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Andreas Kerren

Abstract
Research in machine learning has become very popular in recent years, with many types of models proposed
to comprehend and predict patterns and trends in data originating from different domains. As these models
get more and more complex, it also becomes harder for users to assess and trust their results, since their
internal operations are mostly hidden in black boxes. The interpretation of machine learning models is cur-
rently a hot topic in the information visualization community, with results showing that insights from machine
learning models can lead to better predictions and improve the trustworthiness of the results. Due to this,
multiple (and extensive) survey articles have been published recently trying to summarize the high number of
original research papers published on the topic. But there is not always a clear definition of what these sur-
veys cover, what is the overlap between them, which types of machine learning models they deal with, or
what exactly is the scenario that the readers will find in each of them. In this article, we present a meta-
analysis (i.e. a ‘‘survey of surveys’’) of manually collected survey papers that refer to the visual interpretation
of machine learning models, including the papers discussed in the selected surveys. The aim of our article is
to serve both as a detailed summary and as a guide through this survey ecosystem by acquiring, cataloging,
and presenting fundamental knowledge of the state of the art and research opportunities in the area. Our
results confirm the increasing trend of interpreting machine learning with visualizations in the past years,
and that visualization can assist in, for example, online training processes of deep learning models and
enhancing trust into machine learning. However, the question of exactly how this assistance should take
place is still considered as an open challenge of the visualization community.
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Introduction

Machine learning (ML) techniques and tools have

become ubiquitous in the process of analyzing data for

diverse purposes. The underlying ML models are

used, for instance, to predict future events based on

the data at hand.1,2 However, ML models are not

always trusted by analysts, even if they offer high-

quality results in comparison with other analytical

methods.3 In many cases, they are considered as black

boxes, that is, the internal functionality of the

underlying algorithms is not entirely understandable

for analysts,4–6 and even ML experts struggle to tune
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and parameterize those models.7 The sheer complexity

of the algorithms that were invented is a critical factor

that makes the data analysis process challenging.8–10

Nowadays, it is widely accepted that information

visualization (InfoVis) can aid in this process and offer

guidance toward more (and better) interpretable ML

models.11 Explorable and transparent ML models

enable users to understand, trust, and manage these

models. InfoVis plays a crucial role in analyzing such

models and, as a result, provides guidance to users,

interaction techniques to control them, and informa-

tion about their inner workings that are often hidden

away.12

Within the past 5 years, the number of publications

that focus on the interpretation of ML models using

InfoVis techniques has significantly increased, which

makes it difficult for novice researchers or analysts to

get in the field quickly. In order to acquire the neces-

sary knowledge, they have to spend many hours

searching and reading related papers and articles. An

obvious solution is to look for more comprehensive

survey articles that provide an overview of a specific

aspect of ML models and how to interpret them; but

even here, they will find a fairly high number of survey

papers. In this case, in particular, they might also often

not be able to find the needed information due to

either too-specific focus or a mixture of various topics

in such survey papers.

This challenge caught our attention during the

search for relevant work to base our research on

improving the interpretability and explainability of

ML models with the use of InfoVis. Throughout that

stage, we gathered and analyzed several surveys that

summarize the related work in the topic with the goal

of getting an overview of the field. But due to the

number of surveys, the different perspectives shown in

each, and the lack of common ground between them,

we found that task to be much less straightforward

than we expected.

In order to contribute to this challenge, we present

this meta-survey—or ‘‘survey of surveys’’ (SoS)—

which summarizes and describes survey publications

that focus mainly on the exploration and interpretabil-

ity of ML models, that is, opening the black box of the

various types of ML algorithms and visualizing them.

At this point, it is important to clarify our use of the

terms interpretable and explainable ML, following the

definitions of Gilpin et al.13 It is common for interpret-

ability and explainability to be used interchangeably,

but Gilpin et al. argue that there are solid reasons to

differentiate between them: the main purpose of inter-

pretability is to describe the internals of an ML model

in an understandable way for humans. In addition to

that, explainable ML should explain the models that

are already understandable, in order to obtain the trust

of users or to generate new insights about the reasons

for their decisions, subsequently answering the ques-

tion of why a specific decision has been made by the

model. Here, any explanation is also assessed accord-

ing to its completeness, that is, the ability to describe

the model operations precisely, also in other, more

general situations. Both properties, interpretability and

completeness, often contradict each other, because the

most accurate explanation may not be very interpreta-

ble. Consequently, ‘‘explainable models are interpreta-

ble by default, but the reverse is not always true.’’13

Thus, we carefully select and use these terms through-

out our paper according to these guidelines; for more

details, we refer the reader to the paper by Gilpin

et al.13

Our meta-analysis proposed in this article has two

main target groups:

� Early-stage researchers ( ) who struggle to collect

information from surveys and papers that refer to

the interpretability and explainability of ML algo-

rithms. We intend to support early-stage research-

ers by providing information that may guide them

to the correct surveys according to their goals, help

them not to lose time when reading extensive sur-

veys that are not useful for their current research

focus, or simply better organize and plan their

reading schedule.
� Senior researchers ( ) in InfoVis and/or visual ana-

lytics (VA), who are interested in the interpretabil-

ity and explainability of ML models, may want to

learn more details on how the existing surveys

were conducted or how they differentiate from

each other. They may also benefit from research

gaps derived from those surveys and areas not yet

covered.

Although we provide a detailed and descriptive

summary of the current ecosystem of surveys in our

focus area, there are also inherent limitations of this

work that must be considered. The available number

of surveys is relatively small (especially when compared

to McNabb and Laramee’s SoS paper),14 and they

were published in only 5 years. This is not due to

methodological issues, but an inherent characteristic of

the research area itself, which is still quite young. The

surge of research papers in the past decade has been

reflected in a similar wave of recent surveys in the past

few years, which motivated our work. Thus, while this

is an early work and our scope is arguably restricted,

that characteristic has been taken into account in our

methodology. Our goal was not to derive a deep theo-

retical framework from the available data; we would

not be able to do that with such a small sample in a rel-

atively restricted time period. Instead, we focus on
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describing the current surveys at a high level, where

they differ, and how they treat the current research to

help with guiding researchers into more meaningful

and efficient future work. As the research area matures

and more papers and surveys are available, more inter-

esting and meaningful patterns and trends will surely

arise in the future from larger samples of primary

research. Concretely, our contribution comprises the

following points:

� The aggregation and description of research oppor-

tunities (i.e. open challenges) described in survey

papers concerning interpretable and explainable ML

to assist the mentioned main target groups.
� The identification of research subtopics and trends

under the umbrella of interpretable ML.
� The analysis of various temporal and topical

aspects related to the survey papers themselves

and the publications they discuss.

To support a smooth and progressive immersion of

our readers into interpretable ML with the help of

visualization, we propose two alternative flows: (a)

bottom-up, starting from the summaries of each sur-

vey paper, or (b) top-down, starting from our collec-

tion of high-level information on the whole field of

visualizing ML models. Figure 1 displays both flows

and how early-stage researchers and senior researchers

might follow specific paths in order to read this paper.

The structure of our SoS is given as follows: in the

next section, we describe the differences between our

work and other SoS papers focusing on InfoVis and

VA. The subsequent section contains the methodology

that we followed in order to gather the survey papers.

After this, a first general overview of our research sub-

ject is described from aggregated data that we col-

lected. The subsequent section is about a more

detailed analysis of the single categories in which we

classified the collected survey papers. Next, we present

the results of a topic modeling approach applied to all

individual papers discussed in the individual surveys.

In the penultimate section, we discuss observations

and our interpretations from the results presented in

the previous sections, and we present open challenges/

research opportunities in the field. Finally, the last sec-

tion concludes this article.

Related work

Due to the potentially large number of survey articles

that aim to overview research on a specific topic, it is

common in various scientific areas and communities

to have SoS papers or meta-surveys that, in turn, clas-

sify those survey articles. Some examples are the SoS

by Saini et al.15 on vehicular ad hoc networks or the

work by Giraldo et al.16 on security/privacy approaches

for cyber-physical systems. Visualization journals and

conferences have introduced specific tracks that try to

tackle the potentially large number of survey papers.

For instance, ACM Computing Surveys publish com-

prehensive, readable tutorials and survey papers that

give guided tours through the literature and explain

topics to those who seek to learn the basics of areas

outside of their specialties. Also, conferences such as

Bottom-up

General overview Discussion and

challenges

iiiiiiiiiiIn-depth analysis Topic analysis

Top-down

Methodology

Figure 1. Flowchart to guide readers on possible paths to read and interpret our SoS. The usual path is depicted with
solid arrows connecting each section linearly. The dotted arrows show the two alternative paths that correspond to the
bottom-up and top-down flows. Following the standard path, early-stage researchers are probably most interested in
getting an overview first, then moving on to the details and specific models, and finally finding relationships between
survey papers, topics, and individual papers. However, senior researchers might be curious to learn how to write SoS or
validate our results by reading the ‘‘Methodology’’ section. Finally, from the ‘‘Discussion and challenges’’ section, they
might extract some knowledge from the lessons learned and explore the research opportunities we identified. However,
in contrast to the suggested early-stage researchers’ path, the order which senior researchers might follow is more
varied, depending on individual preferences and interests.
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EuroVis have a special track for state-of-the-art

(STAR) reports, which is vital as the community

grows.

To the best of our knowledge, there are only three

SoS papers for the InfoVis and VA domains, written by

Alharbi and Laramee,17 Alharbi et al.,18 and McNabb

and Laramee.14 Alharbi and Laramee17 discussed 13

survey papers on text visualization and categorized

them into five different groups. In Alharbi et al.,18 the

authors gathered 11 survey papers regarding visualiza-

tions of computational biology and described solved

issues and open challenges. The authors of the latter14

gathered more than 80 survey papers and extensively

analyzed half of those. Although there is a small over-

lap with this work in terms of surveys included (3 out

of 18), the goals of the two SoS papers are different:

while McNabb and Laramee14 concentrate on differ-

ent topics of InfoVis and provide potential future

directions for the community as a whole, we focus spe-

cifically on the exploration and interpretability of ML

models using InfoVis.

Methodology

Our work covers the subject of interpretable ML models

and exploration of ML models using visualization in the

many stages of the process of analyzing data with ML,

for example, (a) labeling and pre-processing the data,

(b) letting the user handle the data with queries, (c)

making the algorithm transparent during its execution,

(d) interacting with the ML algorithm to steer it, and

(e) comparing different algorithms and evaluating the

results.

Following the guidelines from McNabb and

Laramee,14 and after an initial pilot phase where we

manually searched for survey papers from the last

10 years, we converged on using combinations of rele-

vant keywords such as ‘‘black box,’’ ‘‘ML,’’ ‘‘interac-

tive,’’ ‘‘models,’’ ‘‘deep learning,’’ ‘‘neural networks,’’

and other derivatives with similar meanings. The

majority of the included surveys were found by also

including words such as ‘‘survey,’’ ‘‘overview,’’ ‘‘taxon-

omy,’’ or ‘‘state of the art,’’ but some of them were

harder to find, so we had to include more keywords

such as ‘‘literature review,’’ ‘‘review,’’ ‘‘categorization,’’

or ‘‘classification.’’ We primarily focused on important

venues and proceedings that regularly publish InfoVis

papers, including IEEE Transactions on Visualization

and Computer Graphics (TVCG), Computer

Graphics Forum (CGF), IEEE Computer Graphics

and Applications (CG&A), Information Visualization

Journal (IVJ), Computers & Graphics (C&G), Visual

Informatics (VisInf), IEEE Visual Analytics in Science

and Technology (VAST), IEEE InfoVis, Eurographics

Visualization (EuroVis), IEEE Pacific Visualization

(PacificVis), ACM Conference on Human Factors in

Computing Systems (CHI), and ACM Intelligent

User Interfaces (IUI). For both support and valida-

tion, we also looked through the SoS discussed in the

previous section14 and searched for relevant survey

papers among their references.

This selection process was repeatedly executed (and

its results updated) for 8 months, during which we

monitored and scanned the InfoVis publications in

order to identify as many surveys as possible. For the

sake of completeness, the Related Surveys sections and

references from the identified surveys were also used

as sources of new surveys (a process known as snowbal-

ling).19 In more detail, this selection phase was per-

formed in three steps: (a) we started by reading the

titles of every reference to detect potential closely

related survey papers; (b) then, we checked the

abstract of each survey selected in Step 1 and decided

if at least a part of it refers to interpretable and/or

explainable ML models; (c) finally, we checked the

Related Surveys section of each survey paper selected

in Step 2 and tried to find even more candidate sur-

veys. Some of the Related Surveys sections20 were very

informative and helped us to considerably increase the

number of results that we gathered (see Figure 2).

Throughout this search procedure, we identified

some related (and potentially interesting) survey

papers, which were not included in our analysis for a

variety of reasons. On one hand, Minar and Naher,21

for example, is accessible but not published in a peer-

reviewed venue. Abdul et al.,22 on the other hand, was

not considered relevant since the authors provide a

very general overview of the full landscape of existing

papers on explanations and interpretable systems to

highlight research opportunities and open challenges

for the human–computer interaction (HCI) commu-

nity. Two more papers that we excluded are Adadi

et al.23 and Guidotti et al.,24 which focus on describ-

ing mostly non-visualization methods used in order to

open the black boxes and explain models. Finally,

Sacha et al.25 gathered a series of papers that focus on

VA for assisting ML in order to evaluate their ontol-

ogy. Although the gathered papers are related to our

work, the authors do not analyze these papers in

detail, and they did not perform a reproducible search

as in a typical literature review, survey, or taxonomy

paper.

Some of the survey papers—such as Wang et al.,26

Endert et al.,27 and Liu et al.28—initially seemed too

general, but after a more detailed investigation we

agreed that they actually contain information and

papers related to the interpretation of ML models with

the use of visualization. Consequently, we included
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them in our SoS, but we did not use them in their

entirety, only the related and important parts.

In Table 1, we list (in alphabetical order) the abbre-

viations and full names of the venues mentioned

throughout our article, for reference. Some of the

venues also aggregate other smaller subvenues, such as

the entry IDEA, which includes two different work-

shops: KDD Workshop on Interactive Data

Exploration and Analytics and ICML Workshop on

Visualization for Deep Learning.

In Table 2, we present the final list of all the survey

papers included in this meta-analysis, along with some

associated details, such as the venues from which we

retrieved them. We can observe that not all the venues

were part of the initial search. We started with the pri-

mary, most important venues (as described previ-

ously), but survey papers from the secondary venues

were also added due to the use of the aforementioned

snowballing process. As a result, we almost exclusively

got survey papers from 2016 to 2018.

Although we believe that we managed to identify

all important survey papers related to the subject, a

threat to the validity of this methodology could be to

miss surveys which contain only a small paragraph on

our subject of interest. Such surveys may focus on

another research topic and were probably not included.

General overview

We start our meta-analysis of the survey literature in

interpretable ML models using visualization by pre-

senting an overview of the final results of our search,

according to the methodology described in the previ-

ous section. Table 2 lists all 18 papers we covered,

divided into two categories: (a) survey papers, including

papers with the usual survey format and published in

well-known venues and (b) papers, which are research

papers (not surveys) that contain briefer but also inter-

esting literature reviews.

Although most of the results are in the period of

2016–2018, one paper from 2014 was found through

our search process. Table 2 also shows information

related to the relevance of included surveys, such as

the number of citations (as extracted from Google

Scholar at the time of writing) and the number of

unique research papers found in each, that is, papers

that do not appear in any other survey. On average, a

published survey in the area includes approximately

40% of new, unique papers, which points to the advan-

tages of regularly keeping up with new surveys instead

of focusing only on a few. This information can be rele-

vant both to experts, who might wish to ignore a sur-

vey if it already contains too many covered papers, and

to newcomers, to whom it might be important to

obtain different points of view for the same papers in

order to broaden their perspective.

Figure 2 shows the citations between our selected

papers. In general, they cite at most two of the previous

surveys, except Hohman et al.20 and Lu et al.35 This

suggests the importance of a meta-survey, such as ours

with a comprehensive outlook on the area: in contrast

to what one might assume, recent individual surveys

do not necessarily mention or cover the previous work

in a comprehensive way.

Figure 2. Citations between our selected survey papers, from 2014 to 2018. The color of the nodes and links illustrate
the sources of citations, that is, papers that cite at least one previous survey. Note that this color-encoding is different
from the one used in Table 3.
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In Table 3, we summarize the methodology infor-

mation of those seven surveys where the authors

described their methodology explicitly, including the

venues that they searched during the process of collec-

tion. As we can observe, only 7 out of the 18 survey

papers follow a concrete methodology. This seems to

be a weak point of the survey literature in the area,

which needs improvement. On one hand, the most

popular venues (i.e. with high impact factors) were

usually covered by the authors, although with a vari-

able degree of consistency (as can be seen from the

relative sparsity of the matrix). On the other hand,

some other venues which are known to contain papers

on VA for interpreting ML models (e.g. ACM IUI)

were not covered by any of the included survey papers.

Another potential weak point is that most of the survey

papers searched for only IEEE TVCG from the jour-

nals category. In addition, 3 out of the 7 survey papers

made a general search on the web. Garcia et al.32 and

Liu et al.28 found papers by checking the references of

other publications, which makes it hard to assess the

systematization of their process objectively. In addi-

tion, 3 out of these 7 survey papers searched for spe-

cific keywords, such as deep neural networks (DNNs),

which also inspired our own methodology.

In Table 4, we present the yearly distribution of

papers analyzed by the included surveys. Although the

surveys seem to have covered long periods of time, it is

Table 1. InfoVis and ML venues mentioned throughout this article (alphabetically ordered).

Abbreviation Full name

ACM CHI ACM Conference on Human Factors in Computing Systems
ACM IUI ACM Intelligent User Interfaces
ACM SIGKDD ACM Special Interest Group and Knowledge Discovery and Data Mining
ACM TIIS ACM Transactions on Interactive Intelligent Systems
AI Magazine Artificial Intelligence Magazine
arXiv arXiv.org e-Print Archive
C&G Computers & Graphics
CGF Computer Graphics Forum
CVPR Conference on Computer Vision and Pattern Recognition
Distill Journal for Supporting Clarity in Machine Learning
ESANN European Symposium on Artificial Neural Networks
EuroVA International EuroVis Workshop on Visual Analytics
EuroVis Eurographics Visualization
F-CS Frontiers of Computer Science
F-IT&EE Frontiers of Information Technology and Electronic Engineering
FILM NIPS Workshop on Future of Interactive Learning Machines

ACCV Workshop on Interpretation and Visualization of Deep Neural Nets
ICANN Workshop on Machine Learning and Interpretability

HCML CHI Workshop on Human Centered Machine Learning
ICCV International Conference on Computer Vision
ICLR International Conference on Learning Representations
ICML International Conference on Machine Learning
IDEA KDD Workshop on Interactive Data Exploration and Analytics

ICML Workshop on Visualization for Deep Learning
IEEE CG&A IEEE Computer Graphics and Applications
IEEE InfoVis IEEE Information Visualization Conference
IEEE PacificVis IEEE Pacific Visualization Symposium
IEEE TKDE IEEE Transactions on Knowledge and Data Engineering
IEEE TVCG IEEE Transactions on Visualization and Computer Graphics
IEEE VAST IEEE Conference on Visual Analytics Science and Technology (VAST)
ITU ICT-D ITU Journal: ICT Discoveries
JCST Journal of Computer Science and Technology
NIPS ACM Special Interest Group on Knowledge Discovery and Data Mining
TDM-BSD Transparent Data Mining for Big and Small Data
VADL Workshop on Visual Analytics for Deep Learning
VisInf Visual Informatics
WHI ICML Workshop on Human Interpretability in ML

NIPS Workshop on Interpreting, Explaining and Visualizing Deep Learning
NIPS Interpretable ML Symposium
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hard to capture a clear picture since most of them do

not give explicit information about the considered

time frame. From our analysis, the survey authors

include only a few (2 on average) papers from 1992 to

2007, while the last 10 years are much more heavily

covered with the number of papers published each

year still growing. For example, we can observe that in

the period of 2008–2013, there were 144 papers, while

2014–2017 alone surpassed that with 262 papers on

the subject.

Regarding the main focus of each of the covered

surveys, shown in Table 5, we can observe that 8 out

of the 18 survey papers (’44%) are mainly related to

the broad family of deep learning (DL) techniques,

including terms such as convolutional neural networks

(CNNs) or recurring neural networks (RNNs). Other

topics that are found include VA pipelines, general

ML models, predictive visual analytics (PVA), interac-

tive machine learning (IML), and dimensionality

reduction (DR). Moreover, we consider 12 out of the

18 survey papers as being classification/taxonomy-cen-

tered (CT) surveys, in which the authors heavily focus

on the work of constructing strict categories and separ-

ating papers accordingly. However, we consider 6 out

of the 18 survey papers as being analysis-oriented (AN),

which means that they include more details about the

studied papers instead of focusing on the categoriza-

tion task.

In-depth analysis

After selecting and reading the survey papers, we clas-

sified them into separate categories regarding content-

related patterns, and whether they deal with more gen-

eral versus more specific concepts, as shown in Table 5:

VA pipelines and general ML models (more general);

PVA, IML, DL, and DR (more specific).

In this section, we present an in-depth analysis of

the content of the selected survey papers, organized

according to our proposed categorization. Following

our proposal to support a wide range of different read-

ers from the field, we indicate inline which parts of

each survey should be more interesting for each type

of reader: early-stage researchers ( ) or senior

researchers ( ). Overall, the symbol indicates more

general concepts and overviews, while the symbol

points to more detailed analyses and descriptions.

Note that we also highlight the main differences in the

used categorizations throughout the 18 surveys later in

the ‘‘Discussion and challenges’’ section and in

Table 7 as well.

Visual analytics pipelines

Only one survey26 has been classified as dealing with

VA pipelines in general. The authors of this survey

present the usual VA pipeline and compare it with

Table 2. Final list of survey papers covered in this work.

Authors Year Citations Related
to ML

Number of
unique papers

Venue

Survey papers Amershi et al.29 2014 212 8 2 (25%) AI Magazine
Choo and Liu30 2018 14 16 4 (25%) IEEE CG&A
Dudley and Kristensson31 2018 13 50 39 (’78%) ACM TIIS
Endert et al.27, a 2017 41 47 30 (’64%) CGF
Garcia et al.32, a 2018 2 40 8 (20%) C&G
Hohman et al.20, a 2018 53 38 10 (’26%) IEEE TVCG
Liu et al.28, a 2017 75 17 10 (’59%) IEEE TVCG
Liu et al.33 2017 66 36 22 (’61%) VisInf
Lu et al.34 2017 19 31 14 (’45%) F-CS
Lu et al.35, a 2017 14 42b 20 (’48%) CGF
Sacha et al.36, a 2017 76 58 (15c) 8 (’53%) IEEE TVCG
Seifert et al.37, a 2017 16 34 16 (’47%) TDM-BSD
Wang et al.26 2016 28 8 1 (12.5%) JCST
Yu and Shi38 2018 0 25 5 (20%) VisInf
Zhang and Zhu39 2018 75 25 14 (56%) F-IT&EE

Papers Grün et al.40 2016 37 18 6 (’33%) ICML
Sacha et al.41 2016 36 7 0 (0%) ESANN
Samek et al.42 2018 98 20 9 (45%) ITU ICT-D
Total: 18 papers Avg.: ’40%

ML: machine learning.
Google Scholar citations were retrieved on 1 November 2019.
aIndicates that the survey follows a concrete methodology, cf. Table 3.
bIn the case of Lu et al.,35 we checked the predictive visual analytics (PVA) browser that they provide which contains more references
than the actual publication.
cSacha et al.36 contains 58 papers, but only 15 of them were added to the references.
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other visualization pipelines, taken from papers that

propose them in context of one-dimensional data,

two-dimensional data, multi-dimensional data, text

data, and networks. One of the discussed works is

the PVA pipeline by Lu et al.,34 see below. For some

pipelines, Wang et al.26 discuss individual stages in

detail, such as visual mapping, view generation and

coordination, and interaction. All those steps lead to

models which allow the analysts to decide between

visual methods and automatic analysis methods.

Table 3. Search targets (publication venues, web repositories, keywords, etc.) used by the authors of the survey papers
covered in this work.

Search targets Reference

Endert
et al.27

Garcia
et al.32

Hohman
et al.20

Liu
et al.28

Lu
et al.35

Sacha
et al.36

Seifert
et al.37

Journals
IEEE TVCG
CGF
IEEE CG&A
IVJ
JMLR
Neurocomputing
IEEE TKDE
Distill

Conferences
IEEE VAST (VIS)
IEEE InfoVis (VIS)
EuroVis
IEEE PacificVis
ACM CHI
ACM IUI
ICCV
CVPR
ICML
ACM SIGKDD
ESANN
NIPS
ICLR

Workshops
EuroVA
VADL
HCML
IDEA
WHI
FILM

General search
arXiv
Google Scholar
References

Keywords
Deep neural networks
DNN
Visualization
Visual analysis
Visual representation
Feature visualization
Forecast
Predict
Visual
Model
Neural network visualization
Total different searches 16 14 15 6 10 5 11

Only those surveys that contained an explicit methodology are included.
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Moreover, the authors propose a general visualization

pipeline that fits the problem of interpreting ML mod-

els with three main stages: (a) feature selection and gen-

eration, (b) model building and selection, and (c) model

validation. Concretely, feature selection has two fun-

damental requirements: to not decrease the classifica-

tion accuracy and to sustain the distributions of classes

as they were before the filtering/selection process. For

feature generation, algorithms have been developed to

make these processes fully automatic, but they often

make mistakes that an expert with the appropriate

views and knowledge might be able to avoid. In model

building and selection, it is vital to have a visual interface

that connects ML models with users, hence enabling

examinations of hypotheses and obtaining insights. In

many cases, model validation is entangled with the pre-

vious stage of the pipeline. The final piece of the puz-

zle is the capability to iterate over this pipeline to

achieve better model selection and validation, which

leads to even better feature selection and thus forming

an infinite loop that can tackle challenging problems.

Overall, this survey paper serves as a starting point for

early-stage researchers to get familiarized with the

pipeline of how the interpretation of ML models works

and where visualization is suitable.

General machine learning models

1. The work of Liu et al.33 (a predecessor of Choo

and Liu30) categorizes papers related to general

ML models in three classes: (a) understanding, (b)

debugging, and (c) refinement. The scope of this

survey is not specifically about IML; instead, it

presents a much broader discussion and analysis

of recent work in visualization of ML models.

Their overview shows several paradigms from

DL, classification, clustering, and general ML

models, which they fit in their three-class categor-

ization with a strong focus on the explanation of

the model rather than the other stages of the pipe-

line. According to Liu et al.,33 researchers have

developed point-based and network-based visuali-

zation approaches in order to understand how

neural networks (NNs) behave when pre-process-

ing, processing, and analyzing data, in addition to

VA tools that diagnose model performance for

binary classifiers, multi-class classifiers, and topic

models. The available VA systems allow interac-

tion for enhancing the performance of both super-

vised and unsupervised models.

2. Endert et al.27 wrote a survey on a topic that is

related but not exactly the same as ours: integrat-

ing ML into VA techniques (as opposed to using

VA for interpreting ML models, which is our

case). Although their survey contains quite a bit of

unrelated information, they included many papers

that match our criteria, which made us decide to

include them in our work. Their categorization

starts with DR, clustering, classification, and regres-

sion, and then crosses those categories with two

separate requirements: (a) modify parameters and

computation domain and (b) define analytical expec-

tations. Endert et al.27 give detailed explana-

tions and analysis of each category, including a

table that guides the reader to more information

about those tools and techniques.

3. The final survey in this category, Liu et al.,28

describes approaches for the visualization of high-

dimensional data using the stages of the typical

visualization pipeline to divide their papers into

three categories: (a) data transformation, (b) visual

mapping, and (c) view transformation. While initially

this might not be explicitly relevant to our subject,

in some of their categories, we found interesting

papers for this work, including articles dealing with

DR, subspace clustering, and regression analysis.

Summary of the three surveys. The latter two survey

papers concentrate on presenting various tools and

providing future challenges without any meta-analyses.

They follow similar categorizations of algorithm types,

but the difference between them is the focus. For

Endert et al.,27 the main subjects are tools for adjust-

ing the parameters of an algorithm, or even replacing

the algorithm used, and supporting users to interact

with results of the computational process, versus meth-

ods that enable users to monitor the output of an algo-

rithm and improve it. Liu et al.28 used the InfoVis

reference model and, specifically in the data transfor-

mation part of the pipeline, included papers addressing

the problem of exploration of ML models. The first

survey by Liu et al.33 also describes the model analysis,

which is a further step of the pipeline after data pro-

cessing/transformation, and feature selection before

evaluation/validation. Thus, researchers can benefit by

browsing through these surveys that cover different

aspects of a pipeline of ML, depending on the area

they are more interested in.

Predictive visual analytics

1. According to the literature review in Lu et al.,34

the pipeline of PVA consists of four main

blocks: (a) data pre-processing, (b) feature selection

and generation, (c) model training, and (d) model

selection and validation; complemented by two

extra blocks that interact with the pipeline: (e)

10 Information Visualization 00(0)



visualization and (f) adjustment loop. The

authors provide extensive details for each block

and describe example papers related to data

cleaning, data transformation, and data integra-

tion and fusion, which all are part of data pre-pro-

cessing. Additionally, a comparative analysis has

been performed with white box and black box

methods, revealing the differences between them.

Various applications for different types of data

are presented, such as tabular data, time-series

data, spatio-temporal data, textual data, and

image data. Before reaching to the conclusion

and open challenges, they define a list of compari-

sons with methods before PVA and after the use

of PVA in a quantitative manner.

2. Another survey paper about PVA, written by Lu

et al.,35 was published a few months after the first

one. They follow a similar approach by classifying

papers considering the PVA pipeline that we

described in the previous paragraph. In addi-

tion, there are two new categories: interaction and

prediction. For example, regression, classification,

clustering, and others are the main subcategories

of the prediction task, and select, explore, filter,

and others, are subcategories of interaction.

Two tables show the results of co-occurrence and

correlation analyses of classes of interactions,

model types employed, and stages of the PVA

pipeline according to their classification. In

addition to the survey paper, they also offer an

online web-based browser that contains papers on

PVA, where the users can search through the

papers with specific filters, such as selecting spe-

cific classes, years, or keyword search.

Summary of the two surveys. From Table 2, we can

conclude that approximately half of the papers are

unique in the two survey papers described above,

which suggests that both have their value. Researchers

interested in learning more about specific applications

of PVA with different types of data should focus on

the first survey paper34 since an extensive analysis of

the pipeline is made, including various papers in each

step. However, the second survey paper35 contains

only a short analysis of the PVA pipeline but focuses

much more on interaction techniques used in the

tools. Its co-occurrence and correlation matrices serve

as a rich meta-analysis of the covered papers, which

should benefit both new and experienced researchers.

The paper selection in that survey suggests that three

groups are beneficiary from this survey: end-users (i.e.

non-expert users), domain experts (experts in a particu-

lar field), and modeling experts (experts in models but

not in a specific application).

Interactive machine learning

1. The first survey that falls into this category is from

Amershi et al.29 Instead of focusing on the clas-

sification of papers into different categories, they

emphasize the description of different applications

of IML, for example, image segmentation and

gesture-based music. Furthermore, a significant

part of their discussion is geared toward user

interaction from a human perspective. They

highlight, for example, the strong tendency of

humans to give more positive rewards/feedback

than negative rewards/feedback to learners during

reinforcement learning (i.e. where an agent senses

and acts in a task environment and receives

numeric reward values after each action). They

further demonstrate that feeding a visualization

system with positive feedback through interaction,

even if it might have taken the wrong decisions, is

currently a prominent issue that requires a solu-

tion. Consequently, systems that guide their users

in a correct way are desirable to solve this prob-

lem. According to the authors, people react

positively and appreciate transparency in ML sys-

tems. As labeling is still a demanding process,

they found that people want to superimpose the

data labels with additional comments, and this is

when transparency becomes valuable.

In the last section of their survey, Amershi et al.29

present papers that include implemented tools

supporting interaction with ML models. The

authors asserted the levels of assistance that users

get through interaction in three stages of the exe-

cution of ML algorithms: input, intermediate steps,

and output. For instance, user interaction can be

useful at the input stage for tuning hyperpara-

meters and comparison purposes between the var-

ious ML techniques. They consider as intermediate

steps both the human interaction with the system

and receiving guidance from the system during

the execution of an ML algorithm. Concrete

actions, for example, might be queries to alternate

the flow and/or the outcome of the procedure or

quality assessment during the iteration of the algo-

rithms. At the final stage, the users should be

capable of evaluating the output and deciding

which faulty aspects should be excluded from the

next analysis. For each presented stage, they

cite papers and tools that support these opera-

tions. All these observations brought them to the

conclusion that it is essential to combine and take

advantage of different ML models.

Chatzimparmpas et al. 11



2. Dudley and Kristensson31 present a survey of exist-

ing approaches and applications in IML with a

categorization based on the type of data (applica-

tion). The authors begin by discussing imple-

mentations and techniques that allow users to

interact with ML models in the visualization of

text, images, speech, audio, video, and motion.

The remaining part of their survey contains more

general considerations about how to deal with

assisted processing of structured information and raw

numerical data. The former is about IML systems

that utilize structured data to train models that

improve user abilities. These examples are related

to the application domain or the experts’ special

knowledge of the training process. The latter refers

to trials that omit the data type and process numer-

ical data. Those approaches are unrelated to the

data types and could be imagined as similar to

spreadsheet applications that brought the key statis-

tical functionalities to non-expert users. These

techniques are suitable for experts but also for non-

experts depending on the approaches that the

authors deploy. After the analysis of the literature,

they describe the design that an IML interface

should have and present a workflow of the IML

process according to their notes.

3. Finally, Sacha et al.41 propose a human-centered

ML framework that is general enough to fit differ-

ent existing tools. The conceptual framework

enhances several interaction options by dividing

the process into five steps: (a) edits and enrichment,

(b) preparation, (c) model selection and building, (d)

exploration and manipulation, and (e) validation

and interaction. In edits and enrichment, users

should be able to interfere with the data instances

and labels (e.g. by adding or editing labels in the

training process) and check preliminary ‘‘what-if’’

hypothesis scenarios in order to better understand

the data itself. The preparation step is important

to allow users to affect groups of observations by

applying transformations, for example, scaling

and weightings, selecting specific features, or fil-

tering. In model selection and building, users should

be able to interact with ML models by choosing

different algorithms and adjusting their para-

meters. The aim of the exploration and direct

manipulation step is to support the interpretation

and validation of the previous ML models by

visualizing the data and model spaces, the quality,

and the structure of ML algorithms. The final

validation and interaction step concerns the poten-

tial analysts working with a visualization tool

which integrates all the functionalities into an

individual system in order to check the results

and derive final insights.

Summary of the three surveys. Even though the three

described survey papers focus on different aspects of

IML (e.g. importance of users, approaches for specific

applications, and general framework), they converge

into a common pipeline, that is, a similar framework/

workflow that is useful for visualization researchers.

First of all, the data should be easily labeled, cleaned,

filtered, and reviewed—with assistance from

visualization—before being used as input to ML algo-

rithms. After that, especially according to Sacha

et al.,41 comes a transformation stage, characterized

by giving weights and manipulating the data features

or instances, for example. Then, the three works sug-

gest model selection and comparison until the best

suitable for each case (data set/application) is found;

and afterward, to allow the user to steer the model

toward the best possible solution. Exploration and

manipulation for the assessment of the quality while

the process is ongoing, or after the results are shown

to the user, is also a crucial part of the common pipe-

line. Dudley and Kristensson31 extend this part of the

pipeline and state that monitoring and keeping track

of the time and cost of the process should be visualized

after the end of this process. Then, finally, comes vali-

dation and interaction with the use of visualization in

order to fit the model into a specific application and to

tackle a specific problem. The workflows or frame-

works that are presented by the papers in this category

show how visualization can aid users in various ways

when attempting to solve a complicated task. Early-

stage researchers should focus on those areas, and

these survey papers for IML are a good starting point.

Deep learning

DL is currently a very popular area of ML, not only in

artificial intelligence (AI) but also in the InfoVis com-

munity. This is reflected in the statistics of our SoS:

over one-third of the surveys that we collected are

about DL, which are the eight surveys that we discuss

in the following:

1. To connect DL with VA, Choo and Liu30 con-

sider three major directions: (a) model understand-

ing, (b) debugging, and (c) refinement/steering.

Model understanding intends to reveal the reason-

ing behind model predictions and the internal

operations of DL models. When a DL model

underperforms or is not able to converge, then the

model debugging process can be utilized in order to

distinguish and resolve such problems. Model

refinement/steering refers to techniques that interac-

tively include the users’ expertise in the develop-

ment and refinement process of a DL model.

That could be achieved, among others, through

12 Information Visualization 00(0)



user interactions, supporting semi-supervised

learning, or active learning. The survey

authors list libraries and tools that were used in

model understanding and debugging which could

be helpful for both young and senior researchers.

Computational methods for the interpretation

of DL from ML and AI communities are also

introduced. Before analyzing research opportuni-

ties, the authors discuss VA approaches and cite

articles that give clues on how to troubleshoot and

improve models (i.e. model understanding and

refinement). VA tools for RNNs and CNNs are

broadly discussed as well.

2. Garcia et al.32 explain the classical ideas behind

ML and DL from a mathematical perspective,

including deep feedforward networks (DFNs),

CNNs, and RNNs. Additionally, they present a

VA workflow which shows the tasks of the multi-

ple phases of DL networks, placing emphasis on

the value of VA for DL networks. The authors’

contributions include the separation of their col-

lection of publications into three categories,

depending on their particular visualization goal:

(a) network architecture understanding, (b) visuali-

zation to support training analysis, and (c) feature

understanding. They conclude by testing tech-

niques that different tools use with common DL

architectures (i.e. DFNs, CNNs, and RNNs).

3. Hohman et al.20 investigate VA tools that

explore DL models by classifying papers into six

categories, each based on a research question:

‘‘Why would people want to use visualization in

DL?’’; ‘‘Who is able to take advantage from visua-

lization of DL?’’; ‘‘What data, features, and rela-

tionships could be visualized in DL?’’; ‘‘How is it

possible to visualize the data, features, and rela-

tionships?’’; ‘‘When in the DL process is visualiza-

tion useful?’’; and ‘‘Where DL visualization could

be necessary?’’ Accordingly, each of the analyzed

papers is assigned to one or more of these ques-

tions, depending on whether it contributes to that

aspect or not. Interpretability and explainability as

well as debugging an improving model are two sub-

categories that most of the papers belong to.

According to the authors, a common approach

for visualization designers/researchers is to per-

form instance-based analysis and exploration, that

is, specific data instances are tested to understand

how they develop throughout a model pipeline.

Additionally, most of the discussed tools at this

survey paper are used to observe the results of an

in-depth learning process instead of the middle

steps of the training process. The DL models that

these visualization papers focus on are mostly

related to CNNs, RNNs, and GANs.

4. The two research questions that Seifert et al.37

tried to answer are ‘‘What are the insights that can

be gained from DNN models by using visualiza-

tions?’’ and ‘‘Which visualizations are appropriate

for each kind of insights?’’ To reach their conclu-

sions, they surveyed visualization papers and sepa-

rated them into five main categories: (a) the

visualization goals, which are mostly related to an

assessment of the architecture, (b) the visualization

methods, which are single-image pixel-based dis-

plays, (c) the computer vision tasks, which are mostly

classification and representation learning, (d) the

network architecture types, which are in most cases

CNNs, and (e) the data sets that are used, with

ImageNet43 being the most popular. Moreover,

they offer a table showing the relationships between

visualization goals and applied methods, a table

with an overview of data sets, which is a unique fea-

ture across the surveys that we reviewed, and tables

with the aggregated results.

5. Zhang and Zhu39 separate their survey paper

into five distinct sections. The first one is about

visualization of CNN representations in intermedi-

ate network layers. The second deals with the diag-

nosis of CNN representations, and the third

discusses issues of disentanglement of ‘‘the mixture

of patterns’’ encoded in every filter of CNNs. The

fourth is about building explainable models, and

finally, the last one concerns semantic-level middle-

to-end learning through human–computer interac-

tion. They do not follow a clear methodology of

categorization. Instead, they analyze the field

according to the above-mentioned viewpoints.

6. Grün et al.40 describe a new taxonomy for

feature visualization methods that—according to

the authors—fit most of the relevant papers.

This taxonomy supports the task of providing an

overview of feature visualization papers together

with the open-source library FeatureVis40 for

MatConvNet44 which they created. FeatureVis is

used for the visual analysis of DL models and the

direct development of users’ network architec-

tures. Grün et al. place papers in three distinct

categories as follows: (a) input modification methods,

(b) deconvolutional methods, and (c) input reconstruc-

tion methods. They define their characteristics and

summarize the related literature of each category.

7. Samek et al.42 summarize the field of interpret-

ing DL models by focusing on the techniques/

tools that try to open the black box of the models.

They do not have a precise categorization, and

not all original papers are analyzed in detail. The

main goal of this survey is to foster awareness of

the usefulness of having interpretable and explain-

able ML models using methods such as sensitivity
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analysis (SA)45 and layer-wise relevance propaga-

tion (LRP).46

8. Yu and Shi38 surveyed visualization tools

that assist the user in reaching four high-level

goals: (a) teaching concepts, (b) assessment of the

architecture, (c) debugging and improving models,

and (d) visual exploration of DNNs, CNNs,

RNNs, as well as deep generative models. They tar-

get four distinct groups of people: (a) beginners,

(b) practitioners, (c) developers, and (d) experts,

respectively. These groups are all, according to

the authors, related to the aforementioned four

visualization goals.

Summary of the eight surveys. Due to the relatively

large number of surveys in this category, we present

here a brief comparison instead of a short summary.

First, we look at the differences with respect to their

focus on specific DL models, and second, with respect

to the chosen visualization methodologies.

Garcia et al.,32 Hohman et al.,20 Seifert et al.,37

and Yu and Shi38 discuss papers for visualizing

DNNs, CNNs, and RNNs. A specific type of DNNs,

called DFNs, is examined only by Garcia et al.32

Long short-term memory (LSTM) and generative

adversarial networks (GANs) are also considered in

the taxonomy of Hohman et al.20 Multicolumn deep

neural networks (MCDNNs) were reported by

Seifert et al.,37 along with deep convolutional neural

networks (DCNNs), which are variations of NNs and

CNNs. Deep generative models (DGMs), such as

GANs, and variational autoencoders (VAEs), were

included in Yu and Shi.38 In most cases, the described

visualization tools provide visual explanations for

experts, and debugging and improving models for

developers as target groups.

Furthermore, Hohman et al.20 and Seifert et al.37

provide discussions on concrete visualization methods.

They discovered that instance-based exploration and

pixel-based approaches are the most common.

Aggregation of information20,32,38 is also a usual way

to describe the inner parts of the algorithms, along

with feature and instance explorations. In these four

mentioned survey papers,20,32,37,38 there are examples

of tools developed for model users, developers, practi-

tioners, and non-experts, but the survey authors con-

clude that experts are the main target group for most

of them. Also, DNNs and CNNs are the most promi-

nent NNs which are usually visualized. Choo and

Liu30 and Samek et al.42 motivate why we need visua-

lization to support DL, while Zhang and Zhu39 and

Grün et al.40 work with CNNs following a similar

approach with visualizing, diagnosing/debugging,

building explainable models, and allowing the user to

steer/interact with the model. The difference here is

that Grün et al.40 focus on feature visualization tech-

niques, while Zhang and Zhu39 focus on the values of

model interpretability. Choo and Liu’s30 paper does not

have any specific model when describing those cases.

Samek et al.42 include examples of different application

domains in which those models can be used.

Dimensionality reduction

Sacha et al.36 focus in their survey on DR techniques

and tools. They propose very detailed and com-

prehensive categorizations, initially separating the orig-

inal papers into seven guiding scenarios for DR

interaction: (a) data selection and emphasis, (b) annota-

tion and labeling, (c) data manipulation, (d) feature selec-

tion and emphasis, (e) DR parameter tuning, (f) defining

constraints, and (g) DR type selection. Some of the

papers they collected belong to more than one scenario

at the same time, in some cases even reaching the four

different scenarios for a single paper. The authors also

assess interaction and usability covered by those

papers by categorizing them into five more categories:

(a) direct manipulation of visual elements, (b) controls

such as sliders or buttons, (c) command line interface,

(d) other, and (e) not applicable for the unmatched

papers. Finally, they also distinguish between two

more categories related to the tasks in which the meth-

ods are used: clustering and classification. Their

approach is closer—in comparison to others—to the

mental map and the logic that people usually follow in

order to classify and find what techniques they should

use in visualization. Therefore, this survey works nicely

as a guide for better understanding the design space

and supporting the implementation of new DR-based

tools. The authors also show the relationships between

the identified DR techniques and the above-listed

interaction scenarios, including a table with temporal

statistics of interaction and DR techniques.

This survey paper provides a robust meta-

analysis of the included papers, including previously

identified patterns such as calculating correlation

between analyzed papers. It should be a valuable

source for experienced researchers to retrieve new

information about the subfield of explaining DR with

visualization.

Topic analysis

In order to detect interesting relationships and emer-

ging topics among the 18 survey papers, we applied

topic modeling to the individual papers discussed by

them, following the overall visual text analysis

approach proposed by Kucher et al.47
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Methodology

First, we selected only the unique papers of each sur-

vey paper, collected all their PDF files, and converted

them to text. Next, we processed their full texts with

the latent Dirichlet allocation (LDA) algorithm,48,49 a

standard approach for topic modeling. In order to vali-

date the LDA results—it might produce different

results at different executions—we ran the same pro-

cess multiple times and found equivalent results with-

out significant changes. In the end, our LDA results

led to ten topics; the top 8 terms for each topic are pre-

sented in Table 6. Our implementation uses Python

with natural language toolkit (NLTK)50 for the pre-

processing of stop words and Gensim51 for the topic

modeling stages. The names of the topics were manu-

ally proposed after discussions between the authors

considering the top terms and the contents of the sur-

vey papers in each topic. The results are visualized

with the help of the interactive visualization tool

described by Kucher et al.,47 see Figure 3.

Topics

In the following description list, we briefly summarize

the 10 topics we identified:

� Topic 1. NNs are often used in image applications,

and visualizations are frequently employed to get a

better understanding of pre-trained networks.

However, visual representations of NNs that dis-

play the middle layers and try to open the black

box of NNs are less explored according to the

related survey papers (cf. Table 5). Consequently,

such visualizations might be good candidates to

focus on in future research.

� Topic 2. During a training process, it is desirable to

include humans in the loop that inspect and cor-

rect the classifier’s errors and decisions.31

However, more research is necessary for defining

the appropriate level of the end-users and classi-

fiers distribution of work, setting the right occa-

sions of interference from the user side to the

system, and finding the frequency of these interac-

tions of the human and model.

� Topic 3. Data Manipulation and DR Type

Selection were only found seven and four times in

individual papers of Sacha et al.,36 respectively.

Sacha et al. propose that an appropriate selection

of DR algorithms, while users explore, modify,

and manage the data, can be a worthwhile direc-

tion for future research.

� Topic 4. CNNs are in several cases used in image

applications. Model understanding and diagnosis

visualization tools and feature visualization meth-

ods aid in explaining them.39

� Topic 5. Use of features in models’ prediction is not

a trivial task, especially due to the computational

resources that are needed while using predictive

analytics algorithms and allowing the user to steer

the process. As a result, one research question is

‘‘how the feature selection process can be sup-

ported during a real-time algorithm execution?’’

along with the problem generated by the lack of

formal validation studies in the area of PVA.34,35

� Topic 6. Dealing with subspace visualization for

clustering and classification types of ML is an

interesting topic which is already in the focus of

the visualization community. Subspace clustering

methods not only support the search for various

robust projections but also deal with the difficul-

ties of the ever-increasing complexity of the data

by breaking them down into lower-dimensional

subsets.27

� Topic 7. This topic represents methods that unite

user steering as part of the algorithm and refresh

the underlying model to match user input. Some

research questions that arise are the trade-off

between accuracy and execution time of these

algorithms while being under user control, and

how to incorporate user feedback into computa-

tion during runtime.31

� Topic 8. Clustering and algorithm use in feature sub-

set selection is only discussed in the survey paper by

Wang et al.26 and is related to the first stage of their

proposed pipeline. Improvements can be accom-

plished if, for instance, users monitor (with visualiza-

tions) the feature selection and generation process

and intervene—when necessary—by adding, modi-

fying, or deleting features.26

� Topic 9. This topic refers to systems that address

the inherent temporal aspect of time-series data. A

number of surveys conclude that the analysis of

the time aspect, and also real-time applications,

need more exploration by future research.27,34,35

� Topic 10. NNs are often used to analyze textual data

sets (usually with RNNs).20,32 Several sur-

veys20,32,38 claim that aggregated information and

analyses of the textual input data mostly lead to

instance-level visual exploration, because a single

text phrase is considerably easier to understand for

the analyst than a massive set of words/phrases with

additional information derived from the raw texts.

Topic embedding

The 10-dimensional data space of the topics over all

individual papers has been reduced to two dimensions

using t-distributed stochastic neighbor embedding (t-

SNE),52 that is, two papers are positioned close to

each other if their topic relationships are alike, see
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Figure 3(a). The scales in the depicted bar charts are

from 0 to 1, with 1 being the highest relevancy value

of a topic in Figure 3(b) and of a term in Figure 3(c).

The black outlines on top of the visualization (see

Figure 3(a)) are manually assigned and validated fol-

lowing the bipartite graph (Figure 4) depicting the

relations of topics, survey papers, and categorization.

By relating the main categories of the 18 surveys

(described in the previous section and Table 5) to the

t-SNE plot (indicated by the black outlines in Figure

3(a)), we could find a number of interesting insights.

The ‘‘general ML models’’ category, for example, is

shown in three separate clusters of the plot, because it

is mainly related to three auto-generated topics. This is

to be expected from such a general category. However,

one unexpected observation is that the same effect is

observed in the ‘‘PVA’’ category. After some investiga-

tion, we believe it is due to its broad topic coverage as

PVA uses projections and DR, makes predictions

based on features, and also explores the various sub-

spaces of data sets. According to Figure 3, Topics 1, 4,

and 10 are clearly related to DL; Topics 2 and 7 to

IML; Topic 8 to VA pipelines; and Topic 5 to PVA.

One example of a well-separated group is the one

related to DR and clustering, in general associated

with Topic 3. Overall, we found that the automatically

generated topics agreed with our manual categoriza-

tion while, at the same time, introduced new subcate-

gories that refined even further the organization of the

papers under analysis by the surveys. We believe that

this combination of coarse-grained, manual categoriza-

tion, with fine-grained, automatic refinement can help

guide potential readers through this set of surveys.

Relations between topics and survey papers

In Figure 4, we show the explicit connections between

the topics and the survey papers in a weighted bipar-

tite graph. The weight is calculated as a percentage by

summing up the ‘‘strength’’ of the individual papers

within each survey paper according to the LDA algo-

rithm. The acceptable threshold for these weights was

set to ø 14% coverage—that is, for an edge to be

plotted in the bipartite graph, at least 14% of a survey

paper must be related to a topic. By setting this thresh-

old, we have (on average) three topics related to each

Table 6. Top eight terms for each of the 10 topics generated with latent Dirichlet allocation (LDA) from the collection of 
the papers of the survey papers.

Topic 1
NNs for image 

applications

Topic 2
IML classifiers’  

training

Topic 3
DR and projections 

visualization

Topic 4
CNNs (for image 

applications)

Topic 5
Use of features in 

models’ predictions  
(for regression)

Image
Network
Layer
Feature
Input
Model
Neural
Deep

Model
User
Learning
Training
Machine
Classifier
System
Machine learning

User
Visualization
Dimension
Point
Analysis
Visual
Projection
Uncertainty

Part
Object
CNN
Image
Node
Pattern
Layer
Category

Feature
Model
Function
Point
Prediction
Value
Vector
Regression

Topic 6
Subspace  

visualization for 
clustering and 
classification

Topic 7
Users’ feedback  

in ML

Topic 8
Clustering and  
algorithm use  

in feature subset  
selection

Topic 9
Model and clustering 

visualization for  
time-series data

Topic 10
NNs for text applications

Cluster
Visualization
Class
Clustering
Subspace
Model
Analysis
Classification

User
Topic
Feature
Learning
Document
Graph
System
Participant

Feature
Cluster
Selection
Clustering
Algorithm
Subset
Search
Learning

Model
Cluster
User
Visualization
Time
Visual
Analysis
Clustering

Model
Image
Network
Learning
Word
Neural
State
Training

NN: neural network; IML: interactive machine learning; DR: dimensionality reduction; CNN: convolutional neural networks; ML: machine 
learning.
The suggested topic titles are displayed in italics. Each topic is represented by one specific color.

16 Information Visualization 00(0)



survey paper, which leads to a good compromise

between readability and complexity. We can see that

groups of related survey papers emerge from this

graph, for example, the combination of Topics 1, 2,

and 10, and the combination of Topics 3, 6, and 9, are

generally in agreement with our manual categorization

(cf. Table 5) and with the previous visualization (see

Figure 3). It is also possible to differentiate here

between topics that are more general (less specific),

such as Topics 1, 2, and 3, which are spread among

many surveys, and less general (more specific) ones,

such as Topics 4, 7, and 8, which only show up in one

survey each. Considering that a reader probably

intends only to follow a small subset of the detected

topics, Figure 4 should work as an objective and con-

crete guide to this task.

Network visualization

Finally, in Figure 5, we use network visualization51 to

present a map of the landscape of the publications in

the area, directly showing the relationships between

different survey papers (larger, gray circles, with refer-

ence numbers) based on their common analyzed indi-

vidual papers (smaller, colored circles). The colors of

the individual papers indicate the most prominent

topic they address. This also indirectly helps to visua-

lize the connections between survey papers and topics.

In order to improve the network visualization, we used

‘‘hidden’’ edges with low weights between individual

papers having the same color and belonging to the

same survey paper, which led to their grouping (we

removed these hidden edges in the final drawing). The

Figure 3. Exploration of emergent topics extracted from all individual papers discussed in the surveys. (a) Papers’
embedding created with t-SNE and based on the extracted topics (black outlines were manually drawn and represent
our categorization). (b) Bar chart of topics with their relevance (scaled from 0 to 1). (c) Bar chart of top terms with the
highest relevance for all the topics (topics are identified by both numbers in parentheses and colors; note that a single
term can be present in multiple topics).
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Fruchterman and Reingold53 force-directed layout

algorithm was used for the network visualization

together with the ‘‘no overlap’’ option (provided by the

Gephi51 tool) to minimize crossings. The results

mainly work as a confirmation of the patterns noticed

before with the topic analysis, since the figure shows

two large-scale communities: those closely related to

DL (Figure 5(a)) and the rest of the surveys (Figure

5(b)). These two large-scale communities are bridged

by the survey of Liu et al.33 (related to General ML

Models) since General ML Models also partly include

DL as a subcategory. The DL community (a) is mostly

homogeneous, while community (b) can be split into

the top-left group (b.1), related to IML with ‘‘orange’’

and ‘‘light purple’’ color-encoded papers referring to

Topics 2 and 7; and (b.2) in the bottom-left corner,

where clustering, projections, and DR are the major

subjects (Topics 3, 6, and 9).

Discussion and challenges

Discussion

Similar to our work, many survey authors develop and

use some sort of categorization or taxonomy to aid the

analysis of the underlying papers. Table 7 contains a

summary of such categories for the eight survey papers

presented in this SoS. By analyzing all these survey

papers, we can infer that most of them are related to

particular ML models. For example, in DL, they deal

mostly with CNNs and RNNs with most of the con-

cepts not easily extendable for additional models, such

as deep generative networks (DGNs). Many survey

papers include future work and/or discussion para-

graphs that describe the possibility of expanding parts

of the visualization tools in order to be generalizable,

or even the entire visualization tool being applied to

different NNs. However, little practical effort has been

accomplished in that area.

We identified two major groups of survey papers

within our focus: the first type consists of standard CT

surveys following some kind of categorization/taxon-

omy and the second type includes the more analysis-

based AN surveys, where the authors usually analyze a

smaller portion of papers for deriving more detailed

findings (see Table 5). Most of the recent surveys are

about a specific subtopic of ML (especially on DL).

PVA is currently a very popular subfield, having

already spawned two survey papers. One possible gap

for new surveys is the subject of ML models in general

which only had three survey papers so far. But from

our experience, several new visualization tools have

been developed within the subject during the past

2 years.

From Table 7, we can detect a pattern related to

the frequent occurrences of two categories: the first is

Figure 4. Explicit connections between the survey papers and the LDA topics extracted automatically from the individual
papers under each survey. The width of the connections shows the weight of each topic in each survey paper. On the
right side, the survey papers are categorized and sorted according to Table 5. On the left side, the topics are ordered to
minimize the number of crossing lines.
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‘‘understanding’’ and the second is ‘‘interaction.’’ These

two categories are usually present as classification terms

in survey papers. From the same table, we also observe

that each survey paper uses a different approach to cate-

gorize the papers. If the survey papers would provide a

more unified way to categorize their papers, it might

have been much easier to interpret and compare them.

But at the same time, they also would lose the individual

viewing angles that they provide when using categoriza-

tions specifically adapted to their focus. From the estab-

lished scenarios (i.e. categorization/taxonomy), we

believe that the one proposed by Sacha et al.36 (e.g. data

selection, labeling, and data manipulation) better resem-

bles the visualization/perception approach that research-

ers in the visualization community would easily relate

to. Therefore, we consider the seven scenarios that they

proposed as one useful technique to follow when there

is a need for categorizing papers in the VA area for inter-

pretable ML models.

With respect to the performed topic analyses, we

have to point out that Topics 1, 2, 3, and 9 (even

though they are very diverse) seem to be, in general,

the most targeted by the InfoVis community.

Moreover, by combining the information that can be

retrieved from Figures 4 and 5, we can observe that

the bridge survey paper by Liu et al.33 has only one

main topic, which is Topic 3, and includes several oth-

ers in smaller percentages. These topics are omitted

because they capture less than 14% of the entire con-

tent of the survey paper. The other possible scenario is

that a survey is intensely focused only on a single

topic, such as Grün et al.,40 which solely includes

Topic 1 (see Figure 4). Overall, the analyzed survey

papers are rather focused on their own specific topics

and, as a result, the ‘‘Topic analysis’’ section can be

used as a means for readers to connect the knowledge

acquired from the ‘‘In-depth analysis’’ section to spe-

cific topics of high interest for them.

Figure 5. Network visualization showing the connections between individual papers and survey papers. On top of that, we
mapped the topics using the same color-encoding as introduced before (see the legend). The node size is different for the
survey papers and the individual papers, with the former being larger than the latter. Inside each survey node, we included
its reference to the bibliography. (a) DL. (b) The remaining survey papers: (b.1) IML, (b.2): clustering, projections, and DR.
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To be consistent with our methodology, we clarify

some limitations for the following two papers. For the

Sacha et al.36 survey, we chose a subset of 15 papers

that are actually fully referenced, instead of the 58

papers mentioned in their own table. The papers in

the table are not fully referenced and were hard to

identify and to track, as they are listed in a short form

using only the name of the first author, the venue, and

the year of publication. In the case of Lu et al.,35 we

used the PVA browser that they provided that contains

more references than the actual publication.

As indicated previously, we found and analyzed sur-

veys within the time range of 2016–2018 (with only

one exception from 2014). Even though the sample of

survey papers might be considered small, this repre-

sents the analysis of a total of 520 papers. Our results

indicate that the research subject of interpretable and

explainable ML is still growing (cf. Tables 2 and 4)

and has the potential to evolve even further. Regarding

the methodological aspects, we conclude that survey

papers could be more concrete and precise in the

description of their methods, since only 7 out of the

18 survey papers followed a clear and objective metho-

dology. Moreover, some venues are not covered by

any survey paper, such as ACM IUI. We believe that

in the future, more venues will accept survey papers

and might include specific survey tracks. As a result,

an increase in publications of ML-related survey

papers could occur. Nevertheless, by examining our

outcomes—although visualization and ML commu-

nities intersect in this topic of interpretable ML—only

a few visualization papers are published in dedicated

ML journals and conferences, which points to oppor-

tunities for more collaborations between the two com-

munities in the future.

Finally, other lessons learned during the writing of

this work are that (a) overview tables are very conveni-

ent, since a researcher can easily identify important

papers based on their categorization, and (b) having an

interactive online browser that hosts the taxonomy of

the surveyed papers adds to the overall usability of the

survey, enabling users to interact and filter the papers

according to their wishes and interests. These insights

should be useful for authors interested in writing sur-

vey papers in related areas.

Research opportunities

We have gathered and summarized in Table 8 the open

challenges and opportunities described in the analyzed

survey papers. These open challenges are tagged based

on our differentiation between interpretable and

explainable ML:13 from uninterpretable to interpreta-

ble ML models, that is, before interpretation IN,

improving the interpretability with explainability, that

is, after interpretation EX, and belonging to both at

the same time IN&EX . Although, as we mentioned

previously, explainable ML models are already inter-

pretable, some research opportunities include chal-

lenges in both areas. For instance, an open challenge

tagged by IN means that providing an interpretation

is the predominant nature of that challenge, and a tag

IN&EX means that both interpretation and explain-

ability are equally important for that challenge. The

most essential research challenges are briefly outlined

in the following together with the aforementioned

tags.

Online training processes IN&EX

The majority of survey papers (11 out of 18) suggest

real-time online training processes as a key future chal-

lenge. The reason for proposing this challenge is that

existing approaches mostly analyze the results of ML

techniques only, while skipping the possibility of an

interactive training process for improving trust in the

results. To exemplify this challenge, we might think of

an expert who trains a NN which might take hours to

finish. Even though the expert could use a visualization

tool to better understand the final results, a visualiza-

tion approach supporting the online training process

could aid to find preliminary insights and subsequently

help to steer the training process, and thus help to

minimize the spent time and resources.

Enhancing trust EX

Another core challenge is the need to enhance the

trust in the ML algorithms and models (10 out of 18).

Evaluation is still a challenge that requires special con-

sideration from the InfoVis community. Several survey

papers state that trust and better validation of models

must be researched.27,34,39 Trust issues are one of the

most significant problems that ML faces, and visuali-

zation has proven to be useful in this regard.20,27

Achieving this goal requires the combination of both

interactive visualizations and traditional quantitative

metrics combined into visualization tools/systems, thus

creating an ‘‘ecosystem’’ which enables expert users to

control and monitor the ML models at different levels.

For instance, a tool/system visualizes how standard

validation metrics (e.g. accuracy, precision, or recall)

of classifiers perform in each execution step of an ML

algorithm and permits experts to perceive deviating

behaviors of the ML model. As a result, it may act by

‘‘injecting’’ their knowledge into the process and sup-

porting intervention when it is necessary.

20 Information Visualization 00(0)
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Mixed guidance EX

To accomplish a ‘‘healthy’’ relationship between

humans and machines with the ‘‘correct’’ amount of

guidance from machines to humans (and vice versa) is

not a trivial task (8 out of 18). From the machine per-

spective, the ML community has produced systems

that play a critical role, for instance, by recommending

the best views and actions in the progressive analysis

process.54–58 From the human perspective, the InfoVis

community developed several techniques where the user

is the first-class citizen when adjusting and enhancing

the performance outcomes. There is a potential trouble

spot between the directions that the system provides

and the user’s personal opinion. A closely related con-

cept which falls into this category is hyperparameter

exploration, suggested for example as a future challenge

by Garcia et al.32 It is related to how a machine can

compute the best parameters to allow the users to fine-

tune an ML model in general or, for instance, the train-

ing process of a DL model. Extracting and visualizing

interaction data that occur between humans and

machines can be an initial step to address this research

problem.27 Keeping track of the history of such interac-

tions, empowering the user to undo specific actions

(known as ‘‘what-if’’-hypotheses testing) and examining

these events with interactive visualizations are other

examples to solve this challenge.59–61

Explainable ML models EX

The three challenges mentioned above are directly

related to the demand for more explainable ML algo-

rithms (8 out of 18). In order to analyze the hidden

parts of an ML algorithm, it is essential to uncover—

with the help of appropriate visualizations—how those

models actually work. However, information that

might help humans to reach better results is usually

ignored and, as a consequence, the desired perfor-

mance is not achieved. The fundamental challenge is

to compose a standardized way of explaining each ML

model properly.32,33 One possible goal is to identify

those parts of the ML model’s structure that represent

crucial operations and to tweak them accordingly

(using interactive visualizations) for increasing the per-

formance in each iteration.62–65

Complex models IN&EX

The sheer complexity of the available ML models is

another issue that emerged during the past years, since

the models have become more and more massive, and

sometimes inefficient (8 out of 18). More complex

problems demand more complex solutions, sometimes

with the use of a mixture of different models. The

visualization of such scenarios is hard, since several

models must be considered simultaneously. Another

challenge in this context is how to properly scale visua-

lization tools to work for more substantial and complex

models. For instance, RNNs and CNNs are two basic

DL architectures that have been visualized in many

scenarios according to Choo and Liu,30 Hohman

et al.,20 Lu et al.,34 and Lu et al.35 However, there are

multiple alternatives, such as ResNet66 and DenseNet67

for image recognition, that have not (to the best of our

knowledge) been visualized by or drawn any attention

from visualization researchers. Therefore, the use of

visualization to make such complex ML models better

understandable and their results better explainable will

undoubtedly be further developed in the future.

Uncertainty IN

ML models already include inherent uncertainties,

and when humans interact with them, this can improve

their performance but also introduce new uncertainties

into the analysis process. For example, if the system

displays erroneous information to users, then fine-

tuning a model does not necessarily lead to new out-

performing and trusted results. On the contrary, users’

refinement attempts might increase bias and result in

overfitting.31,34,35 Effective ways to quantify and mea-

sure this uncertainty are still open research questions.

Uncertainty may be expressed in different ways and

can appear in every stage of an ML model’s pipeline,

which makes it even harder to solve with a single solu-

tion (5 out of 18). A way to move forward on this chal-

lenge is to find ways to quantify uncertainty at the

diverse levels, then add a new visualization layer expli-

citly addressing this problem, and ‘‘throw the ball’’ to

the experts to determine where and how they should

respond.31,34,58,68,69

User knowledge IN

Users who interact with ML models through InfoVis

tools belong to various groups, such as domain

experts, non-experts, or developers. It is currently an

important challenge for visualization tools to take

advantage of the previous knowledge that users have,

and the adaptation of visualization tools to different

user backgrounds can benefit multiple stages of ML

models’ pipelines, such as—but not only restricted

to—the online training processes of the ML models (4

out of 18).35,70 For instance, in a scenario of predict-

ing a company’s earnings, factors like the user’s bias or

opinion that might be in favor or against the company

can lead to different analysis outcomes. The intrinsic

burdens of this challenge stem from such hard-to-

grasp factors. We have to establish processes in order

22 Information Visualization 00(0)
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to digitize and measure prior users’ knowledge for

making use of this knowledge in predictive models.35

Meaningful visualization design IN&EX

A large number of visualization techniques already

exist for making ML more interpretable, and concur-

rently, many user interactions can be mapped to vari-

ous computations in the backend. But constantly

mapping individual user inputs to a potentially large

number of complex (and expensive) actions, while

covering the whole VA pipeline for ML, still remains

an open challenge. Moreover, tasks related to the eva-

luation of user interfaces for IML often demand differ-

entiation from traditional user interfaces and could

possibly support additional features, such as allowing

workflow analysis and cooperation among analysts. In

consequence, developers and researchers have to care-

fully think about how to choose the most suitable

interactions in order to produce more meaningful

visualization designs (4 out of 18).

Comparing models IN

Different ML models usually perform better or worse

in different data sets or applications. By comparing

different ML techniques, we can recognize which of

those perform better than others in specific situations,

and consequently, combine them in particular orders

that could lead to better analysis results (3 out of 18).

For example, if we apply a DL algorithm with a spe-

cific architecture, instantiate many models/classifiers

from it (all with various hyperparameters), and exe-

cute them in different iterations (known as epochs for

DL), then we can summarize the results in one simple

plot and observe the fluctuations in the performances

of each one during every iteration.40

Data management IN&EX

Data management is hardly in the focus of published

visualization papers. Nevertheless, the growing com-

plexity and volume of the data demand visualization

tools that provide flexible data management

approaches. Empowering the VA process with inte-

grated interfaces for querying databases can be consid-

ered a step toward addressing those challenges.

Moreover, we lack visualization tools that directly

manipulate data at a pre-processing stage, for exam-

ple, by labeling unlabeled data or removing incom-

plete data that is unnecessary for supervised ML (2

out of 18).

Conclusion

This article is a result of our efforts to gain insight into

the state of the art in interpretable ML using visualiza-

tion, originally with the aim of writing a survey paper

on the topic. Once we were aware of the number of

existing survey papers, the wide range of covered sub-

topics, and the heterogeneous nature of their meth-

odologies, it became clear that a meta-analysis of these

surveys was necessary to help readers taking their first

steps into the area. In this SoS paper, we present the

results of such a meta-analysis, consisting of both an

overview and a deeper analysis of the existing surveys

on the topic of interpreting ML with the help of

visualization.

We present several contributions that are potentially

interesting to early-stage researchers ( ) in the area,

as well as to senior researchers ( ) in visualization

and experts of ML. Our first contribution is a general

overview of the surveys, accompanied by a collection

of aggregated quantitative information about the sur-

vey papers. It includes data about targeted publication

venues, number of unique papers referenced in each

survey, the timeline of publications, and topics covered

by them. The second contribution is a categorization

of the surveys into groups depending on their focus

and scope, along with a description of each survey

paper within the context of this categorization, helping

readers to focus only on their subject of choice.

Finally, we used the insights and new information we

gathered during this process in order to identify gaps

in the literature that will drive our future endeavors in

the research on interpretable and explainable ML

models through VA (cf. Table 8 for a summary), as

well as gaps in the existence of related survey papers

(cf. the ‘‘Discussion and challenges’’ section and Table

5). We hope that, with this report, we will manage to

provide the same possibility for our readers.
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