), assumes independently and identically distributed (iid)
errors. Most macroeconomic variables have serially correlated errors and
do not therefore satisfy this assumption. The standard Dickey-Fuller test
has therefore been modified to cope with non-iid errors in two ways:

1. By modifying the estimating equation

The Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1981)
uses the following estimating equation,

∆yt = µt + βt + γyt−1 +
k

∑
j=1

αj∆yt−j + εt

where ∆yt is the first difference, yt−1 is the lagged series, t is the
time trend and k is the truncation lag parameter (the number of
lags of first differences required to remove serial correlation from
the residuals). The ADF tests the null hypothesis of a unit root i.e.,
H0 : γ = 0.

Rejecting the null hypothesis leads to the conclusion that the series
is stationary.

Some of the limitations of the ADF test are that the test is known
to suffer from diminished power as a result of augmenting the es-
timating equation with lagged first differences (see Schwert, 1989;
Agiakoglou and Nwebold, 1992, for example). The test also presents
low power in distinguishing between trend-stationary and non-stat-
ionary drifting time series. In addition to power deterioration, the

5

the fourth essay we suggest a wavelet variance ratio unit root test for a
system of equations. We obtain the limiting distribution of the proposed
test statistic and use Monte Carlo simulation to show that the test is ro-
bust to cross-equation correlation, retains its nominal size, and has good
size-adjusted power in finite sample sizes.

1.2 Unit roots and unit root testing

An important consideration when modeling time series is the effect of a
current shock on the long-run mean of the series. When the effect of a
current shock is transient, the series will revert to its long-run mean or
trend function and is said to be stationary. When the effect of a current
shock is permanent, however, the series will not have a tendency to revert
to its long-run mean, and will be characterized by a stochastic trend. Such
a series is said to be non-stationary, integrated, or a unit root process. A
difference-stationary time series is a series that can be made stationary by
differencing. The degree of differencing required to achieve stationarity
is referred to as the order of integration. The order of integration also
refers to the number of unit roots in a time series; specifically, an I(0) time
series is stationary, while an I(d) time series has d unit roots. It has been
observed that the majority of economic time series are non-stationary,
and in some cases present with unit roots occurring seasonally (monthly,
quarterly, yearly, or at some other frequency), in what is called integrated
seasonal time series.

While the relationships between stationary time series can be modeled
using the method of Ordinary Least Squares (OLS), the modeling of non-
stationary series using OLS may in some cases give misleading infer-
ences. When time series are not cointegrated, OLS results in spurious
regression (giving high R2). Knowledge of whether time series have
stochastic trends is therefore an important first step in modeling the long-

4
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1.3 Variance ratio unit root tests

Variance ratio unit root tests are based on the ratio of the variance of the
series under the I(0) and I(1) possibilities. The variance of the partial
sum of a unit root process increases linearly as a function of time. Con-
sider the case of a unit root process with iid errors and non-stochastic
starting value, y0.

yq = y0 +
q

∑
t=1

εt

then,

σ2
∆1yt

= σ2
εt

and

σ2
yq = qσεt

where ∆1 is yt − yt−1.

Also,

∆qyt = yt − yt−q =
q−1

∑
i=0

∆1yt−i

which shows is that the variance of the qth order difference is q times the
variance of the first order difference. The variance ratio statistic,

VR(q) =
1
q

Var
(
∆qyt

)
Var (∆1yt)

can be used as a test statistic to test the null hypothesis that the time
series is a random walk with serially uncorrelated errors. Under the null
hypothesis, the ratio is equal to 1 while under the alternative hypothesis
the series is either a unit root process, has serially correlated errors, or
both. The empirical version of the ratio can therefore serve both as a unit
root and specification test. The test can easily be generalized to test time
series with different trend specifications by detrending the series prior to

7

test suffers from size distortions in the case of heteroscedastic er-
rors in small sample sizes (see Kim and Schmidt, 1993; Cook, 2006).
Augmenting the estimating equation of the standard Dickey-Fuller
test with lags of the first differences is a parametric approach.

2. By modifying the test statistic

The unit root test of Phillips (1987), and Phillips and Perron (1988)
(PP test) modifies the test statistic instead of the estimating equa-
tion. The modification is a non-parametric adjustment, which en-
sures that the limiting distribution of the test statistic becomes the
same as that of the standard Dickey-Fuller test. While the non-
parametric modification works well in removing the effects of het-
eroscedasticity of unspecified form in large samples, this test also
suffers from size distortions when used on samples of finite sizes.
This is especially the case for time series, which have errors with a
Moving-Average (MA) structure, as evidenced in many macroeco-
nomic variables (see Schwert, 1987). MA errors processes can result
from additive measurement error contamination, or from testing
univariate time series implied by vector autoregressive DGPs (see
Cappuccio and Lubian, 2016).

Both the parametric and non-parametric approaches require the se-
lection of optimal lag lengths. The ADF test requires selection of the
optimal augmentation lag, while the PP test requires the selection of
the optimal bandwidth for the estimation of the long-run variance.
The choice of these tuning parameters also adds to the uncertainty
with which models are estimated. An alternative to using long au-
toregressions is to use unit root tests that are based on the ratio of
variances or partial sums (see Breitung, 2002, for example). We look
at variance ratio unit root tests next.
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ances.

Sargan and Bhargava (1983) generalized the Durbin-Watson test statistic
for serial correlation (Durbin and Watson, 1950, 1951) and used it as a
unit root test. The test has its basis in whether the residuals from an OLS
regression follow a random walk. It uses the ratio of the variance of the
residuals of the first difference equation to that of the levels equation.
Bhargava (1986) used this testing framework to suggest the test statistic,

R1 =
∑T

t=2(yt − yt−1)
2

∑T
t=1(yt − y)2

with y =
1
T

T

∑
t=1

yt

The random walk hypothesis is rejected for large values of the R1.

A second test statistic discussed in Stock (1999) is the following variance
ratio,

MSB =
1

T2 ∑T
t=1 y2

t−1

s2

where s2 is an estimate of the long-run variance, which may be estimated
using a kernel estimation method such as that of Newey and West (1987).

All variance ratio unit root tests are motivated by the fact that the vari-
ance of the partial sum of an I(1) process is Op(T) while that of an I(0)
process is Op(1). With suitable normalization, their test statistics take on
small values under the null hypothesis.

The variance ratio unit root tests proposed in this thesis are underpinned
by the same priciples. The proposed unit root tests are motivated by the
fact that the spectrum of a unit root process peaks at the zero frequency,
and tails off exponentially (Granger, 1966). As a consequence, the largest
proportion of the variance of the process is found in the lowest frequency

9

conducting the unit root.

Lo and MacKinlay (1988) show that the suitably normalized variance ra-
tio test statistic has a standard normal limiting distribution under the
null hypothesis. The condition for this is that q is fixed as T → ∞ so that
(q/T) → 0.

Examples of variance ratio unit root tests are those suggested by Tanaka
(1990) and Kwiatkowski et al. (1992) among others. The test statistic for
the variance ratio unit root test given in Kwiatkowski et al. (1992) is,

�T =
∑T

t=1 Y2
t /T2

∑T
t=1 y2

t /T

where Yt = ∑t
i=1 yi is the partial sum of the {yt}T

t=0 process. ∑T
t=1 y2

t /T
estimates the long-run variance which, in the case of serial dependence,
can be estimated using a semi-parametric kernel based method e.g., the
Newey-West estimator of Newey and West (1987). When testing against
trend stationary alternatives, the test statistic for the detrended time se-
ries is,

�̂T =
∑T

t=1 Ỹ2
t /T2

∑T
t=1 ỹ2

t /T

where the deterended series is given as ỹt = (yt − µ̂), and µ̂ is an esti-
mate of the deterministic component, for example, the sample average
is used when the null hypothesis specifies stationarity about a non-zero
mean. The test statistic of Kwiatkowski et al. (1992) given above tests
for stationarity i.e., has its null hypothesis as stationary. Breitung (2002)
reverses the roles of the null and alternative hypotheses and proposes
using �̂T as a unit root test, where the null hypothesis is non-stationarity.
Used in this way, its limiting distribution under the null hypothesis (see
Breitung, 2002, Proposition 3) does not depend on the long-run variance
because the long-run variance cancels out in the variance ratio. Not hav-
ing to estimate the long-run variance accords the test an advantage over
the PP and other unit root tests that require estimation of long-run vari-
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Both yt and xt are driven by the common stochastic trend,

T

∑
t=1

εt

and β represents the long-run equilibrium, also called the cointegrating
coefficient or parameter.

An important property of OLS estimation (which is also carried over to
estimators based on its modifications) is consistency of the estimator of
the cointegrating parameter. The estimator converges at a rate of T in-
stead of the usual

√
T, which is the case when the time series are station-

ary. This is easy to see:

The OLS estimator of β is given as,

β̂ =
T

∑
t

xtyt

(
T

∑
t=1

x2
t

)−1

= β +
T

∑
t

xtεt

(
T

∑
t=1

x2
t

)−1

By the assumption of cointegration, xt is I(1) and εt is I(0). The orders of
convergence of the terms in the equation are therefore,

T−1
T

∑
t=1

x2
t = Op(T)

T−1
T

∑
t=1

xtεt = Op(1)

so that,

T(β̂ − β) = Op(1)

and (β̂ − β) = Op(T−1)
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bands. Suitable unit root test statistics can therefore be based on the rel-
ative distribution of the variance of the time series with regards to its
frequency content. For this to be feasible, the spectral variance needs
to be decomposed on a frequency basis with the use of suitable band-
pass filters. The proportions of the total variance contributed by the peri-
odic components corresponding to relevant frequencies can thus be com-
pared. Fan and Gençay (2010) introduced the wavelet variance ratio unit
root test based on this principle. We generalize their unit root test to a
system of equations, and use the wavelet filter and variance ratio to con-
struct tests with size fidelity in the presence of error distortions.

1.4 Cointegration

When two or more non-stationary time series have a linear combina-
tion that is stationary, the time series are said to be cointegrated (Engel
and Granger, 1987). Cointegration implies a long-run equilibrium rela-
tionship between variables. Typical examples of cointegration include
the Permanent Income Hypothesis, which implies cointegration between
consumption and income, the Fisher Hypothesis, which implies cointe-
gration between nominal interest rates and inflation, and the Purchasing
Power Parity, which implies cointegration between the nominal exchange
rate and foreign and domestic prices. The statistical formulation for coin-
tegration is succinctly captured in what follows.

Consider, the bivariate case, where yt and xt are both I(1) and ε is I(0).

yt = β0 + β1xt + νt (1.1)

∆yt = εt (1.2)
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1.5.1 Conditional heteroscedasticity

Because time-varying conditional variance is frequently encountered in
financial and economic time series, it is of interest to assess the robustness
of unit root tests towards errors with non-constant variances. General-
ized Autoregressive Conditionally Heteroscedastic (GARCH) processes
(Bollerslev, 1986) are characterized by conditional variances that depend
on current and past information. For this reason, they provide good mod-
els for error processes of time series that exhibit volatility clustering.

The model for the GARCH(p, q) errors is as follows:

σ2
t = ω +

q

∑
i=1

αiu2
t−i +

p

∑
i=1

βiσ
2
t−i

ut = εtσt

εt ∼ iid(0, 1)

Where σ2
t is the conditional variance (i.e., Var(ut|ut−1)). When βi = 0,

then the GARCH (p, q) model reduces to the seminal ARCH(q) model of
Engle (1982), the model which was later generalized by Bollerslev (1986)
to include dependence on past conditional variances. The dependency in
GARCH processes is through their second moments. The u2

t can there-
fore be modeled as ARMA processes with AR parameters ∑

p
i=1(αi + βi)

and MA parameters −∑
p
i=1 βi. The GARCH(1,1) model is the most com-

monly used model in financial applications because it provides a parsi-
monious representation of higher order ARCH processes. Parsimony of
this model comes from the inclusion of lagged conditional variance to
model periods of sustained high or low volatility. Modeling Periods of
sustained volatility would otherwise require ARCH models of high or-
der. The first lag autocorrelation function of u2

t for the GARCH(1,1) pro-
cess can be modeled separately from that of subsequent lags, and the de-
cay in the subsequent lags can be flexibly modeled using different choices

13

This important result, which is known as the superconsistency property
of the OLS based estimators, is relied upon to eliminate the small sam-
ple estimation bias of the cointegrating parameter. However, endogene-
ity of the regressors in OLS regression is certain when the variables in
a conintegrating relationship are jointly determined, and as a result, the
regressors are correlated with the error terms (see Davidson and MacK-
innon, 1993, pp. 717). In addition to this, contemporaneous correlation
between the errors of the different equations, serial correlation of εt, as
well as possible cross-equation serial correlation, can all lead to long-run
edogeneity. All this results in biased estimation of the cointegrating pa-
rameter, and t-ratios that are not normally distributed, even asymptoti-
cally. An important factor to consider in studying the small sample bias is
the ratio of the standard deviations of εt to νt (see Eqns. 1.1 and 1.2). This
ratio (σε/σν), called the signal-to-noise ratio, is known to contribute to
the small sample estimation bias of the cointegrating parameter (Phillips
and Hansen, 1990a). Low signal-to-noise ratios result in larger bias. This
thesis also looks to address the issue of low signal-to-noise ratios using
wavelet filtering in conjunction with the Fully Modified-OLS method of
Phillips and Hansen (1990a); Phillips and Lorentan (1991), the Dynamic-
OLS methods of Saikkonen (1991a) and Stock and Watson (1993), and
the Integrated Modified-OLS of Vogelsang and Wagner (2014b). All three
methods are designed to give asymptotically normal t-ratios so that the
normal distribution based inference is valid for cointegrating parameter.

1.5 Error distortions

This thesis is in part concerned with unit root testing under error dis-
tortions. The effects of two types of error distortions (conditional het-
eroscedasticity and additive measurement error) on the size of unit root
tests are studied, and unit root tests that are robust to these distortions
are also suggested.
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starting with the first difference,

yt − yt−1 = ωt,

then ωt = ut + εt − εt−1
(1.5)

and
E(ωt) = 0

Var(ωt) = σ2
u + 2σ2

ε

Cov (ωt, ωt−s) = −σ2
ε for s = 1 and 0 for s > 1

(1.6)

ωt is therefore the MA(1) process, ωt = εt − θεt−1, with εt being a white
noise process, and θ and σ2

ε satisfying

(1 + θ2)σ2
ε = σ2

u + 2σ2
ε and θ =

σ2
ε

σ2
u

(1.7)

The size of the moving average parameter therefore determines the noise-
to-signal ratio in the measurement error contaminated series. This rela-
tionship is given as:

σε

σu
=

√
θ

(1 − θ)2 (1.8)

It can be seen that as θ → 1, the noise-to-signal ratio → ∞ and {yt}T
t=1

behaves like white noise, hence the oversizing of many unit root tests.
This relationship is useful, because in the part of this thesis that consid-
ers the problem, the limiting distribution of the t-ratio, in the presence of
measurement errors (which will be shown to depend on nuisance param-
eters), will be parametrized in terms of θ for mathematical convenience.
θ, as can be seen, is a function of the noise-to-signal ratio. The relation-
ship can also be used to estimate the noise-to-signal ratios in I(1) time
series which may be of interest in itself, but is not pursued here.

A wavelet variance ratio unit root test that presents good size properties
in the presence of additive measurement error is proposed in this thesis
as an alternative to the Dickey-Fuller type tests.

15

of (α + β) (see Ruppert, 2010, pp. 399–400). This contributes to the versa-
tility and hence popularity of the GARCH(1,1) model.

1.5.2 Additive measurement errors

Although most economic time series are recorded with some degree of
measurement error, testing for unit roots is still routinely done using the
tests of the Dickey-Fuller framework, which can potentially result in mis-
leading inferences. These tests are known to be over-sized in the presence
of error distortions, which can arise from a number of sources. Dickey-
Fuller type tests are known to be sensitive to errors that follow an MA
specification (see Schwert, 1989, for example). To understand the mani-
festation of measurement erorrs a unit root process, consider the follow-
ing:

A random walk process with measurement error can be represented us-
ing an unobserved components model as follows:

yt = y∗t + εt (1.3)

y∗t = ρy∗t−1 + ut with ρ = 1 (1.4)

where y∗t is the true but unobserved time series, εt ∼ iid(0, σ2
ε ) is the

measurement error and independent of ut−s for all t and s, and ut is a
zero mean white-noise process with variance σ2

u. The ratio σε/σu is called
the noise-to-signal ratio. The error ut drives the unit root process due to
its permanent effect on yt, and therefore future values, yt+s. The noise
εt, however, only affects yt but not future values, yt+s. The impact of the
noise therefore results in the increase of the variance of yt from Var(yt) =

tσ2
u to Var(yt) = tσ2

u + σ2
ε . The measurement error impacts the behavior

of yt in the following way:
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the frequency content of the signal, it offers no information on the time
where the frequencies occur, and is, therefore, limited in its handling of
non-stationary signals – signals which have frequencies that change over
time. To localize the frequency content, there is a need to use analyzing
functions that have finite support. One way to achieve this is by cutting
the signal at equal intervals (windowing). In this way, the spectral rep-
resentation of the signal can be made to explicitly depend on time. The
Short-Time Fourier Transform (STFT) achieves this by multiplying the
original signal with windowing functions, which are localized in time
about t = τ (see Eqn 1.9) The spectral representation of x(t) then be-
comes,

X( f , τ) =
∫ ∞

−∞
x(t)g(t − τ)e−2iπ f tdt (1.9)

where g(t − τ) is the windowing function. The Gaussian function g(t) =
exp(−βt2/2) is often a candidate windowing function because of its sym-
metry and smoothness. The ability to resolve features both in time and
frequency is called time-frequency resolution. The STFT has a fixed time-
frequency resolution because of its constant window size. Windowing
results in trade-offs between time and frequency resolution. It is not pos-
sible to identify a window of optimal width, which both localizes features
and captures the frequencies present in a given time interval. However,
some methods give better time-frequency resolution than others.

To overcome the limitations presented by the Fourier transforms, an-
alyzing functions that have compact and flexible support are needed.
Wavelets (which are small waves compared to sinusoids), have com-
pact support. They can also be translated and compressed (or dilated)
to get the flexibility needed for time-frequency resolution. The localiza-
tion problem is solved by translating the wavelet, and the frequency res-
olution is increased by rescaling of the wavelet. Figure 1.1 contrasts the
flexible wavelet analyzing function with the fixed window sized STFT.
The wavelet function can be translated and scaled to obtain spectral rep-
resentations that are functions of both frequency (scale) and time.

17

1.6 The Wavelet Transform

Much of this thesis pertains to the use of the filters of the Discrete Wavelet
Transform (DWT), so it would be appropriate at this point to give a brief
and non-technical overview of this transform for potential readers who
may not be familiar with wavelets, and to make accessible the application
of the transform as a filtering tool, as well as the basis for unit root tests.

1.6.1 The Fourier and Continuous Wavelet Transforms

The analysis of the frequency content of signals (of which time series are
a special case) has traditionally been done using Fourier analysis. We
therefore use the Fourier transform as the starting point in our overview
of wavelet transform.

The spectral representation of a signal can be obtained by multiplying
the signal function with an analyzing function (the Continuous Fourier
Transform (CFT), for example) and summing the product over the time
range of the signal,

X( f ) =
∫ ∞

−∞
x(t)e−2iπ f tdt

The signal can be recovered by the reverse operation,

x( f ) =
∫ ∞

−∞
X(t)e−2iπ f tdt

From the given transform, it is apparent that for each frequency, X( f ) is
a function of x(t) for t ∈ (−∞, ∞). As a consequence, no feature of X( f )
can be linked to a particular time point. More technically, the function
e−2iπ f t, which consists of sinusoids, has an infinite set of points where
it equals to zero (infinite support). While the Fourier transform returns

16
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of the transform as a filtering tool, as well as the basis for unit root tests.

1.6.1 The Fourier and Continuous Wavelet Transforms

The analysis of the frequency content of signals (of which time series are
a special case) has traditionally been done using Fourier analysis. We
therefore use the Fourier transform as the starting point in our overview
of wavelet transform.

The spectral representation of a signal can be obtained by multiplying
the signal function with an analyzing function (the Continuous Fourier
Transform (CFT), for example) and summing the product over the time
range of the signal,

X( f ) =
∫ ∞

−∞
x(t)e−2iπ f tdt

The signal can be recovered by the reverse operation,

x( f ) =
∫ ∞

−∞
X(t)e−2iπ f tdt

From the given transform, it is apparent that for each frequency, X( f ) is
a function of x(t) for t ∈ (−∞, ∞). As a consequence, no feature of X( f )
can be linked to a particular time point. More technically, the function
e−2iπ f t, which consists of sinusoids, has an infinite set of points where
it equals to zero (infinite support). While the Fourier transform returns
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then it must be oscillatory,

∫ ∞

−∞
ψ(t)dt = 0,

that the energy1 is unity,

∫ ∞

−∞
|ψ(t)|2dt = 1

and that wavelets must satisfy the admissibility condition,

∫ ∞

−∞

|Ψ( f )|2
| f | d f < ∞

where Ψ( f ) is the Fourier transform of ψ(t). The condition of finite inte-
gral is satisfied if Ψ(0) = 0. Also, Ψ( f ) → 0 as | f | → ∞, which means
that wavelets must posses band-pass like properties because they are able
to remove periodic components at both the low and high frequencies.

The choice of a wavelet analyzing function depends on several proper-
ties of the function. One criterion is the number of vanishing moments.
Moments of a function are defined as,

mx =
∫ ∞

−∞
f (x)xkdx

The kth moment vanishes if the integral equals zero.

The implications for the wavelet transform is that, as the number of van-
ishing moments increase, polynomials of lesser order are no longer iden-
tified by the wavelet function i.e., when the wavelet’s (k + 1) moments
are equal to zero, all the polynomial signals of up to order k have zero
wavelet coefficients. Wavelets with high numbers of vanishing moments
also have longer support and better approximate complicated functions.

1The energy of a function is the squared function integrated over its domain (see
Gençay et al., 2001, p. 102)

19

Figure 1.1: The wavelet and windowed Fourier transforms
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Reproduced from Cazelles et al. (2007) with permission. The figure shows how the
wavelet function dilates as the scale (a) increases, and how the function can be trans-
lated along the time axis (at the angular frequency ω0 as an example). The windowed
Fourier transform (to the right) has a fixed frequency-time resolution.

The Continuous Wavelet Transform is given by the doubly indexed func-
tion,

ψx(s, τ) =
1√

s

∫ ∞

−∞
x(t)ψ

(
t − τ

s

)
dt

where τ is the translation (shifting) factor and s is the scale. Higher scales
(lower frequencies) correspond to stretched wavelets, and lower scales
correspond to compressed wavelets. The factor (

√
s−1

) is required for
normalization of the wavelet energy (squared norm of the output coeffi-
cients). The normalization is such that the squared norm of the data is
equal to the squared norm of the output coefficients, so that variance is
preserved.

Important properties of wavelets are that their average value in the time
domain is to zero, which implies that, if the function departs from zero,
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Wavelet function,

ψ(t) =





1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 otherwise.

and scaling function,

φ(t) =

{
1 0 ≤ t < 1
0 otherwise.

The Haar function is defined on R for every pair of integers j, k ∈ Z+ as,

ψj,k(t) = 2j/2ψ
(

2jt − k
)

The function has compact support in the interval Ij,k =
[
k2−j, (k + 1)2−j] ,

has zero average, ∫ ∞

−∞
ψj,k(t)dt = 0

and unit norm ∫ ∞

−∞
ψj,k(t)2dt = 1

Haar functions are pairwise orthogonal,

∫ ∞

−∞
ψj,k(t)ψj′,k′(t)dt = 0 if j �= j′ or k �= k′

The orthogonality property is easily evident because, either any two sup-
porting intervals are disjoint, or that the wavelet with the smaller support
is fully contained within one half of the wavelet with the larger support,
which is constant. The narrower wavelet subsequently averages to zero
over the constant support. Any continuous function defined on the in-
terval [0, 1] can be approximated by linear combinations of 1, ψ(t), ψ(2t),
ψ(4t), . . . , ψ(2jt), and their translations. This combined with the proper-
ties given earlier implies that Haar wavelets form orthonormal bases for
square-integrable functions in [0, 1].
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A related property is the regularity of a wavelet. If a function is r-time
continuously differentiable at x0 and r is an integer (r ≥ 0), then the regu-
larity of the function is r. The higher the regularity of a wavelet function,
the smoother the wavelet. Correspondingly, wavelets of low regularity
such as the Haar family of wavelets, give less smooth approximations.
Wavelets with high numbers of vanishing moments tend to have higher
regularity as well.

We conclude this general section on wavelets by looking at the relation-
ship between scale and frequency. This relationship can only be defined
in a broad sense because wavelet functions do not have a single fre-
quency. For that reason, we define a pseudo-frequency and relate it to
scale. Let Cf (called the center frequency) be defined as the dominant fre-
quency of the wavelet. The center frequency is the frequency maximizing
the Fourier transform of the wavelet function. The wavelet pseudo fre-
quency can then be defined as,

Fc =
Cf

sδt

where Cf is the center frequency, s is the scale, and δt is the sampling
interval. We see that if the wavelet is dilated by a factor s, then the fre-
quency Cf scales to Cf /s. There is, therefore, an inverse relationship be-
tween the scale and frequency for wavelets.

1.6.2 The Haar Wavelet Transform

The Haar CWT was first used by Haar (1909). Because the function meets
all the criteria for a wavelet function, it later became known as the Haar
wavelet. It is the simplest of all wavelet functions, with the following
wavelet and scaling functions:

20
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and in the general form,

V1t =
∞

∑
l=−∞

gly2t−l (1.11)

where,

gl =




2−1/2 for l = 0
2−1/2 for l = 1
0 otherwise.

Equations 1.10 and1.11 represent filtering operations with filter coeffi-
cients {hl}∞

−∞ and {gl}∞
−∞ respectively. From the properties of wavelets

discussed earlier,
h0 + h1 = 0 and h2

0 + h2
1 = 1

also,
2

∑
l=0

hlhl+2n = 0

for all non-zero integers n.

The Haar DWT offers variance preservation (the variance of its coeffi-
cients are equal to the variance of the time series), and parsimony i.e. the
most important features are captured in just a few coefficients. However,
this property, which makes the wavelet ideal in applications such as im-
age compression for example, becomes a disadvantage when the wavelet
is used for time series analysis. The requirement of mandatory dyadic
sample sizes limits its applications in time series analysis. For this rea-
son, we use the Haar Maximal Overlap DWT for time series analysis in
this thesis.
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1.6.3 The Discrete Wavelet Transform (DWT)

The Continuous Wavelet Transform (CWT) requires an infinite number
of wavelets because of continuously shifting continuously scalable func-
tions. This results in highly redundant wavelet coefficients. In practice,
only few coefficients are required to capture most of the variation in a
signal, so the redundancy is removed by sampling the signal and using a
discrete wavelet transform for analysis. Many time series, including eco-
nomic time series, are indeed sampled at discrete time points and require
a transform that can handle discrete data.

The Haar DWT

To illustrate the working of the filters of the Haar DWT, consider the time
series {yt}T

t=0. The wavelet coefficients at the unit scale are the wighted
and adjacent but non-overlapping differences i.e.,

W1t =
(y2t − y2t−1)√

2

or in the general form,

W1t =
∞

∑
l=−∞

hly2t−l (1.10)

where,

hl =





2−1/2 for l = 0
−2−1/2 for l = 1
0 otherwise.

Similarly, the scaling coefficients are given as,

V1t =
(y2t + y2t−1)√

2
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passed and frequencies that are attenuated by the filter. The squared gain
function is an even and symmetric function of frequency, and has period
equal to unity. It is therefore sufficient to consider only the frequency
range [0, 1/2] when evaluating the band-pass filters.

The jth level wavelet and scaling coefficients as defined as follows:

W̃j,t ≡
Lj−1

∑
l=0

h̃j,lyt−l, (t = 0, 1, 2, 3 . . .)

Ṽj,t ≡
Lj−1

∑
l=0

g̃j,lyt−l, (t = 0, 1, 2, 3 . . .)

Summation of the coefficients gives,

J0

∑
j=1

W̃j,t + ṼJ0,t =

Lj−1

∑
l=0

(
J0

∑
j=1

h̃j,l + g̃J0,l

)
yt−l

where J0 is a scale less than or equal the maximum resolution for the data.
For the Haar MODWT wavelets, we have by the definition of its filters,

J0

∑
j=1

h̃j,l + g̃J0,l ≡
{

1 for l = 0,
0 for l �= 0

and as a result of this,

J0

∑
j=1

W̃j,t + ṼJ0,t = yt

The time series can therefore be additively decomposed into the wavelet
and scaling coefficients of the Haar MODWT. The significance of this is
that the dynamics of the periodic components at any frequency band can
be removed (filtered) by simply discarding the wavelet coefficients cor-
responding to that frequency band. We make use of this property in con-
structing the wavelet variance ratio unit root tests.
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1.6.4 The Haar Maximal Overlap DWT (MODWT)

The MODWT has several advantages over the DWT. It can handle sam-
ples of any size, and is invariant to circular shifting of the original time
series. An important property, which is useful for the work covered in
this thesis, is that the MODWT wavelet variance estimator is superior
its DWT counterpart (see Percival, 1985). We will use the wavelet vari-
ance estimator in estimating the variance contribution made by the (sta-
tionary) periodic components of high frequencies, in the construction of
variance ratio unit root tests. Because the transform is non-decimated, it
produces as many coefficients as the input data, and therefore captures
local variation better, although at the expense of some redundancy.

The Haar MODWT wavelet filter (h̃j,l : l = 0, . . . Lj − 1 j = 1, 2, . . .) is
given as,

h̃j,l ≡




1
2j for l = 0, . . . , 2j−1 − 1

1
−2j for l = 2j−1, . . . , 2j − 1

0 otherwise

Lj = 2j for this wavelet, and is the length of filter at scale j. The scaling
filter is given as,

g̃j,l ≡
{

1
2j for l = 1, . . . , 2j − 1
0 otherwise

The Haar MODWT wavelet filter h̃j,l therefore approximates a band-pass
filter with the nominal pass band [2−(j+1), 2−j] and the its scaling filter
g̃j,l approximates an ideal low-pass filter with the nominal pass band
[0, 2−(j+1)]. The reason for only considering frequencies in the range [0, 1/2]
is as follows:

An important characteristic of any linear filter is its frequency response
function. The squared gain function is the square of the modulus of the
response function, and provides information about frequencies that are
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α, the Monte Carlo procedure uses n0 independent samples under the
null hypothesis and n1 samples under the alternative hypothesis. The
estimated size of the test is then given by,

p̂0 =
1
n0

n0

∑
i=1

I(T(y)0i ≤ −c)

T(y)0i, i = 1, . . . , n0 are the values of the test statistic for each sample un-
der the null hypothesis, and I(·) is the indicator function for a rejection
of the null hypothesis at each iteration. I(T(y)0i) equals 1 if T(y)0i ≤ −c
and 0 otherwise. Confidence limits can be set for p0 based on the propor-
tions of rejections of the null hypothesis (see Edgerton and Shukur, 1999,
for example).

The empirical power under the alternative is given analogously,

p̂1 =
1
n1

n1

∑
i=1

I(T(y)1i ≤ −c)

When making power comparisons for tests that have different sizes, an
adjustment has to be made to ensure that the tests have the same size,
α. The adjustment requires new critical values to be generated using
Monte Carlo simulations. The critical values are based on the α quan-
tile of the empirical distribution under the null hypothesis i.e., α quantile
of the empirical distribution of T(y)0i. For a finite population of T(y)0i

with equally probable values, and indexed T(y)01 . . . T(y)0n from lowest
to highest, the Monte Carlo critical value, ĉ, is the value T(y)0i, which
corresponds to the αn0. The size-adjusted power is therefore given as,

p̂∗1 =
1
n1

n1

∑
i=1

I(T(y)1i ≤ −ĉ)

In this thesis n0 = 5n1 (with n1 = 10 000) has been used. This is done
to get the low valeus of Var(p∗1) using a reasonable number of iterations.
Ratios of up to n0 = 10n1 have been suggested in the literature (see Zhang
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The motivations for using the Haar MODWT function in this thesis are
several fold – the Haar MODWT wavelet has the simplest orthonormal
wavelet basis, is conceptually simple and reversible, without the bound-
ary effects characteristic of longer and smoother wavelets. It is also com-
putationally fast and lends itself to use in extensive simulations as is the
case with the work covered in this thesis. The wavelet has a superior
wavelet variance estimator to the DWT, can handle samples of any size,
and data can additively be decomposed into its scaling and wavelet co-
efficients. The wavelet function also decomposes the total variance of a
time series on a scale-by-scale basis. Because the focus of this thesis is
in evaluating the performance of unit root tests in time series of small
sample sizes, the Haar MODWT has advantages over filters with longer
support for this purpose.

1.7 Critical values, test size and power

Critical values, empirical test sizes, and power functions for the different
statistical tests that are presented in this thesis are obtained using Monte
Carlo simulation. When the actual sizes of test statistics are different from
their nominal sizes, direct comparisons of power estimates gives mislead-
ing results. Over-sized tests show higher empirical power compared to
correctly sized (or under-sized) tests when the power comparisons are
not adjusted for differences in the test sizes. Below, we show how the
empirical test sizes, critical values and size-adjusted power functions are
obtained in this thesis.

Most unit root tests reject a one-sided null hypothesis for small (negative)
values of the test statistic. For this reason, we illustrate the calculation of
the empirical test size and power using the one-sided critical value, −c.

For a test statistic T(y) with a critical value −c based on nominal size
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α, the Monte Carlo procedure uses n0 independent samples under the
null hypothesis and n1 samples under the alternative hypothesis. The
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p̂0 =
1
n0

n0

∑
i=1

I(T(y)0i ≤ −c)

T(y)0i, i = 1, . . . , n0 are the values of the test statistic for each sample un-
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p̂1 =
1
n1

n1

∑
i=1

I(T(y)1i ≤ −c)
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p̂∗1 =
1
n1

n1

∑
i=1

I(T(y)1i ≤ −ĉ)
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The motivations for using the Haar MODWT function in this thesis are
several fold – the Haar MODWT wavelet has the simplest orthonormal
wavelet basis, is conceptually simple and reversible, without the bound-
ary effects characteristic of longer and smoother wavelets. It is also com-
putationally fast and lends itself to use in extensive simulations as is the
case with the work covered in this thesis. The wavelet has a superior
wavelet variance estimator to the DWT, can handle samples of any size,
and data can additively be decomposed into its scaling and wavelet co-
efficients. The wavelet function also decomposes the total variance of a
time series on a scale-by-scale basis. Because the focus of this thesis is
in evaluating the performance of unit root tests in time series of small
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support for this purpose.
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Carlo simulation. When the actual sizes of test statistics are different from
their nominal sizes, direct comparisons of power estimates gives mislead-
ing results. Over-sized tests show higher empirical power compared to
correctly sized (or under-sized) tests when the power comparisons are
not adjusted for differences in the test sizes. Below, we show how the
empirical test sizes, critical values and size-adjusted power functions are
obtained in this thesis.

Most unit root tests reject a one-sided null hypothesis for small (negative)
values of the test statistic. For this reason, we illustrate the calculation of
the empirical test size and power using the one-sided critical value, −c.

For a test statistic T(y) with a critical value −c based on nominal size
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Chapter 2

Outline of papers

2.1 Paper I

In this paper, a wavelet variance ratio unit root test is proposed for time
series with GARCH(1,1) error processes. The unit root test is applied
to time series that have been filtered from their high frequency peri-
odic components using the Maximal Overlap Discrete Wavelet Transform
(MODWT) filter. Both the filtering and the unit root test are based on the
same MODWT analyzing function, which allows the filtering and unit
root testing to be performed in one step. The empirical test sizes and size-
adjusted power functions of the proposed unit root test are compared to
four other unit root tests – namely, the Augmented Dickey Fuller test
(ADF), the Phillips and Perron (PP) test, the wavelet variance ratio test
of Fan and Gençay (2010) (F̃G1), and the modified Dickey-Fuller test of
Li and Shukur (2011). The PP and Li and Shukur’s tests are designed
to cope with heteroscedasticity, while the ADF test is used as a bench-
mark because of its accessibility and extensive use. F̃G1 is included in
the comparison to assess whether meaningful gains are made from filter-
ing the time series from it highest frequency periodic components. The
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and Boos, 1994).

28



Chapter 2

Outline of papers

2.1 Paper I

In this paper, a wavelet variance ratio unit root test is proposed for time
series with GARCH(1,1) error processes. The unit root test is applied
to time series that have been filtered from their high frequency peri-
odic components using the Maximal Overlap Discrete Wavelet Transform
(MODWT) filter. Both the filtering and the unit root test are based on the
same MODWT analyzing function, which allows the filtering and unit
root testing to be performed in one step. The empirical test sizes and size-
adjusted power functions of the proposed unit root test are compared to
four other unit root tests – namely, the Augmented Dickey Fuller test
(ADF), the Phillips and Perron (PP) test, the wavelet variance ratio test
of Fan and Gençay (2010) (F̃G1), and the modified Dickey-Fuller test of
Li and Shukur (2011). The PP and Li and Shukur’s tests are designed
to cope with heteroscedasticity, while the ADF test is used as a bench-
mark because of its accessibility and extensive use. F̃G1 is included in
the comparison to assess whether meaningful gains are made from filter-
ing the time series from it highest frequency periodic components. The

29

and Boos, 1994).

28



simulation. As a remedy to this problem we propose a modification to
the wavelet variance ratio unit root test introduced by Fan and Gençay
(2010). We obtain the limiting distribution of the test statistic and show
that the test has superior size and size-adjusted power compared to the
Dickey-Fuller test for finite sample sizes, and better size compared to Fan
and Gençay’s variance ratio test. In addition, an empirical application
using the new test on inflation rates of four Asian countries is used to
demonstrate its robustness to the possible presence of measurement er-
rors.

2.3 Paper III

In this simulation based paper, we suggest a simple way of reducing
the small sample bias that arises in the estimation of the conintegrating
parameters of bivariate models. We use the Maximal Overlap Discrete
Wavelet Transform (MODWT) wavelet filters to improve the signal-to-
noise ratios (ratio of the standard deviation of the errors that drive the
unit root process to that of the standard deviation of the additive noise
process) thereby reducing the small sample bias resulting from edogene-
ity of the regressors. The wavelet filters are used in conjunction with
Ordinary Least Squares, the Fully Modified Ordinary Least Squares of
Phillips and Hansen (1990b); Dynamic Ordinary Least Squares (Saikko-
nen (1991b), Phillips and Lorentan (1991) and Stock and Watson (1993));
and the Integrated Modified Ordinary Least Squares of Vogelsang and
Wagner (2014a), to provide filtered versions of these methods. Monte
Carlo simulation shows that wavelet filtering results in estimators with
smaller bias for all the methods considered, and is most effective for the
smaller sample sizes of (T = 50, 75).

The results from using Fully Modified Ordinary Least Squares on wavelet
filtered data are also compared to those obtained by first filtering the data
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same basic simulation design as used by Sjölander (2008) is used in this
paper. The Design consists of fifteen GARCH(1,1) error processes cover-
ing the range of Data Generating Processes (DGPs) likely to be found in
empirical work.

The proposed unit root test is shown to have better performance com-
pared to the four alternative tests and sample sizes considered. All the
tests are biased for the DGPs that have very strong volatility, but the
proposed unit root test is the least over-sized even in this case. The
two wavelet variance ratio tests have higher size-adjusted power com-
pared to the three DF-type tests (ADF, PP and Li and Shukur’s tests).
(F̃G1), used when the conditional heteroscedasticity is neglected, has
only marginally higher size-adjusted power than the proposed unit root
test. The two tests have identical power in the interesting near unit root
region (ρ ≥ 0.95) for all sample sizes and DGPs.

The proposed unit root test has therefore the best size properties and
matches the test with the highest size-adjusted power for DGPs that are
near unit root. The limiting distribution of the proposed test statistic is
also derived for completeness.

2.2 Paper II

Although many economic time series are recorded with some degree of
measurement error, testing for unit roots is still routinely done using the
Dickey-Fuller and related tests, which can potentially result in mislead-
ing inferences. In this paper, we examine the effect of measurement errors
on the commonly used Dickey-Fuller unit root test (Dickey and Fuller,
1979). We show that the Dickey-Fuller test is severely over-sized in the
presence of measurement errors, both asymptotically via the limiting dis-
tribution of its t-statistic, and in finite sample sizes using Monte Carlo
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