This is the accepted version of a paper published in *Behavior and Information Technology*. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

https://doi.org/10.1080/0144929X.2019.1583284

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-80838
Analysis of Tweets about Football: 2013 and 2018 leagues in Turkey

Selcen Ozturkcan
https://orcid.org/0000-0003-2248-0802
School of Business and Economics, Linnaeus University, Kalmar, Sweden Selcen.Ozturkcan@lnu.se
& School of Business, Sabanci University, Istanbul, Turkey selcen@sabanciuniv.edu

Nihat Kasap
https://orcid.org/0000-0001-5435-6633
School of Business, Sabanci University, Istanbul, Turkey nihatk@sabanciuniv.edu

Altug Tanaltay
https://orcid.org/0000-0002-1388-1957
School of Business, Sabanci University, Istanbul, Turkey atanaltay@sabanciuniv.edu

Mesut Ozdinc
https://orcid.org/0000-0002-8836-978X
School of Economics and Business, Åbo Akademi University, Turku, Finland mesut.ozdinc@abo.fi
& Department of Statistics, Mimar Sinan FA University, Istanbul, Turkey

Abstract
Football has recently developed into a unique sector with complex management and marketing functions, where novel communication technologies are employed. In this paper, we aim to contribute to the numerous fields involving emerging European sports marketing literature, social media analytics, and digital consumer behavior. Our purpose is to explore Twitter use related with football by analyzing real-time streamed data in offering a longitudinal perspective by focusing on 2013 and 2018 leagues in Turkey via the use of social media analytics framework. Retrieved dataset involved randomly selected publicly available 370 thousand and 6,8 million real-time tweets in 2013 and 2018 leagues, respectively. We report that majority of tweets about the football was posted within the three-hour window before the match independent of the match result and the importance of the result. Moreover, pre-match tweeting volume was almost a crystal ball signaling match winning. Our findings are valuable for sports managers and marketers where some key suggestions provided are to involve particular contexts of winning or losing in their after-match marketing plans, to value weekdays as much as the weekends, and to utilize the after-work prime time of social media engagement.

Keywords Sports marketing, social media, Twitter, football, tweeting behavior, big data, Turkey.
1. Introduction

Football is amongst those sports that generate a widespread enthusiasm for large crowds, who are also social media users for a variety of reasons. Individuals excited for different reasons about football could range from waiting for an important match to scoring of a goal or even losing a match in choosing to engaging with social media about football on an increasing pattern. One such social media that individuals post about football is Twitter. Twitter is a micro-blogging social media with an estimated 1.3 billion total number of registered user, where 34% of active users log onto it more than once a day (Smith, 2017). As of 2nd quarter of 2013 and 2018, Twitter’s monthly active user base was 218 million and 335 million, respectively (Statista, 2018). Social network estimates indicate some 2.62 and 3.02 billion users worldwide by 2018 and 2021, respectively (Statista, 2017). Recently, sports related Twitter use included streaming of live videos, which constituted about half of all live videos posted on Twitter during the first quarter of 2017 (Spangler, 2017). During the year 2016, 91% of the top 100 telecasts were about sports, which in turn lead to more than half of the social TV conversations on Twitter in the U.S. (Townsend & Lovett, 2017). Twitter data analysis offers valuable insights with significant findings on individual and group tweeting characteristics on sports, which could be used in managing related social media marketing efforts (Jacobs, 2009; Savage, 2011). In this regard, Turkey provides an interesting ground by hosting some of the most valuable football clubs in Europe (KPMG, 2017, 2018; Terekli & Çobanoğlu, 2018) as well as the widespread use of Twitter. Turkey ranks 8th among Twitter’s top markets of active users with a share of 3.0 per cent of global users (Richter, 2013). Twitter is the 7th most popular website in Turkey (Alexa, 2016).

Studies about sports on social is an emerging field. In this regard, our paper is a frontier effort to offer an analysis of real-time streamed data on a longitudinal approach. This paper aims to contribute various literature including European sports marketing, social media analytics, and digital consumer behavior. The purpose entails exploring Twitter use in relation with football by focusing on 2013 and 2018 leagues in Turkey with the aid of social media analytics framework. Analyzed dataset included 370 thousand and 6,8 million tweets that were streamed between March 10th 2013 and June 30th 2013, and between December 29th 2017 and June 8th 2018, respectively. Conclusions drawn are valuable for managers and marketers who are interested in designing strategies for social media surrounding sports activities.
The remainder of the paper is structured in the following manner. Next section includes an overview of the literature where the importance of our frontier research is underlined. Section 3 explains methodology and data. Section 4 describes analysis and results. Section 5 delivers conclusion and discussion of major findings. Finally, Section 6 involves contributions, limitations and future research directions.

2. Literature Review

Twitter presents a novel direct communication channel for teams and their fans (Price, Farrington, & Hall, 2013). It also allows football players to express themselves, helping them to establish powerful personal brands. Football teams, on the other hand, tend to have less Twitter presence compared to individual players. Among the many underlying factors, team’s limited human resources dedicated to social media management could be a major bottleneck in their Twitter presence. The need to interact 7/24 with a large fan-base could require significant resources and knowledge to fully grasp the potential of social media. It is perhaps this bottleneck that influences teams’ decisions to use Twitter mostly for provision of traditional information, such as transfer news, rather than tapping into the interactive novelties involved in social media communication. Sporting event organizers and sport teams often use Twitter to share information about and promote their events by sending informational and promotional messages (Hambrick, 2012). This one-way communication activity is believed to attract followers, in addition to resulting in the rapid spread of information through the online social network. On the other hand, speculations and misinformation could be disseminated too quickly via Twitter, too. All in all, teams should develop marketing and communication strategies specially crafted for social media. In this regard, this research provides an important contribution in offering analysis of real-time tweeting in years 2013 and 2018. As we are responding to similar earlier research by Eagleman (2013) and Filo, Lock, and Karg (2015), where it is mentioned that social media is utilized mostly as a communication tool rather than a marketing tool. According to their findings, social media could be used (1) to communicate and develop the relationship with users and fans, (2) to promote brand and sport activities by posting stories, news, videos, or pictures, and (3) to engage in discussions with fans/followers. Our research took a further step to provide insight on how the Twitter use changed over the 5-year period from 2013 to 2018. In addition, some past research suggested that social media opportunities should be considered as a factor in sponsorship selection (Greenhalgh &
Greenwell, 2013). In this context, social media could further be used as a marketing tool for promoting or activating sponsorships by offering discount or promotional codes for tickets and commodities. Ioakimidis (2010) explored the media-based content and opportunities for fan interaction used by sports teams in North America and Europe. Their findings indicated that the U.S. sports teams outperformed others in using online sports marketing strategies. U.S. teams applied online sports marketing strategies in social media with the aim of increasing revenue, enhancing fan loyalty and establishing brands. U.S. teams’ fans interacted with the teams and players through team-related blogs and online communities that provided a virtual home to increase connection and sense of belonging. Though the US based research on the use of social media had been emerging, similar research in Europe, particularly about Twitter, with regards to sports marketing and sponsorship activities is still developing. It is in this context that this paper is a frontier research effort in (1) analyzing real-time behavior since streamed data was collected, (2) offers a longitudinal lens in enclosing 2013 and 2018 leagues, (3) employs social media analytics framework to football related Twitter use, and lastly (4) provides an analysis from Turkey to contribute to the emerging European sports marketing literature.

Most sport events, including football matches, tend to provoke some emotional reactions (Bal, Quester, & Plewa, 2009). In adopting an evolutionary psychology perspective, Schaller, Park, and Kenrick (2009) categorized such sport-induced emotional reactions as part of a motivational system that accommodates human adaptation. This study focuses on understanding the various factors involved in social media engagement related with football matches. Not only social media is considered a platform of social activity, but watching football match is also considered to be part of sociality. Sociality is amongst the most central characteristics of humans (Baumeister & Leary, 1995). Past research indicates two motivational directions competing with each other that any individual would be required to tackle in building a social life, namely relatedness and competence (Bugental, 2000; Kenrick, Li, & Butner, 2003). Building connection with others is known as relatedness motivation, while competing with others for limited resources is known as competence motivation. Exposure to sports events is considered as a triggering activity for these motivational systems (Ahn, Cheong, & Kim, 2013). Football matches involve a win-or-lose environment involving competition among social entities, which in turn might also induce social cohesion (Raney, 2006; Wann, 2001). Building community with others to better protect the group
is considered a relatedness motivation (Griskevicius, Goldstein, Mortensen, Cialdini, & Kenrick, 2006; Schachter, 1959; Taylor et al., 2000) while competence motivation is reflected in attaining and controlling resources (Keltner, Gruenfeld, & Anderson, 2003). Despite football matches reflect the two contrasting motivational domains of competence and relatedness, it is unlikely for both to be active simultaneously by the same match. Past research indicated that “when individuals are motivated to get ahead of others, they are relatively unlikely to get along with those others” (Ahn et al., 2013).

Parganas, Anagnostopoulos, and Chadwick (2017) showed that sports teams could use social media in reaching geographically distant fans. Accordingly, building enthusiasm by involving emotion sharing within groups to further enhance the spirit of community feeling was possible. Their study highlighted the importance of studying fans in different national contexts as well as various fan segments. To do so, they suggested using social media, which also affects most teams’ marketing strategies especially in adjusting to particular social and geographic criteria by strengthening both their commercial and brand value. Indeed social media became a rapidly developing alternative medium to traditional media in sports (Özsoy, 2011). Due to swiftly developing mobile technologies, fans can access news about sports events and match scores regardless of time and place with the help of social networking sites that are more practical, cheaper and faster compared to the traditional media. More research into social media is needed to understand the involved behavioral dynamics. However, most sports management research on social media relies on either content analyses, or questionnaires and interviews (Filo et al., 2015). Filo et al. (2015) also revealed that the data collected from different regions and countries can be utilized for cross-cultural comparisons by broadening our understanding of social media. This study, on the other hand, is based on real-time streamed data analysis; hence it provides the unique contribution to the existing literature as a response to this call.

3. Methodology and Data
Studies on Twitter data involve either data retrieved from paid data sources or collected from streamed data. We collected tweets that were posted by publicly available Twitter profiles. Retrieved data were then analyzed by the We developed our methodology on social media analytics framework (Fan & Gordon, 2014). We followed the three steps of capturing, understanding and presenting suggested by the social media analytics framework (Fan & Gordon, 2014) in line with other similar past research (Çevik,
that studied various social phenomenon (Figure 1).

2013 league

MongoDB was used in collecting randomly selected 1% of tweets posted in Istanbul (Turkey) region. Total number of tweets in our 2013 dataset was 25.8 million; in this dataset the total number of football team related tweets between 10 March 2013 and 30 June 2013 was 370,087 (Figure 2) since this period covered the annual football league. All contents of these tweets were transformed to lower case Roman letters to conclude the capturing stage.

In the understanding stage, tweets’ textual information was analyzed in terms of occurrence frequency of keywords, hash tags, or mentions (Provost & Fawcett, 2013, p. 254; Russell, 2013, p. 30). When the occurrence exceeded 50 times of appearance in the dataset, that phrase was recorded as ‘commonly occurring’ one. 50 was chosen as a cut off since it represented a reasonable lower bound of replication for all 25.8M tweets in the dataset.

Lastly, in the presenting stage, three researchers manually investigated the 7,932 ‘commonly occurring’ terms to identify the football related data subset with a consensus of 0.8 inter-rater reliability. On a similar second round, the subset of 732 football related keywords was reviewed by researchers to outline and categorize the main representative phrases related to Besiktas\(^1\) (BJK), Fenerbahce\(^2\) (FB), Galatasaray\(^3\) (GS), and Trabzonspor\(^4\) (TS) for further analysis.

2018 league

Logstash (for collecting) and Elasticsearch (for indexing) were used in collecting purposefully selected tweets posted in Turkish. 732 keywords filtered and re-categorized by 2 researchers, 2 football fans and a sports consultant to 172 football related keywords, which were then used to purposefully record streamed data from Twitter. Total number of tweets in our 2018 dataset was 14 million. When querying Twitter through its public application programming interface, Twitter returns all tweets containing at least one of the keywords provided by the query in any of the tweet’s

1\(^\) http://www.bjk.com.tr/en
2\(^\) http://www.fenerbahce.org/eng
3\(^\) http://www.galatasaray.org
4\(^\) http://www.trabzonspor.org.tr/en
fields like user names, links or the actual content. Thus, a first-round filtering was done on the dataset using the 172 keywords, only on the text content of the tweets, to acquire only the relevant football related ones. In this filtered dataset the total number tweets with relevant text in their content between 29 December 2017 and 08 June 2018 was 8.6 million since this period also covered the annual football league. Among these 8.6 million tweets, 6.8 million were related with four major teams (BJK, FB, GS and TS).

In the understanding stage, tweets’ textual information was analyzed in terms of occurrence frequency of keywords, hash tags, or mentions (Provost & Fawcett, 2013, p. 254; Russell, 2013, p. 30). Among the 172 keywords used for collecting data, 82 of them were classified for each major team (BJK, FB, GS and TS). At second round, using these 82 keywords, a second filter was applied in order to acquire the 6.8 million tweets mentioned above.

Lastly, in the presenting stage, two researchers, manually investigated the 6.8 million tweets related with Besiktas (BJK), Fenerbahce (FB), Galatasaray (GS), and Trabzonspor (TS) for further analysis.

The four sports teams (GS, FB, BJK, and TS) were not only the top 4 Twitter profiles in Turkey in terms of follower basis, but three of them were also listed amongst the top European, too. Listed among the top 20 social media following of the European football clubs, GS had 12.9 million Facebook, 8.7 million Twitter and 4.5 million Instagram followers, FB had 9.5 million Facebook, 6.7 million Twitter and 3.1 million Instagram followers, and BJK had 6.0 million Facebook, 4.0 million Twitter and 2.0 million Instagram followers (KPMG, 2018). Enterprise values in 2018 for BJK, GS, and FB were reported as USD 401 million, USD 398 million, and USD 385 million, respectively (KPMG, 2018).

4. Analysis and Results

In exploring reflections of football on Twitter, we employed several steps of analysis. First, tweet volumes were calculated on a daily basis and days with highest tweet volumes were investigated in terms of any football bearing incidents. Then tweets about the major football clubs were analyzed to understand before, during and after match tweeting. This was followed by an investigation of again three phases of before, during and after match tweeting with regards result of the match in three categories of winning, loosing and draw. Then analysis focused on the weekdays with regards to matches and
tweet volumes distribution on the days of the week. Lastly, 2018 data was mapped to understand the prime time of the day for tweeting.

Real-life football events vs. football related tweeting

To begin our reflection from the most important football events, it is perhaps worth noting the champions of 2013 and 2018. 2012-2013 Turkish super leagues champion was GS, while FB and BJK were 1st and 2nd runners-up. Regarding the 2017-2018, GS was the champion, while FB was the 1st runner-up. BJK and TS were the fourth and fifth most successful teams respectively in this season. Daily tweet volumes for 2013 and 2018 for each team are included in Figure 2, where

Table 1 lists the major events on the corresponding high tweet volume days. Overall there were totally 124K, 131K, 101K, and 13K tweets posted about BJK, FB, GS, and TS, respectively in 2013 (Figure 2). Five years later, in 2018, total tweets posted about BJK, FB, GS and TS amounted to 141K, 170K, 160K, and 40K, respectively. Interestingly, both in 2013 and 2018 there were fewer tweets posted about the champion GS, but tweets about 1st runner FB were highest in volume. Among the days that had total daily tweet volume exceeding 5K, UEFA leagues and Turkish league matches presented the highest peaks both in 2013 and 2018. Other than those, the days when there was a Turkish cup match and/or some other public concerning events, there was also an increase in the tweet volume posted. Moreover, derby match days have also received an increase in tweeting, which is kind of trivial. The total maximum volume of daily tweets (14,141) was posted on 05 May 2013, at which there was no derby matches played but BJK, FB and GS had individual matches with other teams in the Turkish Super League. Similarly, the total maximum volume of daily tweets (170,445) was posted on 29 April 2018, when there was a Turkish super league derby match between GS and BJK.

*** insert Figure 2 here ***

*** insert Table 1 here ***
When tweeting behavior during all matches played by GS, FB, BJK, and TS was analyzed, it was found that there was considerable amount of tweeting activity before the match (Table 2) both in 2013 and 2018. Our analysis included tweets three hours before, during, and three hours afterwards the match. Tweets increased to high levels before the match, decreasing during the match, and continuing to even lower levels following the match in 2013. In 2018, Tweets after the match increased but not to a level observed before the match. The change indicates that there is an increase in football related tweeting after the match, even though there are less tweets before, during and after the matches in general. Particularly there were more FB and GS related tweets posted before the match in 2013, while BJK related tweets gained a momentum accompanying the GS and FB related pre-match tweeting. All in all, 81% and 73% of tweets were posted within 3 hours before the matches in 2013 and 2018, respectively. While tweets during the matches remained only at 15% and 10% of all posted tweets, 4% and 17% were posted within the following three hours after the matches in 2013 and 2018, respectively. Hence, tweeting behavior induced by matches suggest that there is heightened activity prior to the match, but not resumed during the match, and is in a process of improvement during the last five years for not quickly fading away subsequent to the match.

When team-based tweets were analyzed, it was found that FB tweets were 48% of all tweets posted within the analyzed time frame of matches in 2013. In this year, this was followed by 40%, 10%, and 2% of tweets posted on GS, BJK, and TS, respectively. On the other hand, FB and GS related tweets were higher within the pre-match tweeting group in 2013 and 2018, respectively. However, GS related tweets exceeded all other team-based tweets during the matches both in 2013 and 2018. Finally, post-match tweeting was highest for GS related tweets again both in 2013 and 2018. Interestingly, the dominant leadership of FB’s pre-match tweet levels was not repeated neither during nor the post-match tweeting levels in 2013, while GS related tweets remained the highest in all three categories of before match, during match and after match in 2018.
Match score and tweeting before/during/after match

Analysis included influence of match result (winning, draw or loosing) on the tweet volumes, too. Findings revealed if posting behavior changed in relation to the match’s end score (Table 3).

When it comes to the match score, matches that ended with a draw attracted the least amount of tweeting both in 2013 (8%) and 2018 (19%). Perhaps the more than double fold increase in volume should be further analyzed even when the tie score is not inducing highest levels of tweeting, even not during the match when the score is yet uncertain and there is still hope for the favorite team to win. When looked into for more details where the most increase is present in the draw matches, it was revealed that post-match tweeting registered a dramatic increase from 2013 to 2018. This could perhaps be due to social media providing the grounds for a prolonged discussion about who the winner should have been as it recruits more users.

An interesting finding of our study was that pre-match tweeting volume was almost the crystal ball telling the signaling the match result, especially in those cases of winning, with an improved precision from 2013 to 2018. In 2013, only tweets about FB (20,989) and GS (23, 013) were highest during the pre-match when these teams won the matches they played. In 2018, however, three teams (BJK: 160,296; FB: 110,266; GS: 269,559) enjoyed highest pre-match tweet volumes in those matches that they have won afterwards. In other words, pre-match tweet volumes could be taught as a barometer of the match result to a certain extend. Tweets about TS was comparably low both in 2013 and 2018, and the win/lost/draw based tweeting followed a unique pattern, too. Hence, it might be true that mainstream tweeting behavior about football also has its exceptions when it comes to the score of the match. Yet, the more the fans virtually cheer before the match the higher the likelihood of the winning is an interesting proposal that can attract future research. In addition, higher tweeting pre-match when compared to during match could be result of devoting attention to watching the match rather than engaging with social media. However, the dramatic drop in the post-match tweet volumes except for those about BJK suggests that attention – and perhaps engagement – with the matches were readily consumed, without any prolonged interest.

Days of tweeting
Distribution of matches in a week was not homogeneous in 2013 (Figure 4a and Figure 4b). Most matches were played on Sunday (31.5%) or Saturday (25.9%) with all teams having at least one match on each weekend day. Distribution of all matches was 42.6% and 57.4% between weekdays and weekend, respectively. However, 63.7% of all match related tweets were posted during the weekdays, but only 36.3% on weekends (Table 5). Both watching football matches and social media engagement are considered leisurely activities often assumed to take place during the weekends. Contrary to common perception, weekend tweeting in 2013 was observed less even when the total number of matches organized during the weekends was higher.

*** insert Figure 4 here ***

In 2018, distribution of matches in a week was not homogeneous, neither (Figure 5a and Figure 5b). Most matches were played on Sunday (38%) or Saturday (36.9%) with all teams having at least one match on each weekend day. Distribution of all matches was 25% and 75% between weekdays and weekend, respectively. Similar to 2013, 60.7% of all match related tweets were posted during the weekdays, but only 39.3% were on weekends (Table 5). Despite the distribution of matches changing from 2013 to 2018, our results indicate similarities in terms of weekday and weekend tweet volume percentiles.

*** insert Figure 5 here ***

Day by day analysis of number of match and tweet volume distribution reveals interesting findings (Table 4). There was a similar distribution of tweet volume distribution vs. number of match distribution on Mondays, Wednesdays, and Fridays in 2013. However, despite fewer matches were played on Tuesdays, volume of tweets increased. More interestingly, only GS played matches but there were tweets posted about all four teams on Tuesdays. On another note, Thursdays had a similar distribution of number of matches with the subsequent day (Wednesday), but the number of Tweets posted had increased. Only FB played matches on Thursdays but similar to Tuesdays, again al four-team based tweeting was increased on Thursdays. Startling with Saturday, weekend days were more popular for tweeting in line with more matches played. In a broader sense, tweeting on weekend days was inflated. Even at the absence of matches, some tweeting activity remained during the weekdays, too.
2018 involved an interesting allocation of match distribution, where there were no matches on three days of the week (Tuesday, Wednesday and Thursday) at all. Interestingly, distribution of tweet volume on Sunday remained the same in 2013 and 2018. Moreover, lack of match on Tuesday, Wednesday and Thursday did not lead to lack of tweeting on these days.

*** insert Table 4 here ***

Hours of tweeting

Analysis of the 2018 data indicated that there were some popular times during the day that attracted more tweeting (Figure 6). Mornings or mid-day were not popular times for individuals to post tweets about football. However, the prime time of tweet volume was captured around 18:00. Perhaps it is the after-work commuters that choose to post in these hours during the weekdays, yet the pattern for hourly distribution was again the same for weekends, too. Therefore, irrespective of the day of the week, football attracts tweets around 18:00 pm. Future social media marketing strategies related with football should consider the hours to facilitate engagement.

*** insert Figure 6 here ***

5. Discussion and Conclusions

Both 2013 and 2018 leagues covered in this analysis ended by the championship of GS. However, contrary to common expectations, number of tweets about GS were not the highest in volume neither in 2013 nor in 2018. FB related tweets were ranked first, even though it was the 1st runner-up. This finding suggests that competence motivation was observed around FB related tweeting probably had more presence than the relatedness motivation observed around the league champion, GS related tweeting. The community built around the league champion to protect the group dynamics might have considered the relatedness motivation (Griskevicius et al., 2006; Schachter, 1959; Taylor et al., 2000), while attaining and controlling resources for better results might have considered the competence motivation (Keltner et al., 2003). Therefore, findings presented provide interesting insight in terms of developing social media strategies for champion team as well the runner teams. Building and retaining community could be a strategy in
developing social media marketing for the champion, while attaining and controlling resources could be more appropriate for the runners.

There was an observed trend in tweet volumes with matches. Number of tweets about the football team increased whenever there was a match that it played, however the importance of the match was also a factor in determining the increase. As the match became more important, even when it was not a derby match, the tweet volume often enjoyed an increase. Therefore, the widespread observed practice of focusing only on derby matches for developing social media strategy could miss on major opportunities that could be captured in other matches.

The analysis in this paper showed that 81% and 73% of all tweets were posted within 3 hours prior to matches in 2013 and 2018, respectively. Number of tweets increased to highest levels before the match in both years. In 2013, there was a step-wise decrease in tweet volumes to 15% during the match and 4% after the match. This structure changed into an inverted volume with tweet volumes of 10% during the match and 17% after the match in 2018. This shift towards higher distribution of tweets to after match indicates future possibilities for social media interaction design. Yet, still the most of the tweeting takes place before the match, where there is perhaps heightened excitement about the match to be played. Sports marketing strategies should consider this heightened tweeting behavior prior to matches and develop tools to benefit from the readily engaging individuals in their social media activities. Most of the traditional mass media coverage is designed for those activities that are planned subsequent to the matches such as reviews of the critical moments in the game with focus on penalties and goal scores, and/or celebrations of the results. However, social media offers an alternative time window before the matches for developing rich interaction. Moreover, the spillover effect of traditional mass media on social media was not yet present. Abundance of after match activities was still not reflected upon in tweeting.

Results of matches on the number of tweets posted were also analyzed. Matches that ended with a draw score attracted the least tweeting both in 2013 and 2018. The low tweeting surrounding the draw condition might be due to exclusion of both relatedness or competence motivation. When only those matches that were won are considered, in terms of number of tweets posted during the game, those tweets about GS (2013: 5,360; 2018: 41,244) well exceeded all other team-based tweets. Championship is perhaps stimulating an extra tweet volume during the match as GS was the champion in both years. When we focus on the 1st runner-up, FB related tweets
presented a consistent volume independent of match results. Social media marketing should be tailor designed depending on the context of the sports activity as well as the unique characteristics of the fan interaction with the club for achieving its best possible results.

6. Contributions, Limitations and Future Research

Football in Turkey is important for the society as much as it is in Germany, Holland, Sweden, Spain, Brazil and Argentina. Therefore, reflections of football on social media is representative in other contexts for other cultures and countries as well. Moreover, use of social media about sporting events is an emerging research topic in Europe while it has been developing in US for a few years now.

Earliest research (Argan, Argan, Köse, & Gökalp, 2013) analyzed Facebook as a social media for sport marketing, but did not extend its scope to Twitter. Indeed, Twitter has been gaining a momentum in attracting new users as well as more engagement from its existing users. Hence, this study is a frontier in investigating football related tweeting behavior in Turkey, which could be utilized in developing novel sport marketing strategies in the European football context.

Most of the previous studies focusing on (Baena, 2016) online and mobile marketing strategies analyze survey data, which heavily relies on self-response bias. It is often difficult to reflect on past behavior just by answering survey question since the context might also be a factor as well as recognition of precise information. This study, on the other hand, analyzed real behavioral data since streamed tweets were collected at the time that they were posted. Moreover, a longitudinal approach was undertaken.

This study analyzed retrieved data via Twitter Stream API, and has some related limitations. Twitter does not permit retrieval of all tweets, but instead allows streaming of only a small fraction of the total volume of Tweets at any given moment. In addition, there were some shortages faced in data collection, where server was down for several short periods during the 2018 data collection (01 March; 29 March-05 April; 08 April; 04-06 May 2018).

Future research should involve location-based analysis of social media engagement to better understand if the physical facilities such as stadiums or arenas could also be integrated in augmented reality designs. Moreover, novel approaches of visual analysis could provide useful insight into Instagram based engagement factors. Jensen, Limbu, and Spong (2015) demonstrates that visual analytics gives a
comprehensive view of sponsor by examining the images on Twitter. Using only text analysis skips most of the images about the sponsor hence misses the depth of engagement around images. In addition, analyzed tweets involved content in Turkic language, which is spoken by more than 100 million people around the globe, presenting further challenges as an agglutinative language with limitations in running sentiment analysis. Future studies should focus both developing sentiment analysis and building prediction models with machine learning algorithms that may identify which kind(s) of tweets might be produced under which circumstances (days of the week, teams, victory/defeat/draw situations).
Figures

Figure 1. Structure of Data and Methodology

2013: publicly shared 25.8 million tweets randomly sampled

- Mar 10, 2013
- Jun 30, 2013

- 7,932 frequent phrases (occurring > 50 times)
- Categorized by 3 researchers individually to define football related subsets → **370,087 tweets**
 - 2nd second round ≈ 0.8 inter-rater reliability
 - 732 keywords
 - 4 main football clubs

2018: publicly shared 14 million football related tweets purposefully sampled

- December 29, 2017
- June 8, 2018

- 732 keywords filtered and re-categorized by 2 researchers, 2 football fans and a sports consultant to 172 football related keywords, which were then used to purposefully record streamed data from Twitter
- 172 keywords classified to major football clubs (Also contained keywords for teams other than BJK, FB, GS, and TS)
- A total of 14,066,631 tweets were collected. The irrelevant tweets were removed and a total of **8,692,938 tweets** acquired.
- Among the 172 keywords, 82 of the classified keywords for BJK, FB, GS and TS were used to filter data a second round → **6,877,318 tweets**
Figure 2. Number of Total Tweets per Day
Figure 3. Cumulative Number of Tweets per Day
Figure 4. 2013: (a) Number of Matches per Week Day; (b) Total Number of Tweets per Week Day
Figure 5. 2013: (a) Number of Matches per Week Day; (b) Total Number of Tweets per Week Day

Figure 6. Distribution of Tweet Volume during the time of the Day, 2018
Table 1. Daily Events and Team-based Daily Tweet Volumes for daily tweets exceeding 5K and 100K on Figure1a and Figure1b, respectively

<table>
<thead>
<tr>
<th>Year</th>
<th>No</th>
<th>Date</th>
<th>Number of Tweets</th>
<th>Total Tweets</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BJK</td>
<td>FB</td>
<td>GS</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>12/03/13</td>
<td>1201</td>
<td>984</td>
<td>6752</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14/03/13</td>
<td>1004</td>
<td>3956</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>03/04/13</td>
<td>947</td>
<td>1494</td>
<td>6752</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>04/04/13</td>
<td>876</td>
<td>10375</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>06/04/13</td>
<td>1310</td>
<td>1196</td>
<td>5618</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>09/04/13</td>
<td>862</td>
<td>1519</td>
<td>9669</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11/04/13</td>
<td>857</td>
<td>5769</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>25/04/13</td>
<td>214</td>
<td>7716</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>02/05/13</td>
<td>998</td>
<td>9891</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>05/05/13</td>
<td>2054</td>
<td>3428</td>
<td>8539</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11/05/13</td>
<td>5151</td>
<td>1106</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12/05/13</td>
<td>1382</td>
<td>7663</td>
<td>4882</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>18/05/13</td>
<td>1354</td>
<td>1179</td>
<td>3684</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>22/05/13</td>
<td>974</td>
<td>3398</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>01/06/13</td>
<td>6217</td>
<td>375</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>02/06/13</td>
<td>5094</td>
<td>296</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>25/06/13</td>
<td>1727</td>
<td>2741</td>
<td>326</td>
</tr>
<tr>
<td>2018</td>
<td>1</td>
<td>28/01/18</td>
<td>5970</td>
<td>49790</td>
<td>22070</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20/02/18</td>
<td>85596</td>
<td>20251</td>
<td>12802</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25/02/18</td>
<td>60205</td>
<td>67180</td>
<td>12526</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>17/03/18</td>
<td>20680</td>
<td>58427</td>
<td>70075</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>19/04/18</td>
<td>50994</td>
<td>59201</td>
<td>26509</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>29/04/18</td>
<td>57538</td>
<td>23011</td>
<td>86362</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>19/05/18</td>
<td>19960</td>
<td>40490</td>
<td>92565</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>03/06/18</td>
<td>9136</td>
<td>73558</td>
<td>41398</td>
</tr>
</tbody>
</table>
Table 2. Tweet Volume 3 hours before, during, and 3 hours after matches played by FB, GS, BJK, and TS

<table>
<thead>
<tr>
<th>Team</th>
<th>3Hrs Before</th>
<th>During</th>
<th>3Hrs After</th>
<th>3Hrs Before</th>
<th>During</th>
<th>3Hrs After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besiktas</td>
<td>5 649</td>
<td>1 673</td>
<td>1 182</td>
<td>261 262</td>
<td>31 992</td>
<td>53459</td>
</tr>
<tr>
<td>Fenerbahce</td>
<td>36 426</td>
<td>5 385</td>
<td>1 085</td>
<td>242 317</td>
<td>37 109</td>
<td>66947</td>
</tr>
<tr>
<td>Galatasaray</td>
<td>28 189</td>
<td>6 145</td>
<td>1 280</td>
<td>345 104</td>
<td>52 404</td>
<td>81718</td>
</tr>
<tr>
<td>Trabzonspor</td>
<td>1 312</td>
<td>281</td>
<td>131</td>
<td>71 759</td>
<td>9 082</td>
<td>13468</td>
</tr>
<tr>
<td>Total</td>
<td>71 576</td>
<td>13 484</td>
<td>3 678</td>
<td>920 442</td>
<td>130 587</td>
<td>215 592</td>
</tr>
</tbody>
</table>

Table 3. Number of Team-Based Tweets Before, During, After Matches on Occasions of Won, Lost, and Draw

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>WON</td>
<td></td>
</tr>
<tr>
<td>67%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>Pre-Match</td>
<td>2 588</td>
<td>20 989</td>
<td>23 013</td>
<td>473</td>
<td>160 296</td>
<td>110 266</td>
<td>269 559</td>
<td>21 450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-Match</td>
<td>741</td>
<td>3 129</td>
<td>5 360</td>
<td>88</td>
<td>19 551</td>
<td>18 707</td>
<td>41 244</td>
<td>2 380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Match</td>
<td>734</td>
<td>788</td>
<td>1 164</td>
<td>48</td>
<td>30 193</td>
<td>37 449</td>
<td>65 650</td>
<td>4 183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOST</td>
<td></td>
</tr>
<tr>
<td>26%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Pre-Match</td>
<td>3 033</td>
<td>9 651</td>
<td>5 118</td>
<td>834</td>
<td>53 332</td>
<td>63 741</td>
<td>46 336</td>
<td>22 086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-Match</td>
<td>875</td>
<td>1 523</td>
<td>747</td>
<td>183</td>
<td>6 786</td>
<td>9 430</td>
<td>6 762</td>
<td>3 029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Match</td>
<td>433</td>
<td>231</td>
<td>107</td>
<td>81</td>
<td>9 915</td>
<td>14 668</td>
<td>9 271</td>
<td>3 981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAW</td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Pre-Match</td>
<td>28</td>
<td>5 786</td>
<td>58</td>
<td>5</td>
<td>47 634</td>
<td>68 310</td>
<td>29 209</td>
<td>28 223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During-Match</td>
<td>57</td>
<td>733</td>
<td>38</td>
<td>10</td>
<td>5 655</td>
<td>8 972</td>
<td>4 398</td>
<td>3 673</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Match</td>
<td>15</td>
<td>66</td>
<td>9</td>
<td>2</td>
<td>13 351</td>
<td>14 830</td>
<td>6 797</td>
<td>5 304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 504</td>
<td>42 896</td>
<td>35 614</td>
<td>1 724</td>
<td>346 713</td>
<td>346 373</td>
<td>479 226</td>
<td>94 309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Distribution of Match and Tweet Volume by Week Day

<table>
<thead>
<tr>
<th>Year</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>9.3%</td>
<td>3.7%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>7.4%</td>
<td>25.9%</td>
<td>31.5%</td>
</tr>
<tr>
<td>Dist of Match</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dist of Tweet volume</td>
<td>9.6%</td>
<td>14.4%</td>
<td>12.0%</td>
<td>17.9%</td>
<td>9.8%</td>
<td>16.1%</td>
<td>20.2%</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dist of Match</td>
<td>16.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.3%</td>
<td>36.9%</td>
<td>38.1%</td>
</tr>
<tr>
<td>Dist of Tweet volume</td>
<td>13.2%</td>
<td>11.4%</td>
<td>11.3%</td>
<td>12.4%</td>
<td>12.5%</td>
<td>18.9%</td>
<td>20.4%</td>
</tr>
</tbody>
</table>
References

Jensen, R. W., Limbu, Y. B., & Spong, Y. (2015). Visual Analytics of Twitter Conversations about Corporate Sponsors of FC Barcelona and Juventus at the

