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Abstract

Single-board computers as hardware for container orchestration have been a growing
subject. Previous studies have investigated their potential of running production-grade
technologies in various environments where low-resource, cheap, and flexible clusters
may be of use. This report investigates the appliance of methods and processes prevalent
in cluster, container orchestration, and cloud-native environments. The motivation being
that if single-board computers are able to run clusters to a satisfactory degree, they should
also be able to fulfill the methods and processes which permeate the same cloud-native
technologies. Investigation of the subject will be conducted through the creation of
different criteria for each method and process. They will then act as an evaluation basis
for an experiment in which a single-board computer cluster will be built, provisioned,
configured, and monitored. As a summary, the investigation has been successful, instilling
more confidence in single-board computer clusters and their ability to implement cluster
related methodologies and processes.

Keywords: single-board computer, container orchestration, provisioning, configura-
tion, monitoring.
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1 Introduction
This report is written as a degree project for a computer science bachelor’s degree at Linnaeus
University. It is written as a continuation of subjects and courses taught in the program
Utveckling och drift av mjukvarusystem (Development and operation of software systems).
The program encompassed subjects such as container technologies, cloud environments, and
continuous delivery of both infrastructure and software.

The goal of this report is to investigate how tools used for provisioning, configuring, and
monitoring container orchestration clusters behave on low-resource commodity single-board
computers. During the investigation, a Kubernetes cluster will be provisioned onto a cluster of
Raspberry Pis. The provisioned cluster will then act as a basis for the proceeding objectives of
the investigation. Each objective will be investigated by applying one chosen tool in that area
to the single-board computer cluster. For example, in the case of investigating configuration, a
tool like Ansible or SaltStack could be chosen as an investigation basis Multiple tools will not
be investigated or compared in the same category.

The produced artifact by the report and investigation will, if successful, be a reproducible
ready to be provisioned configuration of a single-board computer cluster. Built with Kubernetes
as a container orchestration tool, configured to be fully functional and continuously monitored.

This report grounds itself on the belief that easily provisioned, and shareable clusters
could help the adoption rate of cloud-native technologies by providing small teams or single
developers accessible small scale cluster environments for experimentation, educational,
development, or demonstration purposes. However, for this to hold, the currently unexplored
area in academic studies regarding single-board computer clusters meaning the provision,
configuration, and monitoring steps need to be further investigated.

1.1 Background
Single-board computers (SBCs) often come at a relatively low cost and are commonly used for
demonstration/development systems, educational systems, or embedded computer controllers.
Studies have investigated the suitability of these single-board computers as building blocks for
cluster environments. They have shown that SBCs are sufficiently powerful to run mainstream
workloads such as cluster environments [1], [2].

Much of today’s methodologies regarding the delivery process of software relate to con-
tainer and cluster technologies. Usually, involving the idea of repeatable, reliable, and repro-
ducible artifacts from code commit to deployment in production. Throughout methodologies
such as Continuous Delivery (CD) and Development and Operation (DevOps), considerable
weight is put upon automation, Infrastructure as Code (IaC), Configuration Management (CM),
and monitoring for provisioning and managing the environment in which applications will run
[3], [4]. These methodologies ensure repeatable and reliable systems through confidence in
automated processes kept under version control [3]. Many tools and systems have, therefore,
been developed to solve these kinds of problems. Some examples of these kinds of tools with
various areas of responsibility are Kubernetes, Terraform, Ansible, and Prometheus.

In a survey conducted by the Cloud Native Computing Foundation, the adoption rate of
cloud-native technologies between 2017-2018 had increased in production environments by
200% and by 375% in evaluation environments [5]. Today cloud-native applications, systems,
and tools are widely spread, and cloud providers like Google, Amazon, and Microsoft all
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provide robust container orchestration environments for global production settings. Further
cloud-native applications and infrastructure that are most prominently showcased by Net-
flix have shown that microservice architectures are an effective solution to large, globally
distributed services.

The interest for clusters is, therefore, both present and growing. Furthermore, the interest
has spread beyond the walls of the traditionally large data centers to be something accessible
for niche and specialized environments. Not surprisingly, several academic studies have
investigated the subject [1], [2].

1.2 Related work
The suitability of single-board computer clusters has previously been investigated in academic
studies such as Commodity single board computer clusters and their applications [1] and Next
generation single board clusters [2]. These have shown that SBCs are capable of running
cluster environments but do not focus on the provisioning and configuration of them in an
automated and repeatable manner.

Commodity single board computer clusters and their applications focuses on the real-world
application of SBC clusters. It introduces the concept of clusters powered by commodity SBCs
in various settings. The report investigates different logistical hardware configurations and
deployments, the pros and cons of single-board computing hardware in a cluster environment,
and its relative cost to other solutions. It concludes by remarking the concept of SBC clusters
as good candidates for use cases such as [1]:

• Educational, enabling firsthand interaction with cluster technologies from hardware to
software.

• Edge compute, small commodity clusters could help move computing and storage closer
to the end-user, for example, in rural and remote areas.

• Expendable compute, small commodity clusters could place efficient, cheap, and, there-
fore, expandable clusters in high-risk environments, such as volcanoes.

• Resource constrained compute, the relatively low resource consumption of single-board
computers, and their small size, allow for clusters in constrained environments.

• Next-Generation data centers, large scale server solutions based on the ARM platform
are being investigated and developed as an alternative to current architectures. Single-
board computers, being ARM-based, could provide insight for these future data centers.

• Portable clusters, single-board computer clusters suitability for Edge, Expendable and
Resource constrained compute, allows for small and resource-light portable clusters.

Next Generation single board clusters is a smaller investigation and demonstration of an
SBC cluster by an implementation called Pi Stack. Its goal is to present accessible solutions
for hardware, power distribution, and cluster maintenance. It highlights some of the inherent
risks of SBC hardware contra traditional computers. Storage on SD-cards presents a more
easily corrupted file system, and a fragmented OS selection results in unique security and
performance considerations. Although the investigation highlights some detriments SBC
clusters, it concludes its usefulness in small scale applications [2].

A subject regarding single-board computers and clusters which remains after the in-
vestigation of the studies above is the application of cluster deployment and maintenance
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methodologies. These have been evolving alongside the same cluster technologies, which now
single-board computers are capable of running.

As said while single-board computer clusters are proven candidates for cloud-native
technologies, no academic study has explicitly investigated the combination of single-board
computer clusters and the principles and methodologies applied to their production counter-
parts. As cloud-native technologies are so closely coupled to these methodologies, it would be
incredibly beneficial if these clusters also could realize and adopt them wholly.

1.3 Problem formulation
Now when modern commodity single-board computers have been established as good can-
didates for fully functional container orchestration clusters well suited for development,
demonstration, and educational purposes [1], [2]. They should be investigated and looked
upon not only from a purely technical perspective but also on how well they can facilitate the
processes closely coupled to them.

The development and operation of cloud-native infrastructure and applications have re-
sulted in several practices and methodologies. These adopt the idea of entirely reproducible
resources and artifacts by placing all configuration, management, and deployment under
version control. Principles like Infrastructure as Code and Configuration management are the
basis of Continuous methodologies (i.e., Integration, Delivery), which in turn are crucial to
cloud-native deployment and development [3].

For a further explanation of the underlying methodologies and processes mentioned above
and what kind of problems they aim to solve, see Chapter 2.

A summary of the high-level goals of the combined methodologies are:

• Everything which regards infrastructure and configuration should be version-
controllable.

• Infrastructure and configuration should be fully buildable from scratch, only using files
kept under version control.

• The process of building and configuration should be an automated process.

Therefore, the report aims to investigate the provisioning, configuration, and monitoring
of single-board computer clusters with a focus on the main principles of Infrastructure as
Code and Configuration Management. Examining if single-board computer clusters can be
treated as equals to their production counterparts when commonly used cloud-native tools and
principles are applied to them.

To further explain the investigation which will take place, three guiding research questions
are presented below.

• Question 1: Is single-board computer hardware able to be provisioned to run cluster
technologies according to the principles of Infrastructure as Code?

• Question 2: Are single-board computer clusters able to be configured and applications
deployed unto them according to the principles of Configuration Management?

• Question 3: Are single-board computer clusters able to be monitored to such extent as
to provide useful metrics for the feedback loop of Continuous Methodologies?
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1.4 Objectives
The investigation will be divided into three logical parts provisioning, configuration, and
monitoring and presented as three objectives. The objectives below presents a brief overview
of the goals and examined aspects for the following report. For an introduction to the
underlying concepts and methodologies which motivate the reports work and a more thorough
description of each objective, see Chapter 2.

• Objective 1, Provisioning. Addresses research question 1 by investigating the cre-
ation/providing of resources and infrastructure onto the underlying hardware in an
automated manner.

• Objective 2, Configuration. Addresses research question 2 by investigating the re-
quired configuration for the cluster and application deployments in an automated manner.

• Objective 3, Monitoring. Addresses research question 3 by investigation of the collec-
tion, consolidation, and presentation of data derived from the cluster environment.

1.5 Scope/Limitation
The investigation of all three objectives: provisioning, configuration, and monitoring will be
restricted to a single tool or toolstack. For example, there will not be any comparison between
different provisioning tools during the provisioning objective.

Further, only one kind of single-board computer version will be used to host the cluster,
and the number of nodes will remain constant during the investigation. There will not be any
kind of comparison between different single-board computer setups, versions, or hardware
specifications.

1.6 Target group
The target group for the investigation is developers and operational personnel who are inter-
ested in incorporating Continuous methodologies and related tools into low resource educa-
tional, demonstrative, or developing clusters.

1.7 Outline
The outline for the rest of the report follows the following structure. Chapter 2 contains
an introduction to concepts and principles which build the foundation for the investigation.
Chapter 3 describes and details the chosen method to investigate the problem objectives.
Chapter 4 contains the implementation and evaluation details of the investigation objectives.

Chapter 5 presents the results of the investigation and analyzes them using the evaluation
criteria detailed under Chapter 4. After the analysis comes Chapter 6, a discussion on
investigation findings and how well they fulfill the problem formulation. The chapter also
contains comparisons of the result to other similar investigations.

Finally, Chapter 7 summarizes what has been shown under the project, if the results
are relevant for the problem domain and how generally applicable the result is for future
investigations. There will also be a discussion on what could have been done differently to
achieve better results.
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2 Continuous methodologies

2.1 Processes
Continuous Delivery written by J. Humble and D. Farley identifies the release process of
software as a common point of failure in software development [3]. It is often seen as a
high-risk endeavor. It is an endeavor involving months of work and preparations that culminate
on the release date to an ‘all on the line’ make or break situation. The authors argue that this
traditional way of handling release cycles fails to successfully deliver consistent software
releases and instead only contributes to fear, resentment, and late work hours [3].

One solution to avoid these kinds of problems and to achieve a robust delivery pipeline
are the different but closely related Continuous methodologies. Continuous Delivery is an
engineering approach that focuses on how quickly and reliably any kind of value created can
be available for production. In this context, the value can be defined as anything benefiting the
overall quality of development, or product, for example, code refactoring, bug fixes, or new
system features. Three guiding principles must be implemented into the release process to
break down the traditionally massive releases of software into smaller digestible parts. Three
guiding principles must be implemented into the release process:

• Repeatable, guaranteed repeatability means that automation of the process is required.
• Reliable, a reliable process needs to be well-tested. As it is repeatable, it should have

been executed hundreds of times, proving its reliability.
• Predictable, with a repeatable and reliable process, the output it produces will be

predictable. Which, in turn, should instill confidence in the product of the automated
process.

To achieve a release process that embodies the three guiding principles, version-controlled
automation should be used anywhere possible in the process. This leads to the foundation of
any Continuous process, the configuration management of projects. Continuous Delivery puts
the terms configuration management and version control as synonyms and defines it as the
system in which all changes within the development effort are kept. Importantly the scope of
the configuration management encompasses absolutely everything that is code, dependencies,
software configuration, and environment [3].

Sound configuration management is defined by three key points by Continuous Delivery:

• Encompassing, the current production system should be entirely reproducible from
whats kept under version control.

• Revert-able, any change added to any element contained in the version-control system
should be easily revertible to an older version.

• Consistent, the configuration should always deploy identically configured systems.

2.2 Infrastructure and tools
With the growing adoption of cloud technologies [5], the same principles which drive continu-
ous delivery of software can be applied to the infrastructure. This means that whole production
environments encompassing web servers, databases, and load balancers can be automatically
created from scratch.

5



They are bringing the benefits of repeatability, reliability, and predictability not only to
software but to the underlying infrastructure as well. Nevertheless, there are also challenges
involved in these kinds of infrastructures, challenges similar to those of software delivery. The
infrastructures’ changeable nature can if mismanaged, lead to unmanageable and unrecoverable
states. Resulting in considerable costs in time and resources through unnecessary work in
recovering and managing the infrastructure [6].

The common problems and anti-patterns often identified in dynamic infrastructures are:

• Configuration drift, the configuration of servers starts to drift apart over time, which
results in unmanaged server states.

• Snowflake servers, servers which have drifted so far from their original configuration
that they are no longer replicable.

• Fragile infrastructure, infrastructure which, if disrupted, i.e., failure of a snowflake
server requires significant time and effort to fix.

To combat this and put infrastructure under configuration management, one requirement
stood out, the ability to completely version-control infrastructure. This resulted in Infrastruc-
ture as Code, a process which describes all parts of an environment through definition files.
Definition files enable a provisioning tool to read the definition file(s) and automatically and
reliably produce complete production-ready environments.

In Infrastructure as Code: Managing Servers in the Cloud by Keith Morris, the distinctive
feature of effective teams and tools is their ability to handle changes and new requirements
[6]. High effectiveness stems from the ability to break down requirements into small, low-risk
low-impact pieces, which then can be deployed through a fast delivery pipeline.

Today there is a wide variety of different provisioning and configuration tools available
on the market. Examples of such can be Puppet, SaltStack, Ansible, Terraform, and many
more. It is not always a clear line where provisioning stops and configuration start, or if a tool
is a provisioning tool or a configuration tool. Often a tool realizes both or parts of the other.
However, in essence, all tools have four common traits and goals:

• Source controlled infrastructure for providing audit trails and rollbacks.
• Testable infrastructure, written code can be unit, functional, and integration tested.
• Self-documented infrastructure, through written configuration files with readable

syntax.
• Improved collaboration to support the idea of collaboration between developers and

operators.

An essential part of the cloud-native environment is the container orchestration tool, the
facilitator of portability, scalability, and redundancy. In today’s cloud-native environment,
Kubernetes is by a wide margin the most popular choice of container orchestration technology,
spanning the most dominant cloud providers [7]. Kubernetes is the clear choice of cluster
technology moving forward with the report and investigation as no alternative has a comparable
adoption rate yet.

2.3 DevOps
DevOps is not a clearly defined term but is classified as a collection of different pro-
cesses/practices that try to make the development and operation of software as a cohesive
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experience as possible. Tying the two together (Dev and Ops) to reduce friction in the passing
of software from release candidate to running in a production environment. Importantly
DevOps is not a tool or technology but a set of disciplines regarding documentation, quality
assurance, project management, user experience, and at last configuration management.

The book The DevOps Handbook written by some of the most influential people behind
DevOps Gene Kim, Jez Humble, Patrick Debois and John Willis divide the processes into the
fulfillment of three so-called flows [8]:

• The Principle of Flow, fast flow from idea/code to production.
• The Principle of Feedback, fast information flow from production to code.
• The Principle of Continuous Improvement, building organizational feedback loops

to keep things moving

The principles of Flow and Feedback goes hand in hand with Continuous methodologies
and configuration management. Where configuration management can be described as the
embodiment of the two principles in their real-world application. Figure fig. 2.1 depicts a
simplified view of the DevOps process, which relates to the investigation’s scope. It shows the
circular process which drives a project forward, supported by the ideas of continuous thinking,
version control, monitoring, and more.

Collaborative development using version control builds and tests the application or service
to be. The application is continuously integrated into the main branch of development, and
artifact management allows for easy revert-ability. Continuous Deployment is possible from
working main branch releases to the cluster, which runs the applications in their portable
container runtime. From cluster and containers metrics can be derived, and if required, alerted
on. Metrics form the usage analytics, which ties the process together, allowing the next
iteration of the application to build upon a solid foundation.
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Figure 2.1: Overview of DevOps, model derived and simplified for clarity from IBM Cloud
Architecture [9]
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2.4 Single-board computer clusters
With the widespread adoption rate of DevOps and Continuous practices together with the
growing adoption rate of cloud-native technologies [5]. Development and operation on
production-like clusters as early as possible in the delivery pipeline would be according to and
beneficial to the principles in question. Minimal changes throughout the development, test,
and production environments are essential to keep a delivery process from code check-in to
deployment as lean, error-free, and efficient as possible [3].

Being able to replicate production-like container clusters at a small scale while maintaining
a local hardware deployment provides developers and operations with a fully controlled cluster
environment. These could potentially be a great benefit to the delivery process but could also
provide developers and operation with educational opportunities. As the cloud environment is
so dominated by the processes and methodologies mentioned above, it is important that they
are also applicable to single-board computer clusters. Which would allow similar educational
and demonstrative opportunities for the methodologies as are available for the technologies.

All methodologies and technologies presented in this chapter rely on parts of the continu-
ous and encompassing process, which starts at infrastructure and ends in software running
in production. Provisioning, configuration, and monitoring are all part of this overarching
process, so even though the investigation is limited in scope and mainly focuses on configu-
ration management, it still supports the more encompassing methodologies of DevOps and
Continuous Delivery.

The investigation of provisioning, configuration, and monitoring of SBC clusters will
involve a number of challenges. Mainly which requirement needs to be fulfilled to achieve
a successful result when investigating, for example, provisioning. Does provisioning only
involve a working cluster environment, or should idempotent execution also be a requirement?

While there are several good practices and requirements for configuration management and
Continuous methodologies, there is no single checklist or definition for complete fulfillment.
Several examples of real-world applications of single-board computer clusters and their use-
cases are presented in the study of Commodity single board computer clusters and their
applications [1]. An excerpt from the study includes educational clusters constructed by the
University of Southhampton and the University of Edinburgh. Further, the Free University
of Bolzano has taken single-board computer clusters a step further by deploying a 300 node
cluster for education, research, and deployment purposes of clusters for developing countries
[10]. Single-board computers have, as presented above, a broad range of applicable use-cases.
For the report’s investigation, the focus will lie on problems and goals applicable and usable in
most, if not all, use cases. Therefore by studying the requirements and good practices presented
in literature, more specifically, Continuous Delivery [3] and Infrastructure as Code: Managing
Servers in the Cloud [6] several goals, motivations, and criteria have been constructed for each
investigation objective.

Provisioning

Goal: Automatically initialize a Kubernetes cluster on a given set of single-board computers
with a chosen provisioning tool.
Motivation: Provisioning of infrastructure is an important part of easily replicated and
repeated environments. A requirement for any robust infrastructure solution [6].
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Examined aspects:

• Creation of an inventory/collection with the single-board computers as nodes.
• Connection to the single-board computers as remote nodes.
• Execution of provisioning tool modules on single-board computer nodes.
• Provisioning of Kubernetes resources on single-board computer nodes.

Configuration

Goal: Automatically configure a set of single-board computer nodes to run distributed work-
loads as a cluster with a configuration tool.
Motivation: Repeatable and idempotent configuration of resources is the foundation of con-
figuration management [3].
Examined aspects:

• Continuous management of a single-board computer node inventory/collection.
• Continuous execution of configuration modules on single-board computer clusters.
• Continuous deployment of Kubernetes deployments, services, and jobs on a single-board

computer cluster.

Monitoring

Goal: Examine the collection and presentations of metrics derived from the single-board
computer cluster.
Motivation: Monitoring is an integral part of continuous methodologies, providing metrics
and data which drive both development and infrastructure forward [6].
Examined aspects:

• Collection of single-board computer Kubernetes cluster node and pod metrics and
statistics.

• Storage of single-board computer Kubernetes cluster node and pod metrics and statistics.
• Presentation of single-board computer Kubernetes cluster node and pod metrics and

statistics.

Terminology

From here on out, commonly repeated terms like singe-board computers and Infrastructure as
Code will be shortened. Please refer to the terminology chapter below.

Single-board computer (SBC) Is a complete and fully functional computer built on a single
circuit board, including microprocessor, memory, and I/O.

Infrastructure as Code (IaC) The process of managing and provisioning computer data
centers through machine-readable definition files.

Configuration Management (CM) The process of systematically handling changes to a
system ensuring its integrity over time.

Continuous methodologies (CI, CD) Engineering approaches that focus on how quickly and
reliably any kind of value created by a developer can be readily available for production.
Relies on build and delivery systems that are repeatable, reliable, and predictable [3].
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3 Method
With the goal and examined aspects detailed for provisioning, configuration, and monitoring,
an appropriate method for the investigation can be chosen. As described under Objectives,
the problem domain will be divided into three parts/objectives. The chosen method used
to investigate each of them will be a case study, an up-close detailed examination of each
objective. Each objective will be investigated in the logical order of provision, configuration,
and lastly, monitoring. If the opportunity presents itself, a revisit to an earlier goal for further
investigation and refinement may occur. However, several iterations on the objectives are not
planned for. Instead, the study of each objective is satisfied by a single implementation. See
fig. 3.2 for an overview of the process, which will guide the investigation.

Figure 3.2: Overview of method process

As fig. 3.2 displays, the investigation process is incremental, and each objective is depen-
dant on the preceding. Therefore a small evaluation is conducted after the two first objectives.
These evaluations’ main focus is to ensure the basic functionality required for the next objec-
tive to be investigated. With that said evaluation of Objective 2, Configuration could result
in that monitoring is unfeasible or heavily restricted. This would not halt the investigation
of Objective 3 Monitoring but would change the focus to what is achievable within its set
boundaries. As the report aims to conclude a summary of the three objectives combined
successfulness, that is the foremost concern of the investigation. Derivations and caveats
related to each objective could still result in what is deemed a successful result.
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The evaluation of the objectives will be somewhat open-ended as the investigation includes
some exploratory aspects regarding tool appliances to SBC clusters. Results, implementation,
and evaluation may, therefore, be expanded upon if an unexpected facet of SBC clusters or
applied tools is discovered.

By both ideal and design, the methodologies and tools used in IaC and CM are driven
by self-documenting code, reproducibility, and shareable output. This means that the imple-
mentation naturally will produce artifacts that are readable and testable by an external/outer
part. Conformance to the expected standards of example naming and structure in IaC and CM
will be of high priority during the implementation of the investigation. The machine-readable
definition files will be provided as part of the presentation of the implementation and result
chapters.

3.1 Reliability and Validity
The reliability and validity of the case study’s result can, to a certain extent, be promised as
reproducible artifacts are one of the essential parts of both provisioning and configuration. An
identical hardware configuration, together with the correct version or minor version changes
of software and APIs, should provide reasonable grounds for validation of the implementation.
Moreover, some implementation validity is gained from the machine-readable definition files,
as they can be parsed by linters and used for the actual provisioning and configuration of the
implementation itself.

What could affect the validity of the results is the natural configuration drift that is in-
evitable as time passes and software is updated. The current version of tools and dependencies
are only guaranteed to be relevant for a short while. Although the results may act as useful
guidelines for future versions of the various software involved, again, nothing can be guaran-
teed. If the provisioning, configuration, and monitoring of the cluster are deemed working
with current software versions, it is unlikely that future versions will recess in functionality.
For example, the possibility for provisioning will most likely remain valid for the future, while
the actual definition of the said provision is destined to change.
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4 Experiment
The method detailed in Chapter 3 describes how the general investigation of the clusters
provisioning, configuration, and monitoring will take place. However, before the investigation
can be started, an experiment environment needs to be setup. Moreover, there has to be a
detailing of the characteristics and limitations of the environment. Then with the experiment
environment complete and understood, a scenario for each investigation objective can be
created. The goal of these scenarios is to provide a way of achieving the goal and to cover the
evaluation aspects for each objective detailed in Chapter 2.4.

4.1 Design
The following section describes the implementation specifications of the cluster in terms of
hardware and software. Hardware and software specifications simply describe the hardware
specifications such as CPU cores, memory, and storage. Followed by a quick overview of
the tools and packages used during the implementation, with software versions and short
descriptions. Characteristics and limitations then describes the limitations and expectations
the hardware configuration enables and imposes, i.e., what is possible to replicate and what-
not. Characteristics and limitations also describes which of the design decisions effects the
provisioning, configuration, and monitoring of the cluster.

Figure fig. 4.3 provides a visual representation of the cluster topology, which the evalu-
ation and implementation will produce. The topology depicts the master node running the
Kubernetes master plane and the two worker nodes running the distributed workload of pods,
deployments, and services.

Figure 4.3: Cluster topology

Hardware and software specifications

The model of single-board computer chosen as hardware for the Kubernetes cluster is the
Raspberry Pi version 4 2GB.

Hardware specifications:
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• Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
• 2GB LPDDR4-3200 SDRAM
• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
• Gigabit Ethernet
• 32 GB Micro-SD

Three of these single-board computers will run Ubuntu 19.10 server and together form the
cluster. One of the three single-board computers acting as a control-plane master and the two
remaining as worker nodes.

The table below tbl. 4.1.1 presents the versions of tools and packages used during the
investigation. Software is always changing and updated, and the implementation is, therefore,
heavily dependant on the current limitations of said packages and tools. Problems encountered
during the investigation may be solved in newer versions, or different problems may be present.

Table 4.1.1: Versions of tools and packages.

Package/Tool Description Version

Ansible IT automation engine that automates cloud provisioning,
configuration management, application deployment.

2.9.6

Helm A tool that streamlines installing and managing Kubernetes
applications

3.1.2

kubeadm A tool built to provide best-practice “fast paths” for creating
Kubernetes clusters

1.17.4-
00

kubectl The Kubernetes command-line tool allows execution of
commands against Kubernetes clusters.

1.17.4-
00

kubelet The primary “node agent” that runs on each node in a
Kubernetes cluster.

1.17.4-
00

docker-ce Free and open-source containerization platform. 5:19.03.8~3-
0

docker-ce-cli Command-line interface for interaction with the Docker
daemon.

5:19.03.8~3-
0

containerd.io An industry-standard container runtime with an emphasis on
simplicity, robustness, and portability.

1.2.13-1

Flannel Kubernetes CNI, a virtual network that gives a subnet to each
host for use with container runtimes.

0.11.0

Prometheus An open-source monitoring system with a dimensional data
model, flexible query language, efficient time-series
database.

2.16.0

Grafana Open source analytics & monitoring solution 6.7.1

4.2 Characteristics and limitations
The constructed experiment environment, mainly the cluster architecture, has specific char-
acteristics and limitations which affect what is possible to achieve in it. Tools and software
could also limit the experiment environment, but none of the tools explicitly states limitations
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for ARM platforms even though such could exist. It is, therefore, impossible to predict
these limitations or unexpected facets in the design stage of the environment. The following
characteristics are therefore focused on the architectural side of the cluster.

Capacity

The total compute capacity of the cluster is the sum of all constituent nodes. In this case, the
total capacity is eight cores of processing power and a total of 4GB memory. The master node
does not contribute to the cluster capacity as the count and capacity of masters are considered
a separate concern in Kubernetes cluster architecture [11].

Node size

As mentioned above, the master node size is one, and the worker node size two. One-master-
two-workers setup is the minimal configuration that still provides some hardware redundancy
for a cluster architecture. A caveat is that a second master node is required to replicate a High
Availability (HA) environment, see High availability.

Blast radius

Two worker nodes are a limitation of the cluster, which means that a failing node results in a
loss of 50% of available pods. The blast radius is therefore quite high, and the inherent risk of
the low node count is a capacity shortage if an overbearing pod migration is required. This
should always be in consideration when running demanding cluster workloads. In ordinary
cases, when there is an apt leftover capacity for migration, Kubernetes automatic rescheduling
should be triggered. Exploratory and demonstrative handling of failed nodes should, therefore,
be accessible in the SBC cluster environment.

High availability

High Availability (HA) clusters are clusters which also provides redundancy for its master
nodes. Further, HA clusters should span multiple zones, adding the need for another cluster
for a correct implementation. The bottom line is that the current implementation of the cluster
does not support interaction with a HA environment. However, the setup does not limit future
expansion to a HA environment by virtual, cloud, or local means.

4.3 Evaluation scenarios
Given the experiment environment, scenarios for each objective of the investigation can be
constructed. The goal and motivation for each of these scenarios are as detailed under Chapter
2.4 with the actual implementation. Showcasing the evaluation of each objectives examination
criteria. Chapter 2.4 answered the question of what and why. The scenarios will answer how.
To keep the implementation in line with Chapter 2.4 ’s goals, it needs some direct requirements
fulfilled. First of all, the node count of different clusters may vary from a couple to a hundred
[1]. The implementation of provisioning, configuration, and monitoring will, therefore, always
be able to act on an unknown number of given nodes. Conveniently, the ideals of IaC and
CM and the tools used to realize them works with unknown node counts not only in mid but
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from the ground-up. A correct implementation, given a configuration or provisioning tool,
will be able to act on as many nodes required given apt resources on the master machine.
The translation of evaluation aspects to evaluation criteria, meaning, how each aspect will be
implemented during the investigation, is detailed in Chapter 4.4 below.

Provisioning scenario
Provisioning in the experiment environment will consist of the construction and application of
Ansible playbooks, tasks, and roles. Ansible as a tool will work through an inventory which
exposes the hosts to be nodes of the cluster. Ansible is also an extensive provisioning tool
allowing for multiple facets of the process to be examined. The scenario will begin with the
bare experiment environment, i.e., the three Raspberry Pis in an inventory. Then provided the
evaluation criteria for provisioning the implementation will be guided by them to cover each
criterion while, in the end, produce a Kubernetes cluster ready for configuration.

Configuration scenario
The configuration scenario, also guided by its evaluation criteria will be based upon the
earlier provisioning scenario. Configuration will examine the criteria by joining together the
provisioned nodes to a cluster and then deploy applications and services to it. Ansible will
also be used as the tool of choice for configuration, as it handles configuration of environments
much like it does provisioning. This results in that the implementation of configuration will
consist mostly of Ansible playbooks, tasks, and roles. Deployment of cluster application and
services are also involved. Definition files for Helm and Kubernetes will, therefore, also play
a part in the scenario. The scenario should result in the experiment environment running a set
of monitoring services as a distributed workload on the Kubernetes cluster.

Monitoring scenarios
With monitoring services configured and running in the cluster, their data and presentation
should now be parsable. The monitoring scenario is much more analysis dependant than the
earlier scenarios and will most likely require more discussion if certain evaluation criteria
are achieved or not. This scenario consists of two monitoring solutions and will be divided
into two separate parts. The first scenario is consisting of an evaluation of the Kubernetes
Dashboard (Web UI) service and deployment. And the second evaluation of a full monitoring
stack consisting of data exporters, Prometheus, and Grafana.

The scenario of monitoring through the Kubernetes Dashboard will is focused on the
deployment in question. As the deployment is limited in scope, mostly basic functionality will
be evaluated against the evaluation criteria. Because of its limited functionality, not all criteria
may be relevant.

The full monitoring stack is much more complex and will, therefore, allow for a more
in-depth evaluation of monitoring according to the criteria. The complexness of both tools and
their functionality will impose certain limitations; everything the tools have to offer in terms
of monitoring potential can not be examined. Therefore the scenario will focus on the stream
of data through the whole monitoring stack. Meaning if the chain of gathering, consolidation,
and presentation is working for a sample of metrics, certain assumptions could be made of
similar untested metrics.
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Prometheus and Grafana are two widespread monitoring tools, usually combined in
monitoring stacks as Grafana includes built-in support for Prometheus. The motivation for the
choice of Prometheus and Grafana is the same as the choice of Ansible and Kubernetes. Both
fulfill the need to achieve the investigations goal, and the tools are familiar to the conductor of
the experiment.

4.4 Preparation
Preparation for the experiment is divided into two parts, one preparing tools and dependencies
for implementation and the second creating the evaluation criteria, which will guide both
implementation and analysis of the results.

Environment

Ansible
As Ansible will be used for both provisioning and configuration, it will play an essential part in
the investigation. Ansible requires a master host, which runs its playbooks, as it is an agentless
tool only an installation is required on the master. Ansible is available on all OS platforms,
but as the master used in this investigation runs an installation of Arch Linux, it is installed
through the Arch community repository.

An important note for some Linux distributions and potentially other platforms is that the
Ansible’s k8s module requires an installation of the python dependency OpenShift, available
through example the python package manager pip.

Hardware installation
Hardware installation is not the focus of the report and has previously been subject to inves-
tigation in studies [1], [2]. The description of the preparation of hardware installation will,
therefore, be somewhat brief.

Raspberry Pis are given an SD card as storage with an Ubuntu 19.10 Server installation.
They are then connected to an unmanaged network switch, which in turn connects to a router
for DCHP, gateway, and IP allocation. The clusters hardware installation is now ready for the
investigation, beginning with Ansible’s initial provisioning.

Criteria

Evaluation tools
These are the criteria that the investigation will base itself upon for implementation and analysis.
For a presentation of the result of the evaluation see tbls. 5.1, 5.2, 5.3 under Chapter 5. The
requirements have been derived from studying Continuous Delivery [3] and Infrastructure as
Code: Managing Servers in the Cloud [6] which resulted in the evaluation goals and aspects
of Chapter 2.4. Combined with process facets provided by the functionality of Ansible as a
provisioning and configuration tool. Some criteria will carry over between the three objectives.
These are the basic requirements for tools and processes regarding IaC, CM, and CI/CD; these
include:
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Table 4.4.2: Evaluation criteria for general investigation.

Criteria Verification

Idempotent execution of processes. Repeated execution of modules without side
effects

Automated processes. Full execution of modules without interaction.
Version-controllable resource and
configuration definitions.

Machine-readable implementation output.

Provisioning
Provisioning is the creation of resources and infrastructure in an existing space. In an auto-
mated manner, go from three bare Raspberry Pis to a running Kubernetes cluster. To be able
to provision the cluster unto the hardware, some basic requirements need to be fulfilled and
have been divided into four parts:

Table 4.4.3: Evaluation criteria for Objective 1, Provisioning.

Criteria Verification

Creation of an inventory/collection
with the single-board computers as
nodes.

Automatic execution of low-level modules to
several hosts.

Connection to the single-board
computers as remote nodes.

Automated remote access for provisioning tool to
hosts.

Execution of provisioning tool
modules on the single-board
computer nodes.

Provisioning of OS-level configuration and cluster
dependencies.

Automatic provisioning of
Kubernetes resources on the
single-board computer nodes.

Automatic provisioning of an initialized
Kubernetes cluster.

Configuration
Configuration is whats ties the provisioned infrastructure and nodes together. Master and
worker nodes are joined together to form the actually distributed cluster. Furthermore, unto the
cluster, the tools and services required for monitoring are deployed. After the configuration
step, the cluster should not only be running, and it should have several deployments and
workloads running as well. In terms of a cluster, it should now be ‘complete,’ i.e., fully
capable of hosting web servers, load balancers, and more. The criteria for a functional and
automated configuration of the Kubernetes cluster is divided into three parts.
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Table 4.4.4: Evaluation criteria for Objective 2, Configuration.

Criteria Verification

Continuous management of a
single-board computer node
inventory/collection.

Execution of configuration modules on the
provisioned cluster.

Repeated execution of configuration
modules on the single-board
computer cluster.

Repeated configuration and deployment of modules
on/to the cluster.

Continuous deployment of
Kubernetes deployments, services,
and jobs to the single-board
computer cluster.

Execution of Kubernetes resources to the cluster.

Monitoring
In the last objective of the investigation, the collection of node, pod, and service metrics are in
focus. Is it possible to see the memory usage of all nodes? Can the Kubernetes API be queried
for its version? And more similar questions. Monitoring the SBC based Kubernetes cluster is
divided into three parts.

Table 4.4.5: Evaluation criteria for Objective 3, Monitoring.

Criteria Verification

Collection of metrics and statistics
concerning nodes and pods in an
SBC based Kubernetes environment.

Analysis of monitoring tool(s) output.

Storage of metrics and statistics
concerning nodes and pods in an
SBC based Kubernetes environment.

Analysis of monitoring tool(s) storage convention.

Presentation of metrics and statistics
concerning nodes and pods in an
SBC based Kubernetes environment.

Analysis of monitoring dashboard deployment and
functionality.

4.5 Implementation
The evaluation criteria and their process of verification allow for the implementation of the
three investigation objectives to begin. Each implementation is presented with an overview of
the process followed by its procedure.

Provisioning

Overview

The goal of the provisioning evaluation is to have the three Raspberry Pis ready for attachment
to a common cluster, which is then able to run a distributed workload. The provisioning will
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be automated and defined with the tool Ansible. The evaluation will be guided by three loosely
defined categories; these are:

• OS Level, what is the required provisioning for running a Kubernetes cluster and its
dependencies on an SBC.

• Dependencies, what is the required provisioning for the dependencies of the Kubernetes
cluster.

• Kubernetes, what is the required provisioning for the initialization of the Kubernetes
cluster.

After said categories have been evaluated and implemented, there should be one host
provisioned as a master node and the two remaining hosts provisioned as workers.

Procedure

The tool chosen for the implementation of the provisioning objective is Ansible. Ansible is an
agentless provisioning and configuration tool which connects to nodes by the SSH protocol. In
terms of accessibility, both of these features dramatically reduce any pre-provisioning require-
ments. As the chosen operating system Ubuntu 19.10 Server comes with SSH functionality
built-in, only a master machine with an Ansible installation is required to start provisioning.
Ansible’s definition files are divided into playbooks and roles, both written in YAML. The
provisioning of the SBCs will be loosely divided into three steps or layers mentioned under
Overview.

OS level

Out-of-the-box the Raspberry Pi 4 2GB with Ubuntu 19.10 Server as the operating system
comes with a varied selection of pre-installed packages. As mentioned above, SSH connectivity
is the only dependency for provisioning by an Ansible master. The types of host inventories
which Ansible is able to provision to, both dynamically loaded and statically typed alternatives
are supported. A static inventory will be used during this investigation as the node count
is low and manageable. Frequent node additions and subtractions will be unlikely in small
educational, demonstrative, or developing clusters. As the node count is limited by physical
hardware, a dynamic inventory solution would be somewhat redundant. The choice between a
static or dynamic inventory should not impact the result of the provisioning as it is a more tool
related issue than a cluster related.

Static IP-addresses are created and allocated to each Raspberry Pi, and the static inventory
can be implemented. Named by convention [12] production.yml, the inventory contains
the three hosts divided into two roles: masters and workers. A complete architecture playbook
(called cluster.yml) is created, which in turn imports two sub-playbooks called masters
and workers.

There are some specific OS-level configurations that have to be done in order for a
Kubernetes cluster to be fully operational. These requirements are:

• Swap space and paging need to be disabled.
• Kernel module Control groups (cgroups) must be active.
• Iptables must use its legacy drivers and not rely on nftables.
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• Package repositories must be available over HTTPS.
• Every host needs to have a unique hostname.

Each of these requirements needs to be handled in one or more tasks in the implementation.
There are also some optional steps which will be implemented, these are:

• SSH password authentication will be disabled.

Dependencies

The only binary dependency for Kubernetes is a Container Runtime Interface (CRI). There are
some options to choose from, but Docker is the most commonly used CRI for Kubernetes and
is, therefore, a prime candidate.

Docker comes with its own set of requirements:

• Access to the Docker repository.
• A running Docker daemon.
• A running Docker service.

The actual installation of the Docker packages is handled by the OS package manager.
These results in the addition of three packages:

• docker-ce
• docker-ce-cli
• containerd.io

Kubernetes

To access the Kubernetes binaries, the external Kubernetes repository needs to be accessed.
The installation of Kubernetes related packages results in the addition of three new packages:

• kubelet
• kubeadm
• kubecli

The provisioning needs will differ from master and worker nodes. Foremost, the master
nodes are required to have a Container Network Interface (CNI) deployment running. Without
a CNI, the cluster would be unable to operate correctly as no internal network traffic could be
sent or received.

The Container Network Interface (CNI) chosen for the Kubernetes cluster is Flannel
developed by CoreOS. There is a wide variety of CNIs available for Kubernetes. In terms
of the required setup for a working deployment, Flannel is quite minimal. If bleeding-edge
performance was of great importance, the choice of CNI could be a lengthy process. Choosing
Flannel is part of the exploratory process of the implementation, as mentioned under Method.
Again provisioning of any other CNI would mean different configuration, but the provisioning
itself would be somewhat similar.

The requirement for a functional Flannel deployment is an initialized Kubernetes cluster
with a Classless Inter-Domain Routing (CIDR) in the range of 10.244.0.0/16 for the
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pod network. In terms of provisioning contra configuration, the CIDR specification could fall
under both categories, but as it is part of cluster initialization its placed under Provisioning.

After implementing the three steps OS level, Dependencies and Kubernetes the SBC
Kubernetes cluster should be fully provisioned and ready for Configuration.

Configuration

Overview

The Configuration step will include several different tasks divided into two categories.

• Cluster configuration, joining of nodes and cluster management.
• Pod and service deployments, deployment of Kubernetes pods and services.

The goal of the implementation of the configuration is to make interaction with the Kuber-
netes control-plane easier as well as the installation of the required pods for the Monitoring
objective. Configuration will be realized by a combination of Ansible plays/tasks and Kuber-
netes deployments. After the evaluation, the cluster should be running a distributed workload
of monitoring services that collect and is able to present different metrics derived from the
cluster.

Procedure

Cluster configuration

The process of joining master and worker nodes together in a cluster requires the creation of
administrative tokens for the master node. The token can, after that, be shared with the worker
nodes, which authenticates with the given token against the master. This is all handled by the
package kubeadm. However, the token exchange requires storage and transfer of the token
and some other parameters to work in an automated manner.

To make interaction with the Kubernetes master-plane more accessible, the master node
will be configured to allow the standard user to access the Kubernetes configuration file. This
will allow for interaction with the cluster without root privileges.

Further configuration of the hosts will include the holding/marking of the installed Kuber-
netes packages. As Kubernetes requires special attention when upgrading packages [13], this
ensures continued stability when configuring other parts of the hosts.

In terms of cluster configuration, the cluster should now be ready to run pods, deployments,
and services as expected in a Kubernetes cluster. Utilizing the two worker nodes for hardware
redundancy and workload distribution.

Pod and service deployments

The Kubernetes deployments which will be part of the base configuration of the cluster are:

• A cluster monitoring deployment
• A node and pod monitoring stack, which includes:

– Gathering
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– Consolidation
– Presentation

Cluster monitoring will be handled by the deployment of Kubernetes Dashboard (Web
UI). For proper interaction with the monitoring deployment, both a service account
and a cluster role binding needs to be created in the Kubernetes cluster. As the
deployment will create a new namespace called kubernetes-dashboard, the service
account is required to access the dashboard with unimpeded access. A separate role called
kubernetes-dashboard utilizing Ansible’s k8smodule is therefore created to automate
the needed cluster configuration. With the pods for the Kubernetes Dashboard up and running,
the monitoring service can be accessed by the token associated with the service account
previously created.

The node and pod monitoring stack will consist of the following tools:

• Node exporter, Prometheus exporter for hardware and OS metrics exposed by *NIX
kernels.

• Kube state metrics, Prometheus exporter, which listens to the Kubernetes API server
and generates metrics about the state of the objects.

• Prometheus, collects metrics from configured targets at given intervals, evaluates rule
expressions, displays the results, and trigger alerts.

• Grafana, allows queries, visualizations, alerts, and interactions with data metrics
independent from data storage.

In short, in this stack Node exporter exposes the metrics which Prometheus consolidates
and Grafana presents. For ease of deployment of the monitoring stack, Helm the package
manager for Kubernetes can be utilized. Helm allows for Kubernetes deployments and services
to be directly applied to a cluster without the need of writing custom definition files. Instead, a
version-controlled repository with stable and official deployments often written by the tools
developers themselves can be used. Any configuration needed for the deployment/service can
be applied either in Helms installation command or as preferred provided as an accompanying
standalone configuration file.

Deployment of Helm packages (called Charts) is easy, usually consisting of nothing
more than a single command. It is here when deploying the Prometheus chart; an imple-
mentation problem is encountered. One of the metric exporters kube-state-metrics
is not runnable on arm platforms. Further investigation on this issue reveals that the re-
compilation of the exporter’s source code makes it compatible. However, recompilation
and distribution of a custom deployment would stray away from the original goal of this
investigation. Therefore, the decision is made to configure the Prometheus chart to exclude
the kube-state-metrics exporter and focus on the metrics available through the other
exporters.

Prometheus includes a local on-disk time-series database, but can also integrate with
remote storage systems. In this implementation, long-term storage is omitted altogether, as a
robust storage solution involves further hardware additions to the cluster.

The cluster configuration is now fully implemented, with a distributed workload running
the required deployments needed for Monitoring.
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Monitoring

Overview

Monitoring will evaluate if the two monitoring solutions’ collection and presentation of
different metrics are functional and working correctly. When evaluating the monitoring
stack, its limitations and extendability will also be analyzed. Compared to the two preceding
evaluation objectives Provisioning and Configuration, this objective is less black and white in
its requirements and more analysis dependant. Evaluation of the cluster monitoring is divided
into two categories:

• Kubernetes Dashboard, functionality of metrics collected and presented by the Web
UI deployment.

• Monitoring stack, functionality of metrics and presentation of the monitoring stack.

Procedure

The Kubernetes Dashboard (Web UI) deployment is a preset solution providing a quick
overview of Kubernetes clusters. Its neither very configurable or functionality heavy compared
to custom solutions. This means it does not require any implementation during this objective
and is ready for analysis straight away.

Proceeding to the custom monitoring stack. As mentioned under Configuration of Pod
and service deployments, Prometheus includes a local on-disk time-series database, but also
optionally integrates with remote storage systems. Configuration can also be made to skip
long-term storage of data altogether. In this implementation, long-term storage is omitted, as a
robust storage solution involves further hardware additions to the cluster. The lack of storage
of collected metrics does not impede the immediate collection and presentation of them. Also
mentioned, data from the metrics exporter kube-state-metrics will not be available for
monitoring in the current implementation. This means that metrics will primarily be derived
from Node exporter.

Prometheus consolidates metrics and allows for a vast number of querying options. Com-
mon queries that will be implemented in the evaluation of the clusters monitoring are CPU
utilization, memory usage, and HTTP requests. As for more cluster-specific queries, the count
of pods and nodes will be monitored.

Writing queries for Prometheus is done by what is called PromQL. As Grafana handles the
presentation of metrics, the PromQL queries are written and queried from the Grafana client
and associated with different visual representations i.e., graphs and gauges. Dashboards created
with different visualizations can be exported in JSON, which makes them version-controllable.

The monitoring of the cluster is now fully functional, providing an overview of different
aspects of the cluster itself and the workloads running within it.
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5 Result analysis
The following chapter evaluates the result from the conducted experiment of provisioning,
configuration, and monitoring of SBC clusters in Chapter 4. Each objective is presented along
with an overview of both its implementation and results according to the criteria. After the
overview is a motivation for each criterion and its result. The criteria are the same as detailed
under Chapter 4 in tbls. 4.4.2, 4.4.3, 4.4.4, 4.4.5. Lastly, Section 5.4 summarizes the result of
the combined objectives as a whole.

5.1 Provisioning
Result

The result of the provisioning objective is three Ansible playbooks called Ubuntu, Docker, and
Kubernetes. Each playbook handles a different part of the provisioning steps. Figure fig. 5.1
provides an overview of the parts and appliance of the implementation unto the cluster. Where
the Ansible master provisions the different roles to all of the available hosts in the production
inventory.

Figure 5.1: Overview of provisioning implementation

Analysis

The provisioning objective criteria are presented below, along with the reason for its deemed
success or failure. Table tbl. 5.1 gives an overview of each criterion evaluated during the
investigation of the provisioning step.
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Table 5.1: Result of provisioning evaluation.

Criteria Verification
Result
(OK/FAIL)

Idempotent execution of
processes.

Repeated execution of modules without side
effects

OK

Automated processes. Full execution of modules without
interaction.

OK

Version-controllable resource
and configuration definitions.

Machine-readable implementation output. OK

Creation of an
inventory/collection with the
single-board computers as
nodes.

Automatic execution of low-level modules to
several hosts.

OK

Connection to the
single-board computers as
remote nodes.

Automated remote access for provisioning
tool to hosts.

OK

Execution of provisioning
tool modules on the
single-board computer nodes.

Provisioning of OS-level configuration and
cluster dependencies.

OK

Automatic provisioning of
Kubernetes resources on the
single-board computer nodes.

Automatic provisioning of an initialized
Kubernetes cluster.

OK

Idempotent execution of processes

Verified by repeated execution of modules without side effects. Given correctly written
definition files, it does not seem to be any side effects when executing the provisioning
modules unto the hosts. Ansible successfully detects and returns changed and skipped values
depending on the status of existing or non-existent resources.

Automated processes

Verified by full execution of modules without interaction. Deemed successful, the provisioning
step does not require any user input between initialization and completion. In case of a process
critical error, execution halts allowing for error handling or repeated execution.

Version-controllable resource and configuration definitions

Verified by machine-readable implementation output. Successful, all configuration needed for
the Raspberry Pis to be able to run a Kubernetes is placable in definition files and, therefore,
able to be kept under version control.
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Creation of an inventory/collection with the single-board computers as nodes

Verified by automatic execution of low-level modules to several hosts. Successful, low-
level modules such as ping can be run against the collection of hosts providing independent
responses and statuses of each host.

Connection to the single-board computers as remote nodes

Verified by automated remote access for provisioning tool to hosts. Connection to the hosts as
remote nodes is related to the previous criteria. Now instead of pinging the hosts, access to
them with root privileges is requested, allowing for actual configuration of the machines. No
problems are encountered during verification of the criteria.

Execution of provisioning tool modules on the single-board computer nodes

Verified by provisioning of OS-level configuration and cluster dependencies. Successful, both
the Ubuntu and Docker playbooks are able to properly install and configure the hosts for a
proceeding Kubernetes installation.

Automatic provisioning of Kubernetes resources on the single-board computer nodes

Verified by automatic provisioning of an initialized Kubernetes cluster. This step was able to be
completed without any complications. Both initialization of a Kubernetes cluster with a given
CIDR and given CNI deployment was successful. Providing a fully functional Kubernetes
cluster ready for configuration.

5.2 Configuration
Result

As the configuration is split into two parts, the implementation is presented in two separate
figures figs. 5.2, 5.3. The first figure fig. 5.2 depicts the configuration of the cluster to be
configured to its one master two worker architecture. Allowing for hardware redundancy and
distributed workloads.

The second figure fig. 5.3 depicts the configuration of the clusters running deployments.
Instead of functioning as the previous provisioning and configuration against the hosts. The
configuration is now directly applied to the Kubernetes cluster.

Analysis

For an overview of the result for the evaluation of the configuration, objective see tbl. 5.2.
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Figure 5.2: Overview of the cluster configuration implementation

Figure 5.3: Overview of the pod and services configuration implementation
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Table 5.2: Result of configuration evaluation.

Criteria Verification
Result
(OK/FAIL)

Idempotent execution of
processes.

Repeated execution of modules without side
effects

OK

Automated processes. Full execution of modules without
interaction.

OK

Version-controllable resource
and configuration definitions.

Machine-readable implementation output. OK

Continuous management of a
single-board computer node
inventory/collection.

Execution of configuration modules on the
provisioned cluster.

OK

Repeated execution of
configuration modules on the
single-board computer
cluster.

Repeated configuration and deployment of
modules on/to the cluster.

OK

Continuous deployment of
Kubernetes deployments,
services, and jobs to the
single-board computer
cluster.

Execution of Kubernetes resources to the
cluster.

OK

Idempotent execution of processes

Verified by repeated execution of modules without side effects. The Ansible playbooks
constructed for the configuration objective behave as those created during provisioning.
Depending on how they are written, repeated execution without side effects is easily achievable.
The Helm charts and Kubernetes deployments applied to the cluster also works as expected
against any other cluster environment. Successfully detecting already present deployments of
applications and services, handling such cases accordingly.

Automated processes

Verified by full execution of modules without interaction. Successful, Ansible is able to both
configure the cluster and execute Kubernetes related commands automatically using predefined
definition files. Allowing a completely automated process.

Version-controllable resource and configuration definitions

Verified by machine-readable implementation output. Ansible playbooks, tasks, and roles are
all version-controllable. It is more interesting that all configuration of services and applications
deployed also could be put in separate definition files. Making both deployment of and the
applications internal configuration version-controllable.
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Continuous management of a single-board computer node inventory/collection

Verified by execution of configuration modules on the provisioned cluster and deemed suc-
cessful. The configuration of the cluster allows for continued management of it, even after
its initialization. Access to cluster nodes and Kubernetes API can be shared through the
administrative configuration file of the cluster to external machines. Allowing for execution of
modules unto the cluster from inside and outside the cluster.

Repeated execution of configuration modules on the single-board computer cluster

Verified by repeated configuration and deployment of modules on/to the cluster. Even after
its initialization, the cluster can be further configured, for example, by joining of additional
nodes to the cluster.

Continuous deployment of Kubernetes deployments, services, and jobs to the single-
board computer cluster

Verified by execution of Kubernetes resources to the cluster. The Kubernetes cluster operates
as expected, allowing new deployments and services to be applied and deleted as wished.
Further, while using Helm as a deployment tool, incremental deployments and rollbacks are
available for any future deployments of applications. The criteria are, therefore, fulfilled and
successful.

5.3 Monitoring
Result

Monitoring of the SBC cluster is, as mentioned, implemented in two scenarios, both present
in fig. 5.4. Scenario one regarding the Kubernetes Dashboard is represented by the single
application listening in on the Kubernetes control plane.

The more advanced monitoring stack is represented by the three tools which deal with
different areas of responsibility. The general flow of metrics can be seen in the fig. 5.4 with
Node exporter gathering metrics from the two worker nodes and passing them forward in the
stack.

Analysis

Table tbl. 5.3 provides an overview of the result of each criterion for the monitoring objective.

Table 5.3: Result of monitoring evaluation.

Criteria Verification
Result
(OK/FAIL)

Idempotent execution of
processes.

Repeated execution of modules without side
effects

OK

Automated processes. Full execution of modules without
interaction.

OK
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Criteria Verification
Result
(OK/FAIL)

Version-controllable resource
and configuration definitions.

Machine-readable implementation output. OK

Collection of metrics and
statistics concerning nodes
and pods in an SBC based
Kubernetes environment.

Analysis of monitoring tool(s) output. OK

Storage of metrics and
statistics concerning nodes
and pods in an SBC based
Kubernetes environment.

Analysis of monitoring tool(s) storage
convention.

OK

Presentation of metrics and
statistics concerning nodes
and pods in an SBC based
Kubernetes environment.

Analysis of monitoring dashboard
deployment and functionality.

OK

Idempotent execution of processes

Verified by repeated execution of modules without side effects. Most applicable to Objective
1 and 2, the idempotent execution of processes is somewhat limited in the monitoring step.
Further, the line between monitoring and configuration is blurred in this regard. Nevertheless,
no apparent side effects can be observed in the execution of either monitoring solution.

Automated processes

Verified by full execution of modules without interaction. Successful, no user interaction
is required for monitoring. Complete dashboards and metric collection/presentation are
configurable in predefined definition files.

Version-controllable resource and configuration definitions

Verified by machine-readable implementation output. When applicable, as in case of the
monitoring stack, all configuration is conducted through definition files. For example, exclu-
sion of the Kube state metrics exporter in the deployment of Prometheus as well as
dashboards and graphs in Grafana.

Collection of metrics and statistics concerning nodes and pods in an SBC based Kuber-
netes environment

Verified by analysis of monitoring tool(s) output. Deemed successful with an important
caveat. Both the Kubernetes Dashboard and the monitoring stack is fully functional in its
collection of cluster metrics through their available exporters. Though the Kube state
metrics exporter is not natively supported on arm64 platforms. This means that while
metrics collection is possible, not all metrics may be available for monitoring. The issues and
implications of this caveat are discussed in Chapter 6.
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Figure 5.4: Overview of cluster monitoring

Storage of metrics and statistics concerning nodes and pods in an SBC based Kuber-
netes environment

Verified by analysis of monitoring tool(s) storage convention. Storage of the collected metrics
can be automatically configured to suit the SBC cluster’s need. In the experiment environment
where no long-term storage is present, a configuration can be made to Prometheus time-series
database to work continuously without long-term storage through definition files. The criterion
is therefore successful as it can be tailored to fit the SBC cluster needs without manual
intervention.

Presentation of metrics and statistics concerning nodes and pods in an SBC based Ku-
bernetes environment

Verified by analysis of monitoring dashboard deployment and functionality. Grafana can
successfully present all metrics queryable through PromQL. No apparent limitations seem
to be present in its presentation capabilities on arm64 platforms or SBC clusters. All
configuration and dashboards are also available for specifications in definition files. Allowing
complete monitoring solutions to be constructed and shared before deployment.

5.4 Findings
Summarizing the three objectives evaluation, the conclusion can be drawn that according
to the criteria the experiment was a success. As Chapter 4.4 in table tbl. 4.4.2 stated, some
criteria would be applicable to all objectives, in this case, idempotent execution, automated
process, and version-controllable definitions. All the objectives fulfilled the general require-
ments. Further, every objective specific criteria have been deemed satisfactory according
to their respective verification process. Only the collection of metrics and statistics during
the monitoring step holds a point of contention, as mentioned in its motivation discussed in
Chapter 6.
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Nevertheless, every evaluation criteria have been fulfilled to a satisfactory degree, which
could point to SBC clusters being good candidates for educational and demonstrative oppor-
tunities regarding DevOps, configuration management, and continuous methodologies. This
subject is discussed in detail in the following Chapter 6.
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6 Discussion
Analysis according to the criteria and results presented in tbls. 5.1, 5.2, 5.3 under Chapter
5 shows that all verification steps are deemed successful. It is important to realize that
the investigation is limited in scope and cannot be interpreted as a comprehensive or final
conclusion on SBC clusters and the possibility of applying continuous methodologies unto
them.

What can be concluded is the possibility of further investigations on the matter based upon
the results of this investigation. In the following discussion, the experiment will be discussed
as a whole and not in terms of the three objectives.

In Chapter 1, the problem which would act as a base for the investigation was formulated
as the following. Examining if single-board computer clusters can be treated as equals to their
production counterparts when commonly used cloud-native tools and principles are applied to
them. Using the original formulation, the experiment have investigated SBC clusters with the
perspective of DevOps, configuration management, and continuous methodologies.

Beginning with the high-level goals of both the processes and methodologies as well as
the experiment.

• Everything which regards infrastructure and configuration should be version-
controllable.

• Infrastructure and configuration should be fully buildable from scratch, only using files
kept under version control.

• The process of building and configuration should be an automated process.

The three goals have all been fulfilled during the investigation, from the provisioning of
the SBCs to monitoring them. By using the same tool for provisioning and configuration,
the certainty of properly handled configuration for both have been somewhat guaranteed.
Monitoring has relied upon Kubernetes deployments and Helm chart definitions of applications
and services, which are built with the three points above in mind. Also, the configuration
of the monitoring stacks different parts such as service configuration, metric storage, and
presentations of graphs have been put under version control.

Building upon those as a foundation, the tools used to realize the cluster’s configuration
management, mainly Ansible, have been flawless in its execution unto the hardware and hosts.
The agentless nature of Ansible may very well be a contributing factor to this, though not
by any means proven as no provisioning or configuration tools which use agents have been
tested. Though the reduced complexity of operation removes one potential point of failure.
The experiment did not have a specific provisioning/configuration tool in mind, and the choice
of Ansible was because of familiarity and execution model. Would the result of the experiment
be different given another tool for provisioning and configuration? Possibly yes, it is not
possible to determine if the experiment was successful out of sheer luck by choosing Ansible
or if it would have remained the same with another tool. Nevertheless, with Ansible’s success,
at least one point of reference has been created for future investigations with other tools.

Looking at the basic building blocks of the cluster, the Raspberry Pis and Ubuntu 19.10.
There have not been any apparent problems due to hardware or operating system, which
speaks well for the interchangeable nature of container technologies in general. This is
more of confirmation on previous studies [1], [2] than a new finding, but still a point worth
mentioning.
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6.1 Cluster and experiment improvements and problems
The first question that will be discussed concerns the investigations experiment. In retrospect
what could be improved, done differently or be the basis for future investigations?

In terms of hardware, there is almost an endless amount of combinations and additions
available. Most likely, no cluster configuration would be the same if compared with each
other. Long-term storage remains an unexplored facet of the SBC cluster which could impose
different complications into the equation. Furthermore nodes, especially master nodes, opens
up a lot more experimentation in terms of high availability och hardware redundancy. The
Raspberry Pi 2GB version chosen as a basis is neither the most powerful SBC available or
the most limited. Both ends of the spectrum would be candidates for a deeper dive into SBC
clusters.

Moving on to software, an equal amount of investigation is left as with hardware. The
possible variations and possibilities given the vast amount of software leave room for almost
endless investigations. The software chosen for this investigation is at least capable of
proving that the concepts can be applied to SBC clusters and provisioning, configuration, and
monitoring. Is Ansible the be-all and end-all solution for provisioning and configuration? No,
but it is a widely used tool in the problem domain that successfully competes with similar
tools on the market. Likewise can be said about the monitoring stack using Prometheus and
Grafana as building blocks. The point is that now, with some tools investigated as part of
provisioning, configuration, and monitoring, another tool can be evaluated against it. For
example, would SaltStack provide improvements to the provisioning and configuration of
SBC clusters compared to Ansible? If so, what kind of benefits would they be? Furthermore,
does the tool, therefore, handle the arm64 platform better or worse than the other?

Given that the implementation and experiment environment could be forever modified for
improvement, what in the current implementation provides apparent problems that need to
be solved? This is mainly answered by the missing exporter for monitoring of the running
cluster. Missing the kube state metrics exporter is a sore point in the cluster, it does
question if the cluster is adequately monitored. Both node exporter and kube state
metrics are useful in the context of monitoring, but they have also been created to fill
different roles in cluster monitoring. This results in that there is a noticeable gap in the data
metrics exposed to the overlying applications of the monitoring stack. Does the missing
exporter create a make-or-break situation? Again no, monitoring can still take place, though
in a limited form. Furthermore, it is of interest to remember that a recompilation of the kube
metrics exporter source seems to be a solution to the problem, allowing for complete
metrics.

The encountered problem raises an interesting point about SBC clusters, where lies the
responsibility or blame for tool compatibility? Is it the platform that restricts the choice of
tools and functionality? Or should the tools be changed or redistributed as in this case with
the arm64 platform in mind? Maybe as cloud-native technologies continue to grow [5] and
the demand for SBCs as cluster hardware increases [1], [2], these rough edges will naturally
smoothen with time and increased visibility.
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6.2 Demonstrative and educational opportunities
Do SBC clusters provide demonstrative and educational opportunities for DevOps and config-
uration management? Absolutely, given both the prospects of the experiment result as well
as personal experience implementing the cluster, there have been plentiful of educational
opportunities. I would argue that SBC clusters fully allows for educational and demonstrative
possibilities regarding configuration management and continuous management.

Where support and possibilities may lack, the SBC cluster still fulfills enough of the
problem domain that the lack of example kube state metrics can be noticed, discussed,
and evaluated. Moreover, as provisioning and configuration of SBC clusters seem to be fully
functional when it comes to automation and version control. The potential accessibility of
sharing and spreading SBC clusters to new people seems very high. Even if provisioning,
configuration, and monitoring are of no interest to a developer, he/she could have a fully
functional cluster automatically deployed within half an hour for running containerized
applications. Reiterating on points made by [5], the results could increase the adoption and
growth of cloud-native technologies further. Not only in professional settings but also with the
low cost of SBCs allow for an easily accessible cluster for home use as well.

6.3 Findings in relations to related work
Do the results cohere with other academic studies in the same area? Looking mainly at the
studies with SBCs as focus [1], [2], the result of this experiment seems to align with their
drawn conclusions. SBC clusters are capable of running cluster workloads without a problem
and provide the same capabilities when applying conventional processes and methodologies
unto them. No facets of SBC clusters have been discovered during the experimentation that
would challenge the result of either study.

As mentioned earlier, even though the conducted experiment only scratches the surface of
container orchestration, tools, and single-board computers, it can hopefully still act as a small
point of reference for other similar studies and investigations.
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7 Conclusion and Future work
The report has covered the investigation and experimentation of single-board computer clusters
and their appliance to popular cloud-native methods such as DevOps, configuration manage-
ment, and continuous methodologies. A cluster was constructed with three Raspberry Pis as
nodes and then had a Kubernetes cluster with an accompanying monitoring stack automatically
and fully configured provisioned unto it.

During the work, tools like Ansible, Helm, Prometheus, and Grafana was used and applied
to the cluster to investigate the actual implementation of the methodologies. The results of the
experiment were by majority positive and the investigation an overall success. Combining the
results, a conclusion can be drawn that configuration management and continuous methodolo-
gies can be applied to single-board computer clusters without difficulty. However, there is still
room for improvement when it comes to some tool compatibilities and the arm64 platform.

The most obvious continuation based on the report’s findings is to apply the provisioning
and configuration on a larger scale. Proving or disproving the actual accessibility of the
results by sharing them and applying them to a large number of other single-board computer
clusters. If the experiment itself would be continued and the work expanded, my opinion is
that the environment should be expanded with another master node and a long term storage
solution. Both of those would build upon the existing work and enable investigation of some
unexplored cluster facets. Another master node would allow for a High Availability cluster and
quite advanced pod migration and disaster scenario investigations. Long-term storage would
allow for advanced logging services supplementing and expanding upon important cluster
monitoring and management facets. Further, long-term storage would allow for investigations
regarding conventional databases, database migrations, and database connectivity.

In the broader perspective of future work, there are a plethora of options available spanning
from hardware choice to cluster specifics such as CNIs and CRIs. Provisioning, configuration,
and monitoring are also three subjects that deserve investigations of their own. Tools can be
compared, configuration can be benchmarked, and monitoring can be set up as a complete
production-ready solution. Container orchestration and its related methodologies span such a
large area that ideas and possibilities for future work are seemingly endless. The future for
single-board computer clusters seems to be bright, and soon maybe they can be equivalents to
their data center counterpart.
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