

Bachelor Degree Project

Container orchestration
- the migration path to Kubernetes

Authors: Johan Andersson & Fredrik
Norrman
Supervisor: Jesper Andersson
External Supervisors: Ulrik Sjölin &
Daniel Ohlsson
Semester. VT/HT 2020
Subject: Computer Science

Abstract
As IT platforms grow larger and more complex, so does the underlying
infrastructure. Virtualization is an essential factor for more efficient resource
allocation, improving both the management and environmental impact. It
allows more robust solutions and facilitates the use of IaC (infrastructure as
code). Many systems developed today consist of containerized microservices.
Considered the standard of container orchestration, Kubernetes is the natural
next step for many companies. But how do we move on from previous
solutions to a Kubernetes cluster? We found that there are not a lot of
detailed enough guidelines available, and set out to gain more knowledge by
diving into the subject - implementing prototypes that would act as a
foundation for a resulting guideline of how it can be done.

Keywords: virtualization, container, Docker, Docker Compose, container

orchestration, Kubernetes, Ansible, Terraform, Internet-of-Things,
deployment, scaling, migration patterns, Rancher, Helm, IaC (infrastructure

as code)

1

Preface

This project has acted as a valuable and rich experience, letting us delve
deeper into such knowledge that we previously only grazed the surface of.

We would like to extend a big thank you to Jesper Andersson, our
supervisor during this thesis work, for guidance with mainly the formulation
of this report and also the direction of the subject.

We also want to thank Sensative AB immensely for the opportunity to do
this work in collaboration with them. Special thanks to Daniel Ohlsson -
acting as an external supervisor at the company - for the vast amounts of
guidance, support, and insight he has provided.

2

Contents
1 Introduction 5

1.1 Background 6
1.2 Related work 7
1.3 Problem formulation 8
1.4 Objectives 9
1.5 Scope/Limitation 10
1.6 Target group 10
1.7 Outline 11

2 Method 12
2.1 Problem Identification & Motivation 12
2.2 Scientific methods 12

2.2.1 Document studies - O1, O2, O3 12
2.2.2 Case study - O1, O2, O3 12
2.2.3 Prototyping - O3, O4, O5, O6 13
2.2.4 Interviews and Discussions - O1-O7 13
2.2.5 Compilation of Guide - O7 13

2.3 Reliability and Validity 13
2.4 Ethical Considerations 13
2.5 Data management policy 14

3 Virtualization & Orchestration 15
3.1 Virtualization 15

3.1.1 Hardware virtualization 15
3.1.2 Hypervisor 15
3.1.3 Container-based virtualization 17

3.2 Container Orchestration 17
3.3 Docker 18

3.3.1 Docker Compose 18
3.3.2 Docker SWARM 18

3.4 Kubernetes 18
3.4.1 Nodes - Masters and workers 19
3.4.2 Services & Pods 20
3.4.3 Namespaces & Network Policies 21
3.4.4 Ingress & Loadbalancers 21

3

3.4.5 Kubectl, yaml, and Configurations 22

4 Implementation - experimental environment 23
4.1 Underlying Infrastructure 23

4.1.1 OpenStack 23
4.1.2 Terraform 23
4.1.3 Ansible 23

4.2 Kubernetes Installation 24
4.2.1 RKE 24
4.2.2 Plugins 25

4.3 First prototype 26
4.3.1 NGINX-Ingress and cert-manager 26
4.3.2 kubectl and yaml-configurations 27

4.4 Namespaces and NetworkPolicies 28
4.5 Second prototype and Helm charts 30

4.5.1 Helm and charts 30
4.5.2 ReplicaSet 34
4.5.3 StatefulSet 34
4.5.4 External LoadBalancer 35

5 Results & Analysis 36
5.1 Underlying infrastructure and provisioning 36

5.1.1 OpenStack 36
5.1.2 Terraform 36
5.1.3 Ansible 37

5.2 Kubernetes Installation 37
5.2.1 RKE 37
5.2.2 Nodes 38
5.2.3 Additional configurations 38

5.3 Useful plugins 38
5.3.1 OpenStack Cloud Controller Manager 38
5.3.2 CSI Cinder plugin 39
5.3.3 Kubernetes Dashboard 39

5.4 Ingress and external load balancers 39
5.5 Namespace independency 40
5.6 Application configurations 40

4

5.7 Dealing with redundancy 40
5.7.1 Helm charts 40

5.8 Analysis 41
5.8.1 Resources 41
5.8.2 Deployment 41
5.8.3 Maintenance 42

6 Conclusions and Future Work 43
6.1 Conclusions 43

6.1.1 Reflections on possible improvements 43
6.1.2 Benefits of the results 44

6.2 Future possibilities 45
6.3 Further work 45

References 47

5

1 Introduction
This chapter covers a broad overview and introduction to our work, and the
area it covers - container orchestration and migration patterns.

In the modern world, demands on IT infrastructure have snowballed.
With more and more technologies presented and incorporated in a vast
number of devices, ranging from your everyday computer and cellphone to
new appliances such as fridges, toasters, and windows, it is not hard to see
why this is the case.

These present and future demands have led to a need for new solutions
for both deploying and managing the infrastructure of IT platforms. Through
packaging the system’s components in so-called containers, deployment can
be streamlined. Instead of installing a service directly on the server, we run a
container containing the system itself and its dependencies. But how do we
manage all these containers? This is where orchestration tools like Docker
Compose and Kubernetes come into play, allowing us to deploy and manage
our containers in an efficient way.

1.1 Background
Some basic concepts need to be understood before venturing further into this
project.

Virtualization is a technique used to utilize existing hardware more
effectively. In short, it translates to putting a layer on top of the hardware and
dividing this into smaller independent processes that emulate hardware, such
as servers. For the end-user, it still appears like a fully functional hardware
(server). To deploy and manage several linked virtual machines in large and
dynamic environments, orchestration techniques such as Docker and
Kubernetes are frequently used.

We have an interest in present and future solutions for infrastructure
deployment, especially the use of containerization, container orchestration,
and automation to minimize manual labor - one of our passions. Therefore,
we want to delve deeper into this, gaining more knowledge about the
technique itself. Considering Kubernetes is basically the industry standard
today (or at least, perceived as it), this also leads to an interest in how we can
migrate existing container orchestration to it.

While researching potential projects, we contacted Sensative AB [1].
Sensative develops IoT solutions such as sensors for windows and sinks.
This, in conjunction with their platform called Yggio [2], acts as an
integration layer between these devices and different services. During our

6

discussions, they expressed a need for more dynamic and scalable
infrastructure.

Today the deployment is done via Docker Compose [3], but the company
expresses a desire for migration to a Kubernetes-based solution. This demand
stems from a growing business with an increasing number of customers. The
growth has led to the deployment of more instances of the platform and a
lack of overview as well as management difficulties.

This opportunity was used as the main case for the project, where we
were able to implement prototypes of solutions in close collaboration with the
company.

As a starting point for this project, we need to look at what has been done
before - if there is anything available related to what we want to achieve. This
information could be presented in articles, papers, tutorials, guides, or
similar.

1.2 Related work
After extensive research we were still unsuccessful in finding published
articles that are entirely related to the exact subject we are working with -
migration from Docker to Kubernetes and the paths to take. We did however
manage to find some articles about the technicalities around Docker as well
as Kubernetes as a whole, and what improvements the latter provides.

However, browsing online articles and blogs, the information tends to be
more vast closer to our niched subject.

It is clear to see what positive changes a migration to Kubernetes can
bring, ranging from easier management of the infrastructure - e.g., scalability
possibilities - to actual hardware performance and smaller costs due to less
load. Previous research shows that Kubernetes can provide significantly
reduced workloads compared to solutions using Docker, similar containerized
solutions, or non-containerized solutions. This is in conjunction with the ease
of scalability and overall management. [4]

Orchestration of containers in Docker can be done in a couple of different
ways, namely using Compose [3] or SWARM [5]. The former provides a
simple way to run a multi-container application on a single host, while
SWARM can be used to scale it across one or more servers. Compose is the
simple “plug and play” alternative, but lacks a lot of the management and
scalability options [6]. While SWARM, on the other hand, is a bonafide
orchestration tool, compared to Kubernetes, it still offers limited functionality
and fault tolerance. The scaling is more of a manual nature. While many
today strive to automate as much as possible, the manual labor required for

7

things such as scaling is a significant drawback for SWARM.
Kubernetes, having the most functionality, is also the more complex of

the tools. The installation and setup process can be quite complex and involve
a steep learning curve compared to SWARM, which has an easy and fast
setup. However, the community around Kubernetes is huge, and the Cloud
Native Computing Foundation backs it, all the while being an open-source
tool [7][8].

To circumvent, or at least ease, the complexity of Kubernetes, there are a
lot of useful tools that can be used for different steps of the process, provided
by both Kubernetes itself and other parties. One popular example is Rancher
[9] and its rke [10] tool, which helps with the initial installation and
configuration of a cluster.

The information we could find just touched the surface of our goals and
handled either too broad or too narrow aspects of the problem - often with
very niche tools, problems and solutions presented. A large amount of
knowledge needed is not presented adequately.

Through this project and the insight we will gain, we hope to be able to
provide useful information about what challenges need to be overcome and
what the solutions can look like for future migrations. This should probably
be of great interest to the developer community as a whole, as there are some
examples and tutorials online but not as complete or in-depth as one may
want.

1.3 Problem formulation
So, how do we move even further forward in our journey to secure, as well as
streamline, both the deployment and management of modern-day IT
platforms? Scalability is also of great concern as these platforms grow, and at
the same time, see clear patterns in usage and downtime - where specific time
periods can result in big traffic spikes potentially causing bottlenecks &
slowdowns. While other time slots are much less occupied, we clearly see a
need not only to invest in more resources - but also to downscale these
resources, enabling a more cost-efficient infrastructure. In addition to this,
there is also the problem of failures, where restarts and other management of
the platform are needed. Preferably, this would all be done in a mostly
automated way to minimize both downtime of the service as well as needed
manual labor.

For companies already running container orchestration via Docker, the

8

next logical step for development would be Kubernetes, as it provides more
advanced automation, like mass deployments, redundancy, automatic restart
of falling containers, auto-scaling and load balancing. Kubernetes is
nowadays commonly perceived as the industry standard for container
orchestration [11].

From what we have found, there is a lack of properly extensive
documentation for Kubernetes in the way of guides/tutorials, templates, and
examples on how to set up and configure it in a good way. Every Kubernetes
cluster is unique in the way it needs to be configured, depending on how and
for what it is used.

This poses the following questions and problems:
● How does one move from Docker Compose to Kubernetes - what

could a possible migration path look like? - Method or means of
development

● What range of tools is available to help with the setup - what impact
could different techniques/tools have on the migration? - Design,
evaluation, or analysis of a particular instance

● What challenges and corresponding solutions can be found? - Method
for analysis; Generalization or characterization; Feasibility

These questions make up the sum of what we want to try to achieve with this
project: making a simple guide/tutorial/example of how an existing software,
already consisting of containerized services, can be deployed in Kubernetes -
and how to set up and configure the cluster. In addition to this making a
shallow comparison with other possible solutions, such as SWARM.

1.4 Objectives

O1 Research about possible migration patterns/solutions and
techniques - Procedure or technique

O2 Compile a list of possible solutions and techniques needed
for prototyping

O3 Implement small scale prototype involving the deployment
of parts of the infrastructure - Specific solution

O4 Analyze and evaluate the impact/result of prototype
O5 Implement larger scale prototype involving the deployment

of the infrastructure -Specific solution
O6 Analyze and evaluate the impact/result of the updated

prototype - Answer or judgement

9

O7 Complete guide/example with results from prototyping -
Report

What we expect to get as a result of this project is a presentation of examples
of the different challenges one might encounter when migrating IT
infrastructure from Docker Compose to Kubernetes and what solutions can
be found for these challenges, respectively. With these results, we want to
compile a small guide of example configurations that would hopefully prove
useful in future similar projects.

Another expectation is that we will be able to implement a sufficient,
working prototype for our solution that can act as a basis for continued work.

Our personal thoughts about this are that there are many different paths to
take to reach the end result, not one be-all-end-all solution for everyone, but
rather different solutions that can act as the “best one” per each case. What
we hope to see with this report is that it can act as a starting ground in trying
to find the most fitting solution for specific scenarios.

1.5 Scope/Limitation
This project can, in theory, hold limitless potential regarding the scope since
there are many different migration paths and techniques to choose between
and utilize. However, since our resources, especially time, are of a limited
nature, this means that some priorities and limitations have to be set.

The main focus of the end result will be a simple functioning prototype,
in addition to the aforementioned presentation of migration patterns, their
challenges, and their own solutions. The prototyping, together with the
configuration guide will in themselves also require a somewhat limited scope,
as we will not be able to explore all the available options. The decision has
been made to mainly focus on Docker Compose as a basis of migration, with
the possible addition of SWARM if time allows. Down the line, this means
that we will be able to present one or two possible solutions that we can
invest more time into, which hopefully will lead to a more detailed end result.

1.6 Target group
On a large scale, the main target group would be SME and other businesses
that want to migrate their infrastructure to Kubernetes, provided that they
already use Docker - as the migration from Docker to Kubernetes is the
subject of this report.

The other target group would be the company Sensative itself, as in
conjunction with the studies of this report, we will try to find the basis of a
solution for their case.

10

Finally, as mentioned in the motivation segment, the developer
community as a whole could be considered a target group - however, this
could be argued to be linked with the main target group.

1.7 Outline
The remainder of this report is structured as follows. Section 2 describes the
method(s) used for the project, how we answer and solve the problem(s) of
the project, and how we value the reliability of our solution. Section 3
provides a deep dive describing the different techniques involved in the
project more extensively. Section 4 describes the implementation of our
solution. In section 5, the objective results achieved through our work are
presented, as well as subjective opinions and conclusions drawn from the
result. Lastly, the report is concluded in section 6 and presents whether our
results are relevant to science, industry, or society in the future. It also
presents some possible future work to be done.

11

2 Method
The project will be done in several somewhat incremental steps. As an entry
point, information needs to be gathered about virtualization, container
orchestration, and specifically Kubernetes - as well as Docker. In
combination with case studies and discussions with the company, the main
task is to implement prototypes and conduct experiments with these. The
final result is projected to be a simple implementation guide.

2.1 Problem Identification & Motivation
This project’s main method will consist of a vast number of controlled
experiments, mainly by implementing different prototypes. In addition to
this, there may be a smaller number of interviews and discussions with the
developers at hand. The experiments will be conducted on the prototypes
being developed during the span of the project, and during the process of
implementing them. Additional techniques to be used in comparisons are
studied through case studies.

Information about challenges, errors, and linked solutions is to be
gathered and compiled in a guide. The idea is for this to be a guide of
examples in the end, but mainly a presentation of one or two ways the
migration can be done is what we strive for.

We think this is the best way to reach the goals we set and answer the
questions, as we need hands-on experience with Kubernetes to get to know it
properly and be able to produce a decent enough guide.

2.2 Scientific methods
To reach the goals/objectives we set - analyzing the company’s needs and
expectations, gathering enough information to be able to provide a sufficient
guideline - the following scientific methods are needed.

2.2.1 Document studies - O1, O2, O3
The central part of the initial work, but something that has also accompanied
the work through the whole project, is gathering and analyzing existing data.
This data has to the vast majority consisted of official documentation
regarding Kubernetes and the associated techniques. This has laid the basis
for the experiments and prototypes.

2.2.2 Case study - O1, O2, O3
To be able to make comparisons to other possible techniques than

12

Kubernetes, we have conducted a case study to gather information about
them rather than doing additional prototyping and experiments as this does
not fit in the scope of the project. The case study is compiled using official
documentation and possible guides/tutorials.

2.2.3 Prototyping - O3, O4, O5, O6
As the most significant part of the project, we have experimented a lot with
prototyping different installations/setups and configurations of a Kubernetes
cluster, using several different tools and techniques available. These
prototypes and experiments have given us more knowledge about the
possibilities of different solutions and how it can be done.

2.2.4 Interviews and Discussions - O1-O7
Throughout the project, we have had continuous informal interviews and
discussions with the company, mainly with our external supervisor Daniel
Ohlsson. This has been done to share ideas and gather requirements for the
solution, the goals and plans of the company, what they are looking for.

2.2.5 Compilation of Guide - O7
As a result of all the data gathering, prototyping and experiments, we conduct
a small guide mainly consisting of the steps we have taken and the solutions
we have used, as well as suggestions of other possible solutions that we have
found. Here we also motivate and discuss the different techniques and tools
we used.

2.3 Reliability and Validity
Since we expect there to be a number of different ways to conduct a

migration of this kind, and not a single one set in stone as the most correct
one, we cannot guarantee that the resulting solution will be the exact same or
even the most fitting for everyone. However, as stated, our goal is not to find
the “be-all-end-all” solution but rather to provide a window into how, why,
and when it can be done. We want to describe what the challenges can be and
give examples of how they can be overcome. Simply put, give an example
solution that can be used as a foundation and inspiration for future projects.
The reliability and validity of this is something we think will be of no major
concern.

2.4 Ethical Considerations
As this project has mainly consisted of the development and experimentation

13

of implementing a number of prototypes, we do not have any direct ethical
considerations. The discussions and interviews with representatives from the
company, Sensative, do not bring any privacy concerns about anonymity or
the likes. The employees in question are the external supervisors mentioned
in the report.

2.5 Data management policy
As Yggio is not an open source platform and the repository is not public, we
are not allowed to disclose any of the configuration files directly, other than
the examples provided throughout the report. We are therefore not able to
provide any links to files or repositories.

14

3 Virtualization & Orchestration
To better understand the project as a whole, the main subject, and the
techniques involved, we need to dive a bit deeper and explain some basic
concepts.

3.1 Virtualization
Virtualization is the act of creating virtual versions of something [12] - we
tend to think about it as hardware virtualization, but there are many different
types of virtualization techniques. The main goal of virtualization is a more
effective and streamlined use of resources, as well as easier management of
large systems.

In this segment, we will dive deeper into the different virtualization
techniques available today.

3.1.1 Hardware virtualization
Hardware virtualization, or platform virtualization, refers to the creation of
virtual machines that acts just like a real computer with its own operating
system [12]. All hardware is virtualized by software that we call a hypervisor.

Because all hardware is virtualized, we can freely choose what operating
system we want to run, as well as specifying dedicated processing power,
RAM, and the likes for each machine.

This is the most versatile and straight forward way of using virtualization;
however, it also brings with it a lot of overhead.

3.1.2 Hypervisor
As mentioned above, when using hardware virtualization, a software called
hypervisor is needed for running the virtualization layer. Furthermore, there
are two types of hypervisors [13] available.

The type 1 hypervisor, as depicted in Figure 3.1, runs directly on the
system hardware [13]. Famous examples of this kind of hypervisor are
VMware ESX and Microsoft Hyper-V.

15

Figure 3.1 - Overview of a Type 1 Hypervisor

The other kind of hypervisor, simply called type 2 hypervisor, is running
on a host operating system [13] that provides virtualization services. This can
be I/O devices and memory management. Examples of the type 2 hypervisor,
shown in Figure 3.2, are KVM, Oracle VM VirtualBox, and VMWare
Workstation.

Figure 3.2 - Overview of a Type 2 Hypervisor

16

3.1.3 Container-based virtualization
A growing technique for deploying applications and software systems today,
microservices translates to splitting up a software into different smaller
services [14] that are then dependent on each other. These so-called
microservices can then be run independent of each other in standalone
environments - so-called containers [15]. Using this technique allows for
easier scaling [14] as well as updates of individual parts without affecting the
larger service as a whole.

Container-based virtualization (Figure 3.3) is a very effective [16]
virtualization technique and has a lot less overhead compared to hardware
virtualization. It is, however, less flexible, as the core is shared with the host;
therefore, OS choice is non-existent. This can be circumvented by so-called
nested virtualization [12], where the container engine is run on top of another
virtualization layer.

Figure 3.3 - Overview of container-based virtualization

3.2 Container Orchestration
Container orchestration is the process of automating all aspects of container
coordination and management, with a particular focus on the management of
container lifecycles and their dynamic environments [17]. It enables
controlling and automating a number of tasks, such as the provisioning and
deployment of the containers, load balancing, redundancy and availability,
allocation of resources and much more.

17

3.3 Docker
Docker is a tool that provides the functionality to package software in
host-independent containers [15] that use OS-level virtualization
(container-based virtualization). These containers are, as mentioned,
independent from both the host machine itself, and each other, and bundles
their own software with its dependencies. Through defined channels, they can
also communicate with each other.

The containers are configured in yaml-files, which can be saved as
images. These images can then be saved in repositories and used as base
images [18] - starting points - for new containers/images. One example is the
standard Nginx Docker image, which can be used as a foundation for a
container that will run with Nginx.

3.3.1 Docker Compose
Docker Compose provides a way of orchestrating multiple containers [3]
dependent on each other. Examples include a service dependent on a
database, a service using some kind of caching. This dependency makes the
service unusable on its own - and it has to be managed in some way.

It is a standalone binary [19] that will run a multi-container environment
on a single Docker host. Docker Compose can also be beneficial to use in
single-container scenarios. This way, we get the possibility to store
configuration settings, such as environment variables, in the docker-compose
yaml file.

3.3.2 Docker SWARM
Docker SWARM is built into the Docker CLI and is used to scale a
multi-container application across one or more servers; in other words, native
clustering functionality [5].

SWARM enables cluster deployment using standard docker commands,
and thanks to this, it is relatively simple to migrate to Docker SWARM from
a regular Docker deployment. It also supports using a docker-compose
configuration to deploy to the cluster. Docker SWARM only has one [20]
type of node that can act as manager, leader, and worker.

3.4 Kubernetes
The open-source project Kubernetes, or k8s, was initially designed by Google
and is now maintained by the Cloud Native Computing Foundation [21]. It is
a powerful and, in some ways, quite a complex container orchestration
system that allows automation of application deployment, scaling, and

18

management [21]. It works with Docker, amongst other container tools, and
is offered as a PaaS (Platform as a Service) or SaaS (Software as a Service)
on most cloud services.

Compared to Docker SWARM, Kubernetes offers a lot more and more
complex, functionalities, and possibilities. The complexity demands more of
the infrastructure and user, as it involves a lot more configuration and
options.

The foundation of Kubernetes consists of two types [22] of nodes -
masters and workers.

3.4.1 Nodes - Masters and workers
The aforementioned types of nodes in Kubernetes - masters and workers -
have totally different duties in the cluster. Together these nodes form what is
called a cluster (see Figure 3.4).

The master node is responsible for maintaining the desired state [23] of
the cluster, and all interactions with the cluster are piped via a master node.
The master contains the etcd [22] service, which is a database with the task of
keeping track of the state of the cluster. It also contains the API-server [22],
which is used to communicate with the cluster, a scheduler, and the
controller-manager [23]. The latter two keep the cluster in the desired state
and schedule new pods (containers) if needed. To achieve high availability, it
is possible to run multiple master nodes in a cluster. All master nodes are
then replicated [23], eliminating a single point of failure.

On the other hand, worker nodes are responsible for running the pods
(containers) [22] in the desired state. All worker nodes run a service called
kubelet [24], which communicates with the master node(s), receives pod
specs, and ensures that they are running in the desired state. It also ensures
that the pods are healthy and recreates them if needed.

The worker nodes also run a proxy service [24] responsible for the
network rules on the nodes. This proxy service enables network
communication to and from pods - both inside the cluster and to the outside
world.

19

Figure 3.4 - Master and worker nodes in a Kubernetes cluster

3.4.2 Services & Pods
A Kubernetes service [25] is the resource that acts as an entry point to an
application. In this resource, the allowed communication and the type of
service are specified.

In Kubernetes, there are several types [25] of services that specify the
behavior of the network communication. The most common is the cluster-IP
[25] service, this service delivers a single internal static IP for traffic to the
pod(s) it serves. It also provides internal load balancing if it serves more than
one pod. The cluster-IP can also be configured as a headless service [25]. In
this form, the service only provides a list of IP-addresses to the serving
pod(s). Cluster-IP only allows internal cluster communication. To expose an
application to the outside world, services such as ingress [26] and load
balancer are needed. See section 3.4.4 for more information.

The applications themselves are run on one or more pods. If multiple
pods are configured to be run for one application, they will be run as
so-called replicas [27]. These replicas act as multiple, simultaneously running
copies of the application.

With stateless microservices, specifying the number of desired replicas -
paired with a service - easily enables a load-balanced application without a
single point of failure inside the application itself (see Figure 3.5). If one
replica - pod - fails, the others will still make sure that the application
continues to be reachable, all the while the failing part will be recreated by

20

the cluster. Thanks to this, better uptime can be guaranteed, and maintenance
becomes less critical as a failure will not bring down the whole application at
once.

Figure 3.5 - A service and its pods in a Kubernetes cluster

3.4.3 Namespaces & Network Policies
Kubernetes supports multiple virtual clusters [28] backed by a single physical
cluster. Namespaces enable this way of dividing a cluster into virtual clusters.

Network Policies [29] enable configuration of network traffic on a
namespace level. By combining namespaces and network policies, we are
able to isolate namespaces from each other and run completely independent
virtual clusters.

Using the above solution, it is also possible to run multiple applications
and multiple instances of the same application in the same cluster. This
enables companies to host specifically customized instances for their
customers in the same cluster, easing up the management of all the different
deployments. In addition to this, namespaces can be used to host, for
example, devtest, staging, and production environments in a single cluster -
easing up the management even further.

This way of dividing the cluster into virtual clusters provides the
possibility of gathering multiple application instances in one place. This in
turn could lead to better structure, isolation and overview of the clusters'
different resources and applications.

3.4.4 Ingress & Loadbalancers
In a complex and multi hosting environment like Kubernetes, we need a clear
way of routing traffic into the cluster. A lot of the applications are reachable
through the web, and we need an efficient way of routing and managing this
traffic.

The Ingress [26] service helps us achieve this by offering name-based
routing, automated TLS certificate creation, as well as port

21

mapping/forwarding. The ingress operates as an internal HTTP(s) router,
easing web traffic management.

To expose this web traffic to the outside world via an external IP address,
a service of type load balancer [25] can be bound to the ingress. This
provides an external IP that forwards traffic to the ingress, which in turn
handles internal routing. Another solution could be using a so-called
NodePort, which could be an easier/smoother solution if only one replica
were to be used. NodePorts does not provide a dedicated external IP to the
service, however. With this solution the external IP would be the IP address
of the worker node itself, and the port would by default be between
30000-32767.

One, or multiple, depending on the desired configuration, so-called
Ingress Controllers need to be running on the cluster to enable and manage
the ingress resources. Some well known and popular examples are the Nginx
Ingress-Controller, Traefik, and Proxy HA.

3.4.5 Kubectl, yaml, and Configurations
Kubectl [30] is a command-line tool for controlling a Kubernetes cluster and
is the standard tool used for this purpose. Kubectl needs a kubeconfig file to
be able to do this. The kubeconfig is typically received when creating a
Kubernetes cluster but may depend on the tools used during the creation.

It is also possible to create a customized [31] kubeconfig file on a running
cluster - this can be useful to restrict access.

All configuration done on the Kubernetes cluster is defined in the yaml
format and applied via the kubectl CLI. Resources to be deployed in the
cluster are also specified in the yaml format and applied with kubectl.

The kubectl CLI communicates with the API-server running on the
master node(s) in the cluster.

22

4 Implementation - experimental environment
In this section, we describe the solution(s) we have implemented, how it has
been implemented and what decisions were made. We have tried to use free
and open tools for every step of the way.

The purpose of this implementation is to gain more knowledge, insight,
and experience about Kubernetes and its quirks. This will enable us to answer
the problem, and provide a simple guideline of how a cluster can be set up.

4.1 Underlying Infrastructure
To run Kubernetes, the underlying infrastructure and provisioning need to be
specified and configured accordingly. See Figure 4.1 for an overview of the
underlying infrastructure.

4.1.1 OpenStack
The company we have been working with during this project, Sensative, is
using OpenStack [32] as their cloud platform; therefore, we had access to the
OpenStack environment for our prototyping and experiments.

4.1.2 Terraform
Since the goal is for the infrastructure to be as automatic as possible -
infrastructure as code - we used Terraform [33] for provisioning of servers in
OpenStack. This tool was also something already tested and suggested by the
company.

4.1.3 Ansible
For the configuration of the servers provisioned with Terraform, we have
used Ansible [34] with playbooks provided by Sensative to get the correct
configurations for their platform.

23

Figure 4.1 - Overview of the provisioning architecture

4.2 Kubernetes Installation

4.2.1 RKE
To install a Kubernetes cluster on the servers, we took advantage of the free
tool RKE [10] (Rancher Kubernetes Engine) provided by Rancher. It is a
simple CLI tool that takes input in the form of a configuration file in yaml
format (see code block 4.1 for minimal example), using this to set up the
cluster as wanted. Utilizing this tool, we were able to automate the
installation process of the cluster instead of manually doing it.

24

Code block 4.1 - Example of minimal RKE configuration

4.2.2 Plugins
To enable communication between the Kubernetes cluster and the underlying
OpenStack API, we have taken advantage of the official external tools
provided.

The OpenStack Cloud Controller Manager [35] is a plugin that replaces
the now deprecated old implementation integrated into Kubernetes; it has the
task of establishing and managing the communication between the cluster
and OpenStack.

The ability to dynamically provision volumes for persistent data storage
in OpenStack is essential to circumvent manual operations. For this to work
as intended, we used the CSI Cinder plugin [36], also an official plugin. This
plugin works in symbiosis with the OpenStack Cloud Controller Manager.

Finally, we decided to install the official Kubernetes Dashboard [37],
providing a GUI with an overview of the cluster and its components (see
Figure 4.2). Something that has proven to be valuable during the prototyping
and experiments.

Figure 4.2 Example of the Kubernetes Dashboard overview

25

4.3 First prototype
An initial wish and suggestion from Sensative for the first prototype were
configuring a barebones deployment of their platform Yggio [2] in
Kubernetes. This simple deployment would consist of the bare minimum
microservices (using Docker images provided by the company) to make it
run, an ingress handling the HTTP traffic and DNS names as well as using
cert-manager to set up TLS certificates.

This first prototype was deployed as one instance in the default
namespace, with one master and two worker nodes in the cluster.

4.3.1 NGINX-Ingress and cert-manager
To handle the automatic creation of TLS certificates via Let's Encrypt [38],
we used cert-manager - an x509 certificate management controller for
Kubernetes. It helps us automate the certificate management, providing
“certificates as a service” [39]. It has support for Let’s Encrypt, a free, open
and automated certificate provider, and we have chosen it to use for our
certificates.

With cert-manager, we gain access to new resource types in our cluster,
such as Issuers. We chose to use the type ClusterIssuer [40] (see code block
4.2), making it available for the whole cluster. This Issuer can then be used
by our ingress resources to create the certificates needed automatically.

Code block 4.2 - ClusterIssuer configuration

To be able to route HTTP traffic based on hostnames to the platform’s
endpoints, we decided to use the proven NGINX-Ingress and
Ingress-Controller [41]. The controller is installed in the cluster and handles
the ingress resources we specify.

The ingress resource is configured in a yaml file (see code block 4.3),

26

where we specify the hostnames and their corresponding paths, services, and
ports as well as the Issuer to be used for certificates.

Code block 4.3 - NGINX-Ingress configuration

4.3.2 kubectl and yaml-configurations
The standard way to deploy an application in Kubernetes is using yaml-files
to configure the deployment and service of it (see code block 4.4). Here we
specify the metadata, containers with corresponding Docker images, ports,
and possible environment variables.

27

Code block 4.4 - Deployment yaml file using kubectl

To then install this microservice in the cluster, we used the kubectl command
seen in code block 4.5.
kubectl apply -f deployment.yaml

Code block 4.5 - Applying a deployment file using kubectl

4.4 Namespaces and NetworkPolicies
The next natural step for our prototyping was being able to deploy multiple
instances of the platform in the same cluster, taking advantage of namespaces
[28] (see figure 4.3). This has also been an expressed wish from Sensative, as
they want to handle all their deployments in one cluster; for production,

28

staging, and customers.

Figure 4.3 - Namespaces

We configured the namespaces in their own yaml-files (see code block 4.6),
to get a good structure and overview of the components in our cluster. It is
possible to create namespaces using a kubectl command directly, but we
think that this leads to a lack of proper structure.

Code block 4.6 Namespace configuration

An essential aspect of using namespaces for multiple different deployments
in one cluster, be it the same application or different, is the traffic between
the namespaces. Since, in this case, we are deploying the same application in
multiple instances, it is crucial to make sure that every instance is isolated
from others. To ensure this, we used NetworkPolicies [29] to configure
allowed and disallowed ingress and egress traffic (see code block 4.7).

29

Code block 4.7 NetworkPolicy example

4.5 Second prototype and Helm charts
For further development of the implementation, the goals set for the next
prototype was:

● Remove redundancy
● Run several replicas of the microservices, including the stateful ones
● Faster/easier deployment of new instances
● Using an external IP instead of the node IPs
● Better structuring
The previous prototype had too much redundancy in the form of using

copies of the same configuration files for every namespace deployment, and
it also required applying every file via the kubectl CLI.

To remove any single point of failure, the aim was to utilize the
functionality of running multiple replicas [27] of every microservice.

We also wanted to stop using the IP addresses of the nodes themselves,
and instead use an external IP for the hostnames.

Additionally, the cluster configuration was changed during the
implementation of this prototype, to consist of one master and three worker
nodes.

4.5.1 Helm and charts
Helm [42] is a tool that provides functionality to facilitate the management of
complex Kubernetes applications. This is done by introducing Kubernetes
packages, called charts [43]. These charts enable packaging and distribution
of Kubernetes-ready applications. Helm charts provides the use of variables
in configuration files, enabling dynamic and reusable configuration files by
utilizing the Go Template Engine.

We took advantage of mainly the template engine to improve the
structure of our implementation and remove practically all redundancy, as
well as easing up the deployment process by a lot.

We solved this by implementing a main “umbrella” chart for the whole

30

platform containing all the microservices as sub-charts - dependencies (see
code block 4.8).

Code block 4.8 - Main umbrella chart for the platform

The sub-charts hold the default values for their deployments in their own
values-files, and we then use namespace-specific value-files to inject the
configurations per namespace basis (see code block 4.9). In addition to this,
we added a condition for the sub-charts, which enables the possibility to
choose which dependencies to use per namespace basis.

31

Code block 4.9 - Example of values-file for a namespace

Using this approach, we were able to remove a lot of the redundancy and
keep just one set of the configuration files for the whole platform. Practically
the only files needed per namespace are the values-files, which just contains
the minimum required values needed to set for a new instance. To deploy the
application in a new namespace, it is as simple as using the command seen in
code block 4.10.

32

helm install -f env/dev/values.yaml dev-platform ./services-platform -n
dev

Code block 4.10 Installation command, pointing to the values-file, naming
the deployment, pointing to the main chart, and specifying the namespace.

The values are then injected through the main chart to the sub-charts own
values-files, which in turn are then echoed into the necessary configuration
files (see code block 4.11).

Code block 4.11 - Example of a configuration file where values are echoed
using the Go Language

33

4.5.2 ReplicaSet
One of the main functionalities of Kubernetes is the ability to run several
containers per image, which removes the problem of single-point-of-failure.
This is relatively easy to achieve with stateless applications, and can simply
be configured by specifying the number of replicas wanted in the
configuration file for the deployment [23]. The deployment will then create a
number of pods accordingly, which the service resource for the microservice
then utilizes for load balancing (see figure 4.4).

Figure 4.4 - Services and pods per microservice in a namespace

4.5.3 StatefulSet
To deploy several replicas of a microservice that has a state is a lot more
complex compared to stateless. Due to Yggio depending on applications such
as RabbitMQ and MongoDB, this was something we still needed to
investigate. The balancing of the state, for example, the persistent data stored
in MongoDB, is up to the application itself and requires the implementation
to support it. It is then possible to deploy it using a StatefulSet [23].
Thankfully, both RabbitMQ and MongoDB have ready-to-go solutions for
this, which are even available as Helm Charts [43].

To be able to automate the deployment as we wanted, we still used our
own sub-charts acting as the dependency for the main chart as a middle layer,

34

putting the provided charts by RabbitMQ and MongoDB as dependencies to
our respective sub-charts.

4.5.4 External LoadBalancer
To direct external traffic into our cluster, without using external IP addresses
directly on the nodes themselves, we implemented external load balancers via
the OpenStack API. Thanks to already configuring the cluster with plugins
such as the OpenStack Cloud Controller Manager [35], we were able to
configure the load balancers as resources directly in Kubernetes.

For each deployment in an independent namespace, a new ingress
controller is deployed. This controller handles both the ingress resource for
the namespace in question, as well as the connection to an external load
balancer. The latter is deployed automatically with the application,
provisioned in OpenStack via the Cloud Controller Manager, and directs both
the web traffic and MQTT traffic for RabbitMQ through the ingress resource
(see Figure 4.5).

Figure 4.5 - Overview of a namespace with the external load balancers

35

5 Results & Analysis
The prototypes and corresponding experiments implemented and conducted
during this project have resulted in some possible use cases for the company
in the future. In addition to this, the implementations we have done can also
act as a basic guide for other developers and companies looking for a similar
solution - a foundation for future projects.

The following subsections will provide insights and pointers on how to
achieve a scalable, mostly automated, Kubernetes cluster from scratch. It will
be possible to deploy multiple applications separated from each other, with
unique addresses for external access.

5.1 Underlying infrastructure and provisioning
To be able to run a Kubernetes cluster, we need computer resources to run it
on. In our case, we are using OpenStack as our cloud platform, and to get a
consistent and repeatable result, we heavily advocate the use of infrastructure
as code tooling. This also eliminates human errors in addition to making it
very easy to reinstall the underlying infrastructure. In this project, we used
Terraform to provision our servers and Ansible to configure them to be ready
for Kubernetes.

5.1.1 OpenStack
OpenStack is a free and open-source cloud computing platform containing all
the functionality needed to develop automated infrastructure on top of.

When choosing a cloud platform, it is important to look into the support
for various infrastructure as code tools. Configuring everything manually is
very time-consuming in the long run and requires a lot of manual labor,
which translates to money and locked up staff. It also introduces a greater
risk of human errors, which is just a matter of time before it happens in most
situations.

Infrastructure as code also helps us eliminate configuration drifting and
snowflake servers.

5.1.2 Terraform
Terraform is a free open source infrastructure as code software, and was used
in this project for the provisioning of servers.

Terraform is a pretty straight forward tool to use for this task, and
supports many different cloud platforms - OpenStack being one of them.

It enables us to use a high-level configuration language (Hashicorp
Configuration Language) to define our desired computer resources. With the
help of variables supported by Terraform, we can make this configuration a

36

lot easier to customize and maintain. It is strongly recommended to version
control these configuration files, just like regular software code. When the
configuration is done, all that is needed now is a single command to start the
magic. Even the novice user now possesses the ability to provision servers.

5.1.3 Ansible
Ansible is an automation engine that can be used to provision cloud services
automatically, configure devices, deploy applications, and much more.

We utilized Ansible and its Ansible Playbooks (using yaml) for automatic
configuration management of the devices created by Terraform. Our Ansible
Playbooks configured the servers to run Docker, on top of which the
Kubernetes Cluster will be installed. Just like with Terraform, it is highly
suggested to version control the configuration files - in this case, the
Playbooks.

5.2 Kubernetes Installation
Kubernetes itself could be installed manually; however, this is a fairly
daunting and complicated task. For this reason, a number of tools are
available, providing a more straightforward and automated installation
process to get started with a cluster. Using any of these tools enables us to yet
again take advantage of the infrastructure as a code mindset, and version
control our configuration files.

The installation could be streamlined by using Ansible through the whole
process, removing the need of additional tools. This would require creating
our own Ansible scripts for the Kubernetes installation itself, which due to
the time constraints we chose to not do in favor of using a more
plug-and-play tool. Another possible solution could be to run the chosen tool
with Ansible. However, our focus with the project was more on the
implementation of the cluster itself and not optimizing the whole installation
process.

5.2.1 RKE
RKE (Rancher Kubernetes Engine) is a free to use Kubernetes installer by
Rancher, that installs a cluster according to provided specifications on Linux
hosts.

The desired configuration of a cluster is specified in a file named
cluster.yml. Everything needed for the cluster can be specified here, ranging
from the number of nodes and their individual configurations to various
services et cetera. If needed, additional resources to be installed with the
cluster can be added as well.

We picked RKE out of all available options due to it being free and
simple to use yet highly customizable, suiting our needs for this project well.

37

5.2.2 Nodes
Our configuration of choice landed on deploying one master node
accompanied by three worker nodes, for a couple of reasons.

Normally, it would be recommended to run multiple master nodes for the
sheer reason of eliminating single point of failure. However, since this project
is still in the development stage, one master was sufficient enough for further
testing purposes.

When deciding on the number of worker nodes needed, we had to factor
in the requirements of the software to be deployed in the cluster. The main
reason to run multiple worker nodes in the first place is to benefit from the
fail-tolerant and horizontal scaling, deploying multiple replicas of the
applications. The reason for running an odd number of worker nodes is due to
our use of stateful services, which in most cases are recommended to be run
on an odd number of replicas and nodes [45]. We settled on three to not go
overboard since it is a testing environment, but still having multiple nodes to
get the aforementioned benefits.

During initial prototyping, the nodes were configured with very slim
computer resources; 1 CPU core and 2 GB RAM per node. When scaling up
the cluster and deploying more instances, this had to be increased to ensure
stability. We finally settled on 2 CPU cores per node, and 4 GB RAM.

5.2.3 Additional configurations
To be able to use the external and non-deprecated cloud controller

manager for integration with OpenStack, we configured the kubelet service
accordingly. This was done by deactivating the standard internal controller
manager by telling the kubelet service to expect an external controller.

Since one of the requirements was separate ingress controllers and load
balancers per namespace, we had to deactivate the ingress controller supplied
by the default RKE configuration.

5.3 Useful plugins
Kubernetes comes with a lot of functionality built-in per default, but there are
vast possibilities to further extend and modify this functionality according to
customized needs. To improve the ability of automation and the overview as
well as management of the cluster, we used a couple of plugins.

5.3.1 OpenStack Cloud Controller Manager
Kubernetes, by default, does indeed have the ability to communicate with the
OpenStack API, enabling automatic provisioning defined in the Kubernetes
configuration. The already built-in method for this is now deprecated due to a
wish to separate it from the Kubernetes core, and instead make this an

38

external functionality as this provides more streamlined updates and faster
adoption of new functionality provided by cloud providers.

To take advantage of a more up-to-date controller manager, while
simultaneously future-proofing the cluster by moving away from deprecated
solutions, we decided to install the external OpenStack Cloud Controller
Manager.

5.3.2 CSI Cinder plugin
One of the main goals of moving on to a Kubernetes based infrastructure for
Sensative is to eliminate manual steps, making the installation and
management process of applications as automated as possible.

The application deployed in this cluster uses stateful services, such as
MongoDB, that require provisioning of volumes in OpenStack. Usually this
would have to be a manual step of creating the volumes via the OpenStack
API or via for example Terraform. We wanted this to happen dynamically
when deploying new instances, however. In other words, we wanted it to be
managed by Kubernetes automatically.

Through research about the topic, we discovered the CSI Cinder plugin,
which instead enables automated provisioning of volumes in OpenStack
directly from the cluster.

By specifying storage class resources, we can define the specifics of the
volumes to be created. The storage class is then used in conjunction with a
persistent volume claim resource while deploying the application to provision
new volumes in OpenStack dynamically.

5.3.3 Kubernetes Dashboard
The Kubernetes Dashboard is an official plugin, but not installed per default.
It consists of a web application providing a clean GUI for an overview of the
cluster. Having the dashboard available not only facilitates manual
troubleshooting when needed, but also the management of the cluster overall
- in combination with the automation of IaC. Mainly, it provides a graphical
overview of the cluster.

5.4 Ingress and external load balancers
To be able to manage and route web traffic to applications in the cluster, we
took advantage of the Nginx Ingress Controller in combination with external
load balancers provisioned in OpenStack.

Due to the ingress controller only being able to be connected to one load
balancer, we decided to deploy one controller per namespace - as one of the
requirements was to use one load balancer per namespace. This requirement
stems from the need of one IP address per application deployment.

Thanks to the external cloud controller, the provisioning of load balancers

39

in OpenStack is, as mentioned, done automatically when deploying into a
new namespace.

5.5 Namespace independency
The aim was to deploy multiple instances of the application(s) in the cluster,
each with their own differing configurations, without interference between
the different instances.

We solved this by defining a number of namespaces in the cluster and
network policies to block traffic between them. Namespaces can be created
when deploying resources, but due to structure and version control, we
decided to define them as resources in yaml files. The network policies are
defined in one yaml file per rule for better separation.

Thereafter, the platform can be deployed namespaced.

5.6 Application configurations
The separate microservices that make up the sum of the platform are each
configured with a service resource and a related deployment resource.

In the service resource, the metadata and ports are specified. In the
deployment resource, we define the number of replicas desired - in our case,
three, for good mapping with the number of worker nodes in the cluster.
Details such as the Docker image to be used as well as possible environment
variables to be passed to this are also defined here.

5.7 Dealing with redundancy
Over time as the project grew in size and complexity, we started to notice a
rapidly growing problem of duplicated code and redundancy.

The standard way of defining cluster resources works in such a way that
all resources require their own configuration file. In our case, running the
same application(s) with different configurations would have led to the
majority of our configuration files being duplicated. This resulted in a lot of
redundant code, with very tiny differences. This could have been a nightmare
to manage in the end, and probably very time consuming to keep track of.
Mainly if the cluster is used to deploy a multitude of instances of the same
application with minor differences. If for example one change is needed to be
done to the configuration of all instances, then every file for every instance
would have had to be edited. This turned out to be the case with our
prototypes.

The answer to this problem in our case is Helm charts.

5.7.1 Helm charts

Helm enables the creation of dynamic configuration files and the use of

40

variables. Helm is using the Go Template Engine to achieve this, generating
configuration files based on the defined variables. With Helm, we only need
to create one value file per deployment instead of a whole package of the
application. Helm then translates this into configuration files and deploys
them to the cluster. All that is needed is to specify a value file when
deploying, and Helm takes care of the rest.

Our solution involved using a main - so-called umbrella chart - for the
application/platform, with all the required microservices defined as
dependencies in the form of sub-charts. This way, we get a reusable Helm
chart for the application.

5.8 Analysis

5.8.1 Resources
Hardware resources are utilized more effectively with a Kubernetes-based
infrastructure versus the previous solution the company had in place. This
would be beneficial for Sensative due to the money savings that could be
made, and overall beneficial for the environment.

Instead of multiple different and separated servers, each deploying their
own Docker Compose, everything could be deployed more cohesively
through the Kubernetes cluster - using a configured number of dedicated
servers.

5.8.2 Deployment
Previously, the application was deployed on separate servers using unique
Docker Compose-configurations for each deployment. With a Kubernetes
cluster in combination with the chart modeling of Helm, deployment is both
made more automatic and easier. This also leads to less vulnerability to
human errors when deploying. In this project's prototypes, deployment is
done by configuring values-files and using a single helm install-command to
deploy a new instance.

With infrastructure as code and utilizing Helm for configuration files, we
also gain the positive effect of versioning, and in turn, easier rollbacks when
needed. This also leads to better traceability of possible errors.

Sensative would, with these prototypes as a basis, be able to deploy
multiple instances of their application(s) in a single Kubernetes cluster - all
separated and independent by using namespaces. This could, for example, be
deployments to different customers, staging, and production deployments.

Using the plugins for OpenStack - the underlying provisioning used by
Sensative - it is also possible to use dynamic provisioning of volumes for
services that use persistent data, removing yet another manual step of new
deployments. This integration between Kubernetes and OpenStack also

41

enables the use of external load balancers for application instances, making it
possible to assign unique IP addresses for each instance while still being run
on the same servers.

5.8.3 Maintenance
Having all deployments of their application(s) in a cluster gives a vastly
better overview compared to isolated, independent servers. With the use of
the Dashboard GUI in combination with automated processes of the cluster,
everything is easily monitored from a single place, freeing up human
resources and manual labor.

With their current solution, Sensative is forced to use so-called server
guards - meaning, individuals of the staff taking turns to be on call 24/7 if
something were to fail. This is expensive, as it ties up parts of the staff in
periods and requires more money investments. Some form of human server
guard would still be needed if a major failure were to occur, but running a
more robust infrastructure utilizing container orchestration - with multiple
replicas of each microservice - does indeed provide higher uptime of the
application. This means that for minor errors, the server guard response time
is not as critical.

Using Kubernetes, the services can not only be configured to be
self-healing - auto-deploying new instances when crashed - but also run on
several replicas. E.g., a microservice can run with several copies so that if
one fails - it still runs. Running several replicas also provides internal load
balancing of the services. All in all, this removes the problem of
single-point-of-failures on the application layer and between its
microservices, and makes sure high uptime is provided. One
single-point-of-failure still exists in the form of the external load balancers,
but this is still a huge improvement compared to having multiple SPF overall.

The cluster can be configured to run on any number of desired servers -
so-called nodes. Deployed services and their replicas are all spread out over
the nodes. If one node - server - fails, this ensures that the application(s) will
keep running, removing unnecessary and unwanted downtime. Yet again, we
see another possible savings factor: less manual work is needed, and
customers will likely be happier. This could be argued to equal more long
term customers as well as new ones.

42

6 Conclusions and Future Work
6.1 Conclusions
An important realization is that there exists no definite solution to the
problem we set out to “solve”. That is, how to move on to and set up a
Kubernetes based infrastructure. Rather, there are many options and paths to
choose between, with many different factors affecting the final choices.
However, there are some ground rules about different aspects that can be
followed, such as the use of namespaces for platform isolation, using ingress
resources to route web traffic to applications, et cetera.

This could be one of the reasons why we found it to be the case that
guidelines, tutorials and the likes available online were lacking in
information. Every implementation of a Kubernetes cluster is unique, based
on the requirements set and expected use. The more complex of a platform to
be deployed, as well as the more diverse functionality needed of the cluster,
the more complex the configuration and set up of the cluster turns out.

Still, we think that bigger and more general guidelines should be possible
to present. They need not be specified in every minor detail but done in a
(broader) way as to act as a starting point for new configurations of varying
sizes.

We gained some compelling insights and general knowledge about how a
cluster can be configured with some basic concepts in mind through our
research and prototyping with different cluster configurations and
implementations.

Our hope is that even though some platform-specific details are
presented, the resulting guideline and implementation examples we reached
are still in a general enough form to act as a foundation for future
configurations.

6.1.1 Reflections on possible improvements
Even though we reached our goal of implementing a Kubernetes cluster,
gaining a lot of knowledge in the process, we are aware of a number of
possible improvements that could be made. These improvements apply to
both the implementation itself as well as the resulting guideline.

Our implementation could have been tested more thoroughly to for
example observe the behavior under more heavy load, and what implications
that would have on the solution itself. Would the cluster be stable as is, or
would something have to be done differently?

An aspect we only just grazed the surface of is node failure - one of the
servers going down. As one of the incentives for a move to a Kubernetes
based solution is the more automated and self-healing infrastructure
possibilities, correctly configuring the cluster to handle node failures and

43

recovery is of great importance. Testing the implementation of the cluster
while forcing a node failure and observing the behavior of both the cluster
and the applications running on it is something that we could have done
more.

Hand in hand with the above mentioned failure of a node, is the scaling of
a cluster - both horizontal and vertical. We focused more on scaling the
microservices themselves with different numbers of replicas, but lacked in
scaling the cluster itself with trying different numbers of nodes in a live
setting.

Although the tools we ended up using for our prototyping - e.g.,
Terraform, Ansible, rke, nginx-ingress, et cetera - proved useful, we could
have set more time aside to explore the different alternatives available.

The migration pattern could have been explored with more starting points
in mind, and not only assume a previous Docker Compose basis. What would
have to be done if a different containerization technique acted as a base, what
if there is no containerization to begin with? Alternatives such as Docker
SWARM could also have been included more in the prototyping, as well as
prototyping on different cloud computing platforms other than OpenStack.

All in all, there is a lot more knowledge and experience to gain about the
different aspects of Kubernetes that could have benefitted our end result - the
guidelines.

6.1.2 Benefits of the results
The general benefits of the result are to get inspiration of how a Kubernetes
cluster can be installed and configured. It also shows a brief overview of
some tooling available that makes it possible to automate time consuming
steps in the process. By automating we not only save time but also minimize
the human factor of introducing errors, and gives us the ability to version
control our configuration.

Depending on the software intended to migrate to Kubernetes, there are
more specific benefits from the result.

If the intended software is going to be deployed multiple times with
different configurations, Helm will help with minimizing duplicated code and
facilitate the management of the configuration and deployments. We came to
the conclusion that in our use case it could be very difficult to manage and
maintain this type of configuration by only using the default configuration
options. Helm enables the use of value files, which in turn enables a dynamic
way to generate configuration based on these files. In the value file we assign
variables configuration specific values which are used to generate unique
configuration files. This could eliminate a lot of redundant code, and greatly
facilitate maintenance. This also facilitates future needs, as all that is required
for a new deployment is an additional value file. In our use case we found

44

this to be true. For more complex systems where multiple applications or
multiple instances of the same application are deployed, Helm could prove to
be a valuable tool. If the system is of a relatively simple nature, there could
be the risk of over-engineering the implementation with Helm.

Before making the decision to start using Helm, one should be aware that
this will lead to changes in the administrative workflow. The biggest change
is a clear increase in the complexity of the configuration syntax, which
supports both variables and functions to name a few. This allows for very
complex and dynamic configurations, as these configuration files can be
reused - making it possible to deploy the same software several times with
different configurations. This can be done without introducing duplicated
configuration files, which leads to a much more efficient maintenance work.
The biggest contributing factor to this efficiency improvement is the ability to
share configuration files, which provides a highly efficient file structure with
all files gathered in one place.

We must be aware that we are adding another tool in our already
well-filled toolbox, and it will be another tool that we must learn to use.
However, the benefits this provides outweigh all the negatives, and makes it
well worth learning. When operating multiple instances of the same software
with different configurations, we are of the firm opinion that this should be
done with the help of Helm. Without Helm we would have received large
amounts of duplicate configurations which are almost identical. It would also
have made future configuration changes difficult in the sense of error prone,
and time consuming, since it would require editing multiple configuration
files for each desired change.

6.2 Future possibilities
Migrating to a Kubernetes-based infrastructure could be seen as
future-proofing the platform, especially for companies such as Sensative that
already have a microservices-model in place for their application(s). Since it
also likely will lead to less downtime and less manual work in the DevOps
department, it can possibly open up new possibilities for other work.

There are endless possibilities for different solutions in a Kubernetes
cluster. A lot of previously manual work can be configured to be automated.
One example is integrating a pipeline with, for example, Gitlab. This could
be used for automated deployment of new instances when new versions of
services are pushed to the git repository.

6.3 Further work
With this project and what we have found out during it, regarding the tools,
techniques, and possible solutions of implementing a Kubernetes cluster as a
basic foundation, we hope that it could be easier for companies and

45

developers to realize what possibilities and positives it can provide for their
infrastructure. Also acting as a simple starting point and guide, it could make
the initial steps easier.

46

References
[1] "Sensative » Making sense of IoT", Sensative, 2020. [Online]. Available:
https://sensative.com/. [Accessed: 02- Jul- 2020].

[2] "Yggio IoT Interoperability Platform by Sensative", Sensative, 2020. [Online].
Available: https://sensative.com/yggio/. [Accessed: 02- Jul- 2020].

[3] "Overview of Docker Compose", Docker Documentation, 2020. [Online].
Available: https://docs.docker.com/compose/. [Accessed: 08- Jun- 2020].

[4] “Server Scalability Using Kubernetes”, IEEE Xplore Digital Library 2019.
[Online]. Available: https://ieeexplore-ieee-org.proxy.lnu.se/document/9024501
[Accessed: 15-mar-2020]

[5] "Swarm mode overview", Docker Documentation, 2020. [Online]. Available:
https://docs.docker.com/engine/swarm/. [Accessed: 08- Jun- 2020].

[6] “Docker Compose vs Docker Swarm”, linuxhint 2019. [Online]. Available:
https://linuxhint.com/docker_compose_vs_docker_swarm/ [Accessed: 15-mar-2020]

[7] “Docker Compose vs Kubernetes”, stackshare 2020. [Online]. Available:
https://stackshare.io/stackups/docker-compose-vs-kubernetes [Accessed:
15-mar-2020]

[8] “Kubernetes Vs. Docker Swarm: A Comparison of Containerization Platforms”,
VEXXHOST 2017. [Online]. Available:
https://vexxhost.com/blog/kubernetes-vs-docker-swarm-containerization-platforms/
[Accessed: 17-mar-2020]

[9] "Run Kubernetes Everywhere", Rancher Labs, 2020. [Online]. Available:
https://rancher.com/. [Accessed: 02- Jul- 2020].

[10] "Overview of RKE", Rancher Labs, 2020. [Online]. Available:
https://rancher.com/docs/rke/latest/en/. [Accessed: 08- Jun- 2020].

47

https://ieeexplore-ieee-org.proxy.lnu.se/document/9024501
https://linuxhint.com/docker_compose_vs_docker_swarm/
https://stackshare.io/stackups/docker-compose-vs-kubernetes
https://vexxhost.com/blog/kubernetes-vs-docker-swarm-containerization-platforms/

[11] “CNCF Survey: Use of Cloud Native Technologies in Production Has Grown
Over 200%”, CLOUD NATIVE COMPUTING FOUNDATION 2018. [Online].
Available:
[https://www.cncf.io/blog/2018/08/29/cncf-survey-use-of-cloud-native-technologies-
in-production-has-grown-over-200-percent/] [Accessed: 24-mar-2020]

[12] "Virtualization", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Virtualization. [Accessed: 08- Jun- 2020].

[13] "What is Hypervisor and what types of hypervisors are there?", VapourApps
Private Cloud, 2020. [Online]. Available:
https://vapour-apps.com/what-is-hypervisor/. [Accessed: 08- Jun- 2020].

[14] "Microservices", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Microservices. [Accessed: 08- Jun- 2020].

[15] "What is a Container? | Docker", Docker, 2020. [Online]. Available:
https://www.docker.com/resources/what-container. [Accessed: 08- Jun- 2020].

[16] "OS-level virtualization", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/OS-level_virtualization. [Accessed: 08- Jun- 2020].

[17] "What is Container Orchestration? Definition & Related FAQs | Avi
Networks", Avi Networks, 2020. [Online]. Available:
https://avinetworks.com/glossary/container-orchestration/. [Accessed: 08- Jun-
2020].

[18] "docker images", Docker Documentation, 2020. [Online]. Available:
https://docs.docker.com/engine/reference/commandline/images/. [Accessed: 08- Jun-
2020].

[19] "Install Docker Compose", Docker Documentation, 2020. [Online]. Available:
https://docs.docker.com/compose/install/. [Accessed: 08- Jun- 2020].

[20] "Swarm mode key concepts", Docker Documentation, 2020. [Online].
Available: https://docs.docker.com/engine/swarm/key-concepts/. [Accessed: 08-
Jun- 2020].

48

https://www.cncf.io/blog/2018/08/29/cncf-survey-use-of-cloud-native-technologies-in-production-has-grown-over-200-percent/
https://www.cncf.io/blog/2018/08/29/cncf-survey-use-of-cloud-native-technologies-in-production-has-grown-over-200-percent/

[21] "Kubernetes", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Kubernetes. [Accessed: 08- Jun- 2020].

[22] "4. Kubernetes Cluster Architecture and Considerations — Trident
documentation", Netapp-trident.readthedocs.io, 2020. [Online]. Available:
https://netapp-trident.readthedocs.io/en/stable-v19.01/dag/kubernetes/kubernetes_clu
ster_architecture_considerations.html. [Accessed: 08- Jun- 2020].

[23] "Concepts", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/. [Accessed: 08- Jun- 2020].

[24] "Kubernetes Components", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/components/. [Accessed: 08- Jun-
2020].

[25] "Service", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/services-networking/service/. [Accessed: 08-
Jun- 2020].

[26] "Ingress", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/services-networking/ingress/. [Accessed: 08-
Jun- 2020].

[27] "ReplicaSet", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/. [Accessed: 08-
Jun- 2020].

[28] "Namespaces", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/.
[Accessed: 08- Jun- 2020].

[29] "Network Policies", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/services-networking/network-policies/.
[Accessed: 08- Jun- 2020].

[30] "Install and Set Up kubectl", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/tasks/tools/install-kubectl/. [Accessed: 08- Jun- 2020].

49

[31] "Organizing Cluster Access Using kubeconfig Files", Kubernetes.io, 2020.
[Online]. Available:
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfi
g/. [Accessed: 08- Jun- 2020].

[32] "Build the future of Open Infrastructure.", OpenStack, 2020. [Online].
Available: https://www.openstack.org/. [Accessed: 08- Jun- 2020].

[33] "Terraform by HashiCorp", Terraform by HashiCorp, 2020. [Online].
Available: https://www.terraform.io/. [Accessed: 08- Jun- 2020].

[34] "Ansible is Simple IT Automation", Ansible.com, 2020. [Online]. Available:
https://www.ansible.com/. [Accessed: 08- Jun- 2020].

[35] "kubernetes/cloud-provider-openstack", GitHub, 2020. [Online]. Available:
https://github.com/kubernetes/cloud-provider-openstack/blob/master/docs/using-ope
nstack-cloud-controller-manager.md. [Accessed: 08- Jun- 2020].

[36] "kubernetes/cloud-provider-openstack", GitHub, 2020. [Online]. Available:
https://github.com/kubernetes/cloud-provider-openstack/blob/master/docs/using-cin
der-csi-plugin.md. [Accessed: 08- Jun- 2020].

[37] "Web UI (Dashboard)", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/.
[Accessed: 08- Jun- 2020].

[38] "Let's Encrypt - Gratis SSL/TLS-certifikat", Letsencrypt.org, 2020. [Online].
Available: https://letsencrypt.org/sv/. [Accessed: 08- Jun- 2020].

[39] “cert-manager x509 certificate management for Kubernetes”, cert-manager
2020. [Online]. Available: https://cert-manager.io/ [Accessed: 15-mar-2020]

[40] "ClusterIssuers — cert-manager documentation", Docs.cert-manager.io, 2020.
[Online]. Available:
https://docs.cert-manager.io/en/release-0.11/reference/clusterissuers.html.
[Accessed: 08- Jun- 2020].

50

https://cert-manager.io/

[41] "NGINX Ingress Controller for Kubernetes | NGINX", NGINX, 2020. [Online].
Available: https://www.nginx.com/products/nginx/kubernetes-ingress-controller/.
[Accessed: 08- Jun- 2020].

[42] "Helm", Helm.sh, 2020. [Online]. Available: https://helm.sh/. [Accessed: 08-
Jun- 2020].

[43] "Charts", Helm.sh, 2020. [Online]. Available:
https://helm.sh/docs/topics/charts/. [Accessed: 08- Jun- 2020].

[45] "Clustering Guide — RabbitMQ", Rabbitmq.com, 2020. [Online]. Available:
https://www.rabbitmq.com/clustering.html#node-count. [Accessed: 08- Jun- 2020].

51

