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Background: Mobility and balance is essential for older adults’ well-being and

independence and the ability to maintain physically active. Early identification of functional

impairmentmay enable early risk-of-fall assessments and preventivemeasures. There is a

need to find new solutions to assess functional ability in easy, efficient, and accurate ways,

which can be clinically used frequently and repetitively. Therefore, we need to understand

how functional tests and expert assessments (EAs) correlate with new techniques.

Objective: To explore whether the skeleton avatar technique (SAT) can predict the

results of functional tests (FTs) of mobility and balance: Timed Up and Go (TUG), the

30-s chair stand test (30sCST), the 4-stage balance test (4SBT), and EA scoring of

movement quality.

Methods: Fifty-four older adults (+65 years) were recruited through pensioners’

associations. The test procedure contained three standardized FTs: TUG, 30sCST, and

4SBT. The test performances were recorded using a three-dimensional SAT camera. EA

scoring was performed based on the video recordings of the 30sCST. Functional ability

scores were aggregated from balance and mobility scores. Probability theory-based

statistical analyses were used on the data to aggregate sets of individual variables into

scores, with correlation analysis used to assess the dependency between variables and

between scores. Machine learning techniques were used to assess the appropriateness

of easily observable variables/scores as predictors of the other variables included.

Results: The results indicate that SAT data of the fourth 4SBT stage could be used to

predict the aggregated results of all stages of 4SBT (with 7.82% mean absolute error),

the results of the 30sCST (11.0%), the TUG test (8.03%), and the EA of the sit-to-stand

movement (8.79%). There is a moderate (significant) correlation between the 30sCST

and the 4SBT (0.31, p = 0.03), but not between the EA and the 30sCST.

Conclusion: SAT can predict the results of the 4SBT, the 30sCST (moderate accuracy),

and the TUG test and might add important qualitative information to the assessment of

movement performance in active older adults. SAT might in the future provide the means

for a simple, easy, and accessible assessment of functional ability among older adults.
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INTRODUCTION

Maintaining mobility and physical activities of daily living
among older adults has significant impact on quality of life,
prolonging independent living, decreasing risk of falls, and
reducing sedentary behavior (Rejeski et al., 2015; Aunger et al.,
2018; Talarska et al., 2018). In the coming years, the proportion
of people 65 years or older will increase dramatically, which
implies a global challenge in several aspects (World Health
Organization, 2015). This will require investments in promoting
healthy aging and fundamental shifts in how we think about
aging. The functional ability (i.e., mobility and balance) of older
adults in everyday life is often limited by processes related
to aging, such as gradual loss of muscle mass by 0.5–1% per
year, as well as concomitant diseases. Levels of physical activity
decrease with age (Lara et al., 2015; Stierlin et al., 2015), which
has serious implications for the burden of chronic disease and
mortality (Lee et al., 2012). Maintaining mobility despite disease
can be crucial for being able to continue living at home, manage
everyday life, and interact with the surrounding society. Strength,
balance, and flexibility exercises are among the most effective
strategies to counteract age-related decline of functional capacity
and prevent falls among older adults (Paterson and Warburton,
2010; Dipietro et al., 2019). Physical activity is a modifiable
behavior that contributes substantially to maintaining functional
capacity and health (Lee et al., 2012). Thus, measures to prevent
physical impairment and fall-related injuries for older adults are
particularly important, with balance and mobility being essential
aspects (Dipietro et al., 2019). Through regular assessment of
functional ability, interventions could be initiated early, which
might prevent mobility loss, improve quality of life, and prolong
independent living among older adults. In community care,
however, everyday rehabilitation and preventive work are not
always prioritized alongside domestic care, and there is reason to
believe that current functional tests (FTs) and similar assessment
methods are insufficient.

Today, a range of tests and assessments of mobility and
balance are available. Commonly, assessments of physical
disability include performance-based (performance-oriented
mobility assessment) and self-reported assessments (activities
of daily living) (Cress et al., 1995). However, these are seldom
routinely used, due to cost, the growing aging population, and
the fact that an assessor, often a health professional, is needed
to perform the tests. The consequences may be that physical
activity and function of older adults become less visible and that
early interventions are not being performed. For some diagnostic
groups with chronic diseases, these tests can be exhausting or
too challenging to carry out. The 30-s chair stand test (30sCST)
is an example of this. The tests are commonly measured in
time, counts, or distance. In the absence of expert assessments
(EAs), crucial information about the qualitative aspects of
the movement performance, such as compensatory movement

Abbreviations: 30sCST, 30-s chair stand test; 4SBT, 4-stage balance test; CNN,

convolutional neural network; EA, expert assessment; FT, functional test; MAE,

mean absolute error; RNN, recurrent neural network; SA, self-assessment; SAT,

skeleton avatar technology; TUG, Timed Up and Go.

patterns, may be neglected, which may lead to inadequate health
interventions and inadequate use of resources.

The advent of commodity three-dimensional (3D) sensor
technology, e.g., the Kinect camera, has enabled efficient
automated assessment of human movement. The Kinect camera
technology is promising in detecting the risk of falls among
older adults (Ejupi et al., 2015) assessing aspects of balance and
postural control (Clark et al., 2015) and has been beneficial for the
classification of the different stages of Parkinson disease related to
freezing of gait (Dranca et al., 2018). Further research is needed
to explore how the technique can be used to determine functional
ability among older adults.

As the method still requires the use of the Kinect camera in
a laboratory or having it installed at home, it excludes many
people, especially those who havemobility difficulties (Ejupi et al.,
2015). Also, our research was conducted using version 2 of the
Kinect camera, which has been discontinued. However, the new
version called Azure Kinect Development Kit has been released
in 20191; it is easier to use. There are also alternative low-cost
3D camera systems, such as Orbbec’s Astra Mini2 and Intel’s
Real Sense3 These alternatives were tested against the Kinect
version 2 and showed comparable tracking abilities (Hagelbäck
et al., 2019b).Moreover, two-dimensional (2D) tracking software,
such as PoseNet4, and the pose detection of Google’s ML Kit5

exemplify another promising technology development. This type
of software can be integrated in commodity mobile phones
enabling skeleton avatar technique (SAT) to be both widespread
and handy. Our own ongoing research maps the 2D SAT data
of these software systems to 3D SAT data with high accuracy. In
summary, the study presented here shows the predictive potential
of SAT among older adults. On top of this feasibility study and
based on the latest SAT development, there is a high potential of
this technology facing a wider adoption in elderly care and even
among elderly people.

Machine learning approaches map recorded movement
instances to expert scores providing an automated assessment
of the movements (Dressler et al., 2019a; Hagelbäck et al.,
2019a). The so-called skeleton avatar technique (Dressler et al.,
2019b) refers to the pipeline of hardware, software, and artificial
intelligence components that records human movements with a
3D sensor, estimates the position of joints in each frame of the
movement recording, and maps this information to a movement
quality score.

Also, existing measures of mobility and balance among
community-dwelling older adults have several limitations due
to incompleteness, ceiling effects, and limited sensitivity to
change and responsiveness (Lundin-Olsson, 2010; Pardasaney
et al., 2012, 2013). Furthermore, there is a lack of a common
language among different professional groups regarding the
assessment of balance and mobility, which can, for example,

1https://azure.microsoft.com/en-us/services/kinect-dk
2https://orbbec3d.com/astra-mini-series
3https://www.intel.com/content/www/us/en/architecture-and-technology/

realsense-overview.html.
4https://github.com/tensorflow/tfjs-models/tree/master/posenet
5https://developers.google.com/ml-kit/vision/pose-detection
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hinder transitions between different care levels. Such difficulties
when assessing mobility may reduce diagnostic sensitivity and
the ability to capture improvements resulting from initiated
interventions. Currently, a combination of several measures
has to be used to encompass all aspects of functional ability
(Berg and Norman, 1996; Dite and Temple, 2002). Thus, it is
of significant importance to develop simple, inexpensive, and
accurate assessment tools that are suited to the older adult’s
situation and can be used at a large scale in community care. As
the first step in this development, the objective of this pilot study
was to investigate the correlations between three FTs of mobility
and balance [Timed Up and Go (TUG), 30sCST, 4-stage balance
test (4SBT)], EAs, and the SAT.

MATERIALS AND METHODS

Study Design and Participants
This pilot study applied a cross-sectional design and was
performed in purposely arranged and separate rooms at four
different locations in the south of Sweden. Community-dwelling
older adults (>65 years) were recruited via four pensioners’
associations through emails/phone calls. In total, 54 older
adults (38 females and 16 males) signed up for this study.
All participants included in the study signed an informed
consent form approved by the Swedish Ethical Review Authority
(Dnr: 2019-02553).

Data Collection
Participants first completed a questionnaire with demographic
information about their gender, age, weight, height, diagnosis,
and symptoms, as well as a self-assessment (SA) of mobility and
balance status (see Appendix 1 in the Supplementary Material).
Twenty participants reported one or several medical diagnoses,
with nine people reporting heart diseases, eight hypertension,
four diabetes, and three reporting thyroid disease. Next,
participants were instructed to perform three standardized FTs,
the TUG, 30sCST, and 4SBT, whichmeasure balance andmobility
(Podsiadlo and Richardson, 1991; Rossiter-Fornoff et al., 1995;
Jones et al., 1999). The FTs were performed in a controlled
environment and supervised by a physiotherapist. Each test was
recorded frontally with a Kinect sensor camera (Microsoft), with
an infrared depth sensor of 512× 424 pixels and an RGB camera
resolution, 1,920 × 1,080 pixels. Its software development kit
(SDK v2.0) computes 25 body joints (of which 13 were effectively
used as discussed below), at a frequency of 30Hz. The Kinect
sensor camera was placed horizontally (no tilt angle) in 50-cm
height. The participants were asked to stand in front of the
camera before each test, so that the SAT could detect the person’s
full body (Dressler et al., 2019a; Hagelbäck et al., 2019a) in order
to assess functional ability (mobility and balance). SAT data are
3D skeleton avatar sequences of the movements of the person
performing FT.

Assessments
We assessed functional ability as an aggregate of balance
and mobility, using three assessment approaches: an SA
questionnaire, FTs, and an EA score of movement quality.

However, SA is subjective, and the relatively large margin of
error when self-assessing physical activity levels is a well-known
problem (Thyregod and Bodtger, 2016). SA should therefore
be used together with other assessments. The FTs used in this
study (TUG, 30sCST, and 4SBT) are standardized and objectively
measured in time and require standardized settings and the
involvement of a trained person during performance.

Expert Assessment
An experienced physiotherapist performed the EA of the sit-
to-stand movement in this study, using a newly developed
instrument for structured movement analysis of person transfer
and mobility in physical activities of daily living (Backåberg
et al., 2020). The instrument has been developed by an expert
group of experienced physiotherapists, an occupational therapist,
a researcher, and instructors within the field of safe person
transfer and has been tested for face validity by a group of clinical
physiotherapists. The instrument contains detailed descriptions
of everyday life movements, focusing on the quality of the critical
components of themovement performance. Performance is rated
0= in accordance with the description, 1= small deviation from
the description, or 2= large deviation from the description.

Mobility
Three mobility-related questions from the SA questionnaire and
two standardized FTs (TUG and 30sCST) were used to measure
the mobility of the participants. The mobility-related questions
focused on sedentary behavior and levels of physical activity in
daily life: time spent sitting or lying down during a day (scores
0–7, a higher score indicates a more sedentary lifestyle), time
spent in physical activity during a week (scores 0–7, a higher
score indicates more physical activity), and time spent exercising
during a week (scores 0–7, a higher score indicates more exercise)
(see Appendix 1 in the Supplementary Material and Table 1).

In the TUG test, the participants were asked to perform a
sequence of movements: sitting in a chair with armrests, standing
up, walking 3 m, turning around, going back, and sitting down
again. The time needed to complete the test was measured.
The TUG test has been shown to predict an elderly person’s
ability to walk independently (Podsiadlo and Richardson, 1991),
and a score ≥14 s is associated with a higher risk of falls
(Shumway-Cook et al., 2000). There is a categorization based
on the time needed to perform the movement sequence, where
≤10 s is considered normal/no problems in mobility, 11–20 s
= independence in movement, 21–29 s = large variation in
functional ability, and more than 30 s = dependent/in need
of assistance. The higher the score, the more difficulties. The
test has shown good reliability and validity among healthy
older adults (Podsiadlo and Richardson, 1991; Shumway-Cook
et al., 2000). Previously reported psychometric properties of
the TUG show high interrater reliability among community-
dwelling older adults [Intraclass correlation coefficient (ICC) =
0.98] (Shumway-Cook et al., 2000), whereas another study show
that the test–retest reliability was moderate among older persons
(Rockwood et al., 2000) The TUGhas a high sensitivity (87%) and
specificity (87%) and is able to identify elderly persons who are
prone to fall. The discriminate analysis suggests that older adults
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TABLE 1 | Demographic, self-assessment, and functional test data of participants

(n = 54, missing 0–1.9%).

Variable Men

n = 16

Women

n = 38

All

n = 54

Age in years, mean

(SD)

75.6 (3.2) 73.7 (4.7) 74.3 (4.4)

BMI, mean (SD) 26.2 (4.5) 25.9 (5.4) 26.0 (5.1)

Mobility

Sitting and lying, hours/day, n (%)

Never 0 0 0

1–3 h 4 (25.0) 3 (8.1) 7 (13.2)

4–6 h 9 (56.3) 22 (59.5) 31 (58.5)

7–9 h 1 (6.3) 8 (21.6) 9 (17.0)

10–12 h 1 (6.3) 4 (10.8) 5 (9.4)

13–15 h 1 (6.3) 0 1 (1.9)

Most all day 0 0 0

Physical activity, min/week, n (%)

>300 min 8 (50) 20 (54.1) 28 (52.8)

150–299min 5 (31.3) 7 (18.9) 12 (22.6)

90–149min 1 (6.3) 5 (13.5) 6 (11.3)

60–89min 0 1 (2.7) 1 (1.9)

30–59min 0 3 (8.1) 3 (5.7)

<30min 2 (12.5) 1 (2.7) 3 (5.7)

No time 0 0 0

Strenuous activity, min/week, n (%)

>300 min 0 2 (5.4) 2 (3.8)

150–299min 4 (25.0) 6 (16.2) 10 (18.9)

90–149min 4 (25.0) 9 (24.3) 13 (24.5)

60–89min 2 (12.5) 8 (21.6) 10 (18.9)

30–59min 2 (12.5) 6 (16.2) 8 (15.1)

<30min 3 (18.8) 3 (8.1) 6 (11.3)

No time 1 (6.3) 3 (8.1) 4 (7.5)

TUG test, n (%)

No problems 14 (87.5) 36 (94.7) 50 (92.6)

Independence in

movement

2 (12.5) 2 (5.3) 4 (7.4)

Large variation in

functional ability

0 0 0

Dependent 0 0 0

30sCST, n (%)

Below normal 3 (18.8) 6 (15.8) 9 (16.7)

Normal 9 (56.3) 15 (39.5) 24 (44.4)

Above normal 4 (25.0) 17 (44.7) 21 (38.9)

Balance

Experienced difficulties with balance last 12 month, n (%)

No difficulties 10 (62.5) 22 (59.5) 32 (60.4)

Difficulties 6 (37.5) 15 (40.5) 21 (39.6)

Number of falls last 12 months, n (%)

No falls 12 (75.0) 30 (81.1) 42 (79.2)

One 1 (6.3) 6 (16.2) 7 (13.2)

(Continued)

TABLE 1 | Continued

Variable Men

n = 16

Women

n = 38

All

n = 54

Two 2 (12.5) 1 (2.7) 3 (5.7)

Three 0 0 0

More than three 1 (6.3) 0 1 (1.9)

4SBT, n (%)

Stage 1 feet side by

side 10 s

16 (100) 38 (100) 54 (100)

Stage 2 instep

touches toe 10 s

16 (100) 37 (100) 53 (100)

Stage 3 tandem

stand 10 s

12 (75.0) 28 (75.7) 40 (75.5)

Stage 4 one foot

stand right 10 s

8 (50.0) 16 (43.2) 24 (44.4)

Stage 4 one foot

stand left 10 s

8 (50.0) 18 (48.6) 26 (48.1)

who take longer than 14 s to complete the TUG have an increased
risk of falls (Rockwood et al., 2000; Shumway-Cook et al., 2000).

In the 30sCST test, the participants were asked to rise from a
chair repeatedly within 30 s. The test is used to assess the mobility
and strength by timing the maximum number of stands from a
chair in 30 s. The stand is performed with arms crossed over the
chest and feet parallel. A score for the expected number of sit-to-
stands, adjusted for age and gender, is provided. The number of
stands is then categorized in three groups: below normal, normal,
or above normal. The higher the score, the better the mobility.
The test has good validity and reliability in measuring lower body
strength in the elderly (Jones et al., 1999). Test–retest intraclass
correlations of the 30sCST are high in both men (0.84) and
women (0.92), indicating good stability of the measure. Moderate
correlations between the test and leg-press performance suggest
that 30sCST is a reasonably reliable and valid indicator of lower
body strength in generally active, community-dwelling elderly.
Construct validity is supported by the test’s ability to detect
differences between various age and physical activity level groups
(Jones et al., 1999).

Balance
Two balance-related questions in the SA questionnaire [if the
person had experienced difficulties with their balance within the
last 12 months (yes = 1, no = 0) and number of falls the last 12
months (score 0–5, the higher the score, the more falls)], together
with one of the FTs (4SBT), were used to measure the balance of
the participants.

The 4SBT is used to assess static balance (Rossiter-Fornoff
et al., 1995). The participants are instructed to stand in four
different positions that are progressively harder to maintain.
First, the person is instructed to stand with their feet side-by-
side. The next position is to place the instep of one foot, so it
is touching the big toe of the other foot. The third position is
a tandem stand, i.e., to put one foot in front of the other, heel
touching toe. Lastly, the person tries to stand on one foot. How
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long each position is held is measured in seconds; the hold should
preferably exceed 10 s without the person moving his/her feet or
needing support. The inability to maintain a tandem stand for
10 s has been associated with an increased risk of having a fall
(Gardner et al., 2001). Test–retest of the 4SBT shows moderate
correlation (0.66) in community-dwelling elderly. The test is
also correlated to other measurements for balance in the same
population (Rossiter-Fornoff et al., 1995).

Data Preprocessing
In the data preprocessing step, we applied the following
filters and transformations to the FT results: (a) removing
columns that had zero variance (all participants performed
the exercise equally); (b) normalizing the test results using
the (complementary) cumulative (sample) distribution function;
(c) aggregating the four individual balance test results (two
individual mobility test results, respectively) to a common
balance (mobility) score using the joint cumulative (sample)
distribution of the individual balance (mobility) scores. For each
subject, the data transformations (b) and (c) computed a score
expressing the probability of a performance worse than the
subject’s performance. The same transformation was applied to
the SA and EA results.

The normalization (b) and aggregation (c) steps deserve
some explanations and motivations: The cumulative distribution
function (CDF) of a variable X is the probability that X will take a
value less than or equal to x, i.e., CDFX(x)= P(X ≤ x). It requires
that X is measured at least on an ordinal scale, i.e., “less than” (≤)
is defined on X. For instance, balance test times induce an order;
gender does not.

The distribution of X is, in general, unknown and can only
be approximated numerically by observing a (representative,
sufficiently large) sample X of the population X. Then, the
empirical (or sample) cumulative distribution function (ECDF)
is a good approximation of CDF. ECDFX(x) can be calculated as
the relative frequency of observations in the sample X that are
less than or equal to x, i.e., ECDFX(x) = |{x|xǫX, x<x}|/|X| with
|·| the size of a set.

The number of participants in the described study is relatively
small andmay be biased. Hence, we cannot claim that we assessed
a representative sample X of the population X in any of the FTs.
Consequently, ECDFX may not yet be a good approximation
of CDFX . However, our study shows the predictability of the
(empirical) scores from SAT data. It is plausible that this
predictability continues to hold for scores based on larger
samples, as well. Then, our deep learning model would predict
the normalized score based on SAT data, and ECDF−1 of this
score, the actual variable values.

What is considered a sample set that is sufficiently large
depends on the number of distinguishable variable values; we
would like to observe each possible value at least once in the
sample. This number is finite for discrete value domains, e.g.,
the number of squats that are possible within 30 s for 30sCST
(0. . . <100), but also for physically continuous value domains
due to discretization of the measurement method and the digital
representation, e.g., the balance time in 10th of a second for
each 4SBT stage (0. . . 100). However, in the latter case, this

number might become large, in general, e.g., when we would
assess the balance time in microseconds (0. . . 10,000). Then,
sufficiently large would become prohibitively large and expensive
for practical studies. Consequently, for any reasonably practical
sample size, ECDF would not be an injective but a step function,
and its inverse ECDF−1 would provide the predicted interval of
the variable values. This could either be accepted or avoided by
using smoothing PDF/CDF estimations6.

In the present study, we did not apply any mitigation and
accept the too small sample as a limitation: although our study
shows the predictability of the empirical scores from SAT data, it
is not the capable of predicting the actual value of a test.

(E)CDF nicely generalizes to multivariate distributions
allowing to integrate different variables into one score. For
instance, the results from all stages of the 4SBT (five variables, say
X1, X2, X3, X4r, X4l) can be integrated into a balance score using
the joint CDF. Again, each variable needs to be measured at least
on an ordinal scale. For our purpose of scoring, it also needs to be
known whether large or small values are desirable. For instance,
for each variable X1, X2, X3, X4r, X4l, larger balance times (up
to 10 s) are desirable. If small values are desirable, we use the
complementary CDF defined as CCDFX(x) = P(X ≥ x). As a
consequence, regardless of whether large or small variable values
are desirable, larger scores are always better than smaller, and 1
(resp. 0) is the best (resp. worst) possible score. The empirical
complementary CDF is computed analogously to ECDF, i.e.,
ECCDFX(x) = |{x|xǫX, x ≥ x}|/|X|. Without loss of generality,
we continue our discussion based on the (E)CDF and do not
explicitly mention the variables requiring (E)CCDF scoring.

Unfortunately, the inverse of a joint CDF is not unique. In
general, CDF−1 maps a score s to a set of vectors {v1. . . vn}, each
vector with positions for each variable. More precisely, {v1. . . vn}
= CDF−1(s) iff s = CDF(v1), . . . , s = CDF(vn). The vectors
{v1. . . vn} are not comparable; i.e., for any two of them, say v and
v′, it is neither v ≤ v′ nor v ≤ v′. However, the set of vectors can
be abstracted to value intervals of lower and upper values for each
of the variables. For instance, for a concrete aggregated balance
score, it can be stated that each of X1, X2, X3, X4r, X4l is within a
concrete value interval.

Yet again, for representative, sufficiently large samples of
the population, the joint ECDF approximates the joint CDF.
Our deep learning model would predict the normalized joint
ECDF score based on SAT data, and ECDF−1 of this score, the
corresponding variable value intervals.

In summary, the normalized scores s(v) of any
measured/observed value v computed step (b) can be interpreted
as the (sample) probability of finding a worse or equal value
in the (sample) population. What “worse” means depends on
the interpretation of the respective test. For example, lower
values of physical activity (in minutes/week) are worse, whereas
higher values of sitting and lying down (hours/day) are worse.
To compensate for the different interpretations of values, we
used the cumulative (sample) distribution function if high values
were encouraged for a test, whereas we used the complementary

6For instance, the Parzen–Rosenblatt window method, https://en.wikipedia.org/

wiki/Kernel_density_estimation.
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cumulative (sample) distribution function if low values were
encouraged. As a result, all scores were normalized to between
0 and 1, and high scores were always better than low scores.
For details of the normalization method, we refer to Ulan et al.
(2019).

The SAT recorded movement sequences of the subjects’ 3D
joint positions. The Kinect camera used identified 25 such joints.
Because of the low reliability of the other joints, we used only the
following 13: head, left/right shoulder, left/right elbow, left/right
wrist, left/right hip, left/right knee, and left/right ankle.

Each recorded movement is a sequence of frames. A frame is
a record of features. It describes the body posture at a specific
point in time during the recorded movement. A feature is called
direct if it is directly measured by the 3D camera and indirect
if it is computed from direct features or other indirect features.
The direct features include the x, y, and z coordinates of 13
skeleton joints. Indirect features include the angles between
different limbs and angles between limbs and the axes of the 3D
coordinate system.

We conducted each machine learning experiment twice, once
with the standardized features and once with the raw (direct and
indirect) features.

We tested both the uncut sequences, including some frames
where subjects were getting into position before starting the
movement, and the sequences cut to encompass only the actual
movement from start to finish. For the TUG tests, we always cut
at the turning point.

In accordance with a standard technique in machine learning,
we used data augmentation to artificially increase the number
of training and test sequences. In general, data augmentation
increases the amount of training data, e.g., by adding slightly
modified copies of existing data, which reduces overfitting when
training a model (Shorten and Khoshgoftaar, 2019). Specifically,
we stretched each frame in the x and y directions by the same
constant factors around 1, and we rotated each frame around the
y axis by the same constant angle around 0 degrees. Cascading
these transformations led to an increase of the number of
sequences for machine learning by a factor of about 1,000.

Statistical Analysis
SPSS 26.0 (IBM Corp., Armonk, NY, USA) was used for
descriptive statistics. Pearson correlation analysis was conducted
using MATLAB version R2020a (Massachusetts, USA)7.
Significance was set at p < 0.05. Pearson correlation coefficient
r was used to determine the dependencies between three
assessment approaches for mobility and balance. The correlation
results were interpreted as low (r < 0.30), moderate (0.30 ≤ r <

0.60), or high (r ≥ 0.60).

Machine Learning/Deep Learning
In general, machine learning uses predictors (features) X = [X1,
. . . , Xp] to predict or infer a response (output) Y. It assumes a
functional relationship, Y = f (X1, . . . , Xp) + e, with e being
an irreducible random error and f representing the systematic

7The Mathworks Inc., Natick, Massachusetts: MATLAB version 9.8.0.1323502

(R2020a).

information thatX provides aboutY. Statistical/machine learning
tries to estimate functions f minimizing the reducible error. More
precisely, to predict Y = f (X1, . . . , Xp) + e, machine learning
calculates an estimator function Y ′ = F(X1, . . . , Xp) and uses Y ′

as a predictor of Y.
If the estimator function F is accurate; i.e., the error between

the actual response Y and its predictor is always small, machine
learning can answer questions such as what is the expected value
y of Y given the values x = [x1, . . . , xp] for the predictors X =
[X1, . . . , Xp]. Moreover, if the estimator function F is sufficiently
simple, machine learning can also give answers to questions
such as the following: Which predictors are associated with the
response? What is the relationship between the response and
each predictor? Can the relationship between the response and
each predictor be adequately summarized using a known type of
function, e.g., linear? Unfortunately, there is a trade-off between
prediction accuracy and estimator interpretability. For further
details, we refer tomachine learning textbooks such as James et al.
(2013).

There are different ways of formalizing the reducible error.We
selected the mean absolute error (MAE) for both learning F and
assessing its accuracy on the training and test data, respectively.
MAE is defined as the arithmetic mean of the absolute difference
|y – y′| for each actual response y ǫ Y and its corresponding
predictor value y′ ǫ Y ′ in the training and test data, respectively.

In our experiments, we use deep learning approaches that are
known to trade off interpretability against accuracy. Here, deep
learning approximates a function mapping sequences of 3D joint
positions (preprocessed as described earlier) to the different SA,
FT, and EA scores. The input shape depends on the number
of indirect features and the number of frames in the shortest
sequence; both varied in the different setups. As the responses,
i.e., the different scores, are normalized to 0–1, the MAE is
also between 0 (no error) and 1 (theoretical maximum). We
interpreted the machine learning results, i.e., the accuracy of the
trained predictor, as good (MAE <10%), moderate (10%≤MAE
<20%), or bad (MAE ≥20%).

Our experiments applied standard neural network technology
(Goodfellow et al., 2016) implemented in Python 3 using the
Tensorflow framework (Abadi et al., 2015).

Architecture
We tested three principally different neural network architectures
with roughly the same number of parameters to learn.

1. A dense network with three dense layers of 128, 64, and 32
neurons, respectively, all activated with a rectified linear unit
(ReLU), and an output layer with a single output (the score)
activated with a sigmoid activation function.

2. A convolutional neural network (CNN) with three one-
dimensional (1D) convolutional layers with a depth of 128,
64, and 32 neurons, respectively, and all followed by a 1D
maximum pooling layer of size two and activated with an
ReLU, followed by an output layer, as in 1.

3. A recurrent neural network (RNN) with three long short-term
memory layers of 32 neurons each, followed by an output
layer, as in 1.
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In all architectures, we used either dropout, with a rate of 0.5 in
the first layer, or kernel and activation regularization (L2 norm,
penalty of 0.001) of the first two layers.

Training
We randomly split the original sequences into about 90% training
data and 10% test data.We did notmix the augmented sequences.
All transformed training (test) data sequences remained in
the training (test) data set. We did not separate test and
validation data.

For training, we used theMAE as the loss function.We trained
the networks with a minibatch size of 128 data points for 500
epochs. We used early stopping if the validation loss (MAE) did
not decrease for the latest 50 epochs. The whole machine learning
process is summarized in Figure 1.

We used the Tensorflow default weight initialization (Glorot
uniform initializer) for all layers. It draws samples from a uniform
distribution within [–limit, limit], limit = √

(6 / (in degree +
out degree)), and in (out) degree the number of predecessors
(successors) of a neuron.

We used “Adam” as the gradient-based weight optimization
strategy for the dense and the convolutional networks,
and “RMSprop” for the RNNs. Both approaches are
implemented in Tensorflow, and we applied the provided
default hyperparameters (learning rate, etc.).

In general, we avoided fine-tuning of hyperparameters.
The explicitly set training parameters were initially chosen by
experience and then only minimally adapted after a visual
inspection of the learning history in some few initial tests
(as reported). For most hyperparameters, we chose the default
settings of the Tensorflow framework. The rationale behind this
approach was that the goal of the present study was to principally
show the predictive power of SAT data for FT scores. The
small sample size alone prohibited aiming for optimal prediction
models or minimal training times. This will become future work
when large and representative samples are available.

Machine learning approximates a predictor function mapping
predictor values (here, SAT frame sequences) to response values
(here, the different normalized values, e.g., the time in seconds
that a subject was able to stand on one leg). The results reported
are the MAEs of the predictor functions applied on the test data
using cross-validation. In detail, we

1. added features to the SAT frame sequences, such as angles
between adjacent limbs, or skipped this step;

2. cut the SAT frame sequences to encompass the period between
start and stop of the actual exercise, or skipped cutting;

3. augmented the resulting SAT frame sequences;
4. standardized the SAT frame sequence data, or

skipped standardization;
5. normalize the observed values, cf. preprocessing (b);
6. aggregated these values to a score, cf. preprocessing (c);
7. copied the scores such that each SAT frame sequence

transformed in Rejeski et al. (2015) got the same score as
its original;

8. performed 10-fold cross-validation that iterated 10 times
through the deep learning (step 9); and

9. performed deep learning on each fold.

The cross-validation step 8 randomly split the preprocessed
predictor and response data into 10-fold. Cross-validation was
iterated 10 times through the deep learning step 9, each time
choosing a new fold as the test data and using the remaining
folds as the training data. The overall result is the average over the
10 computed MAEs from each iteration. In each iteration, step 9
learns an estimator function F for the training data, mapping the
contained predictor to response data. Its MAE is then computed
on the test data.

Because of the high computational effort, cross-validation was

only performed on promising combinations of preprocessed data
and neural network model. Predicting FT and EA scores from

balance SAT data using the CNN and the RNN basedmodels gave
promising results, i.e., good accuracy for predicting two of three
FTs (4SBT, 30sCST) and the EA and moderate accuracy for the

FIGURE 1 | Summary of the machine learning process.
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third FT (TUG), as we will document in the following section.
Therefore, we cross-validated these predictor models.

RESULTS

Summary of Collected Data
Table 1 presents a summary of the collected data for the
FTs (TUG, 30sCST, 4SBT) and the SA questionnaire. Most
participants performed well or very well on the tests. Twenty-
eight persons (52.8%) carried out leisure-time physical activities
for more than 5 h/week. All but four persons (7.5%) stated that
they performed moderate to high levels of physical activities
every week. Six persons (11.3%) reported that they spent 10–
15 h sitting or lying down every day. Approximately half of
the sample (52.8%) had an exercise program that they followed.
How many times a week they performed the program varied,
as did the length of the programs. Of those who followed an
exercise program, 65.5% had a program that was 30 min or
longer. Participants were also asked if they considered themselves
physically active; 71.7% did. Eleven persons (20.8%) reported
having had a fall one or several times during the last 12 months.
Twenty-one persons (39.6%) stated that they had experienced
difficulties with their balance within the last year (Table 1).

All study participants managed the TUG test within 20 s,
indicating independent walking. According to the 30sCST, 45
persons (84.9%) in the present study had muscle strength as
anticipated or better given their gender and age. All study
participants managed the first stage of the 4SBT, i.e., standing
for 10 s with feet side-by-side. The third stage of the 4SBT, i.e.,
the “tandem stand,” standing with one foot in front of the other,
showed that 13 persons (24.5%) in the sample might be at risk of
having a fall.

Correlation of Mobility and Balance
Assessments Between FTs, SA, and EA
There was a moderate (significant) correlation between the
30sCT and the TUG test, and between the third stage of the
4SBT (4SBT3), i.e., the tandem stand position, and the fourth
and final stage of the 4SBT (4SBT4), i.e., the one-foot standing
position, on the right or left foot, respectively. No significant
correlation was found between the second stage of the 4SBT
(4SBT2), i.e., one foot placed with the toes at the insole of
the other foot, and the other stages of the 4SBT, the TUG
test, or the 30sCST. There was a high (significant) correlation
between right and left foot for the 4SBT4 (Table 2). There
was a moderate (significant) correlation between the functional
balance test scores (FT balance), i.e., the 4SBT, and the SA scores
that related to mobility (SA mobility) (Table 3). No significant
correlation was seen between the 30sCST and EA.

Prediction of FT and EA Results Using the
SAT
The SAT data–based neural network models were well able to
predict the aggregated functional balance test score, the 30sCST,
and the EA of the sit-to-stand movement. However, the models

TABLE 2 | Correlation coefficients of mobility and balance characteristics in FTs.

r (p) TUG 30sCST 4SBT2 4SBT3 4SBT4,

right

30sCST 0.55

(0.001)

4SBT2 0.09

(0.536)

−0.04

(0.773)

4SBT3 −0.03

(0.847)

0.18

(0.207)

−0.08

(0.576)

4SBT4

right

0.22

(0.122)

0.25

(0.081)

0.12

(0.407)

0.34

(0.018)

4SBT4

left

0.36

(0.011)

0.31

(0.029)

0.14

(0.318)

0.40

(0.004)

0.67

(0.000)

Bold font mean p< 0.05; TUG, Timed Up and Go; 30sCST, 30-s chair stand test; 4SBT2,

second stage of the 4SBT, i.e., 10-s one foot placed with the toes at the insole of the other

foot; 4SBT3, third stage of the 4SBT, i.e., 10-s tandem stand position; 4SBT4, fourth stage

of the 4SBT, i.e., 10-s one-foot stand.

TABLE 3 | Correlation coefficients of aggregated mobility and balance scores in

SA and FTs.

r (p) SA

balance

SA

mobility

FT

balance

SA mobility 0.2

(0.167)

FT balance 0.18

(0.217)

0.40

(0.005)

FT mobility 0.22

(0.134)

−0.05

(0.755)

0.19

(0.198)

Bold font mean p < 0.05. SA, self-assessment; FT, functional test.

could predict the result of the TUG test only with moderate
accuracy (Table 4).

Moreover, based on the SAT data of the fourth and final stage
of the 4SBT (4SBT4), i.e., 10 s, one-foot stand, the neural network
models could well-predict the performance in the 30sCST and the
EA of the sit-to-stand movement. They were able to predict the
TUG test result only with moderate accuracy (Table 5).

To secure the results, we conducted 10-fold cross-validation
on the predictions based on the SAT data of the 4SBT. We
restricted the cross-validation to the CNN and RNN model
variants. Cross-validation confirmed that SAT 4SBT4–based
RNN models could predict the performance in the functional
balance tests and the EA of the sit-to-stand movement. The RNN
models consistently outperformed the CNN models. The RNN
models were even able to predict the TUG test result with high
accuracy. However, they could predict the 30sCST test result only
with moderate accuracy (Table 6).

DISCUSSION

The results of this study indicate that the SAT-based data of
the 10-s one-foot stand balance test (4SBT4) could be used to
predict the results of all functional balance tests (MAE 7.82%
cross-validated), the TUG test (MAE 8.03% cross-validated), and

Frontiers in Computer Science | www.frontiersin.org 8 December 2020 | Volume 2 | Article 601271

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Backåberg et al. Assessing Functional Ability With SAT

TABLE 4 | MAEs for predicting FT results and EA scores using the corresponding SAT data.

SAT 4SBT4 →

FT balance

SAT 30sCST →

FT 30sCST

SAT TUG → FT

TUG

SAT 30sCST →

EA sit-to-stand

MAE in %

Model/data

2.31%

RNN/uncut, not

norm.,

direct features

7.40%

CNN/cut,

normalized,

direct features

16.22%

CNN/uncut,

normalized,

all features

5.89%

RNN/cut,

normalized,

all features

SAT, skeleton avatar technique; FT, functional test; 4SBT4, fourth stage of the 4SBT, i.e., 10-s one-foot stand; 30sCST, 30-s chair stand test; TUG, Timed Up and Go; EA, expert

assessment; MAE, mean absolute error; RNN, recurrent neural network; CNN, convolutional neural network.

TABLE 5 | MAEs for predicting FT and EA scores using SAT balance data.

SAT 4SBT4 →

FT 30sCST

SAT 4SBT4 →

FT TUG

SAT 4SBT4 →

EA sit-to-stand

MAE in %

Model/data

7.02%

RNN/uncut,

normalized,

all features

18.21%

CNN/uncut,

normalized,

all features

6.86%

CNN/uncut, not

norm., all features

SAT, skeleton avatar technique; FT, functional test; 4SBT4, fourth stage of the 4SBT,

i.e., 10-s one-foot stand; 30sCST, 30-s chair stand test; TUG, Timed Up and Go; EA,

expert assessment; MAE, mean absolute error; RNN, recurrent neural network; CNN,

convolutional neural network.

the EA results of the sit-to-stand movement (MAE 8.79% cross-
validated). They might be used to predict the results of the
30sCST (11.0% cross-validated). This first attempt to validate the
SAT in relation to commonly used FTs in healthy and physically
active older adults provides support to proceed with a larger
sample of people with a varying degree of functional ability
before the SAT can be used as an alternative method for assessing
mobility and balance.

This study is the first step to outline the possibilities of using
the SAT to obtain detailed, objective, and reliable information
from simple and accessible functional assessment of balance
and mobility. Muscular and functional asymmetries have been
shown to represent a risk factor for falls among older adults,
and a current review study outlined that symmetricity in
gait was correlated with better functional performance among
older adults. Interventions to improve symmetry in movement
patterns are therefore important (Guadagnin et al., 2019).
Assessment of the qualitative aspects of movement performance,
i.e., symmetricity, as mentioned above, how the movement is
initiated, how force is used to accomplish the movement, and
how the movement is coordinated, requires a trained expert, e.g.,
a physiotherapist. Such assessment could be expensive and time-
consuming and is therefore often overlooked. The qualitative
aspects in the assessment of movement performance can be
crucial, especially among older adults, because of their increasing
need to use their physical resources optimally. This may, for
example, play an important role in the ability to perform physical
activities in daily life and could provide valuable information
about the risk of falls. These aspects seem to be missing in the
studied standardized functional assessment tests (TUG, 30sCST,
and 4SBT), which has been confirmed in previous studies (Inkster

and Eng, 2004;Manckoundia et al., 2006). Including these aspects
in the assessment of functional ability and in interventions
targeting older adults is therefore important, as it may increase
physical confidence, competence, and motivation for a safe,
independent, and physically active life and reduce the risk of falls.
The results from this pilot study indicate that the SAT has the
potential to facilitate and supplement the clinically used FTs and
may be a future solution to add qualitative perspectives to the
assessment of functional ability.

Thirteen joints of the body were selected in the SAT analysis.
Although the selected joints cover a large amount of the
body segments, it is important to acknowledge that important
movement segments (such as detailed movements of the feet or
the neck) might still be missing in the overall analysis, which
may be essential for the understanding of the whole movement
performance. However, the SAT has the ability to add detailed
information about relationships betweenmultiple body segments
in complex movement patterns, which is not possible to detect
with the human eye. This information might be valuable in the
clinical setting, i.e., for physiotherapists in movement assessment
and evaluation. However, further development of SAT is needed
to include all body segments. More research is furthermore
needed to outline how the SAT can predict other kinds of
movements, person transfers, and FTs and if the SAT can be used
based only on a 2D video, which would imply greater accessibility
for people to use the technique without expensive equipment
and expert assistance. As we move into a period of increased
population aging, everyday rehabilitation and preventive work in
community care will not always be prioritized alongside domestic
care. Thus, older adults may benefit from easy assessments of
functional ability that can be used with the help of a nursing
assistant or family caretaker in their own home. Furthermore,
the SAT may create a greater possibility to detect physical
impairment at an early stage, which is crucial in fall prevention
and for the preservation of physical independence in aging.

Adults who have developed a lifelong understanding of the
role of physical activity in healthy aging, who know about
body movement skills and methods of improvement, may be
more likely to sustain engagement in physical activity as an
integral and meaningful part of their lifestyle in older age (Jones
et al., 2018). Highly active persons of older age tend to use
their resourcefulness to support their physical activity, which in
turn contributes to their view of themselves as active. Barriers
to being physically active in older age are all influenced by
how older adults view themselves and how they are cognizant
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TABLE 6 | Cross-validated MAEs for predicting FT and EA scores using SAT balance data; only recurrent neural networks (RNN).

SAT 4SBT → FT

balance

SAT 4SBT → FT

30sCST

SAT 4SBT → FT

TUG

SAT 4SBT → EA

sit-to-stand

MAE in %

Data

7.82%

Uncut, not

normalized,

all features

11.0%

Uncut, not

normalized,

all features

8.03%

Uncut, not

normalized,

all features

8.79%

Uncut, not

normalized,

all features

SAT, skeleton avatar technique; FT, functional test; 4SBT4, fourth stage of the 4SBT, i.e., 10-s one-foot stand; 30sCST, 30-s chair stand test; TUG, Timed Up and Go, EA, expert

assessment; MAE, mean absolute error.

of and understand the social and physical environment and
opportunities surrounding them (Jones et al., 2018). Although
there is now strong evidence that regular physical activity is
key to preserving physical function and mobility, which can
delay the onset of major disability among older adults (Pahor
et al., 2014; Dipietro et al., 2019), the majority of older adults do
not achieve the recommended goals of physical activity (World
Health Organization, 2015). Attitudes toward physical activity,
lack of social support, feelings of being too old, and having
few opportunities for physical activity in the surroundings are
common barriers (Büla et al., 2011). There is vast opportunity for
improvement in how to enhance physical literacy among older
adults, which includes the motivation, confidence, and physical
competence to achieve a physically active life (International
Physical Literacy Association, 2015; Jones et al., 2018). In these
efforts, the SAT may play an important role in facilitating
assessments, providing feedback onmovement performance, and
improving physical competence, which in turn may contribute to
the motivation and confidence to support and maintain physical
activity throughout life.

In this study, EAs of the qualitative aspects of the movement
performance were made only of the sit-to-stand movement. The
duration of the sit-to-stand or stand-to-sit postural transition
is commonly used for assessing function and strength of the
lower extremities and can distinguish between older adults at
low and high risk of falls. The sit-to-stand transition represents
a complex motion that involves torques and forces on multiple
joints (the trunk, hips, and knees), as well as requiring energy.
However, it is argued that its duration is not sufficient to describe
physical impairment in older adults (Inkster and Eng, 2004;
Manckoundia et al., 2006). A model for optimality of the sit-to-
stand movement has been developed that seems to be useful in
detecting mobility changes (Madhushri et al., 2017). A fast sit-to-
stand posture transition involves larger torques and greater wear
on the body than a slow transition (Kerr et al., 1997). For each
individual body constitution, there are movements/actions that
provide optimal posture transition time. Physically fit persons are
spontaneously very close to the optimal transition time, whereas
older adults normally deteriorate in muscle strength and need to
spend their resources wisely. Such persons might benefit from
qualitative assessment of movement performance and functional
ability, followed by tailored programs for exercise and mobility-
oriented physical activity, to reach their optimal transition time.
The results from the current study show that EAs of the sit-
to-stand movement (Backåberg et al., 2020) did not correlate

well with the 30sCST, but could be predicted by the SAT. The
reason for this is unknown, but it may indicate that there is a
complex movement pattern that is not easily assessed and that
there might be a non-linear association between EA and the sit-
to-standmovement. The clinical assessments of functional ability
may possibly be substituted by the SAT in future tools.

STRENGTH AND LIMITATIONS

A strength of the article is the effort to develop a novel approach
of assessing physical functioning in older adults, such as early
identification of functional ability using modern technology.
Another strength for the development of SAT in the early stage
as we are was the low internal dropouts and that the whole
sample had the strength and ability to perform all the different
tests included. However, some limitations are needed to pay
attention to. This pilot study is based on a small sample (n =
54), which increases the risk of type II error. Another design
limitation in this study is that no causal relationships between
the variables can be identified with this set up. Although the
participants were community-dwelling older adults (>65 years),
they were recruited through a limited number of pensioners’
associations, which might imply that this group included rather
healthy, physically active, and dedicated older adults. Thus, the
results of the SAT can primarily be generalized to this population
of primarily healthy individuals and not fully represent the older
population as a whole. The small and homogenous sample (with
regard to mobility and physically active) was beneficial for the
current developmental phase, but might have affected the results
of the tests, as most participants performed very well on the
tests, with small variations. This might have impacted on the
SAT’s ability to predict the results of the functional mobility tests
(30sCST, TUG). The same applies to the functional balance tests
(4SBT) and the EA of movement quality (EA).

To compensate for the relatively small sample size, we
tested the significance in the correlation analysis. For the
neural network learning experiments, we applied aggressive
data augmentation and cross-validation, as detailed in Data
Preprocessing. Still, more experiments with a larger sample are
needed to confirm the results.

As use of the SAT in assessing older adults’ mobility and
balance is relatively new, more research is needed. In the next
step, participants with more functional limitation variations
should be included, to further evaluate the tests used. More
sensitive tests would also be recommended.
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The 3D technology was quite bulky and would need to
become handier before any use in the caretaking practice
can be recommended. Current activities aim at using 2D
SAT-based mobile phone recordings. While the resulting
skeleton avatar sequences contain even less information
than the corresponding 3D-based sequences, they may
contain enough information about the different FTs to yield
relevant results.

The employed deep learning networks are hard to interpret
for humans. The results merely show that the SAT sequences can
provide systematic information about the FTs. To gain relevant
insights into the dependency between the SAT sequences and
the outcome of tests, other machine learning models should
be used, features should be manually selected and deselected,
and the prediction results of the different models should
be compared.

CONCLUSION

Both in science and in clinical practice, there is a need to
reduce the use of tests of functional ability that are difficult for
patients to perform independently and replace with valid, simple,
and accessible tools. In this study, we attempt to understand
and verify what it is that we measure with FTs and how they
correlate with new techniques. This study shows that the SAT
may be a tool that is able to detect qualitative aspects in the
assessment of movement performance, which seem to be missing
in commonly used standardized functional assessment tests of
mobility and balance (30sCST, TUG, and 4SBT). SAT was also
shown to be able to a high extent predict the results of the
4SBT, TUG, and EAs of the sit-to-stand movement and, with
some restrictions, the results of the 30sCST. However, this is the
first attempt to use SAT as a functional assessment tool, and
it needs to be investigated further, for example, how sensitive
the SAT is to identify changes in physical activity levels and
predict other aspects of functional ability. Research is also needed
to investigate if SAT can identify changes in self-efficacy in
movement performance, as well as securing the prediction of the
30sCST test in the older population.
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