Supplement 1

The ringfort

A stone wall 4 to 5 m in height with at least three gates enclosed an area of 5,000 m² containing houses and a surrounding street. The house foundations and outer walls were characteristically made of limestone, the roofs were turfed, and the inner wooden walls were made of oak or juniper (Fallgren 2006:25–28; Heimdahl 2016; Victor 2015). Most of the houses in Sandby borg were rectangular in shape, with the door on one of the short ends, pairs of roof-bearing posts, and partially stone-paved floors (e.g., Victor 2015). Although the function of the houses is difficult to establish, barns, stables, and storage buildings were most probably located within the walls. Since carcasses of dogs, sheep, pigs, and horses have been documented inside the ringfort, it is clear that animals were cared for within the fort and perhaps walked around freely (e.g., Dutra Leivas and Victor 2011; Gunnarsson et al. 2016; Victor et al. 2013). In addition, cattle and wild species such as rodents, harbor seals, fish, and birds were living close by.

References Cited


Supplement 2

Excavation and preparation of material

Single-context recording was used during the excavations. The documentation was carried out through photography, photogrammetry, and GIS mapping. The site was excavated by hand, and the soil underneath the topsoil was sieved (wet or dry) with 2 or 4 mm sieves. Macrobotanical samples were collected regularly, and metal detecting was conducted throughout the excavations. Human remains were documented by Alfsdotter (apart from ID1 and ID2 reported in Victor and Wilhelmson 2012 and Victor et al. 2013) with 3D and GIS documentation, descriptions of the skeletal articulation, position, and stratigraphic relationships. Due to vast sun bleaching and hard wind, the preservation of the bones was negatively affected at a fast pace. Therefore, the in situ documentation was made effective. Archaeothanatological descriptions of all partially articulated and articulated skeletons were produced by Alfsdotter in the post-processing of the documentation.

The skeletal remains were cleaned indoors. Dry remains were only carefully brushed, but humid or wet skeletal remains were cleaned under water in sieves. Some crania were taken in with the soil still attached to be excavated indoors, due to very high fragmentation and lack of time in the field (Alfsdotter In press; Gunnarsson et al. 2016; Papmehl-Dufay and Alfsdotter 2016).

References Cited


Environmental reconstruction: Climate and topography

In order to interpret the taphonomic process of the site, mapping the environmental conditions is of the greatest importance. The island of Öland consists of younger sedimentary calcareous bedrock: limestone, sandstone, and slate (Johansson 1984). The eastern shoreline does not have an archipelago and, beyond the sandy ridge (Ancylusvallen) near the shoreline, the shallow waters on the east coast continue for several hundred meters. The land has risen a few meters since the Migration period, meaning that structures on land were located closer to the sea (Viberg 2012). A thin layer of limy moraine of glacial or glaciofluvial origin covers the flat terrain, and limestone is often exposed (Johansson 1984). A reconstruction of the climate during the Scandinavian Migration period implies, in spite of a general cooling trend, that the temperature of the region at the end of the fifth and first decades of the sixth century was initially a few degrees warmer than in modern times (Esper et al. 2012a, 2012b). In association with the subsequent decrease in temperature, a volcanic eruption occurred in A.D. 536, which is believed to have led to major climatic changes (Esper et al. 2012a; Gräslund and Price 2012). Moreover, pollen analyses show that the landscape of southern Öland was open but with trees such as birch, pine, and juniper (Köningsson 1969:138, 151, 155). Macro-fossil analyses from the ringfort have shown traces of wild plants such as heather, sedge, black thorn, wild strawberries, and violet, among others. Furthermore, grains, primarily barley but also oat, rye, wheat, flax, black mustard, and spelt, have been identified (Heimdahl 2014, 2016; Larsson 2012).

References Cited


