

Bachelor Degree Project

Performance comparison between Apache

and NGINX under slow rate DoS attacks

Authors: Josef Al-Saydali

 Mahdi Al-Saydali

Supervisor: Morgan Ericsson

Semester: VT 2020

Subject: Computer Science

2

Abstract

One of the novel threats to the internet is the slow HTTP Denial of Service (DoS) attack on the

application level targeting web server software. The slow HTTP attack can leave a high impact

on web server availability to normal users, and it is affordable to be established compared to

other types of attacks, which makes it one of the most feasible attacks against web servers. This

project investigates the slow HTTP attack impact on the Apache and Nginx servers comparably,

and review the available configurations for mitigating such attack. The performance of the

Apache and NGINX servers against slow HTTP attack has been compared, as these two servers

are the most globally used web server software. Identifying the most resilient web server

software against this attack and knowing the suitable configurations to defeat it play a key role

in securing web servers from one of the major threats on the internet. From comparing the

results of the experiments that have been conducted on the two web servers, it has been found

that NGINX performs better than the Apache server under slow rate DoS attack without using

any configured defense mechanism. However, when defense mechanisms have been applied to

both servers, the Apache server acted similarly to NGINX and was successful to defeat the slow

rate DoS attack.

Keywords: Apache, NGINX, slow HTTP, low rate HTTP, RUDY, slow rate DoS,

Slowloris

3

Preface

We would like to thank our supervisor Morgan Ericsson for his valuable feedback and support

throughout the work on this project. We would also like to thank our Network security program

coordinator Ola Flygt for his continuous guidance and support. Finally, we would like to thank

our family for their great support during our study.

4

Contents

1 Introduction ___ 5

1.1 Background ___ 5

1.2 Related work __ 8

1.3 Problem formulation ___ 8

1.4 Motivation ___ 9

1.5 Objectives ___ 9

1.6 Scope/Limitation ___ 9

1.7 Target group __ 9

2 Method ___ 10

2.1 Reliability and Validity ___ 10

3 Experiment ___ 12

3.1 Experiments environment ___ 12

3.2 Mitigation tools ___ 13

3.2.1 NGINX ___ 13

3.2.2 Apache __ 15

3.3 Conducted experiments __ 17

3.3.1 Nginx server __ 17

3.3.2 Apache server __ 19

3.3.3 Comparison between Apache and NGINX____________________________________ 22

4 Results __ 26

4.1 Nginx configuration __ 26

4.2 Apache Configuration __ 28

4.3 Comparison between Apache and NGINX __ 31

4.3.1 Before mitigation (default settings) __ 31

4.3.2 After mitigation __ 34

5 Analysis and Discussion ___ 38

5.1 NGINX __ 38

5.2 Apache ___ 38

5.3 NGINX vs Apache ___ 39

5.4 Discussion ___ 40

6 Conclusion__ 41

6.1 Future work ___ 41

References __ 42

Appendix ___ 44

5

1 Introduction
Slowloris, RUDY, and slow read are DoS attacks that have two special characteristics; they are

slow in terms of sending rate and small in terms of bandwidth consumption. They are difficult to

be detected by intrusion detection systems and they have been eye-catching to hackers. They

target web servers mainly, therefore it is important to configure and equip web servers with

defense mechanisms for defeating and mitigating these attacks.

This chapter presents background information on the subject of slow rate DoS attack, the

problem to be investigated, and the aimed objective of the project. It also provides the

motivation behind the research, related works in this field, and the target group.

1.1 Background

Denial of service attack

Denial of service attack or as commonly known as DoS attack is a cyberattack that targets a

computer machine and intends to make it unavailable for legitimate users. The attacker usually

sends as much as possible data to the server in a way that makes the server busy with these

illegitimate data making it unavailable to the normal users [1][2]. There are many types of DoS

attacks, one of them is the application-level attack where the attacker tries to bring a web server

down [3]. The focus in this paper is on slow rate DoS attack which is an application layer attack

[3].

TCP protocol

To be able to fully understand the attack we should refer to the TCP protocol. Though the attack

is targeting the application layer, it uses the TCP protocol in the transport layer for establishing

the connection to the WEB application. HTTP uses TCP protocol as its underlying

communication channel protocol, so the HTTP data are delivered and encapsulated through TCP

packets. TCP is a reliable protocol, meaning the recipient notifies the sender of the received data

chunk. TCP connection is established by the three-way handshake: SYN request stand for

synchronize sent by the client. SYN-ACK sent by the server once the SYN from the client

received. ACK stands for acknowledge. The client acknowledges the receiving of SYN-ACK from

the server by send an ACK. Figure 1.1 illustrates TCP three-way handshake.

SYNSYN

SYN,ACK

ACK

TCP data

TCP three-way

handshake

TCP ACK

Figure 1.1 TCP three-way handshake

6

Slow header attack

Slow header attack, also known as slowloris attack, is based on the GET HTTP request. The

attacker sends as many as possible incomplete GET requests to the server in order to make all

its resources busy. They send the requests at a slow rate so it is not detected by the server’s

firewall or intrusion detection system. The attack overcomes the issue of the large bandwidth as

the requests are in a low size [4]. Usually, web servers have a connection timeout so if the

connection is idle for a period of time, it will be closed. Starting from this point, the attacker

sends small HTTP headers to the server in order to keep the connection alive. As a result, the

server capacity will be full and normal users will not be able to reach the server [5] [8]. Figure

1.2 illustrates slowloris attack.

SYNSYN

SYN,ACK

ACK

 HTTP GET, Incomplete header

TCP connection

 HTTP GET, Incomplete header

TCP ACK

TCP ACK

ServerAttacker

Figure 1.2 Slow HTTP header

Slow body attack

Slow body or RUDY (acronym for R U Dead Yet) attack is similar to slowloris given that the

traffic is sent in small size and slowly. However, slow body relies on the POST HTTP request for

bringing down the server. First, the attacker sends the head of the POST request completely to

the server containing the content-length field which is the size of the body that the client

intends to send to the server, usually, is set to a high number in order to exhaust the server.

Then, he/she sends the payload which is the body in small chunks at a slow rate to make the

connection alive so that it is not terminated by the server [22]. The attacker opens as many as

possible connections with the intention of seizing the server’s availability thus blocking

legitimate users from reaching it [4] [5]. Figure 1.3 illustrates RUDY attack.

7

SYNSYN

SYN,ACK

ACK

 HTTP POST, content-length = 20000 bytes, body=52 bytes

TCP connection

 HTTP POST, content-length = 20000, body=52 bytes

TCP ACK

TCP ACK

ServerAttacker

Figure 1.3 Slow HTTP Body

Slow read attack

In the previous two attacks, the request message is not sent completely, but only parts of it are

sent. Conversely, in this type of attack, the attacker sends a complete GET request message to

the victim server without deceleration. However, the attacker introduces a small window size

for receiving data from the server [5]. They proceed in receiving the response in very small

chunks and at a slow rate. To make the attack more effective the intruder request a large file

such as a large image in order to prolong the connection. The attacker opens as many as

possible connections with the purpose of blocking the server from receiving any new requests.

As a result legitimate users would not be able to reach the server [4] [23]. Figure 1.4 illustrates

slow read attack.

SYNSYN

SYN,ACK

ACK

 HTTP GET, complete request header, small receiving window

TCP connection

HTTP 200 OK, first segment of Body

TCP ACK

Second segment of Body

TCP ACK

Attacker
Server

Figure 1.4 Slow HTTP read

8

1.2 Related work

We have reviewed several works regarding the defense mechanism that is feasible against slow

rate attack. One of these articles is [5] written by Suroto, which explains some mitigation

methods on several web server applications. The article suggests using some additional

modules or WAF (Web application firewall) for Linux OS. One of the most used WAFs on Linux is

mod_security, which we have excluded from our experiment since this mitigating tool is

configured to be used on the operating system level regardless of the running web server

application and that does not serve our goal of comparing the Apache and NGINX servers.

Moreover, Suroto does not conduct any experiments in his article.

The article [6] states that the DoS attacks are serious and can be cumbersome for

companies and governments. The researchers provide accurate taxonomy by analyzing the slow

DoS attacks against web applications and gathering them into type groups based on the

common characteristics. The DoS attacks has been categorized into three types: Pending

requests DoS like Slowloris and Slow HTTP POST, Long responses and Multilayer DoS. The

article is helpful for understanding the mechanism of the different types of dos attacks but there

is an absence on describing the performance and the efficiency of those attacks.

Researchers in article [7] developed a defense technique that is useful when detection

tools are inadequate since DoS attacks are hard to differentiate from legitimate requests. They

begin by characterizing the Dos attacks that targeting the application-layer servers according to

the parameters they exploit: Flooding DoS that uses the request flooding technique to

overwhelm the server application. Asymmetric DoS attack uses requests that demand high

computations on the server side. A DDoS-Shield has been developed with different policy that

allow or deny a request. The work showed an enhancement of the application layer victim

performance.

Another research [9] has an empirical study on using an attack detection approach for

triggering filtering against the traffic of slow HTTP attack. The researchers are finding patterns

of slow HTTP attack traffic, if any of them is found while sniffing the traffic to the server, a new

firewall will be imposed to limit the attack. The implemented IPS (Intrusion prevention system)

is designed to be used on Linux based operating systems, and it has been tested on the Apache

server.

While we have found many articles regarding the slow rate attack and the defense

techniques, we have noticed a lack in researching the performance of the different web servers

against slow HTTP attack, and in comparing the resilience of different web servers against the

slow HTTP attack.

1.3 Problem formulation

Many factors play a role while choosing a web server software like cost, performance, and

security. In this paper, the concentration will be on the security aspect which can be critical for

start-up companies. Specifically, a novel threat that has been one of the largest threats in

computer networks; the low rate DoS attack that targets Internet web servers [21]. In this

research, an actual low rate DoS attack will be carried upon web servers using virtual machines.

The low rate attack will be performed against two types of software: Apache and NGINX. The

purpose of the experiment, first, is to test the chosen defense configuration and tools against

9

slow rate attack and find the suitable configuration for each web server software. The second

part is to compare the performance of these two types of servers under slow rate DoS attack in

two phases: default configurations and when using mitigation tools and configurations.

1.4 Motivation

In our daily life on the internet we use services that are provided by servers and those servers

are vulnerable to many attacks that can make the delivered services unreachable. Many of these

services are critical such as airlines flights booking systems, critical hospital services, online

payments, and more. Denial of service (aka DoS) attacks affect such systems and render them

unreachable to the users. One type of DoS attack is the low rate DoS attack which has been one

of the topmost threats in internet security and it is difficult to detect as it makes use of

legitimate requests to the server [21]. It targets web servers mainly whereas the attacker sends

as many as possible requests to the server at a low rate within a long period of time, chunking

up all available connections [4] [5]. Therefore, identifying the most resilient web server

software against this type of attack and knowing the suitable configurations to defeat it, play a

key role in securing web servers from one of the major threats on the internet [21].

1.5 Objectives

The study will address the following objectives:

O1 Carry out a literature review about the current situation of low rate DoS attack

O2 Implement a low rate DoS on Apache and NGINX servers

O3 Measure the impact of the attack on the Apache and NGINX servers

O4 Analyze the results from comparing the two servers performance

The expectation of this experiment is to come out with a clear comparison between Apache and

Nginx with and without mitigation. There is a probability regarding that Nginx will perform

better than Apache against the low rate DoS attack. The reason for this anticipation is due to the

different architecture of limiting the maximum number of clients.

1.6 Scope/Limitation

The study is limited to low rate DoS attack, meaning that other types of DoS attacks will not be

investigated in this paper. In addition, the setup of the experiment is limited to the virtual

solution, thus physical devices will not be part of the setup environment.

1.7 Target group

The target group of this paper is cybersecurity professionals and web managers. Besides, the

study might be interesting for computer technicians in general. The study will help to choose

between the apache and Nginx servers when configuring a fresh server or replacing an old one.

Moreover, it can target server administrators when facing slow rate HTTP attack and guide

them to configure or replace the server with the aspect of slow rate HTTP tolerance.

10

2 Method
In order to address the first objective, a literature review regarding low rate DoS attacks has

been carried out and presented in chapter 1. For addressing the other research questions a

controlled experiment has been conducted. In a controlled experiment a system is tested in a

controlled environment that produces quantitative data that is collected and analyzed. In this

study, experiments have been carried out for comparing two web servers' performance under

specific types of DoS attacks. The comparison has been done in two contexts; the first one in

default configurations and without using any mitigation tools and the second context is in using

defense and mitigation mechanisms.

Before comparing the two web server software performance against the attacks, the

effectiveness of the chosen defense mechanisms will be tested in controlled experiments. Each

mechanism will be tested against three types of slow rate DoS attacks which will be stated in

chapter 3. The effective mechanisms for each web server against different types of the attack

will be chosen to be used in the comparing experiments. Consequently, ineffective defense

mechanisms will be dropped and will not be part of the comparing experiments. The

experiments will produce quantitative data that will be analyzed to draw a conclusion on which

web server software is more resilient and how it behaved under each type of attack.

In each experiment, an attack will be triggered against the web server, and the server

availability during the attack will be measured. The attack will be considered successful if the

server is unavailable for more than 50% of the attack time. Also, a defense mechanism is

considered effective when more than 50% of the attack’s impact is overwhelmed.

The term performance in this paper refers to the server’s availability to legitimate users. If

the server process and respond to a received request within a specific period, a timeout, then

the server would be recognized as available. Otherwise if the server did not respond during the

timeout, it would be considered as unavailable. The performance of a server within an

experiment is considered by taking into account its availability during all period of the attack.

The more available the server is during the period, the higher performance it will have.

Data collection has been done by running controlled experiments that produced

quantitative data which has been used to produce the results. In the experiments, when an

attack is launched on the server, the server’s availability has been monitored and the data was

saved to a delimited text file along with other information such as the number of closed and

pending connections. The data can be reproduced by using commands provided in the Appendix

along with technical information presented in chapter three.

2.1 Reliability and Validity

For the experiments to be reliable, similar defense mechanisms have been used in both web

server software. In addition, defense mechanisms in both software have been set to equivalent

configurations. Having said that, it is not possible to have identical configurations in the two

servers, as some options are missing or differently configured. Furthermore, to have a fair

comparison both serves have been hosted with the same data that is meant to be served to the

end-users such as website pages and images. Also, to ensure the validity of the results, each

experiment was repeated five times and the mean values were taken. Additionally, all

information regarding the experiments has been provided in chapter 3 such as the environment

11

setup, the tools that have been used, and the attack types and parameters, thus ensuring

reproducibility.

The experiments have been done in a virtual environment with no real users, so there is

uncertainty about how the imposed configurations would deal with the real traffic, and whether

they would generate false-positive statues or not. The experiments would have been more

realistic if a simulation of real users’ traffic has been considered. Furthermore, the content

hosted in the servers could be chosen according to common content used in web servers to

simulate a real-world scenario.

12

3 Experiment

3.1 Experiments environment

The environment setup contains the following three machines as shown in Figure 3.1:

1. The server: which is the victim machine that will be compromised by the attacker.

2. The observer: a machine that will send legitimate requests to the server and wait for

the response with the purpose of monitoring the server.

3. The attacker: a computer that will perform a low rate DoS attack by sending malicious

requests to the server.

VM

Linux

VM

Linux

Attacker Observer

VM

Linux

VM

Linux

With Mitigation

Default Settings

Figure 3.1 Illustration of the experiment setup

The low rate attack will be performed against two types of server software: Apache and Nginx.

The purpose of the experiment is to compare the performance of these two types of servers and

find the suitable configuration of each type of the two software in order to defend against the

slow rate attack and mitigate its impact. Therefore, the attack will be performed using the

default configurations for both servers and the impact will be measured. Next, the attack will be

performed against the two servers by using the manual configurations this time.

The focus of this experiment is to use mitigation options that are provided within the

software and to analyze the effectiveness of the mitigation tools comparably. For the apache

server, since the software is built with the architecture of modules which gives flexibility to the

software, the server can be configured or have some extra features by using additional modules.

Apache modules that have been used in our experiment are: mod_reqtimeout, mod_qos, and

13

mod_antiloris. For the Nginx server, the options that are provided by the software will be

manipulated such as body size, timeouts, and parallel connections.

The experiment has been conducted on virtual machines by using VirtualBox software.

The specification for each one of the three VMs that are part of the setup is described in Table

3.1. Web server software that has been used in the experiments are Apache v4.2 and NGINX

v1.8. Slowhttptest is the tool that has been used to carry out the attacks against the two web

servers.

Machine specification Attacker Observer Server

CPU Intel core i3 2.4 GHz Intel core i3 2.4 GHz Intel core i3 2.4 GHz

RAM 1 GB 1 GB 2 GB

Operating system Ubuntu 16 Ubuntu 16 Ubuntu 16

Table 3.1 VMs specifications

Server states that will be shown in the results are as the following:

 Closed: means the connection was served and closed and there is no more

communications through it.

 Pending: means the incoming connections to the server are put on hold due to server

being busy and the server would respond to them whenever it is available.

 Connected: refers to the connections that are still being served and there is data

exchange between the server and the client.

 Service available: refers to whether the server under attack is responding or not. If the

server respond to a received request within a timeout, it means the server is available.

Otherwise if the server did not respond, it means it is not available.

3.2 Mitigation tools

In this section, built-in tools and configurations available in Apache and NGINX servers that will

be used in the experiments will be described. The mechanism behind each tool and

configuration also will be explained.

3.2.1 NGINX

client_header_timeout

This directive is used to set a maximum period for the server to wait between two consecutive

headers. If the client does not send any header data within the time limit, the server will drop

the request and send 408 (Request Timeout) response status code back to the client. This

directive is useful to defend against slow header attack because this kind of attack relies

primarily on sending small chunks of the request header to make the server busy. By activating

this directive and setting the timeout to a small number, slow header attack can be defeated

successfully. It can be used in both HTTP and server contexts in the configuration file [10] [11].

An example of using this directive in nginx.conf:

14

server {

 client_header_timeout 30s;

 # ...

}

client_body_timeout

This directive is similar to client_header_timeout but it is dedicated to be used against the

illegitimate payload. It is used to set a maximum period for the server to wait between two

successive body writes. If the client does not send any body data within the time limit, the

server will drop the request and send 408 (Request Timeout) response status code back to the

client. This directive is useful to defend against slow body attack because this kind of attack

relies primarily on sending small chunks of the payload (body) to make the server busy. By

activating this directive and setting the timeout to a small number, slow body attack can be

defeated successfully. It can be used in HTTP, location, and server contexts in the configuration

file [10] [11]. An example of using this directive in nginx.conf:

server {

 client_body_timeout 25s;

 # ...

}

client_max_body_size

This directive is useful to protect the server from slow body attacks. It sets the maximum

allowed size of the payload of a request to be specified by servers’ administrators. By setting

this directive to a specific number, it prevents the client from sending requests that exceed the

allowed limit. The server relies on the Content-Length field in determining the body size of a

request, therefore if the Content-Length number was larger than what has been specified in the

configuration a 413 (Request Entity Too Large) response status code will be sent back to the

client. By activating this directive and setting the timeout to a small number, slow body attack

can be defeated successfully. It can be used in HTTP, location, and server contexts in the

configuration file [10]. An example of using this directive in nginx.conf:

http {

 client_max_body_size 2m;

 # ...

}

Limiting connections

By using directives provided within the ngx_http_limit_conn_module, the number of

simultaneous connections for each IP address can be limited. When the number of parallel

opened connections by a client reaches the specified limit, the server will send 503 Service

Unavailable server error response code back to the client [11]. The default error message can be

changed by using limit_conn_status directive. A shared memory zone should be defined, given a

name, and set its size to a specific value by using limit_conn_zone directive. Then, by using

limit_conn directive we point out to the shared memory zone which is limitbyaddr in the

following example, and set the allowed number of simultaneous connections [10] [12].

15

An example of using this directive in nginx.conf:

http {

 limit_conn_zone $binary_remote_addr zone=limitbyaddr:20m;

 limit_conn_status 429;

 # ...

 Server {

 limit_conn limitbyaddr 40;

 # ...

 }

}

3.2.2 Apache

mod_reqtimeout

This module is used to set a timeout for a client request to be received by the apache sever. The

module can set a time limit for SSL/TLS handshake and HTTP request. HTTP requests can be

divided into HTTP header and HTTP body, so mod_reqtimeout can set a different time limit for

the two HTTP parts. Also, mod_reqtimeout is used to set the allowed minimum transfer rate for

data that are being received from the client-side. If the client has failed to meet the time frame

limit for sending the data, the server will drop the connection data and send a 408 “REQUEST

TIMEOUT” error [13]. An example configuration for setting a time limit for HTTP header:

RequestReadTimeout header=10-20,minrate=800

The directive gives the client a 10-second time frame for sending the first bytes of the

HTTP request. If the client has sent the first segment of the request then check the transfer rate

to be a least 800 bytes/s. If the client did not send the complete request in 10 seconds, increase

the time out one second for each received 800 bytes but no more than 20 seconds [14].

The upper limit can be omitted, and we will only have a strict time limit :

RequestReadTimeout header=10,minrate=800

The same rules apply for the body portion of the HTTP :

RequestReadTimeout body=10,minrate=800

mod_qos

The module is used to impose the quality of service concept on the Apache webserver by setting

rules that collaborate cumulatively to impose different priorities to the received HTTP requests.

By setting different configurations using the qos module we can eliminate unnecessary

connections and keep the server from being overwhelmed with too many connections, since

each connection requires a process or a thread that consumes resources like CPU and ram. Too

many processes will lead to the unavailability of the server from the client side “denial of

service” DoS and here comes mod_qos to mitigate that impact on the apache server [15].

mod_qos can limit the number of connections that a single IP can establish and also can

set the number of the IPs that can have connections to the server simultaneously. For the

different server pages or resources, mod_qos can also manage them by setting restrictions for

16

the number of the HTTP requests to a specific resource. With mod_qos we can decide to accept

or drop a request from a client that does not meet the minimum specified rate:

 #QS_SrvRequestRate 120

Here we are requiring that the client must have a rate of 120 bytes/sec at least so their request

can be processed. There are also some conditions that can take place when the connections hit

the limit, like disabling the keep-alive header when the connections reach the indicated number

(In our example it is 600):

#QS_SrvMaxConnClose 600

mod_qos with default configuration:

<IfModule qos_module>

minimum request rate (bytes/sec at request reading):

#QS_SrvRequestRate 120

limits the connections for this virtual host:

#QS_SrvMaxConn 100

allows keep-alive support till the server reaches 600 connections:

#QS_SrvMaxConnClose 600

allows max 50 connections from a single ip address:

#QS_SrvMaxConnPerIP 50

</IfModule>

mod_antiloris

This module is a mitigation tool designed to target slowLoris attack (slow HTTP header). The

module mitigation concept depends on limiting the number of connections that a single user can

have to the Apache server. Antiloris depends on the IP address for defining the user, so we can

set configurations that will block any IP that crosses the threshold of the connection limit..

Example of antiloris configuration:

<IfModule antiloris_module>

 IPTotalLimit 16

 IPOtherLimit 8

 IPReadLimit 8

 IPWriteLimit 8

</IfModule>

IPTotalLimit means all connections in any state, while IPOtherLimit for idle connections,

IPReadLimit for connections in reading mode, and IPWriteLimit for connections in write

mode.[16]

17

3.3 Conducted experiments

3.3.1 Nginx server

In this section, experiments that were conducted on the Nginx server by configuring the built-in

features in order to come up with the most suitable configuration for defeating slow rate DoS

attack will be described. The configurations that has been used in this section are as follow.

Using timeouts

This technique is used to set a maximum period for the server to wait between two consecutive

data. If the client does not send any data within the time limit, the server will drop the request

and send 408 (Request Timeout) response status code back to the client. This is useful to defend

against slow header and slow body attacks because this kind of attacks rely primarily on

sending small chunks of the data to make the server busy. By activating this technique and

setting the timeout to a small number, slow header and body attack can be defeated

successfully.

Limiting connections

Since the number of simultaneously opened connections is an important parameter of a

successful low rate attack, limiting this number can be very useful to protect the server from

such attacks. Nginx software provides administrators with the ability to limit the number of

simultaneous connections that are opened by each client based on their IP address by using

limit_conn directive.

Limiting payload size

This method is useful to protect the server from slow body attacks. By making use of it, the

maximum allowed size of the payload of a request can be specified by servers’ administrators.

By setting a specific number, this method prevents the client from sending requests that exceed

the allowed limit. The server relies on the Content-Length field in determining the body size of a

request, therefore if the Content-Length number was larger than what has been specified in the

configuration a 413 (Request Entity Too Large) response status code will be sent back to the

client. By activating this technique and setting the timeout to a small number, slow body attack

can be defeated successfully.

Experiment 1

Using header timeout: is effective when it is used against slow header attack where the attacker

sends HTTP request headers at a slow rate. Therefore, it has been tested against slow header

attack only. Table 3.2 shows the parameters that have been used in the experiment. The

following directive has been added to the Nginx conf file in the HTTP context which sets the

client header timeout to 5 seconds, this means that if the client did not send any header related

data within five seconds, the request will be dropped out.

client_header_timeout 5s;

18

Test parameters

Test type SLOW HEADERS

Number of connections 10000

Verb GET

Content-Length header value 4096

Extra data max length 52

Interval between follow up data 10 seconds

Connections per seconds 1000

Timeout for probe connection 3

Target test duration 240 seconds

Using proxy no proxy

Table 3.2 slow header attack 10000 connections

Limiting connections: The following configuration limits simultaneous connections from

one IP address to 10 simultaneous connections. If a client tries to open more than ten parallel

connections a 429 error will be sent back to the client.

limit_conn_zone $binary_remote_addr zone=addr:10m;

limit_conn addr 10;

limit_conn_status 429;

Experiment 2

Using body timeout: is effective when it is used against slow body attack where the attacker

sends a complete HTTP request to the server but sends the body in small chunks at a slow rate.

Therefore, it has been tested against slow body attack only. Table 3.3 shows the parameters that

have been used in the experiment. The following directive has been added to the Nginx conf file

in the HTTP context which sets the client body timeout to 5 seconds. This means that if the

client did not send any body-related data within five seconds, the request will be dropped out.

client_body_timeout 5s;

Test parameters

Test type SLOW BODY

Number of connections 10000

Verb POST

Content-Length header value 4096

Extra data max length 50

Interval between follow up data 5 seconds

Connections per seconds 100

Timeout for probe connection 3

Target test duration 240 seconds

Using proxy no proxy

Table 3.3 slow body attack 10000 connections

19

Limiting connections: The following configuration limits simultaneous connections from

one IP address to fifty simultaneous connections. If a client tries to open more than fifty parallel

connections a 429 error will be sent back to the client.

limit_conn_zone $binary_remote_addr zone=addr:10m;

limit_conn addr 50;

limit_conn_status 429;

Limiting body size: The following configuration limits the body size of an HTML request to

3 kilobytes by checking the content-length field, thus if it was more than 3KB a 413 error will be

sent back to the client telling them that the request entity is too large.

client_max_body_size 3k;

Experiment 3

Limiting connections: The following configuration limits simultaneous connections from one IP

address to five simultaneous connections. If a client tries to open more than five parallel

connections, a 429 error will be sent back to the client.

limit_conn_zone $binary_remote_addr zone=addr:10m;

limit_conn addr 5;

limit_conn_status 429;

Test parameters

Test type SLOW READ

Number of connections 3000

Receive window range 512 - 1024

Pipeline factor 3

Read rate from receive buffer 32 bytes / 5 sec

Connections per seconds 1000

Timeout for probe connection 3

Target test duration 240 seconds

Using proxy no proxy

Table 3.4 slow read attack 3000 connections

3.3.2 Apache server

This section explains and gives details regarding the experiments that were conducted on the

Apache server. The section clarifies the different configurations of the apache modules that have

been used to mitigate the three types of slow rate DoS attacks.

mod_reqtimeout

Setting a timeout for the HTTP header or body to be completed can highly mitigate the slow DOS

attack. In this test, we have set the time limit for the header to be received completely to 8

20

seconds, and for the body to 10 seconds. The sender should have a minimum speed of 800

bytes/second so it can extend the timeout to the upper limit:

RequestReadTimeout header=2-8,minrate=800

RequestReadTimeout body=2-10,minrate=800

Reqtimeout module cannot deal with slow read attacks since with this type of attack the server

receives an illegitimate request with a complete HTTP header and within the time limit.

mod_qos

By this module, we have set the number of connections that the server can handle to 1000. Also,

when the number of connections reaches 600 the qos module will disable the keep-alive

messages. Each connection should at least have a speed of 120 bytes/second otherwise the

connection will be closed. The maximum connections of every single IP have been set to 50.

Configuration snippet of mod_qos:

#minimum request rate (bytes/sec at request reading 120):

 QS_SrvRequestRate 120

limits the connections for this virtual host:

 QS_SrvMaxConn 1000

allows keep-alive support till the server reaches 600 connections:

 QS_SrvMaxConnClose 600

allows max 50 connections from a single ip address:

 QS_SrvMaxConnPerIP 50

mod_antiloris

Antiloris is designed to deal with slow DOS attacks that are coming from a single IP. So this

module can keep track of the number of connections opened by each IP. We have set

IPTotalLimit to 16, while IPOtherLimit (idle connections), IPReadLimit (read mode), and

IPWriteLimit (write mode) have been set to 8;

<IfModule antiloris_module>

 IPTotalLimit 16

 IPOtherLimit 8

 IPReadLimit 8

 IPWriteLimit 8

</IfModule>

Experiment 4

In this experiment, Apache server will be tested under slow header attack by opening 500

illegitimate connections to the server and measuring the server’s response during the attack.

mod_reqtimeout, mod_qos and mod_antiloris will be used individually to test their effectiveness

against slow header attack. Table 3.5 shows the parameters that have been used in the

experiment.

21

Test parameters

Test type SLOW HEADERS

Number of connections 500

Verb GET

Content-Length header value 4096

Extra data max length 52

Interval between follow up data 10 seconds

Connections per seconds 200

Timeout for probe connection 3

Target test duration 240 seconds

Using proxy no proxy

Table 3.5 slow header attack 500 connections

Experiment 5

In this experiment, Apache server will be tested under slow body attack by opening 500

illegitimate connections to the server and measuring the server’s response during the attack.

mod_reqtimeout, mod_qos and mod_antiloris will be used individually to test their effectiveness

against slow body attack. Table 3.6 shows the parameters that have been used in the

experiment.

Test parameters

Test type SLOW BODY

Number of connections 500

Verb POST

Content-Length header value 4096

Extra data max length 22

Interval between follow up data 10 seconds

Connections per seconds 200

Timeout for probe connection 3

Target test duration 240 seconds

Using proxy no proxy

Table 3.6 slow body attack 500 connections

Experiment 6

In this experiment, Apache server will be tested under slow header attack by opening 500

illegitimate connections to the server and measuring the server’s response during the attack.

mod_qos and mod_antiloris will be used individually to test their effectiveness against slow

22

header attack, while mod_reqtimeout will not be used in this experiment since the slow read

attack sends a complete request so mod_reqtimeout is not feasible to stop this attack. Table 3.6

shows the parameters that have been used in the experiment.

Test parameters

Test type SLOW READ

Number of connections 500

Receive window range 512 - 1024

Pipeline factor 3

Read rate from receive buffer 32 bytes / 5 sec

Connections per seconds 100

Timeout for probe connection 3

Target test duration 240 seconds

Using proxy no proxy

Table 3.7 slow read attack 500 connections

3.3.3 Comparison between Apache and NGINX

3.3.3.1 Before mitigation (default settings)

Experiment 7

In this experiment, Apache and NGINX servers will be tested under slow header attack with

both small and large number of opened connections in order to compare the performance of the

two servers against each other without using any defending mechanism. This is done, first, by

opening 500 illegitimate connections to the servers and measuring the server’s response during

the attack. Table 1.5 shows the parameters that have been used.

Second, Apache and NGINX servers will be tested under slow header attack with a large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done by opening 10000 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.2

shows the parameters that have been used.

Experiment 8

Apache and NGINX servers will be tested under slow body attack with both small and large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done, first, by opening 500

illegitimate connections to the servers and measuring the server’s response during the attack.

Table 1.6 shows the parameters that have been used.

Then, Apache and NGINX servers will be tested under slow body attack with a large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done by opening 10000 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.3

shows the parameters that have been used.

23

Experiment 9

In this experiment, Apache and NGINX servers will be tested under slow read attack with both

small and large number of opened connections in order to compare the performance of the two

servers against each other without using any defending mechanism. This is done, first, by

opening 500 illegitimate connections to the servers and measuring the server’s response during

the attack. Table 1.7 shows the parameters that have been used.

Second, Apache and NGINX servers will be tested under slow read attack with a large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done by opening 3000 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.4

shows the parameters that have been used.

3.3.3.2 After mitigation

Nginx configuration

The following directives have been added to the Nginx conf file in the HTTP context which sets

the client header and body timeout to 5 seconds. This means that if the client did not send any

data within five seconds, the request will be dropped out.

client_header_timeout 5s;

client_body_timeout 5s;

The following configuration limit simultaneous connections from one IP address to fifty

simultaneous connections. If a client tries to open more than fifty parallel connections a 429

error will be sent back to the client.

limit_conn_zone $binary_remote_addr zone=addr:10m;

limit_conn addr 50;

limit_conn_status 429;

The following configuration limits the body size of an HTML request to 3 kilobytes by

checking the content-length field, thus if it was more than 3KB a 413 error will be sent back to

the client telling them that the request entity is too large.

client_max_body_size 3k;

Apache configuration

We have enabled the three selected modules with the following configurations:

Reqtimeout module:

RequestReadTimeout header=2-8,minrate=800

RequestReadTimeout body=2-10,minrate=800

Qos module:

<IfModule qos_module>

 # minimum request rate (bytes/sec at request reading 120):

 QS_SrvRequestRate 120

 # limits the connections for this virtual host:

 QS_SrvMaxConn 1000

24

 # allows keep-alive support till the server reaches 600 connections:

 QS_SrvMaxConnClose 600

 # allows max 50 connections from a single ip address:

 QS_SrvMaxConnPerIP 50

</IfModule>

Antiloris module:

<IfModule antiloris_module>

 IPTotalLimit 16

 IPOtherLimit 8

 IPReadLimit 8

 IPWriteLimit 8

</IfModule>

Experiment 10

The aim of this experiment is to test Apache and NGINX servers under slow header attack with

both small and large number of opened connections in order to compare the performance of the

two servers against each other by using a built-in defend mechanism. This is done, first, by

opening 500 illegitimate connections to the servers and measuring the server’s response during

the attack. Table 1.5 shows the parameters that have been used.

Then, Apache and NGINX servers will be tested under slow body attack with a large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done by opening 10000 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.2

shows the parameters that have been used.

Experiment 11

Apache and NGINX servers will be tested under slow header attack with both small and large

number of opened connections in order to compare the performance of the two servers against

each other by using a built-in defend mechanism. This is done, first, by opening 500 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.6

shows the parameters that have been used.

Second, Apache and NGINX servers will be tested under slow body attack with a large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done by opening 10000 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.3

shows the parameters that have been used.

Experiment 12

In this experiment, Apache and NGINX servers will be tested under slow header attack with

both small and large number of opened connections in order to compare the performance of the

two servers against each other by using a built-in defend mechanism. This is done, first, by

25

opening 500 illegitimate connections to the servers and measuring the server’s response during

the attack. Table 1.7 shows the parameters that have been used.

Then, Apache and NGINX servers will be tested under slow body attack with a large

number of opened connections in order to compare the performance of the two servers against

each other without using any defending mechanism. This is done by opening 3000 illegitimate

connections to the servers and measuring the server’s response during the attack. Table 1.4

shows the parameters that have been used.

26

4 Results

4.1 Nginx configuration

In this section results of Nginx configuration experiments that has been used in order to come

up with the most suitable configuration for defeating slow rate DoS attack will be presented,

which are timeouts, limiting connections, and limiting size.

Experiment 1

Header timeout: The attack was successful against the Nginx server before activating the header

timeout as shown in Figure 4.1. After activating the header timeout the attack was rendered

unsuccessful. The following directive has been added in the Nginx conf file which sets the

client_header_timeout to 5 seconds: client_header_timeout 5s; The attack was unsuccessful

against the Nginx server after activating header timeout and the server was available during the

attack as shown in Figure 4.2.

Limiting connections: Slow header attack was successful against Nginx server before

applying connection limits as shown in Figure 4.1. After applying connections limits the attack

was also successful. Limiting the number of simultaneous connections did not improve the

defense against the slow header attack as shown in Figure 4.3.

Figure 4.1 Nginx server under slow header attack in default configuration

Figure 4.2 Nginx server under slow header attack after

using header timeout

Figure 4.3 Nginx server under slow header attack after

limiting connections

27

Experiment 2

Body timeout: The attack was successful against the Nginx server before applying mitigation as

shown in Figure 4.4. After activating body timeout the attack was rendered unsuccessful. The

following directive has been added in the Nginx conf file which sets the client body timeout to 5

seconds: client_body_timeout 5s. The attack was unsuccessful against the Nginx server after

activating body timeout as shown in Figure 4.5

Limiting connections: Slow body attack was successful against Nginx server before

applying connection limits as shown in Figure 4.4. After applying connections limits the attack

was rendered unsuccessful. Limiting the number of simultaneous connections did improve the

defense against the slow body attack as shown in Figure 4.6.

Limiting body size: Slow body attack was successful against the Nginx server before

applying the body size limit as shown in Figure 4.4. After applying body size limits the attack

was rendered unsuccessful. Limiting body size did improve the defense against the slow body

attack as shown in Figure 4.7.

Figure 4.4 Nginx server under slow body attack in default

configuration

Figure 4.5 Nginx server under slow body after using

body timeout

Figure 4.6 Nginx server under slow body attack after

limiting connections

Figure 4.7 Nginx server under slow body attack after

limiting body size

28

Experiment 3

Limiting connections: Slow read attack was successful against the Nginx server before applying

connection limits as shown in Figure 4.8. After applying connections limits the attack was

rendered unsuccessful. Limiting the number of simultaneous connections did improve the

defense against the slow read attack as shown in Figure 4.9.

Figure 4.8 Nginx server under slow read attack in default

configuration

Figure 4.9 Nginx server under slow read attack after

limiting connections

4.2 Apache Configuration

Experiment 4

Before enabling the reqtimeout module, the slow header attack succeeded in bringing the

Apache server down so it was a successful denial of service attack. We can see in Figure 4.10

that the server was available in the first seconds of the attack, then all the connections have

been occupied. With enabling the reqtimeout module, we can see enhancement in the apache

server mitigation against the slow header attack, but still, we can see a denial of server between

the 6th- 8th seconds.

We can see that the qos (quality of service) module can handle slow header attack

efficiently. Also, it can be noticed that the qos module has closed 450 of the connections, since

we have specified a maximum of 50 connections for each IP.

After enabling the antiloris module, it has been noticed that the impact of slow header

attack has been reduced significantly. Also, it can be noticed that the antiloris module has closed

most of the connections, while 8-9 connections have remained.

29

Figure 4.10 Apache server under slow header attack in

default configuration

Figure 4.11 Apache server under slow header attack

after enabling reqtimeout

Figure 4.12 Apache server under slow header attack

after enabling qos

Figure 4.13 Apache server under slow header attack

after enabling antiloris

Experiment 5

In this experiment, the slow body attack was successful in bringing the Apache server down

before enabling the reqtimeout module, so the slow body attack was able of rendering the

server to the denial of service state with only 500 hundred connections. After enabling

reqtimeout module and setting a time limit for the HTTP body to be received, we can see

mitigation of 45% against the slow HTTP body attack.

Here is the same case as the previous experiment, slow body attack can be mitigated by

the qos (quality of service) module can handle efficiently .We have specified a maximum of 50

connections for each IP, so the qos module has closed 450 of the connections.

For this experiment, antiloris module has prevented the slow body attack from rendering

the Apache server out of reach. Antiloris module has closed most of the connections, while 8-9

connections have remained and we can see the high availability of the server.

30

Figure 4.14 Apache server under slow body attack in

default configuration

Figure 4.15 Apache server under slow body attack after

enabling reqtimeout

Figure 4.16 Apache server under slow body attack after

enabling qos

Figure 4.17 Apache server under slow body attack after

enabling antiloris

Experiment 6: Slow Read

Here is the same case as the two previous experiments, the qos (quality of service) module has

mitigated slow read attack efficiently. The qos module has closed 450 of the connections and 50

connections have been remained, as we have specified a maximum of 50 connections for every

single IP.

After enabling the antiloris module, it has hindered the impact of slow read attack on a

high extend compared to default settings Figure 4.20. Also, it can be noticed that the antiloris

module has closed most of the connections, while 8-9 connections have remained.

31

Figure 4.18 Apache server under slow read attack in default configuration

Figure 4.19 Apache server under slow read attack after

enabling qos

Figure 4.20 Apache server under slow read attack after

enabling antiloris

4.3 Comparison between Apache and NGINX

The results of the experiments that were conducted on Apache and Nginx servers for comparing

their performance will be displayed in this section.

4.3.1 Before mitigation (default settings)

This subsection presents the results of experiments on Apache and Nginx servers before

applying any defense mechanism against the slow rate DoS attack.

Experiment 7

This experiment shows that the Apache server has been heavily hindered down under the slow

header attack that was carried on. The attack was done by opening only 500 illegitimate

connections on the server-side that rendered the Apache server unavailable as shown in Figure

4.21, while comparably NGINX has survived successfully from the slow header attack as shown

in Figure 4.22.

The Apache server has been down most of the time during the slow header attack that

was carried on in this experiment. The attack was done by opening a large number of

connections to the server which was 10000 illegitimate connections that rendered the Apache

server unavailable as shown in Figure 4.23. In this experiment unlike the previous one, the

NGINX server was partly down during the slow header attack as shown in Figure 4.24.

Nevertheless, the NGINX server showed better performance than the Apache server.

32

Figure 4.21 Apache server under slow header attack 500

connections in default configuration

Figure 4.22 Nginx server under slow header attack 500

connections in default configuration

Figure 4.23 Apache server under slow header attack

10000 connections in default configuration

Figure 4.24 Nginx server under slow header attack

10000 connections in default configuration

Experiment 8

This experiment shows that the Apache server has been heavily hindered down under the slow

header attack that was carried on. The attack was done by opening only 500 illegitimate

connections on the server-side that rendered the Apache server unavailable as shown in Figure

4.25, while comparably NGINX has survived easily from the slow body attack as shown in Figure

4.26.

The Apache server has been down most of the time during the slow body attack that was

carried on in this experiment. The attack was done by opening a large number of connections to

the server which was 10000 illegitimate connections that rendered the Apache server

unavailable as shown in Figure 4.27. In this experiment unlike the previous one, the NGINX

server was down most of the time during the slow body attack as shown in Figure 4.28.

However, the NGINX server showed better performance than the Apache server.

33

Figure 4.25 Apache server under slow body attack 500

connections in default configuration

Figure 4.26 Nginx server under slow body attack 500

connections in default configuration

Figure 4.27 Apache server under slow body attack 10000

connections in default configuration

Figure 4.28 Nginx server under slow body attack 10000

connections in default configuration

Experiment 9

This experiment shows that the Apache server has been heavily hindered down under the slow

read attack that was carried on. The attack was done by opening only 500 illegitimate

connections on the server-side that rendered the Apache server unavailable as shown in Figure

4.29, while comparably NGINX has survived easily from the slow read attack as shown in Figure

4.30.

The Apache server has been down most of the time during the slow read attack that was

carried on in this experiment. The attack was done by opening a large number of connections to

the server which was 3000 illegitimate connections that rendered the Apache server

unavailable as shown in Figure 3.31. In this experiment unlike the previous one, the NGINX

server was down partly during the slow read attack as shown in Figure 4.32. However, the

NGINX server showed better performance than the Apache server.

34

Figure 4.29 Apache server under slow read attack 500

connections in default configuration

Figure 4.30 nginx server under slow read attack 500

connections in default configuration

Figure 4.31 Apache server under slow read attack 3000

connections in default configuration

Figure 4.32 nginx server under slow read attack 3000

connections in default configuration

4.3.2 After mitigation

This subsection presents the results of experiments on Apache and Nginx servers after applying

the defense mechanism against the slow rate DoS attack.

Experiment 10

Contrary to Apache’s performance in experiment 7 that has been shown in subsection 4.3.1,

Apache server showed a good performance against the slow header attack as can be seen in

Figure 4.33. Similarly, NGINX server acted very well under the attack and it was available all the

time. The attack was done by opening 500 illegitimate connections to the server but both NGINX

and Apache server were available during the attack. However, in NGINX it took only 5 seconds

until all connections were closed while in Apache it took more than twice the time to close the

illegitimate connections.

When using 10000 illegitimate connections attack, both NGINX and Apache servers were

available during the attack and showed a good performance against the slow header attack.

Apache’s performance showed considerable enhancement compared to experiment 7 as can be

seen in Figure 4.35. Similarly, NGINX server acted very well under the attack and it was

available all the time and it took only 48 seconds until all connections were closed while Apache

took twice the time to close the illegitimate connections.

35

Figure 4.33 Apache server under slow header attack 500

connections in manual configuration

Figure 4.34 NGINX server under slow header attack 500

connections in manual configuration

Figure 4.35 Apache server under slow header attack

10000 connections in manual configuration

Figure 4.36 NGINX server under slow header attack

10000 connections in manual configuration

Experiment 11

Contrary to Apache’s performance in experiment 8 that has been shown in subsection 4.3.1,

Apache server showed a good performance against the slow header attack as can be seen in

Figure 4.37. Similarly, NGINX server acted very well under the attack and it was available all the

time. The attack was done by opening 500 illegitimate connections to the server but both NGINX

and Apache servers were available during the attack. However, on Apache, it took only 16

seconds until all connections were closed while in NGINX it took more than twice the time to

close the illegitimate connections.

When using 10000 illegitimate connections attack, both NGINX and Apache servers were

available during the attack and showed a good performance against the slow body attack.

Apache’s showed considerable performance. Similarly, NGINX server acted very well under the

attack and it was available all the time Figure 4.40

36

Figure 4.37 Apache server under slow body attack 500

connections in manual configuration

Figure 4.38 nginx server under slow body attack 500

connections in manual configuration

Figure 4.39 Apache server under slow body attack 10000

connections in manual configuration

Figure 4.40 nginx server under slow body attack 10000

connections in manual configuration

Experiment 12

Contrary to Apache’s performance in experiment 9 that has been shown in subsection 4.3.1,

Apache server showed a good performance against the slow header attack as can be seen in

Figure 4.41. Similarly, NGINX server acted very well under the attack and it was available all the

time. The attack was done by opening 500 illegitimate connections to the server but both NGINX

and Apache servers were available during the attack.

When using 3000 illegitimate connections attack, both NGINX and Apache servers were

available during the attack and showed a good performance against the slow read attack.

Apache’s showed considerable performance. Similarly, NGINX server acted very well under the

attack and it was available all the time Figure 4.44

37

Figure 4.41 Apache server under slow read attack 500

connections in manual configuration

Figure 4.42 nginx server under slow read attack 500

connections in manual configuration

Figure 4.43 Apache server under slow read attack 3000

connections in manual configuration

Figure 4.44 nginx server under slow read attack 3000

connections in manual configuration

38

5 Analysis and Discussion
In this chapter results presented in the previous chapter will be analyzed. It contains three

sections, each section presents an analysis of the related experiments.

5.1 NGINX

As has been stated in chapter 3, header timeout and body timeout have been used in

experiments 1 and 2 in order to mitigate slow header and slow body attacks respectively. Given

the fact, that the slow header/body attack mechanism is based on sending request header/body

at a slow pace to keep the server busy, so setting a timeout for receiving these data would drop

the request thus rendering the attack unsuccessful. Therefore, header and body timeout has

been used only against slow header and slow body attacks respectively.

In experiments 1, 2, and 3, limiting connections technique has been used to defeat slow

rate DoS attack. The mechanism is based on limiting the number of simultaneous connections

that can be opened by a client based on the IP address, and whereas one of the topmost

important factors of a successful slow rate DoS attack is the number of parallel opened

connections to the server, setting a limit for that would defeat or at least mitigate the impact of

the attack. The mitigation technique was highly successful in protecting NGINX server from slow

body and slow header attacks as presented in the results chapter in subsection 4.1 However, the

same technique showed deficiency in the confrontation of the slow header attack as has been

stated in 4.1 The reason behind this failure is that the responsible module for limiting

connections which is ngx_http_limit_conn_module does not count connections that have

incomplete requests. It counts only connections that have complete request headers and that

have been read by the server [17]. And since the attacker, in the slow header attack, sends

incomplete request headers, the connection would not be counted and therefore the attack will

evade this protection technique.

In experiment 2, a maximum body size has been set by using client_max_body_size

directive. As have been seen in the results in 4.1 subsection this technique made a huge

difference in protecting the server from slow body attack. This is due to the fact that

client_max_body_size directive counts on the Content-Length field in the head of the request. The

server checks this field, if it was larger than specified by the directive, the request will be

rejected [10]. Thus the attack will be unsuccessful which can be seen easily in the result of

experiment 2.

In all experiments where mitigation mechanisms were successful it was noticeable from

the results that the server was able to close larger number of connections in less time after

applying defense mechanisms. While this is true, it was also conspicuous that number of

connected connections after applying defense mechanisms was less compared to before.

Therefore, although defense mechanisms was able to protect NGINX form the attacks they

introduced a downside effect which is less number of served connections. This shows that the

protection mechanism in this context is a tradeoff between security and performance.

5.2 Apache

For apache, we have used three modules that depend on setting a timeout for the HTTP header

and body, and limiting the connections that a server can handle or a single IP (client) can

39

establish. By this aspect, we can realize that the mitigation methods on both apache and Nginx

do not differ conceptually, but as a matter of fact, they rely on the same techniques for

mitigation. Before using any defensive mechanism we have tested the three types of slow HTTP

attack with 500 connections and we saw how the Apache server has reacted poorly against

these attacks.

As we have used the reqtimout module we have not placed a test for the slow read attack,

as we already knew that the slow HTTP read sends a complete header request within the time

limit without segmenting it. The slow HTTP read attack, proposes a small buffer window of

bytes that the sender (attacker) can read once at a second, so it keeps the server busy by

sending small segments at a low rate, without the need of sending the header at low speed.

Not all of the mitigation tools worked ideally in the aspect of defeating the slow rate

attacks. For example, in experiment 5 we the reqtimeout module has been used, it can be

noticed that the slow body attack was able to bring the apache server down for nearly half the

time of the test.

As in NGINX, applying defense mechanisms led Apache server to close the connections

sooner than before applying them, which means better defense in the term of defending slow

attacks. As a result the number of pending connections was very minimum also. However, the

number of served connections were much less compared to default configurations. For example

in experiment 5 when using mod_qos, the number of connected connections was dropped down

from around 300 in default configurations to around only 50 connections. This tradeoff between

security and availability should be well considered when applying defense mechanisms.

5.3 NGINX vs Apache

As can be seen in experiments 7, 8, and 9 NGINX server acted more effectively than Apache

server against slow rate DoS attacks. This was obviously seen when 500 connections were

opened to the servers, as Apache was unavailable most of the time during the attacks while

NGINX was completely available and none of the attacks in these experiments could be able to

bring the server down. Even when the number of simultaneous connections was increased to

high values, NGINX showed better performance than the Apache server. The main reason

behind this difference in performance is the underlying architecture of each server in

processing connections.

Also, a prominent difference between Apache and NGINX in both experiments before and

after applying mitigation, is the number of connected connections that each server could handle.

For example, in experiments 7 and 8 when 10000 connections were opened to the servers,

NGINX was able to serve approximately 3000 connections at the peak where Apache was able

only to handle approximately 400 at the most. Moreover, Apache tends to put the majority of

incoming connections in pending state which means they are on hold due to server being busy.

While NGINX makes minimum usage of pending state as it servers the connection and close it as

soon as possible.

Also, another advantage to the NGINX server, is the tendency towards closing connections

very soon when compared to Apache, which is an important factor in defending against slow

HTTP attacks. Because, as discussed in chapter one, slow HTTP attacks depend on sending as

many as possible requests to the server, therefore dropping more connections by the server can

defeat the attack and render it unsuccessful. As a result, this is counted as an important feature

in NGINX’s ability to defend against slow HTTP DoS attacks.

40

NGNINX was designed to overcome the problem of serving a high number of concurrent

connections by implementing asynchronous, non-blocking, event-driven design [18]. The event-

driven model that has been used in NGINX was used primarily to run-over the issues of

scalability and performance that was in Apache [19]. NGINX has a master process that generates

worker processes which in turn listens for incoming connections. Each worker process in

NGNIX can process thousands of simultaneous connections at the same time while each worker

process in Apache can only handle one connection [19][20]. This is why slow rate DoS attacks

could not bring NGINX server down easily compared to the Apache server.

5.4 Discussion

The findings of the research showed that NGNIX is more resistant against slow rate DoS attacks

in default configuration than Apache as were predicted before conducting the experiment.

Having said that, NGINX server is also exposed to be unreachable under severe slow rate DoS

attacks. However, the defense mechanisms that were chosen in this study showed high

improvement in protecting both servers from the attacks.

The study experiments the behavior of the two servers, NGNIX and Apache, against slow

HTTP attack, while the related works that have been reviewed in this paper do not have any

evaluating of the server's performance. The objectives that have been set in this study have

been achieved, as we have applied the three types of slow HTTP attacks on NGNIX and Apache

and also measured their performance.

41

6 Conclusion
Security is always a matter of concern for web server managers as many services on the web are

exposable to threats. This paper examined the built-in defense mechanism in two well-known

web servers which are Apache and NGINX, against one of the novel security threats which is

slow rate DoS attack that targets web servers. From the results of the experiments that have

been conducted, it was shown that both servers are protectable against slow rate DoS attack by

making use of the built-in tools. However, Apache is more vulnerable to this type of attack when

using default configurations, compared to NGNIX server which has better performance under

slow rate attack.

The project started by carrying out a literature review regarding low rate DoS attack

(Objective 1) which has been done with the aid of academic search engines such as Google

Scholar, Microsoft Academic and LNU’s OneSearch. By achieving the first objective, we were

able to write the Background subchapter (1.1), Related works 1.2, and Mitigation tools 3.2

subchapters. In addition, the literature review highly contributed in implementing the low rate

DoS attack on Apache and NGINX servers (Objective 2). Also, it facilitated the preparation of the

experiment environment and choosing the appropriate tools for conducting the experiments.

As presented in chapter 3, we were able to implement the attack by making use of

recognized software and tools such as VirtualBox, Linux OS, Apache and NGINX software, and

slowhttptest. Additionally, after achieving O1, we were able to choose suitable configurations

and tools to defend against the attacks. The performance of the servers was measured by

sending frequent requests to the server machine and anticipating/waiting for the response. If

the server responded within the timeout frame it was tagged as available otherwise it was

tagged as unavailable (Objective 3). Also, based on O1 and the information we have gathered in

O3 , we were able to analyze the results by comparing the two servers taking into consideration

the availability parameter in addition to pending, connected and closed parameters (Objective

4).

These findings are important to web server managers when they want to choose between

Apache and NGINX taking into account the slow rate DoS attack and the downsides of using

defense mechanisms. Since our experiment has been conducted on virtual machines with

modest resources, it would be more realistic if we had applied the experiment on a real

webserver with capable resources and measured the impact of the slow HTTP attack.

6.1 Future work

The experiments could have been conducted in a more realistic environment so it can be

guaranteed that imposed configuration would not generate false-positive statues. More studies

should be done to analyze the traffic on different servers and balance between serving clients

and blocking intruders regarding the slow HTTP attack. Moreover, slow HTTP can be used in

distributed denial of service attack DDoS, which will have a larger impact on servers, and will

require different configurations and mitigation tools.

42

References

[1] CERT, “1997 Tech Tip: Denial of Service Attacks,” resources.sei.cmu.edu. [Online].

Available: https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=496599. [Accessed:

16-Sep-2020].

[2] “Denial-of-Service (DoS) Attack,” Cloudflare, 2019. [Online]. Available:

https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/. [Accessed: 17-Sep-

2020].

[3] B. B. Gupta and O. P. Badve, "Taxonomy of DoS and DDoS attacks and desirable defense

mechanism in a Cloud computing environment," Neural Computing and Applications, vol. 28, no.

12, pp. 3655-3682, 2017682, Apr. 2016.

[4] M. Haddadi and R. Beghdad, “DoS-DDoS: Taxonomies of attacks, countermeasures, and

well-known defense mechanisms in cloud environment,” EDPACS, vol. 57, no. 5, pp. 1–26, May

2018.

[5] S. Suroto, "A Review of Defense Against Slow HTTP Attack," JOIV : International Journal on

Informatics Visualization, vol. 1, no. 4, pp. 127-134, 2017.

[6] E. Cambiaso, G. Papaleo and M. Aiello, "Taxonomy of Slow DoS Attacks to Web

Applications," International Conference on Security in Computer Networks and Distributed

Systems, pp. 195-204, 2012.

[7] S. Ranjan, R. Swaminathan, M. Uysal and E. Knightly, "DDoS-Resilient Scheduling to

Counter Application Layer Attacks Under Imperfect Detection," in Proceedings IEEE INFOCOM

2006. 25TH IEEE International Conference on Computer Communications, 2006.

[8] “What is a Slowloris Attack?,” NETSCOUT, 2019. [Online]. Available:

https://www.netscout.com/what-is-ddos/slowloris-attacks. [Accessed: 17-Sep-2020].

[9] M. Sikora, T. Gerlich and L. Malina, "On Detection and Mitigation of Slow Rate Denial of

Service Attacks," in 2019 11th International Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT), 2019.

[10] “Module ngx_http_core_module,” nginx.org. [Online]. Available:

http://nginx.org/en/docs/http/ngx_http_core_module.html. [Accessed: 18-Sep-2020].

[11] R. Nelson, “DDos Mitigation - Using NGINX to Prevent DDoS Attacks,” NGINX, 02-Jul-2015.

[Online]. Available: https://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-

nginx-plus/.[Accessed: 12-Sep-2020].

[12] D. DeJonghe, Complete NGINX Cookbook. O’Reilly Media, Inc, 2019.

[13] I. Muscat, “How To Mitigate Slow HTTP DoS Attacks in Apache HTTP Server | Acunetix,”

Acunetix, 04-Oct-2017. [Online]. Available: https://www.acunetix.com/blog/articles/slow-http-

dos-attacks-mitigate-apache-http-server/.[Accessed: 14-Sep-2020].

43

[14] “mod_reqtimeout - Apache HTTP Server Version 2.5,” httpd.apache.org. [Online].

Available: https://httpd.apache.org/docs/trunk/mod/mod_reqtimeout.html. [Accessed: 18-

Sep-2020].

[15] “mod_qos,” mod-qos.sourceforge.net. [Online]. Available: http://mod-

qos.sourceforge.net/index.html. [Accessed: 18-Sep-2020].

[16] L. Nick, “Deltik/mod_antiloris,” GitHub, 24-Jul-2020. [Online]. Available:

https://github.com/Deltik/mod_antiloris. [Accessed: 18-Sep-2020].

[17] “Module ngx_http_limit_conn_module,” nginx.org. [Online]. Available:

https://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn. [Accessed: 17-

Sep-2020].

[18] “Nginx vs Apache – which is the best web server?,” Plesk, 22-Jul-2018. [Online]. Available:

https://www.plesk.com/blog/various/nginx-vs-apache-which-is-the-best-web-

server/.[Accessed: 13-Sep-2020].

[19] S. Bradley, “NGINX—Server Software With Event-Driven Architecture,” Vanseo Design, 27-

Mar-2018. [Online]. Available: https://vanseodesign.com/web-design/nginx-web-server/.

[Accessed: 18-Sep-2020].

[20] “Inside NGINX: Designed for Performance & Scalability,” NGINX, 11-Jun-2015. [Online].

Available: https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-

scale/.[Accessed: 17-Sep-2020].

[21] W. Zhijun, L. Wenjing, L. Liang and Y. Meng, "Low-Rate DoS Attacks, Detection, Defense,

and Challenges: A Survey," IEEE Access, vol. 8, pp. 43920-43943, 2020.

[22] “What is R.U.D.Y. (R-U-Dead-Yet?) | DDoS Tools | Imperva,” Learning Center. [Online].

Available: https://www.imperva.com/learn/ddos/rudy-r-u-dead-yet/. [Accessed: 17-Sep-

2020].

[23] “What is a Slow Post Attack?,” NETSCOUT. [Online]. Available:

https://www.netscout.com/what-is-ddos/slow-post-attacks. [Accessed: 17-Sep-2020].

44

Appendix
Commands used in each experiment

Experiment 1
slowhttptest -c 10000 -H -g -o ./output_file -i 10 -r 1000 -t GET -u http://192.168.22.6 -x
24 -p 3

Experiment 2
slowhttptest -c 10000 -B -g -o ./output_file -i 5 -r 100 -t POST –u
http://192.168.22.6/uplaod.php -x 24 -p 3

Experiment 3
slowhttptest -g -o ./output_file -c 3000 -X -r 1000 -w 512 -y 1024 -n 5 -z 32 -k 3 -u
http://192.168.22.6/image.jpg -p 3

Experiment 4
slowhttptest -c 500 -H -g -o ./output_file -i 10 -r 200 -t GET -u http://192.168.22.6 -x 24
-p 3

Experiment 5
slowhttptest -c 500 -B -g -o ./output_file -i 10 -r 200 -t POST -u
http://192.168.22.6/a.php -x 10 -p 3

Experiment 6
slowhttptest -c 500 -X -g -o ./output_file -r 200 -w 512 -y 1024 -n 5 -z 32 -k 3 -u
http://192.168.22.6/1.jpg -p 3

Experiment 7
slowhttptest -c 500 -H -g -o ./output_file -i 10 -r 200 -t GET -u http://192.168.22.6 -x 24
-p 3

slowhttptest -c 10000 -H -g -o ./output_file -i 10 -r 1000 -t GET -u http://192.168.22.6 -x
24 -p 3

Experiment 8
slowhttptest -c 500 -B -g -o ./output_file -i 10 -r 200 -t POST -u
http://192.168.22.6/a.php -x 10 -p 3

slowhttptest -c 10000 -B -g -o ./output_file -i 5 -r 100 -t POST –u
http://192.168.22.6/uplaod.php -x 24 -p 3

Experiment 9
slowhttptest -c 500 -X -g -o ./output_file -r 200 -w 512 -y 1024 -n 5 -z 32 -k 3 -u
http://192.168.22.6/1.jpg -p 3

slowhttptest -g -o ./output_file -c 3000 -X -r 1000 -w 512 -y 1024 -n 5 -z 32 -k 3 -u
http://192.168.22.6/image.jpg -p 3

Experiment 10
slowhttptest -c 500 -H -g -o ./output_file -i 10 -r 200 -t GET -u http://192.168.22.6 -x 24
-p 3

slowhttptest -c 10000 -H -g -o ./output_file -i 10 -r 1000 -t GET -u http://192.168.22.6 -x
24 -p 3

Experiment 11
slowhttptest -c 500 -B -g -o ./output_file -i 10 -r 200 -t POST -u
http://192.168.22.6/a.php -x 10 -p 3

slowhttptest -c 10000 -B -g -o ./output_file -i 5 -r 100 -t POST –u
http://192.168.22.6/uplaod.php -x 24 -p 3

45

Experiment 12
slowhttptest -c 500 -X -g -o ./output_file -r 200 -w 512 -y 1024 -n 5 -z 32 -k 3 -u
http://192.168.22.6/1.jpg -p 3

slowhttptest -g -o ./output_file -c 3000 -X -r 1000 -w 512 -y 1024 -n 5 -z 32 -k 3 -u
http://192.168.22.6/image.jpg -p 3

