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Abstract

Software is the heartbeat of modern technology. To keep up with the new demands
and expansion of requirements, changes are constantly introduced to the software,
i.e., changes can also be made to fix an existing fault/defect. However, these changes
might also cause further faults/defects in the software. This study aims to investigate
the possible correlation between change-proneness and fault-proneness in object-
oriented systems. Forty releases of five different open-source systems are analysed
to quantify change- and fault-proneness; Beam, Camel, Ignite, Jenkins, and JMe-
ter, then statistic evidence is presented as to answer the following: (1) Is there is
a relationship between change-proneness and fault-proneness for classes in object-
oriented systems? (2) Is there a relationship between size and fault-proneness for
classes in object-oriented systems? and (3) Is there a relationship between size and
change-proneness for classes in object-oriented systems? Using the Wilcoxon rank-
sum test, the results show that: (1) there is a correlation between change- and fault-
proneness at a statistically significant level and (2) a correlation also exists between
class size and its change- and fault-proneness at a statistically significant level.

Keywords: Empirical software engineering, Change-proneness, Fault-proneness,
Object-oriented, Metrics.
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1 Introduction

Software systems evolve and change continuously over time. These changes could be to
improve functionality, fix bugs, or add new features. Users’ requirements may change
as well, causing further changes in the software artifacts and resulting in newer releases
of the software [1]. At the same time, when users report a bug, a quick fix is essential,
which also causes the software artifacts to change and evolve. Subsequently, frequent
changes could introduce potential bugs, fixing of which causes more changes in the source
artifacts. The software typically consists of a large number of classes, and a single change
in a class might propagate to a significant percentage of other classes followed by an
increase in faults/defects [2]. However, there is little or no evidence in practice that shows
change-prone software modules or classes to be more fault-prone or vice versa.

In this paper, we perform an empirical study that uses data collected from develop-
ment history repositories and combined with data from issue-tracking systems of five
different open-source software products. The goal is to assess whether classes that have
an increased likelihood to change between any two given releases also have a higher like-
lihood to be involved in faults/defects and vice versa. We also investigate the possible
effect of class size on its change- and fault-proneness. The study relies on widely used
software metrics, such as the number of changes, code churn, LOC, the number of bugs,
and the defect density. Statistical evidence is presented to support the results and findings
of this study.

1.1 Background

Change-proneness: In object-oriented systems, change-proneness is considered to be
an essential external quality attribute because it signifies to what extent a class changes
across the different versions of a system [1][2]. In this study, we used the following two
metrics, to measure change-proneness:

• Number of changes: the total number of times a class changed within a release.

• Code churn: the total number of churns (lines added, deleted, and modified) that a
class underwent within a release [3].

Fault-proneness: Another important external quality attribute in object-oriented systems.
It can be defined as the possibility that a software artifact contains a fault/defect [3][4]. In
this study, we used the following two metrics, to measure fault-proneness:

• Number of bugs: the total number of faults/defects a class has within a release.

• Defect Density: fault content per lines of code [5].

1.2 Related Work

In this section, we discuss the relevant literature on investigating change-proneness, and
fault-proneness in relation to software design practices and object-oriented software met-
rics.

1.2.1 Change- and Fault-proneness and Design Practices

There is a myriad of previous research studying the impact of good and bad design prac-
tices on change- and fault-proneness. The study by Palma et al. [3] investigated the
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relationship between change-proneness and service patterns/anti-patterns. Our methodol-
ogy was inspired by this study as we followed the same metrics extraction process, data
mapping, and statistical analysis approach. The study found, among other results, that
services involved in anti-patterns are more change-prone than others.

The study by Jaafar et al. [6] evaluated the impact of design-pattern and anti-pattern
dependencies on changes and faults, and one of its findings was that classes possessing
dependencies with anti-patterns are more fault-prone.

Khomh et al. [7] also investigated the impact of anti-patterns on the change- and
fault-proneness of a class; the study found that classes involved in anti-patterns are more
change- and fault-prone than others. The study also concludes that class size cannot
explain the change-proneness of classes with anti-patterns.

Finally, an empirical study by Guerrouj et al. [8] investigated the relationship between
poor design practices (lexical smells) and change- and fault-proneness. It found that lexi-
cal smells can make classes, involved in design smells, more fault-prone. This study also
demonstrated that classes with design-smells only are more change- and fault-prone than
those with lexical smells only.

1.2.2 Change- and Fault-proneness and Object-oriented Metrics

Studies by Lu et al. [1] investigated the relationship between object-oriented metrics and
change-proneness. Lu’s paper employed statistical techniques to examine the ability of
62 different OO metrics to predict change-proneness. The study revealed that size metrics
exhibited moderate/almost moderate ability in differentiating change-prone classes from
non-change prone ones; it also found that cohesion and coupling metrics are less able to
predict change-proneness with inheritance metric being the poorest to predict it.

Malhotra et al. [9] used software metrics to show that machine learning methods are
comparable to the previously used logistics regression methods when it comes to predict-
ing change-proneness; it also showed that testing based on change-proneness prediction
leads to better quality as it allows developers to target the most change-prone classes.

A paper by Singh et al. [10] also examined the ability of OO metrics to predict dif-
ferent levels of fault severity. The study showed that using machine learning methods to
target classes with different severity levels of faults might help developers to better plan
and test the fault-prone parts.

Pai et al. [5] use Bayesian methods to analyse the fault -content and -proneness by
relating the internal OO metrics of software to external quality metrics.

Another research by Malhotra et al. [2] investigates the relationship between OO
metrics and change-proneness using machine learning and statistical techniques. It also
concludes that using these techniques to predict the change-proneness of classes in object-
oriented systems is a better approach than regression techniques.

Finally, the ability of complexity metrics to predict fault-prone classes in object-
oriented systems was investigated by Zhou et al. [11]; it found that many metrics such
as LOC, WMC, and AMC showed a moderate or almost moderate ability to predict fault-
proneness. The study also concluded that LOC and WMC (weighted method McCabe
complexity) are better indicators of fault-proneness.

1.3 Problem Formulation

Software systems keep changing either to meet new needs and requirements or to fix
existing defects. As these systems evolve from one release to another, they become larger
and more complex; changing one class might propagate further changes and result in
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even more faults. As a result, maintenance becomes an arduous and expensive task [12].
Thus, predicting which classes are more prone to changes or involvement in faults can
help reduce maintenance costs and improve the software quality [2]. Hence, we aim to
investigate the relation between change-proneness and fault-proneness in object-oriented
systems and examine the impact of class size on both of these attributes.

1.4 Motivation

Studies state that the most significant percentage of software development effort (i.e.,
up to 80%) goes to maintenance and evolution [2]. Investigating the relation between
two essential quality attributes, such as fault- and change-proneness, can increase the
possibility of predicting which classes are more likely to contain faults/defects and which
classes are more likely to change in the software development process. The prediction
benefits developers as they can focus their resources and efforts on modifying such classes
for better quality and reduced long-term maintenance costs. We also examine the impact
of class size on its change- and fault-proneness; this provides an easily accessible metric
that can be used to categorize a specific class as change-prone, fault-prone, or neither of
both.

1.5 Research Questions

Our study aims at investigating whether change-prone classes are related to fault-proneness
and vice versa. Also, we examine the impact of class size on change- and fault-proneness.
Consequently, we formulate the following research questions:

• RQ1: Is there a relationship between change-proneness and fault-proneness for
classes in object-oriented systems?

– RQ1.1: Are highly change-prone classes also more fault-prone?

– RQ1.2: Are highly fault-prone classes also more change-prone?

• RQ2: Is there a relationship between size and fault-proneness for classes in object-
oriented systems?

– RQ2.1: Are larger classes also more fault-prone?

– RQ2.2: Are highly fault-prone classes are usually the larger classes?

• RQ3: Is there a relationship between size and change-proneness for classes in
object-oriented systems?

– RQ3.1: Are larger classes also more change-prone?

– RQ3.2: Are highly change-prone classes are usually the larger classes?

We expect that the results will yield statistical evidence of a relationship between change-
and fault-proneness, where highly change-prone classes are also highly fault-prone and
vice versa. We also expect the results to present statistical evidence that shows a relation
between class size and its fault- and change-proneness.
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1.6 Scope/Limitation

– The study is performed on five systems. See Table 2.1.
– The study is limited to open source systems.
– All the systems involved in the study are written in Java.
– Due to the limited number of requests allowed by GitHub API v31 and the request

rate limiter set by Jira2 and Bugzilla3, our study was limited to a combination of 40
releases. See Table 2.1.

– Our study is limited to investigating two quality attributes: change- and fault-
proneness.

– From many object-oriented metrics, we only investigate the class size metric in
relation to change- and fault-proneness.

1.7 Target Group

We aim to target both academic researchers and practitioners within the industry. Our
findings might be of interest to academics who want to study further the relation between
change- and fault-proneness and document how software behaves as it evolves. We also
think that practitioners and team leaders looking for means to improve their team’s out-
come in terms of time, money, and quality might be interested in our findings.

1.8 Outline

The remainder of the paper is organized as follows: Section 2 explains the methodology
followed in the study as well as the independent and dependent variables used. Section
3 reports the results and findings while Section 4 summarizes and discusses the results.
Finally, the study concludes and outlines directions for future work in Section 5.

1https://developer.github.com/v3/
2https://www.atlassian.com/software/jira
3https://www.bugzilla.org/
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2 Method

In this section, we present the methodology used to perform our study. The study was
done at the release level. We aim to answer the research questions stated in Section 1.5.
In order to answer those questions, quantitative data from different systems were collected
and analysed statistically. Figure 2.1 exhibits an overview of our approach to the study.
All the raw data collected and used can be obtained here4.

Measuring change-
and fault- proneness

1

Extracting issue patterns

Mining development
history repositories 

2

3

5

4
Extracting the number of
changes and code churn

Computing defect density

Mining issue tracking
system repositories

Confirming issues as bugs

Extracting the total
number of bugs 

Bugzilla/JIRA Version Control
System repositories

Analysing the results

6

RQ1RQ2RQ3

Figure 2.1: An overview of our approach to the study.

2.1 Data Collection and Processing

We analysed a total of 40 releases of five different open-source systems; eight releases
of Apache Beam5, eight releases of Apache Camel6, six releases of Apache Ignite7, nine
releases of Jenkins8, and nine releases of Apache JMeter9. Releases that had less than 50
changed classes were ignored. These systems were mainly chosen for their public avail-
ability, a considerable number of releases and committers, as well as a well-documented
development history. Also, they belong to different domains and have different sizes, see
Table 2.1. Apache Beam is an advanced unified programming model; Camel is an inte-
gration framework, Ignite is an in-memory computing platform, Jenkins is an automation
server, while JMeter is a tool to load test functional behavior and measure performance.
Four of the five systems analysed are developed by The Apache Software Foundation,

4https://github.com/Ahmadar91/Thesis
5https://beam.apache.org/
6https://camel.apache.org/
7https://ignite.apache.org/
8https://www.jenkins.io/
9https://jmeter.apache.org/
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making them stand at an industrial level. By the time this study was performed, the fifth
system (Jenkins) had 727 releases, 626 contributors, and over 1600 plugins and qualified
as an industrial project commonly used by developers. Table 2.1 describes further details
of the systems releases included in our study. The remainder of this section elaborates on
each of the methodology steps taken.

Step 1: Mining Development History Repositories and Extracting Issue Patterns:
We started the data collection by mining the development history repositories from the
version control systems of all systems included in this study. In our case, all the systems
used Git10 as their version control system. The mining was done to identify changes and
fault fixes that occurred within the specified releases of each system. The Git repositories
of the systems were downloaded using a script written with JavaScript and then stored
into a MySQL11 database. SQL queries were then used to acquire the source code change
history of all systems. We extracted the following information for each commit:

• Commit message.
• The list of changed files.
• Commit date.
• Code churn: the number of code lines that were added or removed from a class

within a release.
• A list of paths of all changed files.
• The class size (LOC) for each class instance in a release.
• Details, such as the SHA value and commit URLs were also retrieved, but those

were not directly used in the study and were left for possible future use.

To prepare for our next step, we saved all the data retrieved on Excel sheets and extracted
the patterns used by each system to report issues. We used regular expression (regex)
patterns on the commit messages to identify bug fixing commits. Each system has its
pattern to refer to bug reports; for example, Jenkins uses JENKINS-XXX and HUDSON-
XXX formats, where XXX is the bug report ID. Our script ran the specified regex pattern,
and for every time it found a match in the commit messages, it extracted the issue ID.
Then it generated a link for that issue following JIRA or Bugzilla’s pattern standards.
For example, https://issues.jenkins-ci.org/browse/JENKINS-xxx is an issue link for issue
number XXX. Table 2.2 shows the regex pattern used for each of the systems under study.
The idea of using unique bug report IDs to identify bug containing commits was based on
this previous study [13].

Step 2: Mining Issue Tracking System Repositories and Confirming Issues as Bugs:
In this step, we mined the bug repositories of the corresponding bug tracking systems to
identify bugs (faults) linked to changed classes. All of the systems we analysed, except
JMeter, use JIRA12 as their issue tracking system; JMeter uses Bugzilla13. We added a
web scraping command to our script that ran the extracted issue links from the previous
step. If the link (URL) exists in the issue tracking system, the script then retrieved and
verified whether the corresponding issue is an improvement request, a new feature request,
or a bug. The data retrieved included:

• Issue type, such as improvement, feature request, or bug.
• Bug status, such as resolved, opened, closed, or verified.

10https://git-scm.com/
11https://www.mysql.com/
12https://www.atlassian.com/software/jira
13https://www.bugzilla.org/
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• A bug resolution such as fixed, rejected, invalid, or duplicate.

Systems Releases # Classes Size (LOC) # Changed Classes # Bugs/Faults
Ignite 2.8.0 10484 2154178 3540 1223
Ignite 2.7.6 9130 1894954 2585 933
Ignite 2.7.5 9126 1893565 54765 14391
Ignite 2.7.0 9122 1892639 7932 2480
Ignite 2.6.0 8428 1750478 1083 415
Ignite 2.5.0 8420 1748449 736 186
Beam v2.20.0 4157 767099 2690 295
Beam v2.19.0 4132 753120 375 27
Beam v2.18.0 4087 741330 1830 74
Beam v2.17.0 3946 720259 6347 712
Beam v2.15.0 3792 690732 3914 774
Beam v2.12.0 3614 663983 1951 415
Beam v2.11.0 3582 654170 715 218
Beam v2.10.0 3506 640703 3879 389
Camel 2.25.1 18998 2004829 661 8
Camel 3.2.0 18034 2291920 5889 158
Camel 3.1.0 18288 2229232 7776 129
Camel 2.25.0 18991 2002950 993 18
Camel 3.0.1 18616 2214970 1275 85
Camel 2.24.3 18955 1997466 1718 147
Camel 3.0.0 18598 2213212 3942 407
Camel 2.23.4 18825 1984660 185 24
JMeter v5.2 1362 239232 1742 150
JMeter v5.1.1 1362 239214 70 42
JMeter v5.1 1301 230449 315 216
JMeter v5.0 1297 229754 549 228
JMeter v4.0 1284 226655 850 374
JMeter v3.3 1268 222942 356 175
JMeter v3.2 1236 218779 1717 696
JMeter v3.1 1223 215788 538 305
JMeter v3.0 1195 213201 2637 1144
Jenkins 2.230 1614 278248 194 4
Jenkins 2.229 1614 278035 830 7
Jenkins 2.228 1615 277708 185 3
Jenkins 2.227 1611 277186 54 2
Jenkins 2.226 1611 277109 97 0
Jenkins 2.224 1610 276743 192 8
Jenkins 2.223 1608 276393 118 6
Jenkins 2.222 1611 276581 137 1
Jenkins 2.221 1608 275760 242 14

Table 2.1: An overview of the systems releases analysed in this study.

Only bugs characterized as “Resolved/Closed,” “Resolved/Fixed,” or “Unresolved/Open”
were considered for the final data. “Duplicate” and “Invalid/Rejected” bugs were ignored.
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System Regex Pattern

JMeter
/\bbz [0-9]{1,6}\b|#[0-9]{1,6}|bug[0-9]{1,6}|id: [0-9]{1,6}
|pr[0-9]{1,6}|id=[0-9]{1,6}|bugzilla[0-9]{1,6}|Enhancement [0-9]
{1,6}|bz-[0-9]{1,6}|bugzilla-[0-9]{1,6}/gim

Beam /\bBEAM-[0-9]{1,6}\b|#[0-9]{1,6}/gim
Ignite /\bIGNITE-[0-9]{1,6}\b|#[0-9]{1,6}/gim
Camel /\bCAMEL-[0-9]{1,6}\b|#[0-9]{1,6}/gim
Jenkins /\bJENKINS-[0-9]{1,6}\b|#[0-9]{1,6}|HUDSON-[0-9]{1,6}/gim

Table 2.2: The regex patterns used to identify commits containing issues.

Our methodology here followed prior works on detecting the impact of anti-patterns on
class change- and fault-proneness [7].

Step 3: Extracting The Number of Bugs: In this step, we extended our script to au-
tomatically aggregate each class’s instances with bugs and find the total number of bugs
the class had in a release. The number of bugs is one of two metrics that will be used to
measure fault-proneness.

Step 4: Extracting The Number of Changes, Code Churn, and Defect Density: Using
the script, we aggregated the number of instances a class changed in a release and found
the total number of changes of each class in a release. Likewise, the total code churn for a
class was automatically extracted by aggregating the code churns of each class instance.
At this point, if a class had more than one instance in a release, we left only the latest one.
The defect density was then computed by dividing the number of bugs in a class on the
class size (LOC).

Step 5: Measuring Change- and Fault-proneness: Once we extracted the metrics
needed, we mapped the data for each system under study to identify the thresholds upon
which the metrics will be grouped as high, normal, or low. In this study, we refer to both
normal and low groups as others. We used the Outliers library14 in R15 . R is a language
that provides a wide variety of tools for statistical analysis and graphic visualization [14].
We performed the calculation of the Outlier on each metric dataset needed to answer our
research questions. Table 2.3 presents the results of mapping each system in terms of
percentages. To confirm the validity of the results, we did the Outliers calculations again
in Microsoft Excel, and the outcome was similar to that of R.

System LOC # Changes Code Churn # Bugs Defect Density
High Others High Others High Others High Others High Others

Beam 8.98% 91.02% 8.34% 91.66% 10.78% 89.22% 11.95% 88.05% 15.74% 84.26%
Camel 11.82% 88.18% 11.69% 88.31% 8.10% 91.90% 5.60% 94.40% 5.60% 94.40%
Ignite 12.30% 87.70% 9.47% 90.53% 11.35% 88.65% 9.77% 90.23% 10.60% 89.40%

Jenkins 10.86% 89.14% 7.34% 92.66% 13.83% 86.17% 2.97% 97.03% 2.97% 97.03%
JMeter 6.14% 93.86% 6.72% 93.28% 12.17% 87.83% 7.86% 92.14% 6.55% 93.45%

All Systems 11.02% 88.98% 9.66% 90.34% 10.41% 89.59% 8.47% 91.53% 9.29% 90.71%

Table 2.3: An overview of the systems releases analysed in this study.

Step 6: Analysing the data: In this last step, we use R again to apply the Wilcoxon rank-
sum test [15] and compare the needed metrics within the different categories obtained
in the previous step. More details about these comparisons are presented in the Results

14https://www.rdocumentation.org/packages/outliers/versions/0.14
15https://www.r-project.org/
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section. The Wilcoxon rank-sum test is a non-parametric statistical test used to assess if
two independent sets of variables have equally large values [3] [15]. Non-parametric tests
can be used with data that is not distributed normally, which is true in our case. We used a
95% confidence level; this means that any comparison that yields a p-value under 0.05 is
considered statistically significant. To confirm the results we got from R, we ran the test
on the same dataset in SPSS16 , another statistics software developed by IBM, and finally,
we tested it on this site17 ; all tools gave matching results. For the sake of simplicity, we
combined all the releases of each system separately and analysed it as a whole, then we
combined all the systems and tested our null hypotheses again.

Figure 2.2: Overall characteristics of Beam releases.

Figure 2.2 shows a boxplot with an overview of the analysed metrics across the eight
Beam releases included in this study; each color refers to a different release. The purpose
of this boxplot is to depict the metrics values graphically and present the maximum Outlier
values of each metric in a way that is easy to compare across the releases. Moreover, this
boxplot along with the five other figures (2.3-2.7) provide a rough observation of the
correlation between change- and fault-proneness.

16https://www.ibm.com/analytics/spss-statistics-software
17https://aiguy.org/ez_statistics/
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Figure 2.3: Overall characteristics of Camel releases.

Figure 2.3 shows a boxplot with an overview of the analysed metrics across the eight
Camel releases included in this study; each color refers to a different release. The purpose
of this boxplot is to depict the metrics values graphically and present the maximum Outlier
values of each metric in a way that is easy to compare across the releases.

Figure 2.4: Overall characteristics of Ignite releases.

Figure 2.4 shows a boxplot with an overview of the analysed metrics across the six Ignite
releases included in this study; each color refers to a different release. The purpose of
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this boxplot is to depict the metrics values graphically and present the maximum Outlier
values of each metric in a way that is easy to compare across the releases.

Figure 2.5: Overall characteristics of Jenkins releases.

Figure 2.5 shows a boxplot with an overview of the analysed metrics across the nine Jenk-
ins releases included in this study; each color refers to a different release. The purpose of
this boxplot is to depict the metrics values graphically and present the maximum Outlier
values of each metric in a way that is easy to compare across the releases.

Figure 2.6: Overall characteristics of JMeter releases.
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Figure 2.6 shows a boxplot with an overview of the analysed metrics across the nine
JMeter releases included in this study; each color refers to a different release. The purpose
of this boxplot is to depict the metrics values graphically and present the maximum Outlier
values of each metric in a way that is easy to compare across the releases.

Figure 2.7: Overall characteristics of all systems.

Figure 2.7 shows a boxplot with an overview of the analysed metrics across all the systems
included in this study; each color refers to a different system. The purpose of this boxplot
is to depict the metrics values graphically and present the maximum Outlier values of
each metric in a way that is easy to compare across the systems.

2.2 Variable Selection

In this section, we identify the dependent and independent variables used to test the null
hypotheses corresponding to each of our research questions.

A) Independent Variables

– RQ1.1 and RQ3.2– Classes that went through at least one change between any two
given releases.

– RQ1.2 and RQ2.2– Classes that contain at least one fault/defect in a release.

– RQ2.1 and RQ3.1– Classes that have either changed or contain a fault/defect within
a release. LOC must be >1, but since all classes in the dataset have LOC >1, we
ignored this condition.

B) Dependent Variables

– RQ1.1 and RQ2.1– there are two metrics to measure fault-proneness in this study;
the total number of bugs for each class in a release and the defect density of each
class in a release.
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– RQ1.2 and RQ3.1– two metrics are used to measure change-proneness in this study;
the total number of changes a class went through in a release and the total code
churn which refers to the aggregated number of lines of code that were added or
removed from a class within a release.

– RQ2.2 and RQ3.2– class size (LOC), represented by the number of lines of code in a
class within a release.

2.3 Reliability and Validity

In this section, we discuss the validity and reliability of our methodology. We start by
discussing Construct Validity, which refers to the extent a test is measuring what it claims
to be measuring [16]. In our case, the identification of the studied metrics is reliable be-
cause we are retrieving the data directly from the development history repositories of five
different software and their corresponding issue tracking systems. The use of R to calcu-
late the thresholds and perform the Wilcoxon test is also reliable because we performed
the same calculations and tests on different tools (Excel for the Outliers and SPSS for The
Wilcoxon tests).

When it comes to Internal Validity, our threat comes from the fact that four of the
five systems we analysed are developed by Apache, so there is a case of a systematic bias
here that could have been avoided if we randomized our choices in terms of development
organizations. One more threat to this validity that was beyond the scope of this study
is that we did not investigate the changes that directly triggered the fault/defects. We
only counted the faults/defects as they were reported by users/testers and appeared in the
commit messages.

External Validity threats come from the fact that we cannot generalize our findings
even though our data set is large enough to draw statistically meaningful conclusions. The
study cannot claim that change-proneness causes fault-proneness, or vice versa. Further
replication and validation are needed, especially that this study was limited to open-source
systems developed with one programming language only.

Reliability Validity is concerned with the possibility of replicating this study. All
the details and steps needed to replicate this study were provided and explained in the
Method section. All the systems we studied are accessible open-source software, so the
source code and issue tracking system data are available online. Moreover, the raw data
we compiled and used for the statistics can be obtained through the link here18 .

2.4 Ethical Consideration

All the systems analysed in this study are open-source software, so no developers’ con-
sent was required. The development history repositories of the analysed software are
publicly available, and so is the corresponding issue tracking system data. The raw data
we collected for the calculations do not contain any private data of any users. Thus, the
GDPR19 does not apply to this study. Moreover, the study is objectively investigating
the correlation between two software attributes in five different software systems chosen
randomly, and the findings are objective conclusions backed by statistical tests. Thus, no
ethical considerations apply to this case study.

18https://github.com/Ahmadar91/Thesis
19https://gdpr.eu/
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3 Results and Analysis

In this section, we present and discuss the answers to the three research questions. For
each question, we also present the motivation behind it, the analysis approach followed,
and then we discuss our findings.

3.1 RQ1: Is there a relationship between change-proneness and fault-proneness for
classes in object-oriented systems?

Motivation: A better understanding of the relation between change-proneness and fault-
proneness in classes is an essential factor when it comes to making better design decisions.
Fault-proneness can help developers predict testing priorities, faults concentration, and
have a real effect on the overall project development and its cost and time. Change-
proneness is also an important quality attribute because it represents the effort expected
by developers to modify and improve the code; this, in turn, translates into maintenance
costs. Nevertheless, no evidence has been available to this date to confirm whether there is
a relation between change- and fault-proneness. In this research question, we investigated
whether such a relationship exists or not using statistical evidence.

Approach: we answered this research question by dividing it into two sub-questions:

• RQ1.1: Are highly change-prone classes also more fault-prone?

• RQ1.2: Are highly fault-prone classes also more change-prone?

First, we studied whether the number of faults increased in classes that changed once, at
least. Hence, for each class that went through at least one change within a release, we
measured the fault-proneness using the following two metrics:

• Number of bugs: the total number of faults/defects a class has within a release.

• Defect density: the number of faults/defects a class has within a release divided by
the size of the class (LOC). For releases that contained more than one instance of the
same class with different LOCs, only the most recent class instance was considered
when calculating the defect density.

To measure the proportion of fault-proneness within highly change-prone classes, we
tested the two following null hypotheses:

• H1
0.1.1: There is no relation between the total number of times a class changed

within a release and the number of faults/defects the class had in that release.

• H2
0.1.1: There is no relation between the total number of times a class changed

within a release and the defect density of the class in that release.

Next, we studied whether the classes that contained more faults went through more changes.
Hence, for each class that contained at least one fault/defect within a release, we measured
the change-proneness using the following two metrics:

• Number of changes: the total number of times a class changed within a release.

• Code churn: the total number of churns (lines added, deleted, and modified) that
a class underwent within a release. If a class has more than one instance within a
release, the code churns of all instances were aggregated.
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To measure the proportion of change-proneness within highly fault-prone classes, we
tested the two following null hypotheses:

• H1
0.1.2: There is no relation between the number of faults/defects for a class within

a release and the number of times the class changed in that release.

• H2
0.1.2: There is no relation between the number of faults/defects for a class within

a release and the total number of code churns the class had in that release

We used the Wilcoxon rank-sum test to examine H1
0.1.1, H2

0.1.1, H
1
0.1.2, and H2

0.1.2. Since
H1

0.1.1 and H2
0.1.1 investigated if change-proneness is related to a higher or lower number

of bugs and defect density, they are considered two-tailed. Likewise, H1
0.1.2 and H2

0.1.2

investigated whether fault-proneness is related to a higher or lower number of changes
and code churn, so they are considered two-tailed as well. We performed all the tests
using a 5% significance level, which meant that our p-value <0.05. We tested each studied
system separately, and then we performed the same set of tests on all the systems in the
study combined.

Findings: Classes that underwent a high number of changes within a release had a higher
number of bugs and a higher defect density than other classes at a statistically significant
level. The Wilcoxon rank-sum test yielded a p-value of less than 0.05 (even less than 0.01)
for each system as well as for all the systems combined. Thus, the null hypothesesH1

0.1.1

and H2
0.1.1 were rejected. The p-values presented in Table 3.1 show a statistically signifi-

cant difference.

Systems Treatment Groups Treatment Types p-value

Beam Highly change-prone ∼ Others
Number of bugs 2.86e-58
Defect Density 3.66e-40

Camel Highly change-prone ∼ Others
Number of bugs 9.36e-217
Defect Density 1.14e-207

Ignite Highly change-prone ∼ Others
Number of bugs 0
Defect Density 1.93e-176

Jenkins Highly change-prone ∼ Others
Number of bugs 0.000005
Defect Density 0.00000509

JMeter Highly change-prone ∼ Others
Number of bugs 5.78e-72
Defect Density 6.99e-24

All Systems Highly change-prone ∼ Others
Number of bugs 0
Defect Density 1.28e-280

Table 3.1: The Wilcoxon Rank-sum Test Between highly change-prone classes and others.

We also found that classes with a higher number of faults/defects had a higher number
of changes and a higher code churn than other classes at a statistically significant level.
The Wilcoxon rank-sum test yielded a p-value of less than 0.05 for each system as well as
for all the systems combined. Thus, the null hypotheses H1

0.1.2 and H2
0.1.2 were rejected.

Table 3.2 shows the p-values that emphasize a statistically significant difference.
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Systems Treatment Groups Treatment Types p-value

Beam Highly fault-prone ∼ Others
Number of Changes 1.67e-100

Code Churn 2.29e-44

Camel Highly fault-prone ∼ Others
Number of Changes 7.79e-56

Code Churn 1.08e-14

Ignite Highly fault-prone ∼ Others
Number of Changes 0

Code Churn 0

Jenkins Highly fault-prone ∼ Others
Number of Changes 0.00249

Code Churn 0.00707

JMeter Highly fault-prone ∼ Others
Number of Changes 2.00e-103

Code Churn 8.98e-77

All Systems Highly fault-prone ∼ Others
Number of Changes 0

Code Churn 0

Table 3.2: The Wilcoxon Rank-sum Test Between highly fault-prone classes and others.

Table 3.3 presents a summary of findings for RQ1 and its corresponding research sub-
questions.

RQ1
There is a correlation between change- and fault proneness in all the systems
analysed; the statistical difference is significant.

RQ1.1
Classes that are highly change-prone are also more fault-prone;
the statistical difference is significant.

RQ1.2
Classes that are highly fault-prone are also more change-prone; the statistical
difference is significant.

Table 3.3: Summary of findings for RQ1.

3.2 RQ2: Is there a relationship between size and fault-proneness for classes in
object-oriented systems?

Motivation: In RQ1, we found that highly change-prone classes are also fault-prone and
vice versa; the results were also statistically significant. However, other metrics might
have an essential role in further predicting the classes that are more likely to introduce
bugs; the class size (LOC) is such a metric. Studying the relation between the size of a
class and its fault-proneness is of interest to researchers and practitioners; researchers can
benefit from the quantitative data the study provides to see if larger classes have a negative
impact on the software artifact. Likewise, practitioners will consider that larger classes
are more likely to produce new faults/defects so they can make an educated decision that
might lead to fewer maintenance costs and better code quality. In this research question,
we investigated the relationship between class size and its fault-proneness.

Approach: Like in RQ1, we answered this research question by dividing it into two
sub-questions:

• RQ2.1: Are larger classes also more fault-prone?

• RQ2.2: Are highly fault-prone classes, usually the larger classes?
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First, we investigated whether classes with more significant LOC numbers also had more
faults/defects or defect density. Hence, for each class that had one line of code (LOC=1),
at least, we measured the fault-proneness using the same metrics we used in RQ1 (i.e.,
the number of bugs and the defect density).

To measure the proportion of fault-proneness within larger classes, we tested the two
following null hypotheses:

• H1
0.2.1: There is no relation between the size of a class (LOC) in a release and the

number of faults/defects the class had in that release.

• H2
0.2.1: There is no relation between the size of a class (LOC) in a release and the

defect density of the class in that release.

Then we studied whether classes that contained more faults/defects were bigger. For each
class that contained at least one fault/defect within a release, we measured the class size
using the following metric:

• Class size (LOC): The number of lines of code a class has in a release. For classes
that have more than one instance within a release, we take the most recent entry in
that release, and we discard the previous ones.

To measure the proportion of large classes within highly fault-prone classes, we tested the
following null hypothesis:

• H1
0.2.2: There is no relation between the number of faults/defects a class has in a

release and the size (LOC) of the class in that release.

Similar to RQ1, we use the Wilcoxon rank-sum test to examine H1
0.2.1, H2

0.2.1, and H1
0.2.2.

We find that H1
0.2.1 and H2

0.2.1 are two-tailed because they investigate if class size (LOC)
is related to a higher or lower number of bugs and defect density. Similarly, H1

0.2.2 is
two-tailed because it investigates whether the number of faults/defects is related to higher
or lower class size (LOC). We perform all the tests using a 5% significance level, which
means that our p-value <0.05. We test each studied system separately, and then we per-
form the same set of tests on all the systems in the study combined.

Findings: Larger classes had a higher number of faults/defects at a statistically signif-
icant level. The Wilcoxon rank-sum test yielded p-values <0.05 when it comes to the
relation between LOC and the number of bugs, as Table 3.4 shows. Thus, we rejected the
null hypothesis H1

0.2.1. In the same table, it was observed that larger classes also had a
higher defect density. The tests yielded p-values<0.05 except for one case (JMeter) where
p>0.5. However, since 4 out of 5 systems and all systems combined yielded a statistically
significant difference, the null hypothesis was rejected H2

0.2.1.
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Systems Treatment Groups Treatment Types p-value

Beam Large size (LOC) ∼ Others
Number of Bugs 1.74e-23
Defect Density 0.000000419

Camel Large size (LOC) ∼ Others
Number of Bugs 2.10e-23
Defect Density 1.32e-19

Ignite Large size (LOC) ∼ Others
Number of Bugs 0
Defect Density 4.77e-56

Jenkins Large size (LOC) ∼ Others
Number of Bugs 0.0105
Defect Density 0.0135

JMeter Large size (LOC) ∼ Others
Number of Bugs 8.63e-26
Defect Density 0.649

All Systems Large size (LOC) ∼ Others
Number of Bugs 0
Defect Density 4.23e-95

Table 3.4: The Wilcoxon Rank-sum Test Between Large Size Classes and Others.

We also found that highly fault-prone classes are larger (bigger LOC). The Wilcoxon
rank-sum tests yielded p-values <0.05, so the difference is statistically significant and
leads us to reject the null hypothesis H1

0.2.2. Table 3.5 presents the p-values of the tests.

System Treatment Groups Treatment Types p-value
Beam Highly fault-prone ∼ Others Class size (LOC) 2.95e-38
Camel Highly fault-prone ∼ Others Class size (LOC) 5.36e-32
Ignite Highly fault-prone ∼ Others Class size (LOC) 0

Jenkins Highly fault-prone ∼ Others Class size (LOC) 0.0101
JMeter Highly fault-prone ∼ Others Class size (LOC) 5.57e-41

All Systems Highly fault-prone ∼ Others Class size (LOC) 0

Table 3.5: The Wilcoxon Rank-sum Test Between Highly Change-prone Classes and Others.

Table 3.6 presents a summary of findings for RQ2 and its corresponding research sub-
questions.

RQ 2
There is a correlation between size and fault-proneness for classes in all
the systems analysed; the statistical difference is significant.

RQ 2.1 Larger classes are also more fault-prone; the statistical difference is significant.

RQ 2.2
Highly fault-prone classes are also larger classes; the statistical difference is
significant except for JMeter.

Table 3.6: Summary of findings for RQ2.

3.3 RQ3: Is there a relationship between size and change-proneness for classes in
object-oriented systems?

Motivation: In this research question, we investigated whether larger classes are more
change-prone than others. The findings of this investigation can help developers and
team leaders to concentrate on change-prone classes and make more flexible software
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by modifying the classes which are more prone to change. Developers may also take
preventative actions to reduce maintenance costs.

Approach: Like in RQ1 and RQ2, we answered this research question by dividing it into
two sub-questions:

• RQ3.1: Are larger classes also more change-prone?

• RQ3.2: Are highly change-prone classes usually the larger classes?

First, we investigated whether classes with more significant LOC numbers also had a
higher number of changes or code churn. For each class that had one line of code
(LOC=1), at least, we measured the change-proneness using the same metrics we used
in RQ1.2 (i.e., the number of changes and code churn).

To measure the proportion of change-proneness within larger classes, we test the two
following null hypotheses:

• H1
0.3.1: There is no relation between the size of a class (LOC) in a release and the

number of changes the class had in that release.

• H2
0.3.1: There is no relation between the size of a class (LOC) in a release and the

total number of code churns the class had in that release.

Then we investigated if classes that are highly change-prone also had a more significant
number of LOC. For each class that went through one change in a release, at least, we
measured the class size using the same metric as in RQ2.2 (i.e., class size).

To measure the proportion of class size within highly change-prone classes, we test
the following null hypothesis:

• H1
0.3.2: There is no relation between the number of changes of a class in a release

and the total number of size of the class (LOC) in that release.

Similar to RQ1 and RQ2, we used the Wilcoxon rank-sum test to examine H1
0.3.1, H2

0.3.1,
and H1

0.3.2. Both H1
0.3.1 and H2

0.3.1 are two-tailed because they investigate if class size
(LOC) is related to a higher or lower number of changes and code churns. Likewise, H1

0.3.2

is two-tailed because it investigates whether change-proneness is related to higher or lower
class size (LOC). We tested each studied system separately, and then we performed the
same set of tests on all the systems in the study combined.

Findings: Larger classes (higher number of LOC) are also more change-prone. The
Wilcoxon rank-sum test yielded p-values less than 0.05 for all the systems studied and for
both metrics measured (see Table 3.7). Thus, the difference is statistically significant; this
leads us to reject both null hypotheses H1

0.3.1 and H2
0.3.1.
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Systems Treatment Groups Treatment Types p-value

Beam Large size (LOC) ∼ Others
Number of Changes 3.95e-32

Code Churn 2.08e-32

Camel Large size (LOC) ∼ Others
Number of Changes 3.02e-109

Code Churn 2.95e-42

Ignite Large size (LOC) ∼ Others
Number of Changes 0

Code Churn 2.59e-271

Jenkins Large size (LOC) ∼ Others
Number of Changes 6.80e-15

Code Churn 1.57e-19

JMeter Large size (LOC) ∼ Others
Number of Changes 8.74e-51

Code Churn 3.88e-35

All Systems Large size (LOC) ∼ Others
Number of Changes 0

Code Churn 0

Table 3.7: The Wilcoxon Rank-sum Test Between Large Size Classes and Others.

We also found that highly change-prone classes had a bigger LOC (i.e., they were larger).
The Wilcoxon rank-sum tests yielded p-values of less than 0.05 for the systems under
study and all the systems combined. The difference is statistically significant as Table 3.8
shows; this leads us to reject the null hypothesis H1

0.3.2 as well.

System Treatment Groups Treatment Types p-value
Beam Highly change-prone ∼ Others Class size (LOC) 1.01e-56
Camel Highly change-prone ∼ Others Class size (LOC) 2.26e-82
Ignite Highly change-prone ∼ Others Class size (LOC) 0

Jenkins Highly change-prone ∼ Others Class size (LOC) 0.00000791
JMeter Highly change-prone ∼ Others Class size (LOC) 1.34e-48

All Systems Highly change-prone ∼ Others Class size (LOC) 0

Table 3.8: The Wilcoxon Rank-sum Test Between Highly Change-prone Classes and Others.

Table 3.9 presents a summary of findings for RQ3 and its corresponding sub-research
questions.

RQ 3
There is a correlation between size and change-proneness for classes in all the
systems analysed; the statistical difference is significant.

RQ 3.1 Larger classes are also more change-prone; the statistical difference is significant.

RQ 3.2
Highly change-prone classes are also larger; the statistical difference is
significant.

Table 3.9: Summary of findings for RQ3.
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4 Discussion

In this section, we discuss our results and the relation between change-proneness, fault-
proneness, and class size. Table 4.1 summarizes our findings.

Beam Camel Ignite JMeter All Systems Explnation
RQ 1.1 Are highly change-prone classes also more fault-prone?
RQ 1.2 Are highly fault-prone classes also more change-prone?
RQ 2.1 Are larger classes also more fault-prone?
RQ 2.2 X Are highly fault-prone classes, usually the larger classes?
RQ 3.1 Are larger classes also more change-prone?
RQ 3.2 Are highly change-prone classes usually the larger classes?

Table 4.1: A summary of our findings.

4.1 Correlation Between Change- and Fault-proneness

To examine if there is a correlation between change-proneness and fault-proneness in
classes, we investigated if the metrics that we used to measure these attributes are corre-
lated. The Wilcoxon rank-sum test results show that both the number of bugs and defect
density metrics are highly correlated to change-proneness in each system as well as in all
systems combined. Similarly, with a p-value < 0.05, we found that both the number of
changes and code churn metrics are highly correlated to fault-proneness in each system
as well as all systems combined. Thus, change- proneness can be used as a significant
indicator of fault-proneness, and vice versa.

4.2 Correlation Between Class Size and Change-proneness

One of the aims of the study is to examine if the class size (LOC) metric is correlated to
change-proneness. This is done by investigating the relationship between LOC and the
metrics involved in change-proneness, namely, the number of changes and code churn.
The Wilcoxon test results show that a high correlation exists at a statistically significant
p-level <0.05 for each system and all systems combined. Hence, the class size (LOC)
metric can be used as a significant indicator to predict change-proneness, and vice versa.
This conclusion agrees with that of a previous study [1], which concluded that size metrics
showed a moderate or almost moderate ability to recognize change-prone classes from
those that are not. Another study [17] exhibited that class size has a confounding effect
on the association between OO metrics and change-proneness; this might help to further
explain the results obtained here.

4.3 Correlation Between Class Size and Fault-proneness

The Wilcoxon rank-sum tests performed on class size (LOC) in relation to the number
of bugs and defect density show a high correlation (p-value<0.05) between class size and
both fault-proneness metrics in all systems except for JMeter, which yielded a p-value
of 0.649 when comparing class size to defect density. However, class size in JMeter
exhibited a high correlation with the number of bugs with a p-value <0.05. Thus, the study
concludes that class size is also a significant indicator to predict fault-proneness and vice
versa. This conclusion concedes with that of the study by Zhou [11], which showed that
the LOC and WMC (weighted method McCabe complexity) metrics are better indicators
of fault proneness in classes when compared to other OO metrics involved in that study.
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5 Conclusion

This is an empirical study performed to investigate the relationship between change- and
fault-proneness in object-oriented systems. We investigated whether class size has an
impact on change- or fault-proneness. Five different open-source systems are analysed,
and five metrics are either extracted or computed to answer three research questions. The
results of the study are summarized as follows:

• There is a correlation between change- and fault-proneness for classes in object-
oriented systems (RQ1).

• The class size (LOC) has an impact on a class change-proneness, and vice versa
(RQ2).

• The class size (LOC) has an impact on a class fault-proneness, and vice versa (RQ3).

The findings above show that change-proneness, fault-proneness, and LOC can all be used
by developers and team leaders as the indicators to predict how much effort will certain
classes take. Thus, the team can plan and prioritize testing and maintenance efforts early
in the development process.

5.1 Future Work

For future work, this study can be replicated using a different dataset extracted from
systems written in languages other than Java or systems that are not open-source software.
The type of change performed in the class can also be considered when relating changes
to fault-proneness in order to obtain a better insight into how OO metrics can be employed
to predict software behavior.
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