
Author: Amata Anantaprayoon
Supervisor: Ola Flygt
Semester: VT 2020
Subject: Computer Science

Bachelor Degree Project

Project X
All-in-one WAF testing tool

Abstract

Web Application Firewall (WAF) is used to protect the Web application (web
app). One of the advantages of having WAF is, it can detect possible attacks even if
there is no validation implemented on the web app. But how can WAF protect the
web app if WAF itself is vulnerable? In general, four testing methods are used to
test WAF such as fuzzing, payload execution, bypassing, and footprinting. There are
several open-source WAF testing tools but it appears that it only offers one or two
testing methods. That means a tester is required to have multiple tools and learn how
each tool works to be able to test WAF using all testing methods. This project aims to
solve this difficulty by developing a WAF testing tool called ProjectX that offers all
testing methods. ProjectX has been tested on a testing environment and the results
show that it fulfilled its requirements. Moreover, ProjectX is available on Github for
any developer who want to improve or add more functionality to it.

Keywords: Web application vulnerability, OWASP top ten, Web Application
Firewall, WAF, WAF testing, WAF testing tool, Modsecurity, AWS WAF, XSS,
SQLI

Acronyms and Abbreviations

WAF - Web Application Firewall
Web app - Web Application
PCI DSS - Payment Card Industry Data Security Standard
DVWA - Damn Vulnerable Web Application
OWASP - Open Web Application Security Project
XSS - Cross-Site Scripting
SQLI - Structured Query Language Injection
Modsec - ModSecurity
AWS WAF - Amazon Web Services Web Application Firewall

Contents

List of Figures 1

List of Tables 2

1 Introduction 3
1.1 Background . 3
1.2 Related work . 3
1.3 Problem formulation . 3
1.4 Motivation . 4
1.5 Objectives . 5
1.6 Scope/Limitation . 5
1.7 Target group . 5
1.8 Outline . 6

2 Method 7
2.1 Scientific Approach . 7
2.2 Reliability and Validity . 7
2.3 Ethical considerations . 7

3 Technical framework 9
3.1 Web application vulnerabilities . 9

3.1.1 Cross-Site Scripting (XSS) . 10
3.1.2 SQL Injection . 10

3.2 Web Application Firewall . 11
3.2.1 ModSecurity . 12
3.2.2 AWS Web Application Firewall 14
3.2.3 Summary . 15

3.3 Open-source WAF testing tools . 15

4 Implementation 18

5 Experimentation 24
5.1 Footprinting mode . 24
5.2 XSS payload execution mode . 25
5.3 SQLI payload execution mode . 25
5.4 Fuzzing mode . 26
5.5 Wafw00f . 27
5.6 XSStrike . 27
5.7 WAFninja . 28

5.7.1 Fuzzing . 28
5.7.2 Bypassing . 30

6 Analysis & Discussion 31

7 Conclusion 35
7.1 Future work . 35

References 37

A Appendix A
A.1 SecRule . A
A.2 ProjectX testing results . B

A.2.1 SQLI Payload execution . B
A.2.2 Fuzzing . E

A.3 WAFNinja testing results . M

List of Figures

1.1 Testing environment. 5
3.1 High-level view of the XSS attack . 10
3.2 normal user input vs SQLI . 11
3.3 High-level view of WAF [1] . 11
4.1 Class diagram . 18
4.2 Component diagram . 19
4.3 ProjectX footprinting mode . 19
4.4 ProjectX manual page . 20
4.5 XSS payload execution mode . 21
4.6 high-level view of proxy server . 22
4.7 Prompt messages for proxy . 22
4.8 Prompt messages for HTTP header extension 23
5.1 The results of using XSS payload execution mode 24
5.2 The results of executing XSS payload execution mode 25
5.3 Part of the results of executing SQLI payload execution mode 26
5.4 Part of the results of executing fuzzing mode (XSS strings) 26
5.5 Part of the results of executing fuzzing mode (SQL strings) 27
5.6 Executed Wafw00f on the testing environment 27
5.7 Executed XSStrike on the testing environment 28
5.8 Executed XSStrike with fuzz mode on the testing environment 28
5.9 Part of the results of executing XSS fuzzing mode 29
5.10 Part of the results of executing SQL fuzzing mode 29
5.11 Part of the results of executing XSS bypassing mode 30
5.12 Results of executing SQL bypassing mode 30
1.1 SQL payload execution part 1 . B
1.2 SQL payload execution part 2 . C
1.3 SQL payload execution part 3 . C
1.4 SQL payload execution part 4 . D
1.5 SQL payload execution part 5 . D
1.6 SQL payload execution part 6 . E
1.7 Fuzzing mode part 1 . E
1.8 Fuzzing mode part 2 . F
1.9 Fuzzing mode part 3 . F
1.10 Fuzzing mode part 4 . G
1.11 Fuzzing mode part 5 . G
1.12 Fuzzing mode part 6 . H
1.13 Fuzzing mode part 7 . H
1.14 Fuzzing mode part 8 . I
1.15 Fuzzing mode part 9 . I
1.16 Fuzzing mode part 10 . J
1.17 Fuzzing mode part 11 . J
1.18 Fuzzing mode part 12 . K
1.19 Fuzzing mode part 13 . K
1.20 Fuzzing mode part 14 . L
1.21 Fuzzing mode part 15 . L
1.22 Fuzzing mode part 16 . M

1

List of Tables

1.1 Research questions . 4
1.2 Objectives . 5
2.1 Tool requirements . 7
3.1 OWASP top ten lists version 2010, 2013, and 2017 9
3.2 Match statements [2] . 14
3.3 Open-source tools and their features . 17
6.1 Comparison between ProjectX and open-source tools and their features. . 33
6.2 Advantages/Disadvantages of different WAF testing tools 33
A1 SecRule variables . A
A2 SecRule operators . A
A3 SecRule transformations . A
A4 SecRule actions . A

2

1 Introduction

Web Application Firewall (WAF) is used to increase Web application security without
modifying or fixing a vulnerability in application code. But how can WAF protect web
applications if WAF itself is vulnerable? A WAF testing tool can be used to find a vulner-
ability on miss-configured WAF. The propose of this thesis is to develope an open-source
WAF scanning tool that will be available to anyone who would want to use it.

1.1 Background

Web application (web app) has grown exponentially and become one of the most com-
mon attack surfaces and adversaries are trying to exploit the web application using dif-
ferent techniques. Recent research shows that 75 percent of cyber attacks are done at the
web application level [3]. According to the statistics of 2019 on Web Applications vul-
nerabilities and threats [4], 82 percent of vulnerabilities were located in the application
code. Fixing bug or vulnerability in an application code might create other problems.
Moreover, the web application might need to be taking out of service in order to fix the
vulnerability. One of the solutions is setting up a WAF, considering that WAF can protect
web applications without modifying or fixing the vulnerability in application code.

WAF performs a deep packet inspection of the network traffic sent by the client to the
server. By analyzing the transferred data, WAF can detect possible attacks even if there is
no validation implemented on the web app [5]. Another reason to use WAF is to meet and
complete with security standards such as Payment Card Industry Data Security Standard
(PCI DSS). Every e-commerce needs to apply PCI DSS in order to achieve some level
of trustworthiness [5]. It is difficult to configure WAF considering system administrators
need to have in-depth knowledge about web application in order to know what should be
allowed [6]. Also, human error needs to be considered as a security threat since humans
tend to forget or overlook things.

1.2 Related work

There are several research papers about WAF. [6] describes the hight-level knowledge
about WAF. [5] is similar to [6] but [5] describes in-depth knowledge about WAF such as
the advantages of WAF and its characteristics. OWASP top ten is a list of the most com-
mon vulnerabilities found on web application, the list is updated every three to four years.
The OWASP top ten list version 2010, 2013, and 2017 is a must to read when it comes to
web application vulnerabilities. Not only it describes what are the vulnerabilities, but it
also gives an in-depth knowledge about the vulnerabilities, how to prevent them, and how
do they occur.

Awesome-WAF is a Github repository (repo) created by 0xInfection [1]. The repo
contains almost everything about WAF such as Detection techniques, testing methodol-
ogy, WAF fingerprints, evasion techniques, WAF testing tools, known bypass payloads
for a specific WAF vendor, etc. It is also a must to check this repo if the reader wants to
gains more knowledge on WAF testing.

1.3 Problem formulation

The existing solutions to find a vulnerability on miss-configured WAF is to use a testing
tool. There are several tools out there but it appears that the tools focus on only one testing
method. For instance, the tools focus only on one of the following testing methods:

3

1. Fuzzing is an approach to software testing whereby the system being tested (in this
case, WAF) is bombarded with different input. The system is monitored, in the
hope of finding errors that arise as a result of processing this input.

2. Footprinting (known as reconnaissance) is a technique used for gathering informa-
tion about a target.

3. Bypassing is a technique used to avoid a security mechanism implemented on the
server side.

4. Payload execution is a technique where a huge amount of the malicious payloads is
send to the target.

To the best of my knowledge, there is no existing open-source scanning tool that offers
all mentioned features in one tool.

The goal of this degree project is to develop an ”all-in-one” open-source WAF testing
tool (script) which will be able to detect and disclose the WAF vendor (footprinting).
Fuzzing and payload execution will be another testing methods that the tool will support.
Moreover, the tool will offer a bypass mechanism that allows the user to bypass WAF.
Lastly, a comparison between the existing open-source tools and ProjectX will be drawn
by testing them in the same environment. The following research questions in Table
1.1 will be used in order to understand WAF and web application vulnerability which is
required to be able to develop the tool and achieve the goal of this research.

RQ1 What are the most common web application vulnerabilities and why
do they exist?

RQ2 What is WAF, what are the difficulties regarding configuring WAF
and how to overcome this difficulty?

RQ3 What are the advantages/disadvantage of different WAF test methods
and WAF testing tools

Table 1.1: Research questions

1.4 Motivation

WAF testing tool can be used to enhance security and find a vulnerability on miss-
configured WAF. As mentioned, the existing open-source tools do not offer all testing
methods. ProjectX will solve this problem as it will offer all the mentioned testing meth-
ods (fuzzing, payload execution, bypassing, and footprinting). Web administrators can
use ProjectX to find vulnerabilities and secure their web applications. Since the tool of-
fers all the mentioned function, web administrators need to install only one tool and would
not be required to learn how each tool works. Furthermore, ProjectX will be available on
Github where could be used by anyone to detect the vulnerabilities on WAF. In addition,
it will be available for anyone who would want to improve or add more functionality to
the tool.

4

1.5 Objectives

The objectives are presented in Table 1.2:

O1 Literature review on web application vulnerability and WAF
O2 Research on WAF open-source testing tools and evaluate them
O3 Identify difference feature that ProjectX will offer
O4 Design a testing environment that ProjectX will be tested on
O5 Gather payloads
O6 Develop ProjectX
O7 Test and evaluate ProjectX
O8 Comparing ProjectX with open-source existing tool

Table 1.2: Objectives

The goal of this thesis is to develop an ”all-in-one” open-source WAF scanning tool
(script). The tool is written using Python programming language which is one of the
most popular languages used for developing scripting tools. The tool will be tested on a
testing environment to ensure that it fulfills its intended purpose. The testing environment
specification is mentioned in the next section.

The expected result is that ProjectX will offer all the mentioned functions. Further-
more, when compared with existing tools, ProjectX would be seen as a better choice.
Considering that the users would not need to install many tools and would not be required
to learn how each tool works.

1.6 Scope/Limitation

Raspberry pi 4 model B 4GB will be used as a server that runs both WAF and web app.
To limit the scope, the tool will only be tested on open-source WAF called ModSecurity
which will be configured using a predefined ruleset to protect an existing web app called
Damn Vulnerable Web App (DVWA). Furthermore, ProjectX and existing tools will be
executed on Kali Linux 2020.1a. Figure 1.1 below demonstrates the testing environment.

Figure 1.1: Testing environment.

1.7 Target group

The aim of this research is to develop a scripting tool that can be used to enhance WAF
security. The user is required to have some knowledge about how the tool works. For
instance, the user needs to know the tool options to execute different testing mode (-F
for fuzzing, -xss for XSS payload execution mode and etc.). In addition, knowledge on

5

web application security such as XSS, SQLi, Cookies, and etc is required to use the tool
efficiently. The target users are system administrator, penetration tester or anyone that
works in the IT security field who want to find vulnerability on WAF in order to improve
WAF security.

1.8 Outline

The scientific methods that have been used for answering the research questions and the
tool requirements are discussed in section 2. Section 3 gives the reader the technical
knowledge that is needed to be able to understand the technology behind the tool. More-
over, research questions will be answered in this section. Section 4 describes in detail
the implementation of ProjectX, the structure of the tools, the tools to functionalities, etc.
The experimentation is presented in the section 5. This section includes the results of
testing ProjectX, Wafw00f, Wafninja, and XSStrike in the testing environment. Section
6 contains an analysis of the results, discussion of the results and experimentation, and a
comparison between different tools. Lastly, the conclusion and future work opportunities
are discussed in section 7

6

2 Method

This section discusses the scientific method used to achieve the goal of this project. It
contains the tool requirements and how the tool will be verified to know that it is reliable.
Furthermore, there are ethical considerations that had to be taken into consideration which
will be discussed at the end of this chapter.

2.1 Scientific Approach

To answer research questions, a literature study will be carried out. Verification and val-
idation method will be used to validate if the developed tool meets the requirements,
specifications and that it fulfills its intended purpose.

This thesis is created by me, meaning there is no guideline or requirements created
by an external source (company/sponsor). To create requirements for the tool, the defined
problems from problem formulation (Section 1.3) will be converted into requirements.
The requirements are presented in Table 1.1. Lastly, a comparison between ProjectX and
existing open-source tools will be drawn by testing them in the same environment as in
Figure 1.1.

R1 The tool should offer all testing methods (payload execution,
fuzzing, footprinting, and bypassing)

R2 The tool should be able to read payloads from a given file which
contains different payloads

R3 The results of payload execution and fuzzing should be shown
in a file

Table 2.1: Tool requirements

2.2 Reliability and Validity

As mentioned, the tool will only be testing on the environment as in Figure 1.1. The result
will be absolutely different when ProjectX is used to scan another WAF with different
rule-set. Still, the user will get the same result if the user uses the tool to scan 2 different
WAF with the same rule-set since the same rule-set means both WAF have the same
vulnerability.

To ensure the reproducibility of the experiments, all information about the tool will
be available to the reader. Furthermore, the source code of the tool will be available on
Github Project X (https://github.com/gu2rks/projectX)

2.3 Ethical considerations

Since the tool can be used to find a vulnerability on miss-configured WAF. The primary
ethical considerations that need to be considered is, if the tool falls in the wrong hands,
it could be misused for malicious propose. The purpose of this research is purely edu-
cational and meant to be helpful to the community and vendors. A security expert com-
munity such as bug bounty hunters can use ProjectX to find vulnerabilities and report to
the vendor. A bug bounty program is like a contract between a vendor and bug bounty
hunters (hacker). The hacker will get paid by the vendor if the hacker finds a vulnerability
on the system and report to the vendor. Many organizations had signed up for bug bounty

7

https://github.com/gu2rks/projectX

programs including, Google, Tesla, Facebook, Uber, PayPal, Twitter, GitHub, etc. These
organizations have collectively resolved over 150,000 vulnerabilities and awarded hack-
ers over $81M in bounties for their contributions [7]. The bug bounty community will
keep growing as long as a vulnerabilities still exist.

When developing the tool, some ethical considerations should be taken into account
similarly to any other research in the science and technology field. Nuclear technologies
can be used for a good purpose such as in medical, it can provide images inside the
human body and can help to treat disease. It can be used in water desalination which is
the process of removing salt from saltwater to make the water drinkable. Also, Nuclear
power is wildly used in many countries to generate electricity. At the same time, it can be
used to create a nuclear weapon or cost harm like what happened in Chernobyl 1986.

I firmly believe that ProjectX can be used to enhance WAF security when it used
properly. Since it can be used by anyone, meaning anyone can use it to enhance their
WAF security and secure their web application. On the other hand, anyone can use it
to find a vulnerability and use the result for malicious purposes. The user must not use
the tool on a site that the user does not have permission to do. The misuse of the tool
can result in criminal charges. I will not be held responsible in the event of any criminal
charges held against any individual misusing the tool and/or the information in this thesis.

There are skilled hackers that live by hacking for malicious purpose. If a bachelor’s
student who is not an expert in security can develop such a tool. It is possible that anyone
with interests in security might already have a similar tool like ProjectX and keeps it
secret. If that is the case then the availability of ProjectX can help many people in the
society to find the vulnerability in WAF and secure their web application.

8

3 Technical framework

General knowledge of the technical term and technologies mentioned in this report are
presented in this section. Furthermore, in-depth information on some areas are mentioned
so that the reader understand different techniques ProjectX offers. Many of mentioned
technologies could be studied in a thesis on its own, the focus here has been kept on the
relevant parts.

3.1 Web application vulnerabilities

There are many Web application vulnerabilities. This report will focus on some of the
vulnerability mentioned by Open Web Application Security Project (OWASP). OWASP
is a nonprofit foundation that works to improve the security of software. OWASP top ten
is a list of the most common vulnerabilities found on web application, the list is updated
every three to four years. Table below shows the latest 3 (2010 [8], 2013 [9] and 2017
[10]) OWASP top ten lists.

2010 2013 2017
A1-Injection A1-Injection A1-Injection

A2-Cross-Site Scripting (XSS)
A2-Broken Authentication and
Session Management A2-Broken Authentication

A3-Broken Authentication and
Session Management A3-Cross-Site Scripting (XSS) A3-Sensitive Data Exposure

A4-Insecure Direct Object References A4-Insecure Direct Object References A4-XML External Entities (XXE)
A5-Cross Site Request Forgery (CSRF) A5-Security Misconfiguration A5-Broken Access Control
A6-Security Misconfiguration A6 Sensitive Data Exposure A6-Security Misconfiguration
A7-Insecure Cryptographic Storage A7-Missing Function Level Access Control A7-Cross-Site Scripting (XSS
A8-Failure to Restrict URL Access A8-Cross-Site Request Forgery (CSRF) A8-Insecure Deserialization

A9-Insufficient Transport Layer Protection
A9-Using Components with
Known Vulnerabilitie

A9-Using Components with
Known Vulnerabilitie

A10-Unvalidated Redirects and Forwards A10-Unvalidated Redirects and Forwards
A10-Insufficient Logging
& Monitoring

Table 3.1: OWASP top ten lists version 2010, 2013, and 2017

According to the table above, web applications are still vulnerable to many vulnerabil-
ities that are presented in OWASP 2010 top ten list even though the list has been around
for 10 years. The list below presents the vulnerabilities that exist in web applications
since the first OWASP top ten list was created 10 years ago:

1. Injection: Code injection happens when untrusted data is sent to an interpreter as a
part of a command or a query. This includes SQL, LDAP and command injection.
The attacker uses code injection to trick the interpreter into executing commands or
accessing data without authorization [10].

2. Broken Authentication: Authentication and session management are often imple-
mented incorrectly. The vulnerability allows the attacker to simply compromise
passwords, keys, cookies or session tokens. The compromised data is used to trick
the web app to believe that the attacker is another user [10].

3. Cross-Site Scripting (XSS): Occur when web app renders untrusted data without
proper validation on the web page. Often it is a chunk of JavaScript code which
allows attackers to execute it in the victim’s browser [10].

4. Security Misconfiguration: This is commonly a result of insecure default configu-
rations, open cloud storage, misconfigured HTTP headers, and verbose error mes-
sages containing sensitive information [10].

9

ProjectX will allow the user to execute two different malicious payloads which are
Cross-Site Scripting (XSS) and SQL injection (SQLI). According to OWASP top ten list,
code injection or in particular, SQLI and XSS are vulnerabilities that have been frequently
found at the top of the list for the past decade (marked boxes in Figure 3.1). For that
reason, XSS and SQLI are included in ProjectX. Due to the extensiveness of both vul-
nerabilities, all the examples are the simplest ones just so the reader understand the idea
behind each vulnerability.

3.1.1 Cross-Site Scripting (XSS)

XSS is an application-layer web attack that frequently occurs when un-validated or un-
encoded user input that is rendered on the web app. XSS refers to a range of attacks in
which the attacker executes malicious payload (malicious script) into a web application.
The executed malicious payload is saved as a content of the web application. When
a victim visits the web site, the malicious payload is executed by a web-browser [11].
Figure 3.1 shows the high-level view of the XSS attack

Figure 3.1: High-level view of the XSS attack

An easy way to detect if a web app is vulnerable to XSS is by injecting a simple
payload such as <script>alert(1)</script>. An alert will pop up on the web
browser if the web app is vulnerable. The attacker then can plan further replace alert(1)
with a malicious payload. For instance, sending victim’s cookies to attacker’s web-server.

3.1.2 SQL Injection

Web applications do some sort of computation, store or retrieve data. Structured Query
Language (SQL) is a programming language used to communicate and control databases
connected to web applications. When a user searches for something on the Web app, it
then translates user demand to a SQL query and retrieves data from the SQL database.
SQL injections are typically performed via web app application input. These input forms
are often found in features like search boxes, form fields, and URL parameters [11]. This
can occur if a web app does not properly validate user input. The vulnerability allows an
attacker to inject malicious payload (SQL query) in an input form. The payload exploits
the database and allows the attacker to obtain unauthorized data . The figure below shows
an example of SQLI attack.

10

(a) Search for user 1 (b) SQLI

Figure 3.2: normal user input vs SQLI

When a user inserts an id on the input form in Figure 3.2. The application will retrieve
the user’s information corresponding to the given id from the database and rendering it.
The attacker then can insert a payload which is a SQL query, in this case,
1’ or ’a’=’a. What the payload does is trick the database by querying for userID =
1 or a = a (which in this case is true). Since there is a condition that is always true (a =
a), the attacker gets the result of the query which is all the user’s records that exist in the
database.

3.2 Web Application Firewall

According to Payment Card Industry Data Security Standard (PCI DSS) Requirement
6.6 [12]: "A web application firewall is a security policy enforcement point positioned
between a web application and the client endpoint. This functionality can be implemented
in software or hardware, running in an appliance device, or in a typical server running
a common operating system. It may be a stand-alone device or integrated into other
network components."

Figure 3.3: High-level view of WAF [1]

In general, web traffic flows between a client/user and a web application server. When
WAF is implemented, It performs deep packet inspection of the web traffic that occurs
between the user and the server, as in figure 3.3. When the user requests to visit the web
app, the request is sent to WAF. WAF analyzes the packet and forwards it to the server

11

only if the packet is legitimate. Otherwise, it will discard the packet. The main task of a
WAF is protecting Web applications from attackers that try to exploit the web app using
vulnerability. The most advantage of WAF is, it can detect possible attacks even if there
is no validation implemented on the web-server.

Another reason to use WAF is to meet and complete Payment Card Industry Data
Security Standard (PCI DSS) which is a payment security standard. PCI DSS is one of
the most important system information standards. Every organization and company that
deal with financial transactions of customers online are required to meet the standard [5].

WAFs work on a concept of having a set of rules that define the actions, either allow
or block the incoming traffic. Different WAF has different write and configures the rules.
Furthermore, a learning curve is required to understand the syntax to be able to write
the rule. An administrator can use a default ruleset to avoid writing rules on their own
[6]. However, A skilled attacker would be able to bypass the default ruleset. Even an
unskilled attacker (script-kiddie) could be able to bypass it if they have a right tool with a
right payload. WAF has 3 operation models: positive model, negative model, and hybrid
model [1]:

Positive Model (Whitelist): This model only allows web traffic that matches the rules.
For instance, only allow HTTP GET from a specific IP address. It is the most effective
model for blocking possible cyber-attacks but it might block a lot of legitimate traffic.
Furthermore, this model is difficult to implement when compared with negative mode
since the administrator needs to have in-depth knowledge about the web application to
know what should be allowed. Note that the whitelist model is probably best for web
applications on an internal network that are designed to be used by only a limited group
of people, such as employees [6][1].

Negative Model (Blacklist): Blacklisting or signature-based detection is focused on
blocking malicious traffic. The signatures or predefined rules are designed to prevent an
attack that is used to exploit web application vulnerability (section 3.1). When comparing
with other operations modes, Blacklisting mostly used since it is easiest to implement
[6][1]. The administrator can download a predefined rules such as OWASP ModSecurity
Core Rule Set (CRS) or default rules and the web app is secure and "good to go".

Hybrid Model: This model uses both Signature-based detection and anomaly detec-
tion. Signature-based detection (blacklist) is blocking the requests including attacks by
using signature blacklist. Anomaly request detection is the detection of requests that is
not appropriate for standard HTTP request standard [1][13].

There is many WAF solutions provided by different vendors, both commercial or
free/open-source. This research will only focus on ModSecurity and Amazon web service
web application firewall (AWS WAF). A study on ModSecurity and AWS WAF syntax
and how to configure rule is presented in the next sections.

3.2.1 ModSecurity

ModSecurity (Modsec) is an open-source web application firewall that is widely used
since it is free and comes with a default ruleset. Knowledge is required, in order to write
a rule for ModSec. Researching is needed to be able to understand the fundamentals and
syntax of the rule. Modsec has many configuration directives that are used to configure
the WAF. For instance, SecAction, SecDefaultAction, SecAuditLog, SecRule, etc. [14]
To limit the scope of this project SecRule is the only directive mentioned in this project
since SecRule is the directive in Modsec that is used for writing a rule. SecRule is
made up of 4 parts in the following structure [15]:

12

SecRule VARIABLES "OPERATOR" "TRANSFORMATIONS,ACTIONS"

Variables: Instruct ModSecurity where to look (sometimes called Targets). There are
approximately 105 variables which are subdivided into 6 different categories [15]. The
catagories and example are present in Table A1:

Operators: Instruct ModSecurity when to trigger a match. There are approximately
36 operators which are subdivided into 4 different categories [15]. The catagories and
example are present in Table A2:

Transformations - Instruct ModSecurity how it should normalize variable data. There
are approximately 35 transformation which are subdivided into 4 different categories [15].
The catagories and example are present in table A3:

Actions - Instruct ModSecurity what to do if a rule matches. There are approximately
47 actions which are subdivided into 6 different categories [15]. The catagories and ex-
ample are present in table A4:

Furthermore, there is a syntax that needs to be considered when writing a SecRule
[15]

1. Every SecRule must have a VARIABLE.

2. Every SecRule must have an OPERATOR, if none is listed @rx is implied.

3. Every SecRule must have an ACTION. The only required action is id, however,
several actions are implied by SecDefaultAction (another ModSecurity directive).

4. Every SecRule must have an phase ACTION, this tells the rule when to deploy. If
no phase is included the default is phase:2.

5. Every SecRule must have a disruptive ACTION. This is an action that describes
what to do with the transaction if triggered. If no disruptive action is included the
default is pass

6. Transformations are optional but should be used to prevent your rule from being
bypassed.

Assume that an attacker tries to attack the web application by exploiting XSS vul-
nerability (Section 3.1.1) by insert <script>alert(1)</script> as a malicious
payload. The following rule is required to be able to block the payload.
SecRule ARGS "@contains <script>" "id:1,deny,status:403"

The mentioned rule will block(deny) any malicious payload that contains <script>
(@contains <script>) and response to the sender with HTTP code 403 forbidden (sta-
tus:403). Note that this rule can be easily bypassed by using uppercase such as
<sCript>alert(1);</script>. But it can be fixed by using the following rule:
SecRule ARGS "@contains <script>" "id:1,deny,status:403,t:lowercase"

The rule is still weak, the attacker can appending a space (from <sCript>alert(1);
</script> to <sCript >alert(1);</script>) to bypass it. The following
rule will fix this issue.
SecRule ARGS "@contains <script>" "id:1,deny,status:403,t:lowercase,t:

removeWhitespace"

Another technique that can be used to bypass the rule above is HTML encoding. An
attacker encodes characters to corresponding HTML entities such as, from > (greater
then) to >. Web applications normally decode HTML entities automatically. So if

13

the payload was decoded as <sCript >alert(1);</script>, the application
will treat it as <sCript >alert(1);</script>. The following rule will fix this
issue:
SecRule ARGS "@contains <script>" "id:1,deny,status:403,t:lowercase,t:

removeWhitespace,t:htmlEntityDecode"

There are many cases where operator @contain cannot provide enough security. Op-
erator @rx can be used to performs a regular expression to find a match of the pattern.
This means the knowledge of regular expression is required [6].

3.2.2 AWS Web Application Firewall

Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted
cloud platform, offering over 175 fully-featured services. One of those services is the
AWS Web application firewall (AWS WAF). In general, AWS WAF controls how an
Amazon CloudFront distribution, an Amazon API Gateway API, or an Application Load
Balancer responds to web requests before forwarding the request to an AWS resource
(web app). The core component of AWS WAF is the web access control list (Web ACL).
Web ACLs are used to protect AWS resources. The user can create Web ACL and define
its protection strategy by adding rules [2].

Rules define how to inspect web requests and what to do when a web request matches
the inspection criteria. Each rule requires one top-level statement, a nested statement can
be configured if needed. Rule statements can also be very complex. For instance, a logical
AND, OR, and NOT statements can be used to combine other statements. The following
list presents what is called "Match statements":

Match statements Description
Geographic match Inspects the request’s country of origin.
IP set match Compares the request origin against a set of IP addresses and/or address ranges.
Size constraint Checks size constraints against a specified request component.
Regex pattern set Compares regex patterns against a specified request component.
String match Compares a string to a specified request component.
SQLi attack Inspects for malicious SQL code in a specified request component.
XSS attack Inspects for cross-site scripting attacks in a specified request component.

Table 3.2: Match statements [2]

When a web request matches the rules, the rule action tells AWS WAF what to do
with the web request. There are 3 rules action to choose: 1) Count - the WAF counts the
request but doesn’t determine whether to allow it or block it. 2) Allow - the WAF allows
the request to be forwarded to the web application (AWS resources) for processing and
response. 3) Block - the WAF block the request and web application responds with an
HTTP code 403 (forbidden). Moreover, a user can also create rule groups that can be
reused in many Web ACLs. For instance: a rule group call "malicious payload" which
contains all SQLI and XSS match statements.

The rules can get complex in many situations. For instance: a user wants to create
a rule that blocks certain countries, but still allows requests from a specific set of IP
addresses in that country, also, the request should not include malicious (SQLi, XSS). In
this case, the user needs to create a rule with the action set to block with another 4 match
statements and 5 logical statements. The code block below shows the high-level of the
mentioned rule:

14

* Rule with the action set to Block

* And statement

* Geo match statement listing the countries that the user want to block

* Not statement

* IP set statement that specifies the IP addresses that the user want
to allow through

* And statement

* XSS attack match statement list potential XSS attacks

* And statement

* SQLI attack match statement list malicious SQL queries

Configuring WAF rules can be challenging and burdensome, especially for those who do
not have a security background. AWS offers AWS WAF Security Automations which can
be used to avoid the complexity of creating rules. The solution is using AWS CloudFor-
mation to automatically deploy a web ACL with a set of AWS WAF rules designed to
filter common web-based attacks [2].

3.2.3 Summary

WAFs work on the concept of having a set of rules that define the actions. Different WAF
has different ways to implement and configures the rules. For Modsecurity, the user needs
to write the rule in a configuration file (modsecurity.cof). On the other hand, AWS WAF
can be managed on the AWS web application. One thing that both Modsec and AWS
WAF have in common is the complexity of creating rules. Configuring WAF rules can be
challenging and burdensome since the user needs to learn how each WAF vendor works
and how to configure it.

This research examined one of the ModSec directives, SecRule. SecRule has more
than 100 variables, 36 operators, 35 transformations, and 47 actions [15], let alone the
fact there is a syntax that needs to be considered when writing it.

Configuring AWS WAF rules can be difficult, since the user needs to understand the
components such as Web ACL, rules, rules group, match statements, and logical state-
ments. Furthermore, the user needs to understand how to configure each component and
how the components work together .

A user can use a regular expression (regex) to find a match of the pattern in the web
request. Both AWS WAF and Modsec offer this feature. A regular expression is a complex
topic by itself and can become even more complex when creating a regex to detect a
certain type of web request.

Both AWS WAF and ModSec offers a solution to avoid the complexity of creating
rules. In ModSec, the user can use a default ruleset (a file called modsecurity.conf-
recommended) which is included when the user installed Modsec. Furthermore, there
is a predefined ruleset call OWASP ModSecurity Core Rule Set (CRS) which is written
by the OWASP community, the same creator that creates OWASP top ten lists. AWS WAF
also offers AWS WAF Security Automations which can be used to automatically deploy
a web ACL with a set of AWS WAF rules designed to filter common web-based attacks
[2].

3.3 Open-source WAF testing tools

Testing tools are used to find vulnerabilities on misconfigured WAF. To limit the scope
of this research, this research only reviews the open-source testing tool. The difference
tools offer different methods. For instance: footprinting, fuzzing, and bypassing. The
following descriptions describe the main goal of each methods.

15

Footprinting (known as reconnaissance) is a technique used for gathering information
about a target, in this case, the target is WAF [16]. A penetration tester can use the
footprinting tool to find out which WAF vendor is used. For instance, the application
used ModSecurity version 2.3. He then can use this information to find a well-know
vulnerability such as XSS or SQLI and execute the vulnerability to bypassing WAF’s
rules. The same scenario goes for an administrator who also want to find a well-known
vulnerability for the specific WAF then secure it

Payload Execution tool is an automated tool that sends a huge amount of malicious
payloads to a target which in this case is web application. The tool monitors the response
from the web app and creates a list of payload which bypassed a security mechanism
(WAF). An administrator can use the results to write an additional rule on WAF to secure
the web application.

Fuzzing is an approach to software testing whereby the system being tested is bom-
barded with different strings [17]. In this case, the system is a web application and
the different string/payload are, for instance, special character, HTML DOM event (on-
mouseover, click), HTML encoded character, XSS/SQLI payload. To test the web app,
A fuzzing tool sending huge amounts of payloads then monitoring the web app, in the
hope of finding errors that arise as a result of processing the payloads [17]. The results
are shown as pass or fail. A penetration tester can use this tool to find different strings
that can bypass WAF’s rule then use it to craft a malicious payload. On the other hand, an
administrator can use the result to set up a specified rule to protect against the payloads.

Bypassing is a technique used to avoid a security mechanism, in this case, the security
mechanism is WAF. A bypassing tool tries to find a vulnerability on the server-side and
uses it to bypass WAF. For instance, finding a sub-domain that is not configured using
WAF, finding an out supported SSL/TLS ciphers which that WAF cannot decrypt and
Server can decrypt or adding an additional HTTP header to trick the WAF.

The following tools are an open-source testing tools that can be use to test WAFs.

1. Wafw00f is one of the most well-know footprinting tools written in Python. It sends
a normal HTTP request or malicious HTTP requests. By analyzing the response
from WAF and mapping it with WAF’s fingerprint, the tools can identify the WAF
that is used to protect the given application [18].

2. identYwaf another footprinting tool that can recognize WAF based on blind infer-
ence technique. It supports more than 70 different WAFs [19].

3. WAFNinja is a fuzzing tool written in Python. The tool has many XSS and SQLI
payloads included within the tool. It supports HTTP connection, GET and POST
requests and Proxy. Also, Cookies can be used in order to access pages restricted
to authenticated users [20].

4. XSStrike is a Cross-Site Scripting detection suite by sending different XSS pay-
loads to web app. XSStrike is better when compared with another xss detection
tools. Since XSStrike analyses the response with multiple parsers and then crafts
payloads that are guaranteed to work by context analysis integrated with a fuzzing
engine. XSStrike offers many features such as WAF detection, Multi-threaded
crawling and Context analysis.[21].

5. bypass-firewalls-by-DNS-history tries to bypass firewalls by finding the direct or
outdated/unmaintained IP address of a server behind a WAF. The tool uses DNS
history records and searches for old DNS A records. Thereafter, it checks if the

16

server replies to that domain. The user then can use the outdated and unmaintained
IP address to bypass one. Also, the outdated server is likely to be vulnerable for
various exploits [22].

6. abuse-ssl-bypass-waf is a tool used for finding the SSL/TLS Cipher that WAF
cannot decrypt and Server can decrypt at the same time. The user then can use the
specific cipher to bypass WAF [22].

7. Bypass WAF is an extension tool created for Burp suite which is one of the most
well-known web application testing tools. The tool adds an extension HTTP head-
ers to all HTTP requests sends by Burp suite which can help to bypass some WAF
products/vendor. The extension HTTP headers are X-Originating-IP, X-Forwarded-
For, X-Remote-IP, X-Remote-Addr [23].

Table 3.3 shows the comparison of different open-source testing tools base on the
offering feature.

Tool \Method Footprinting Payload Execution Fuzzing Bypassing
Wafw00f x
identYwaf x
WAFNinja x x
XSStrike x x x
bypass-firewalls-by-DNS-history x
abuse-ssl-bypass-waf x
Bypass WAF (Burp extension) x

Table 3.3: Open-source tools and their features

Each tool has an advantage and disadvantage when compared with each other. For
instance, A footprinting tool is better than a fuzzing tool since it offers footprinting but
at the same time footprinting tools can’t be used to perform fuzzing. This means a tester
needs to have multiple tools to be able to test a WAF using all mentioned methods. Fur-
thermore, knowledge of each tool is required to use the tools efficiently. ProjectX will
solve this problem since it will offer all the mentioned testing methods. Moreover, the
discussion and the comparison between the existing tools are discussed later in Section 6

17

4 Implementation

The purpose of this project is to develop a WAF testing tool that offers many functionali-
ties. ProjectX can help the user in a way that the user does not need to install many tools.
In general, different tools have different ways to execute which means the users need to
understand how each tool works and how to use each one of them. This project will solve
this problem since the user only needs to learn how to use ProjectX. Moreover, users can
use the result from running ProjectX to fix their misconfigured WAF. The figure below
shows the class diagram for ProjectX.

Figure 4.1: Class diagram

ProjectX consists of 2 classes, parse.py, and projectX.py (figure 4.1). The main goal
of parse.py is to parse user input. On the other hand, projectX.py is where the rest of the
functionalities are written. There are many libraries/modules used to implement ProjectX
and each library is used to perform a specific task. The following libraries are: 1) Pandas
is an open-source data structures and data analysis library for Python programming lan-
guage. Pandas is used in ProjectX to write the test results in HTML. 2) Requests, allows
the user to send HTTP/1.1 requests extremely easy. ProjectX uses this library when send-
ing HTTP requests and receiving HTTP responses. 3) urllib.parse is a library for breaking
URLs into components or to combine the components back into a URL. ProjectX uses this
library for making the payloads safe to be used as URL components by quoting special
characters and appropriately encoding non-ASCII text. Also, when decoding a URL back
to UTF-8. 4) Itertools is used to perform a round-robin queue when a proxy option is
given by the user. 5) Progress.bar is used to create a progress bar when sending payloads.
6) Argparse is used to parse command-line options, arguments, and sub-commands. 7)
Pathlib is used to handle filesystem paths. 8) datetime is used when the output file is not
given, ProjectX gets the current time of the system and uses it as a file name.

To limit the scope of this project, ProjectX used Wafw00f when performing footprint-
ing. A module call Subprocess can be used to execute a bash command. ProjectX uses this
module to execute Wafw00f. Figure 4.2 is a component diagram showing a relationship
between ProjectX and Wafw00f. Moreover, The sequence diagram (figure 4.3) shows ob-
ject interactions arranged in time sequence when the user executes the footprinting mode
in ProjectX.

18

Figure 4.2: Component diagram

Figure 4.3: ProjectX footprinting mode

There are 4 main modes in ProjectX which are the following:

1. Footprinting (-f): ProjectX performing footprinting by executing Wafw00f

2. Fuzzing (-F): ProjectX will send a general fuzzing payload that can be used to
craft XSS or SQLI payload. For instance: special characters, HTML DOM event
(onmouseover, click), HTML encoded characters, SQL commands The payloads
can be found in db/fuzz/ directory which contains around 500 fuzz payloads.

19

3. XSS payload execution (-xss): In this mode, ProjectX is sending different XSS
payloads to the web app. The payload can be found in db/xss.txt and there are
6232 payloads in the file.

4. SQLI payload execution (-sqli): ProjectX will send SQLI payloads to the web
app. The payloads can be found in db/sqli.txt and there are 1283 payloads in
the file.

Payloads are included in ProjectX’s GitHub repository (link to payloads). The payloads
were gathered from different GitHub repository such as [24], [25] and [26]. The payloads
are located in a .txt file, each line represents one payload.This allows the user to easily
add more payload, remove, or edit the payload in the database.

ProjectX is a Command-line interface (CLI) written in Python programing language.
To be able to use ProjectX efficiently, the user needs to know what each option stands for
and the syntax. A manual page is shown when the user executes python3 projectX.py
-h. The figure below shows the manual page.

Figure 4.4: ProjectX manual page

The following command is used when testing WAF by using XSS payload execution
mode:
python3 projectX.py -xss -t "http://<target IP>/?q=projectX" -o output.

html -c PHPSESSID="mk5f489u62hilvgp9ml9peeccg",security="low"

When -xss is given, the tool will test a WAF by running XSS payload execution mode.
To identify the target use -t. Note that the user needs to write "projectX" where the
payloads should be. The tools will replace "projectX" with the payloads before sending
it to the target’s web app. -c stands for cookie/cookies which can be used to bypass an
authentication mechanism. If more then one cookie is used, the user needs to separate the
cookies with a comma In this case, -d (database) is not used which means the tool will
read payloads from the default database. The -o or output identifies an output file which
is a testing result written in an HTML file. If -o not given, the timestamp when the tool
executed is used as the file name. The sequence diagram in figure 4.5 shows the process
when the mentioned command is executed.

20

https://github.com/gu2rks/projectX/tree/master/db

After the payload is sent, ProjectX will monitor the web app response and save it
as pass or fail. Pass means the web app responds with HTTP code 200 OK because
web application will return HTTP code 200 OK when payloads bypassed the WAF. If
the response is not HTTP code 200 OK, ProjectX will interpret as it is a fail. The user
must understand when reading the output file (result) that the payload that has pass status
doesn’t mean that the server is vulnerable to the specific payload. On the other hand, the
tested WAF is misconfigured and allowed potential malicious payloads to reach the web
app. In XSS and SQLI payload execution mode, ProjectX will only show the payload that
bypassed the WAF in the result file. It is important to know which payloads bypassed the
WAF more blocked payloads. The system administrator can use this information to create
a new rule to block the bypassed payload. On the other hand, in fuzzing mode, both pass
and failed payloads are shown in the result file. Since it is important for the user should
know what string is pass or fail to be able to craft a malicious payload to test WAF. Figure
5.2 shows how the testing result from XSS payload execution mode.

Figure 4.5: XSS payload execution mode

21

Figure 4.6: high-level view of proxy server

Considering that some web application has a security mechanism which counters
fuzzing by blocking the sender IP address. ProjectX offers proxy which can be used
to bypass such security mechanisms. Figure 4.6 presents a high-level view of how a
proxy server works. A proxy server is used for rerouted sending HTTP requests (packet)
which contain the payload. While using a proxy the packet is first sent to a proxy server.
Thereafter the proxy server will forward it to the destination. This means the webserver
(destination) will not be able to block the original IP address since, from the webserver
point of view, the packet was sent from the proxy server. ProjectX fetches a free proxy list
proxy list by fate0 and selects 10 IP addresses from the list. If the proxy option is given by
the user, ProjectX will use the selected proxies when sending payload using round-robin
scheduling by cycling the proxies. This means when the proxy is used, ProjectX will
move it to the end of the queue so that the next proxy in the queue will be used to send the
next payloads, and it repeats this process until all payloads are sent. It is important for the
user to know that ProjectX’s performance drops when a proxy option is selected. Figure
4.7 shows the prompt messages asking users if they want to use a proxy when testing
WAF.

Figure 4.7: Prompt messages for proxy

There are HTTP headers that can bypass some WAF products. ProjectX lets the user
to choose if they want to use this functionality, if yes then the following HTTP headers
are included in HTTP request when testing WAF:
X-Originating-IP: 127.0.0.1
X-Forwarded-For: 127.0.0.1

22

https://github.com/fate0/proxylist

X-Remote-IP: 127.0.0.1
X-Remote-Addr: 127.0.0.1
X-Client-IP: 127.0.0.1

This functionality is inspired by Bypass Waf (Burp Suite extension) [23]. Figure 4.8
shows prompt messages asking users were asked if they want to add the mentioned HTTP
header.

Figure 4.8: Prompt messages for HTTP header extension

Another bypassing method that ProjectX offers is bypassing the web app authentica-
tion mechanism by using a cookie/cookies, this type of bypassing call cookie spoofing.
Cookies are information that is sent to the server along with an HTTP request. Cookies
are specific to a given domain or URL and commonly used for remembering states be-
tween requests such as user logins. The main goal of cookies is to give visitors a better
experience when using their service. Cookies are sent with each request which allows the
website to check if the request came from the authorized user. The user needs to include
-c when executing ProjectX if the user wishes to use cookie spoofing when testing WAF.

23

5 Experimentation

The results of testing ProjectX and open-source testing tools are presented in this section.
Wafw00f, WAFninja, and XSStrike are the open-source testing tools that will be tested,
since these tools are one of the widely used tools in the penetration tester community.
Moreover, the executed command which is used to run the tools is included to ensure the
reproducibility of the experiments.

ProjectX, WAFNinja, Wafw00f, and XSStrike is tested in the test environment which
is mentioned in section 1.6. Raspberry pi 4 model B 4GB is used as a web server that
runs a web app called Damn Vulnerable Web App (DVWA). DVWA is a PHP/MySQL
web application that is vulnerable. Its main goals are to be an aid for security profes-
sionals to test their skills and tools in a legal environment [27]. The web app is pro-
tected by Modsec with default predefined ruleset. The default predefined ruleset is called
modsecurity.conf-recommended which included in Modsec when the user in-
stalled it. Both ProjectX and existing open-source tools are executed on Kali Linux
2019.4.

5.1 Footprinting mode

The following command is used to execute ProjectX with footprinting mode:
python3 projectX.py -f -t "<ip address>"

The figure below shows the results of footprinting mode is used to test the WAF in the
testing environment.

Figure 5.1: The results of using XSS payload execution mode

24

5.2 XSS payload execution mode

The following command was used to execute XSS payload execution mode. The results
of executing the following command are shown in Figure 5.2.
python3 projectX.py -xss -t "<ip address>/?name=projectX" -o <output

file> -c cookie1="value", cookie2="value"

It is important to remember that the user has to add "projectX" since the tool will replace
the payloads with "projectX". Also, if two or more cookies used, the user needs to sepa-
rate each cookie with a comma ",". These two rules are applied in every ProjectX testing
mode.

Figure 5.2: The results of executing XSS payload execution mode

Note that in the test results of both XSS and SQL payload execution mode only include
payloads that bypass the WAF. Failed payloads are discarded because the pass payloads
are the ones that matter. The system administrator can create a new rule that protects
against these payload that show in the result file.

5.3 SQLI payload execution mode

Due to the big size of the result file, only some parts of the result file is presented in this
section. The whole result file can be found in the Appendix A.2. The following command
was used to execute SQLI payload execution mode. The results of executing the following
command are shown in Figure 5.3.
python3 projectX.py -sqli -t "<ip address>/?name=projectX" -o <output

file> -c cookie1="value", cookie2="value"

25

Figure 5.3: Part of the results of executing SQLI payload execution mode

Note that not every payload is malicious, such as the first payload. System admins
can analyze the results file, evaluate the potential risk, and create new rules that block a
specific payload.

5.4 Fuzzing mode

Due to the big size of the result file, only some parts of the results file is presented in this
section. The whole result file can be found in the Appendix A.2. Figure 5.4 and Figure
5.5 show the results of executing fuzzing mode is executed by the following command:
python3 projectX.py -F -t "<ip address>/?name=projectX" -o <output file

> -c cookie1="value", cookie2="value"

In fuzzing mode the result shows both pass and fail payloads. The penetration tester
can use this information to test the WAF by using the information to craft a potentially
malicious payload.

Figure 5.4: Part of the results of executing fuzzing mode (XSS strings)

26

Figure 5.5: Part of the results of executing fuzzing mode (SQL strings)

5.5 Wafw00f

As mentioned in section 4, ProjectX used WafW00f when performing footprinting. To
get a reliable result, Wafw00f is tested in the same testing environment as ProjectX. The
figure below shows the executed command and the results of executing wafw00f.

Figure 5.6: Executed Wafw00f on the testing environment

5.6 XSStrike

XSStrike is tested in the testing environment (Section 1.6 using two modes, Fuzzing, and
XSS detection mode. The results of executing XSS detection mode is shown in Figure
5.7, fuzzing mode in Figure 5.8.

27

Figure 5.7: Executed XSStrike on the testing environment

Figure 5.8: Executed XSStrike with fuzz mode on the testing environment

Figure 5.7 shows that the XSStrike XSS detection mode could not find any XSS vul-
nerability on the web application. Figure 5.8 shows the results of the fuzzing mode is
executed. The result includes the XSS fuzz strings and the status. Note that XSStrike
detects the web application in the testing environment is protected by AWS WAF.

5.7 WAFninja

WAFNinja is tested in the same testing environment as ProjectX, XSStrike, and Wafw00f.
The results when testing WAFninja using fuzzing mode and bypassing mode are shown
in this section.

5.7.1 Fuzzing

WAFNinja fuzzing mode is similar to ProjectX fuzzing mode. The results of testing both
XSS fuzzing and SQL fuzzing are presented in this section. Due to the long list of the
result file, only some part of the result file is presented in this section. The link to result
files is included in the Appendix. Figure 5.9 a piece of the results when XSS fuzzing mode
is executed. Moreover, figure 5.10 for SQLI fuzzing mode. The following command is
used to execute XSS fuzzing mode: The results when testing WAFninja using fuzzing
mode and bypassing mode are shown in this section.

28

python wafninja.py fuzz -u "http://169.254.179.84/vulnerabilities/sqli
/?id=FUZZ" -c "PHPSESSID=pf7e1bg9to2cauhlblp246a9fo security=low" -
t xss -o fuzzxss.html

Figure 5.9: Part of the results of executing XSS fuzzing mode

The following command is used to execute sql fuzzing mode
python wafninja.py fuzz -u "http://169.254.179.84/vulnerabilities/xss_r

/?name=FUZZ" -c "PHPSESSID=pf7e1bg9to2cauhlblp246a9fo security=low"
-t sql -o fuzzsql.html

Figure 5.10: Part of the results of executing SQL fuzzing mode

29

5.7.2 Bypassing

WAFNinja bypassing mode is similar to the ProjectX payload execution mode. It read
payload from the database and send it to the target. The tool monitors the response and
outputs it as Probably (pass) or No (fail). Due to the long list of the result file, only
some part of the result file is presented in this section. The link to result files is included
in the Appendix A.3. Figure 5.11 a piece of the results when XSS bypassing mode is
executed. Moreover, figure 5.10 for SQL bypassing mode. The following command is
used to execute XSS bypassing mode:
python wafninja.py bypass -u "http://169.254.179.84/vulnerabilities/

xss_r/?name=PAYLOAD" -c "PHPSESSID=pf7e1bg9to2cauhlblp246a9fo
security=low" -t xss -o bypassxss.html

Figure 5.11: Part of the results of executing XSS bypassing mode

The following command is used to execute SQL bypassing mode:
python wafninja.py bypass -u "http://169.254.179.84/vulnerabilities/

sqli/?id=PAYLOAD" -c "PHPSESSID=pf7e1bg9to2cauhlblp246a9fo security
=low" -t sql -o bypassSqli.html

Figure 5.12: Results of executing SQL bypassing mode

30

6 Analysis & Discussion

The research questions found in Table 1.1 and the tool requirements (Table 2.1) are an-
alyzed and discussed in this section. The research questions are answered based on the
results from Section 3 and 5. The tool requirements are discussed based on the imple-
mentation (Section 4) and experimentation (Section 5).

To be able to know what are the most common vulnerabilities and why each vulner-
ability exists, a study on OWASP top ten list version 2010, 2013, 2017 was carried to
be able to answer the question. According to Table 3.1, many vulnerabilities in the list
version 2010 can be found in the newest version (2017) even though version 2010 has
been around for ten years. The following vulnerabilities are the most common vulnerabil-
ities that are included in the list this past 10 years: 1) Injection or Code injection occurs
when untrusted data is sent to an interpreter as apart of a command or a query. 2) Bro-
ken Authentication occurs when the authentication and session management are poorly
implemented. 3) Cross-Site Scripting (XSS) occurs when the web app renders untrusted
data without validating it. Lastly, Security Misconfiguration which is commonly a result
of using insecure default configurations or an inexperience web administrator.

The research about WAF and the difficulty of creating a WAF rule was carried out.
WAF performs deep packet inspection of the web traffic that occurs between the user and
the server. WAF analyzes the packet and forwards it to the server only if the packet is
legitimate. Otherwise, it will discard the packet. WAFs work on the concept of having a
set of rules that define the actions. Different WAF has different ways of implementing and
configuring the rules. ModSec and AWS WAF were examined in this research. Modsec
is a free open-source WAF that works perfectly with Nginx and Apache server. On the
other hand, AWS WAF is the commercial WAF which only focuses on protecting AWS
cloud resources. Even though both Modsec and AWS WAF are so different from each
other, they have the same difficulty. It is challenging and burdensome to configuring
WAF rules. The user is overwhelmed by the rules syntax and the different options that
they can choose. For instance, AWS WAF has six different match statements that can be
nested by using four different logical statements. SecRule (in Modsec) has more than 100
variables, 36 operators, 35 transformations, and 47 actions, despite the fact that there is a
syntax that needs to be considered when writing the rules.

To overcome the difficulty of implementing rules, both Modsec and AWS WAF have
a predefined ruleset/default ruleset that can be used to protect against common vulnera-
bilities. As discussed at the beginning of this section, according to OWASP top ten list
one of the most common vulnerabilities in the past 10 years is Security Misconfiguration
which commonly occurs when using default configurations. This means every WAF that
uses default ruleset has the same vulnerabilities. If the user decides to use the default
ruleset, the user needs to understand the consequences. Furthermore, the default ruleset
cannot protect against a zero-day vulnerability. A zero-day vulnerability is a vulnerability
that is unknown to the WAF vendors. The user becomes dependent on the WAF vendor
when using default ruleset because the WAF vendor is the one who develops the default
rules. The user needs to wait until the WAF vendor patched the zero-day vulnerability.
Until then, the WAF is vulnerable. The only way to be able to fix it fast is the user needs
to know the syntax of the rules and how to create them which leads the user back to the
complexity of creating the rules.

Four different test methods are used for testing WAF: 1) Footprinting (known as re-
connaissance) is a technique used for gathering information about a target. 2) Payload
Execution is sending many malicious payloads to the WAF. 3) fuzzing is testing the WAF

31

by sending a different string to WAF and monitor the responses. 4) Bypassing is finding a
vulnerability on the server-side and using it to bypass WAF. There are many open-source
WAF testing tools but it appears that it only focuses on a specific test method. A dis-
cussion about the open-source WAF testing tools and its functionality can be found later
in this section. Moreover, the advantages and disadvantages of Wafw00f, WAFNinja,
XSStrike, and ProjectX can be found later in this section.

The goal of the project is to create a testing tool that offers all test methods. Further-
more, there are requirements that the tool has to fulfill which can be found in Table 2.1
R1 is fulfilled since the footprinting mode in ProjectX is done by executing Wafw00f. R2
is fulfilled since ProjectX allows the user to use their database/payload file by using -d
follow by the path to the file. If -d is not given, ProjectX will use the default database.
As mentioned in Section 4, ProjectX offer fuzzing (-F), XSS/ SQLI payload execution
(-xss/-sqli), footprinting (-f), and bypassing by using proxy, cookies or extension
HTTP header. This means ProjectX fulfills R3 since it offers all test methods. Lastly, the
results found in Section 5 proves that ProjectX fulfills R4.

WAFNinja, XSStrike, and Wafw00f were tested during the experimentation phase in
section 5. Each tool has an advantage and disadvantage when compared with each other.
WAFNinja focuses on fuzzing and payload execution. There are two different modes to
choose when performing fuzzing which is XSS and SQLI. Another mode that WAFNinja
offers is called bypassing. WAFNinja bypassing mode is performing a payload execution
test method. To avoid confusion, we will call this mode as payload execution mode.
WAFNinja payload execution is similar to ProjectX. The user can choose to perform
either XSS or SQLI payload execution. WAFNinja has 100 payloads for XSS mode and
5 Payloads for SQL mode which are extremely less than ProjectX. Furthermore, users
can use WAFNinja to test the WAF by sending either GET or POST requests. Also,
the user can use cookies in order to access web pages restricted to authenticated users.
Furthermore, an intercepting proxy can be set up to avoid IP banning. The testing result
of WAFNinja can be found in Section 5.7. The result includes some valuable information
such as the response code from the web application and expected output.

As mentioned in section 3.3, XSStrike has a feature that can detect WAF vendors.
The results of executing XSStrike is shown in figure 5.7. Note that XSStrike detected
that the web app is protected by Amazon Web Service WAF. The result is wrong, the web
application in the testing environment is protected by Modsec. In the testing environment,
Modsec will return HTTP code 403 forbidden when it detects malicious traffic. If we
refer back to Section 3.2.2 AWS WAF. Note that AWS WAF is returning HTTP code 403
forbidden when it detects malicious traffic, same as in Mod sec in the testing environment.
This is why XSStrike assumes that AWS WAF was the WAF that is used in the testing
environment.

On the other hand, Wafw00f detected that the web app is protected by WAF or some
sort of security solution. Furthermore, it notifies the user about the HTTP response code
from WAF which is HTTP code 403, see Figure 5.6. The result from Wafw00f is correct
and accurate. Wafw00f can detect more than 100 WAF products. To find out more about
WAF products that wafw00f can detect, run Wafw00f -l.

Since the different tool has different payloads in their database. For instance, WAFN-
inja has 5 SQLI payloads and ProjectX have 500 SQL payloads. If the comparison be-
tween tools is done by using the pass and fail payload, the result will not be reliable.
At the same time, if each tool has the same payloads, each tool will have the same pass
and fail payloads result. That is why I decided to not do a comparison based on pass/fail
payloads. However, the comparison of their functionality and advantages/disadvantages

32

of each tool was drawn. The table below shows the comparison between ProjectX and
different open-source tools and their features.

Tool \Method Footprinting Payload Execution Fuzzing Bypassing
Wafw00f x
identYwaf x
WAFNinja x x
XSStrike x x x
bypass-firewalls-by-DNS-history x
abuse-ssl-bypass-waf x
Bypass WAF (Burp extension) x
ProjectX x x x x

Table 6.1: Comparison between ProjectX and open-source tools and their features.

From the table, there are several points that need to be discussed: 1) WAFNinja of-
fers cookies spoofing which can be used to bypass some authentication mechanism and
allow the user to access web pages restricted to authenticated users. This feature does
not count as a bypassing since it cannot bypass a WAF, it can only bypass an authenti-
cation mechanism. That is why WAFNinja bypassing mode is unchecked. 2) XSStrike
offers footprinting but it is important to know that the result might not be as accurate as
Wafw00f. Lastly, 3) ProjectX offers bypassing mode by adding extra HTTP headers. The
user needs to know that this can only bypass some WAF products. Moreover, ProjectX
could not bypass Modsec in the testing environment when using the bypassing mode.

Part of the 3rd research question was what are the advantages/disadvantages of differ-
ent tools. To be able to answer this question, researching (Section 3) and testing the tools
in the testing environment (Section 5) were done. The table below shows the advantage
and disadvantages of Wafw00f, WafNinja, XSStrike, ProjectX.

Advantages Disadvantages

XSStrike
- offer many features
- excellent for XSS attack

- no cookie spoofing
- imperfect WAF detection
- only performs XSS testing
- only GET request

Wafw00f
- detect more than 100 waf product
- easy to use.
- accurate result

- only performs Footprinting

WAFninja

- GET + POST request
- cookie spoofing
- proxy
- database with payloads
- both XSS and SQLI

- no footprinting

ProjectX

- footprinting by using Wafw00f
- cookie spoofing
- proxy
- database with payloads
- both XSS and SQL
- bypassing WAF using HTTP headers

- no POST request

Table 6.2: Advantages/Disadvantages of different WAF testing tools

33

It would be really difficult to work on this research in terms of developing ProjectX
without the Awesome-WAF repository (repo) [1]. The repo contains information such
as WAF fingerprints, evasion techniques, known bypasses, WAF testing tools, testing
methodology, etc. Moreover, this research could not be done without WAFNinja [20],
since it was the tool that inspired me to work on this project and give me the idea of
creating ProjectX. Lastly, ProjectX would not be able to offer "all-in-one" feature without
Wafw00f, since it is used in ProjectX when performing footprinting testing methods.

The effectiveness of the ProjectX in terms of finding the vulnerabilities on miss-
configured WAF depended on the payloads. ProjectX works great but without powerful
payloads, it will not be able to get a good testing result. In the current stage, payloads
were gathered from different Github repos such as [24], [25] and [26]. One of the future
work could be updating ProjectX’s payloads to make the tool more robust.

34

7 Conclusion

Concerning RQ1, there are many Web application vulnerabilities. According to OWASP
top ten list, Code Injection, Broken Authentication, Cross-Site Scripting (XSS), and Se-
curity Misconfiguration are the most common vulnerabilities in the past decade. One of
the solutions to protect the web app against the vulnerability is to implement WAF.

With respect to RQ2, WAF can detect possible attacks even if there is no validation
implemented on the web application. Furthermore, every web applications that deal with
financial transactions of customers online are required to implement WAF to meet and
complete the Payment Card Industry Data Security Standard (PCI DSS). WAFs work
on the concept of having a set of rules that define the actions, either allow or block the
incoming traffic. Each WAF product has a different syntax of writing/creating rules. For
instance, SecRule is one of the ModSecurity directives and it has 100+ variables, 30+
operators and transformations, and 47 actions. Due to the complexity of implementing
WAF rules, a user can use a predefined ruleset such as a default ruleset to protect their
web app.

There is an advantage when using default ruleset which is it is easy to set up. The
user does not need to put an effort to learn how to write WAF rules since the rule syntax
is complex. Moreover, each WAF has different rules syntax and unique implementations.
One of the disadvantages is every WAF which is using the same ruleset will have the same
vulnerabilities. As mentioned, Security Misconfiguration is commonly a result of using
insecure default configurations. Using a default ruleset might lead to Security Misconfig-
uration vulnerability which is one of the most common vulnerabilities in OWASP top ten
list in the past decade.

Regarding RQ3, there are 4 different WAF testing methods. Footprinting is a tech-
nique used for gathering information about a target. Fuzzing is an approach to software
testing whereby the system being tested is bombarded with different input. Bypassing is a
technique used to avoid a security mechanism implemented by the target. Lastly, Payload
execution is a technique where a huge amount of malicious payloads is sent to the target.

Testing tools are used to find vulnerabilities on misconfigured WAF. It appears that
the existing open-source tools do not offer all mentioned testing methods. This means a
penetration tester or system administrator must have each tool and needs to learn how each
tool works to be able to test WAF efficiently. ProjectX solves this problem by offering
all the mentioned features. ProjectX is tested in the testing environment to validate its
functionality and verify that the tool has fulfilled its requirements. The testing results
in Section 6 shows that ProjectX has fulfilled its requirements and works excellently.
Furthermore, a comparison between ProjectX and existing tools (Wafw00f, XSStrike,
WAFninja) was drawn so the reader can decide if ProjectX could be a potential tool to use
for testing WAF (Section 6).

7.1 Future work

As a future work continuation on improving the tools would be interesting. The code in-
jection has been the most common vulnerability in the past ten years based on the OWASP
top ten list (Table 3.1). It would be interesting to add more fuzzing mode and payload ex-
ecution to ProjectX. For instance, XML External Entity (XXE) Injection and Command
Injection. When ProjectX is performing fuzzing mode, it fuzzes both XSS and SQL at the
same time. Another thing that would be interesting is to split fuzzing mode so the tester
specifically fuzzes what they want, not both XSS and SQLI at the same time. Furthermore,
testing the tool on different WAF products/vendors could also be possible and beneficial.

35

Lastly, both default payload executions and fuzzing databases should be updated to make
to ProjectX more powerful.

36

References

[1] 0xInfection, “Awesome-waf,” https://github.com/0xInfection/Awesome-WAF, ac-
cessed on 2020-04-22.

[2] AWS, “Aws waf, aws firewall manager,and aws shield advanced developer guide,”
https://docs.aws.amazon.com/waf/latest/developerguide/waf-dg.pdf, accessed on
2020-05-10.

[3] Acunetix, “What is a web application attack and how to defend against it,” https:
//www.acunetix.com/websitesecurity/web-application-attack/, accessed: 2020-01-
30.

[4] P. technologies, “Web applications vulnerabilities and threats: statistics for 2019,”
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/, Feb 2020,
accessed on 2020-05-2.

[5] Z. Ghanbari, Y. Rahmani, H. Ghaffarian, and M. H. Ahmadzadegan, “Comparative
approach to web application firewalls,” in 2015 2nd International Conference on
Knowledge-Based Engineering and Innovation (KBEI). IEEE, 2015, pp. 808–812.

[6] V. Clincy and H. Shahriar, “Web application firewall: Network security models and
configuration,” in 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 1. IEEE, 2018, pp. 835–836.

[7] hackerone, “Hack for good,” https://www.hackerone.com/hack-for-good, accessed
on 2020-05-10.

[8] OWASP, “Owasp top ten 2010,” https://wiki.owasp.org/index.php/Top_10_
2010-Main, 2010, accessed on 2020-04-18.

[9] ——, “Owasp top ten 2013,” https://wiki.owasp.org/index.php/Category:OWASP_
Top_Ten_Project#tab=OWASP_Top_10_for_2013, 2013, accessed on 2020-04-18.

[10] ——, “Owasp top ten 2017,” https://wiki.owasp.org/index.php/Category:OWASP_
Top_Ten_Project, 2017, accessed on 2020-04-18.

[11] B. Wang, L. Liu, F. Li, J. Zhang, T. Chen, and Z. Zou, “Research on web application
security vulnerability scanning technology,” in 2019 IEEE 4th Advanced Informa-
tion Technology, Electronic and Automation Control Conference (IAEAC), vol. 1.
IEEE, 2019, pp. 1524–1528.

[12] P. S. S. Council, “Information supplement: Application reviews and web application
firewalls clarified,” https://www.pcisecuritystandards.org/documents/information_
supplement_6.6.pdf, Oct 2008, accessed on 2020-04-19.

[13] A. Tekerek, C. Gemci, and O. F. Bay, “Development of a hybrid web application
firewall to prevent web based attacks,” in 2014 IEEE 8th International Conference
on Application of Information and Communication Technologies (AICT). IEEE,
2014, pp. 1–4.

[14] B. Security, “Modsecurity reference manual,” https://nature.berkeley.edu/~casterln/
modsecurity/modsecurity2-apache-reference.html, 2016, accessed on 2020-04-20.

37

https://github.com/0xInfection/Awesome-WAF
https://docs.aws.amazon.com/waf/latest/developerguide/waf-dg.pdf
https://www.acunetix.com/websitesecurity/web-application-attack/
https://www.acunetix.com/websitesecurity/web-application-attack/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.hackerone.com/hack-for-good
https://wiki.owasp.org/index.php/Top_10_2010-Main
https://wiki.owasp.org/index.php/Top_10_2010-Main
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://wiki.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.pcisecuritystandards.org/documents/information_supplement_6.6.pdf
https://www.pcisecuritystandards.org/documents/information_supplement_6.6.pdf
https://nature.berkeley.edu/~casterln/modsecurity/modsecurity2-apache-reference.html
https://nature.berkeley.edu/~casterln/modsecurity/modsecurity2-apache-reference.html

[15] O. CRS, “Making rule,” https://www.modsecurity.org/CRS/Documentation/making.
html, 2015, accessed on 2020-04-20.

[16] B. Dinis and C. Serrao, “External footprinting security assessments: Combining
the ptes framework with open-source tools to conduct external footprinting security
assessments,” in International Conference on Information Society (i-Society 2014).
IEEE, 2014, pp. 313–318.

[17] J. Zhao and L. Pang, “Automated fuzz generators for high-coverage tests based
on program branch predications,” in 2018 IEEE Third International Conference on
Data Science in Cyberspace (DSC). IEEE, 2018, pp. 514–520.

[18] EnableSecurity, “Wafw00f,” https://github.com/EnableSecurity/wafw00f, accessed
on 2020-04-22.

[19] stamparm, “identywaf,” https://github.com/stamparm/identYwaf, accessed on 2020-
04-22.

[20] khalilbijjou, “Wafninja,” https://github.com/khalilbijjou/WAFNinja, accessed on
2020-04-22.

[21] s0md3v, “Xsstrike,” https://github.com/s0md3v/XSStrike, accessed on 2020-04-22.

[22] LandGrey, “abuse-ssl-bypass-waf,” https://github.com/LandGrey/
abuse-ssl-bypass-waf, accessed on 2020-04-22.

[23] codewatch, “Bypass waf: Burp plugin to bypass some waf devices,” https://www.
codewatch.org/blog/?p=408, Nov 2014, accessed on 2020-04-22.

[24] payloadbox, “Cross site scripting (xss) vulnerability payload list,” https://github.
com/payloadbox/xss-payload-list, accessed on 2020-04-24.

[25] ——, “Sql injection payload list,” https://github.com/payloadbox/
sql-injection-payload-list, accessed on 2020-04-24.

[26] fuzzdb project, “Fuzzdb,” https://github.com/fuzzdb-project/fuzzdb, accessed on
2020-04-24.

[27] ethicalhack3r, “Damn vulnerable web application (dvwa),” https://github.com/
ethicalhack3r/DVWA, accessed on 2020-04-28.

38

https://www.modsecurity.org/CRS/Documentation/making.html
https://www.modsecurity.org/CRS/Documentation/making.html
https://github.com/EnableSecurity/wafw00f
https://github.com/stamparm/identYwaf
https://github.com/khalilbijjou/WAFNinja
https://github.com/s0md3v/XSStrike
https://github.com/LandGrey/abuse-ssl-bypass-waf
https://github.com/LandGrey/abuse-ssl-bypass-waf
https://www.codewatch.org/blog/?p=408
https://www.codewatch.org/blog/?p=408
https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/payloadbox/sql-injection-payload-list
https://github.com/fuzzdb-project/fuzzdb
https://github.com/ethicalhack3r/DVWA
https://github.com/ethicalhack3r/DVWA

A Appendix

A.1 SecRule

SecRule’s components such as variables, operators, transformations, and actions are pre-
sented in this section. Each table represent a specific component, its categories and the
example of command contain in that specific category

Categories Example
Request Variables ARGS, REQUEST_HEADERS, REQUEST_COOKIES
Response Variables RESPONSE_HEADERS, RESPONSE_BODY
Server Variables REMOTE_ADDR, AUTH_TYPE
Time Variables TIME, TIME_EPOCH, TIME_HOUR
Collection Variables TX, IP, SESSION, GEO
Miscellaneous Variables HIGHEST_SEVERITY, MATCHED_VAR

Table A1: SecRule variables

Categories Example
String Operators rx, pm, beginsWith, contains, endsWith, streq, within
Numerical Operators eq, ge, gt, le, lt
Validation Operators validateByteRange, validateUrlEncoding
Miscellaneous Operators rbl, geoLookup, inspectFile, verifyCC

Table A2: SecRule operators

Categories Example

Anti-Evasion Functions
lowercase, normalisePath, removeNulls,
replaceComments, compressWhitespace

Decoding Functions
base64Decode, hexDecode, jsDecode,
urlDecodeUni

Encoding Functions base64Encode, hexEncode
Hashing Functions sha1, md5

Table A3: SecRule transformations

Categories Example

Anti-Evasion Functions
lowercase, normalisePath, removeNulls,
replaceComments, compressWhitespace

Decoding Functions
base64Decode, hexDecode, jsDecode,
urlDecodeUni

Encoding Functions base64Encode, hexEncode
Hashing Functions sha1, md5

Table A4: SecRule actions

A

A.2 ProjectX testing results

Due to the big size of the result file, only part of the result file was shown in the experi-
mentation section. The reader can find the whole result file in this section or visit this link
https://github.com/gu2rks/projectX/tree/master/results/ProjectX

A.2.1 SQLI Payload execution

The whole result file from executing SQLI payload execution mode in Section 5.3 is
presented in this section.

Figure 1.1: SQL payload execution part 1

B

https://github.com/gu2rks/projectX/tree/master/results/ProjectX

Figure 1.2: SQL payload execution part 2

Figure 1.3: SQL payload execution part 3

C

Figure 1.4: SQL payload execution part 4

Figure 1.5: SQL payload execution part 5

D

Figure 1.6: SQL payload execution part 6

A.2.2 Fuzzing

The whole result file from executing fuzzing mode in Section 5.4 is presented in this
section

Figure 1.7: Fuzzing mode part 1

E

Figure 1.8: Fuzzing mode part 2

Figure 1.9: Fuzzing mode part 3

F

Figure 1.10: Fuzzing mode part 4

Figure 1.11: Fuzzing mode part 5

G

Figure 1.12: Fuzzing mode part 6

Figure 1.13: Fuzzing mode part 7

H

Figure 1.14: Fuzzing mode part 8

Figure 1.15: Fuzzing mode part 9

I

Figure 1.16: Fuzzing mode part 10

Figure 1.17: Fuzzing mode part 11

J

Figure 1.18: Fuzzing mode part 12

Figure 1.19: Fuzzing mode part 13

K

Figure 1.20: Fuzzing mode part 14

Figure 1.21: Fuzzing mode part 15

L

Figure 1.22: Fuzzing mode part 16

A.3 WAFNinja testing results

Due to the big size of the result file, only part of the result file from WAFNinja was shown
in the Experimentation section. The reader can find the whole result file by visiting the
following links:

1. XSS fuzzing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzXSS.html

2. SQL fuzzing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzSQL.html

3. XSS bypassing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassxss.html

4. SQL bypassing mode :
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassSql.html

M

https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzXSS.html
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/fuzzSQL.html
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassxss.html
https://github.com/gu2rks/projectX/blob/master/results/WAFNinja/bypassSql.html

	List of Figures
	List of Tables
	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Objectives
	Scope/Limitation
	Target group
	Outline

	Method
	Scientific Approach
	Reliability and Validity
	Ethical considerations

	Technical framework
	Web application vulnerabilities
	Cross-Site Scripting (XSS)
	SQL Injection

	Web Application Firewall
	ModSecurity
	AWS Web Application Firewall
	Summary

	Open-source WAF testing tools

	Implementation
	Experimentation
	Footprinting mode
	XSS payload execution mode
	SQLI payload execution mode
	Fuzzing mode
	Wafw00f
	XSStrike
	WAFninja
	Fuzzing
	Bypassing

	Analysis & Discussion
	Conclusion
	Future work

	References
	Appendix
	SecRule
	ProjectX testing results
	SQLI Payload execution
	Fuzzing

	WAFNinja testing results

