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Abstract

Mutations that lead to drug resistance limit the efficacy of antibiotics, antiviral

drugs, targeted cancer therapies, and other treatments. Accurately calculating

protein–drug binding affinity changes upon mutations in the drug target is of

high interest as this can yield a better understanding into how such mutations

drive drug-resistance, especially when the mutation in question does not

directly interfere with binding of the drug. The main aim of this article is to

provide an up-to-date reference on the computational tools that are available

for the calculation of Gibbs energy (free energy) changes upon mutation, their

strengths, and limitations. The methods that are discussed include free energy

calculations (free energy perturbation, thermodynamic integration, multistate

Bennett acceptance ratio), analysis of molecular dynamics simulations (linear

interaction energy, molecular mechanics [MM]/Poisson–Boltzmann solvated

area, and MM/generalized Born solvated area), and methods that involve

quantum mechanical calculations (including QM/MM). The possibility to use

machine learning is also introduced. Given that the benefit of accurately calcu-

lating binding affinity changes upon mutation depends on comparing calcu-

lated values with experimental measurements, a brief survey on experimental

methods and observables is provided. Examples of computational studies that

go beyond calculating the Gibbs energy changes are given. Factors that need to

be addressed by the computational chemist and potential pitfalls are discussed

at length.
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1 | INTRODUCTION

Modern development of drugs to treat infections, which started about a century ago,1 has changed the world as we
knew it. Unfortunately, many strains of bacteria quickly become adapted to natural and semi-synthetic antibiotics,2

and to synthetic antimicrobial agents. Although most infections can still be treated by small molecular drugs, multidrug
resistance bacterial strains have become increasingly more common, and pose a serious threat to the health and well-
being of humans and animals. Many other pathogens such as viruses, fungi, and unicellular parasites have become par-
tially of fully resistant to the arsenal of drugs that are available. Targeted cancer therapies suffer from the same faith.
These drugs are used with the aim of inhibiting the growth of tumors by targeting cell growth and proliferation mecha-
nisms that are specific to the tumor; such drugs often work very well when the treatment begins but tumor cells gradu-
ally become resistant to therapy. Resistance to anticancer chemotherapy is also common. One of the most prevalent
mechanisms by which viruses, cancer cells, and microorganisms become refractory to treatment is the development of
mutations in the protein that is the molecular drug target.3 A single substitution of an amino acid residue can be
enough to drive drug resistance. Realizing that resistance is likely to emerge sooner or later, there is a need to develop
treatment options that would do a better job in avoiding it. Combination therapies often perform better than single
drugs in terms of efficacy and lower risk for resistance, but might also lead to additional side effects, and to increased
risk for toxicity from several drugs and drug–drug interactions. Moreover, once combination therapies fail due to resis-
tance, the availability of other therapies is limited. Thus, there is an urgent need to develop new therapies that are bet-
ter suited to counteract resistance mutations.

The development of new drugs that overcome resistance mutations requires an understanding of the factors that
contribute to resistance. In some cases, an examination of a crystal structure of the drug-bound molecular target is
enough to envision how the mutation leads to resistance. However, in many cases, the situation is more complex as the
mutated residue is not located at the vicinity of the drug, and it is unclear why the mutation is selected and leads to
resistance. Fully accounting for the effects of mutations on drug resistance requires understanding of the target pro-
tein's dynamics and how it binds the drug. Simulation based methods have come to the point in which they are accu-
rate enough to provide an insight into such processes and give clues about drug resistance.4 In some cases, such
simulations are enough to fully explain the changes in drug-binding thermodynamics. In others, a combination of data
from structural, biophysical, and computational studies is required. The objective of this article is to provide a survey of
the approaches that are used to this aim. After briefly introducing resistance mutations from an evolutionary stand-
point, binding affinities are discussed in detail (describing both the experimental and simulation methods that are used
to estimate these). Accurately estimating the binding affinity changes upon mutation would greatly increase our ability
to design better drugs. Unfortunately, this is in many cases not straightforward and current limitations, as well as stum-
bling blocks are discussed at length in this article, after surveying the available computational methods. Finally, some
case studies where simulations were used to provide a better understanding of drug resistance are presented. For com-
pleteness, additional factors that may lead to resistance are briefly discussed before the Conclusions section.

2 | HOW DO RESISTANCE MUTATIONS EMERGE?

To understand how resistance mutations emerge we should consider the principles that guide the evolution of species.
The species here can be a microorganism, a virus, or a tumor, whose evolutionary development matches that of an
organism in many senses.5 Mutations in the DNA happen all the time, and only rarely lead to any benefit to the organ-
ism by increasing its fitness (capacity to produce offspring). When the pathogen (or tumor) is treated by drugs, there is
an extreme modification of the pathogen's fitness landscape (Figure 1), which is a multidimensional landscape that
matches genotype to fitness. Suddenly, the drug's effects make other evolutionary considerations (speed of growth, utili-
zation of resources, etc.) much smaller in importance relative to drug resistance. Consequently, any mutation that
makes the pathogen resistant is to be selected. The organism cannot decide which genes to modify, its survival now
depends on adaptation in any way possible. Clearly, mutations in the molecular drug target are one of the most com-
mon mechanisms of resistance, especially against monotherapy with a specific drug.

Given that the new mutations are selected based on the need to overcome the effect of the drug, such mutations
might slow down the proliferation of the pathogen. In rapidly evolving species (viruses and microorganisms7,8), and
even in cancers9 additional mutations may emerge to compensate for this. These are called “compensatory mutations.”
Fortunately, this process cannot continue without limits, as too many mutations in the molecular targets either cannot
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be tolerated, or limit the fitness of the pathogen.10,11 This supports the notion that drugs that are more robust towards
resistance are needed despite past experience with antibiotics and anti-parasitic drugs that were abandoned owing to
gradual lack of efficacy. To develop such drugs there is a need to understand in details how resistance mutations affect
drug binding.

3 | BINDING AFFINITIES

The binding affinity describes the strength of the interaction between (usually two) molecules that bind together. When
discussing protein–drug interactions, the binding affinity (often abbreviated as just affinity) is a measurement of how
well the drug binds to the protein. Resistance mutations often decrease the binding affinity.

The formal definition of affinity refers to reaction affinity, as described in the Appendix. As it is possible to calculate
the reaction affinity for a protein–drug interaction, we are more often interested in equilibrium conditions, where the
reaction is characterized by the association constant Ka (sometimes referred to as the binding constant, Kb) or the (more
commonly used) dissociation constant Kd (see Section 3.1 for definitions). Kd is given in concentration units; the lower
it is, the higher the affinity.

3.1 | Definitions

3.1.1 | Association, dissociation, and inhibition constants

Given a reaction between a protein, P and any ligand L such as a drug molecule:

PþL⇌ PL: ð1Þ

The association constant is given by the concentration of the complex divided by the product of the concentrations of
the reactants:

Ka ¼ PL½ �
P½ � L½ � , ð2Þ

whereas the dissociation constant is the reciprocal of Ka, defined as:

Kd¼ P½ � L½ �
PL½ � ¼

k�1

k1
: ð3Þ

Here, k�1 and k1 are the rate constants for ligand dissociation and association, respectively. An alternative formalism is
to use koff instead of k�1 and kon instead of k1.

When the protein in question is an enzyme and the drug is an enzyme inhibitor, the inhibition constantKi is often usedwhich
has the samemeaning ofKdwhen the inhibition is competitive. The two constants thus often represent the same reaction.

FIGURE 1 The fitness landscape is dramatically influenced by drug treatment. Three clones (x, y, z) are equally fit in the absence of

drugs. Drug 1 favors clones y and z, drug 2 favors clone z, and drug 3 favors clone y. Adapted from Reference 6, CC-BY 4.0 license
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3.1.2 | Inhibitory concentration

The inhibitory concentration, or IC is the concentration of an inhibitor that is required to achieve a certain percent of
inhibition of a given system. The most commonly used term is IC50. When the concentration of an inhibitor is equal to
IC50, the reaction or process is inhibited by 50%. Other IC values are sometimes also observed in the literature such as
IC90, which is by definition higher than IC50 since this is the concentration that is required to achieve 90% inhibition.
IC50 values may be measured for enzyme inhibition in vitro, but the system can also be different. As an example, in
studies involving anticancer drugs, IC50 values are often measured for cell growth. More generally, such values can rep-
resent any biochemical assay, where the inhibition of a biological activity is measured, for example, by the equilibrium
concentration of a downstream reaction product.

For the typical case of a competitive binding reaction to an enzyme that follows Michaelis–Menten kinetics, IC50 is
related to Ki as:

IC50 ¼Ki 1þ S½ �
KM

� �
, ð4Þ

KM is the Michaelis constant of the enzyme. As this equation shows, IC50 depends on the concentration of the substrate.
Furthermore, when the mode of inhibition is different, so is the relationship between IC50 and Ki. For further discus-
sion about this relationship see Reference 12.

3.1.3 | Effective concentration

In analogy to IC50, EC50 is the concentration of an agonist that is required to achieve 50% of the maximal response, and
other values such as EC90 are sometimes used. Although the International Union of Pharmacology defines EC50 for the
effect of an agonist,13 it is often used in the literature to represent the potency of a drug in a biochemical assay,
irrespective if the drug is an agonist or antagonist.

3.1.4 | Gibbs energy of the binding reaction

For protein–drug binding under constant temperature and pressure, the Gibbs energy of the binding reaction ΔGb is
given by:

ΔGb ¼�RT ln Ka¼RT ln Kd, ð5Þ

where R is the gas constant and T is the absolute temperature. Representative values are given in Table 1. Importantly,
a mere change of 1.4 kcal/mol in ΔGb is enough to modify the dissociation constant 10-fold.

The terms “free binding energy” or “binding free energy” as often found in the literature normally refer to ΔGb.

3.1.5 | Estimation of changes in the Gibbs energy upon resistance mutations

Clinically, resistance mutations limit the efficacy of drugs, so that the drug is no longer useful. We are thus often inter-
ested in estimating the Gibbs energy change upon mutation:

ΔΔGb S!Rð Þ ¼ΔGb Rð Þ �ΔGb Sð Þ: ð6Þ

TABLE 1 Representative values of ΔGb for the formation of a protein–drug complex as a function of Kd

Kd 1 pM 1 nM 10 nM 100 nM 1 μM

ΔGb (kcal/mol) �16.3 �12.3 �10.9 �9.5 �8.2
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Here, S and R refer to the drug sensitive and drug resistant variants, respectively. ΔΔGb S!Rð Þ can be estimated from
measurements of the dissociation constants for the binding reaction of the sensitive and resistant strains as

ΔΔGb S!Rð Þ ¼RT ln
Kd Rð Þ
Kd Sð Þ

: ð7Þ

When not available, Kd values might be replaced by IC50 or EC50. Note, however, that such modifications always imply
the assumption that the changes to the protein structure and dynamics are minimal and do not affect its activity, and
that the experiments were run under the same conditions (temperature, pressure, reagent concentrations, etc.).

3.2 | Commonly used experimental methods for binding affinities

Experimental values are often used by computational chemists as a reference, and the ability to reproduce measured
values within a small margin might be seen as evidence that the computational approach is accurate. However, to cor-
rectly estimate the credibility of computed values, it is necessary to understand the nature of the measurements. A short
summary of the common approaches to estimate binding affinities is provided below. For additional methods, see
References 14,15.

3.2.1 | Radioligand binding assays

Radioligand binding assays are simple and useful. A radioactive ligand (3H and 125I are used most often) is synthesized
and incubated with the (usually membrane-bound) receptor. Binding is measured by scintillation after washing excess
ligand. Radioligand assays are accurate, but the associated costs and toxicity limit their usability. In general, titration of
the ligand makes it straightforward to calculate EC50 from the maximal effect (signal). When keeping the concentration
of either the protein or the drug much higher than the other it is possible to estimate Kd.

16

3.2.2 | Fluorescence spectroscopy

Assays that employ fluorescence spectroscopy rely on a difference in fluorescence intensity upon binding of a ligand.
Trp residues in proteins are highly useful in this sense since they possess an intrinsic fluorescence that depends on the
environment of the residue. Alternatively, an extrinsic probe can be used. Different spectroscopical methods can be uti-
lized for the measurement. Fluorescence assays are popular and useful but limited by internal fluorescence, fluores-
cence quenching (upon binding of exogenous probes), availability of suitable probes, potential interference between the
probe and the binding reaction, and other factors.

3.2.3 | Calorimetry

Calorimetric assays utilize heat transfer generated upon the reaction and thus the protein and ligand can be used
directly, that is, there is no need for additional probes. Isothermal titration calorimetry measurements yield not only
ΔGb but also its components (enthalpy and entropy changes). Such data are very useful, not the least to a theoretician!

Differential scanning calorimetry (DSC) can also be used to estimate protein–ligand binding.17 In this case, the protein
is heated and the phase change temperature Tm, heat capacity as a function of the temperature, and enthalpy of unfolding
are estimated. The same measurement is thereafter repeated in the presence of a ligand, enabling the estimation of Kd.

3.2.4 | Differential scanning fluorimetry

Differential scanning fluorimetry (DSF) combines fluorescence spectroscopy and Tm changes. In such assays, changes
in the signal are recorded as a function of temperature to estimate Tm in the absence and presence of a ligand, from
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which Kd is estimated subject to considerations about the binding reaction. DSF can be used for high-throughput
screening, but the use of complementary methods might be needed for higher accuracy.18

3.2.5 | Surface plasmon resonance

In surface plasmon resonance (SPR), one of the reactants is immobilized on a surface while the other flows through a
sensor. The signal is proportional to the mass that is gained through the reaction, yielding rate constants k�1 and k1,
from which Kd is calculated.

3.2.6 | Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) techniques are based on measurements of matter subject to magnetic radiation.
The radiosignal that is detected gives information on the chemical environment. Generally speaking, signals that are
recorded for a protein change as a ligand is bound (and vice versa), allowing the estimation of Kd by titration.
Depending on the assay, additional information, such as structural changes, might also be extracted.

3.2.7 | Complications that arise when estimating ΔΔGb S!Rð Þ rather than Kd

The procedure to estimate ΔΔGb S!Rð Þ is in principle straightforward, by using Equation (6). However, care should be
taken when relying on indirect measurements. When thermal denaturation is used (DSC, DSF), there can be differences
with respect to the aggregation of the unfolded states of the sensitive and resistant variants. Similarly, protein aggrega-
tion might affect the binding recorded by SPR measurements. Additionally, mutations might affect the binding of exter-
nal probes used in fluorimetric assays. Overall, while it is sometimes easier to calculate ΔΔGb S!Rð Þ rather than ΔGb, the
required measurements are often more complicated and the computational chemist should be aware of any potential
limitations.

3.3 | Experimental methods to study enzyme inhibition

Enzymes are popular targets in drug discovery19 not the least as targets for inhibition in cancer,20 antiviral therapy,21

and antibacterial therapy,22,23 where resistance mutations are clinically important. For a review on enzymes in drug dis-
covery, see Reference 24.

3.3.1 | Enzymatic assays

Enzyme inhibition can be studied directly, by following on the product of the reaction and drawing a response curve
from which IC50 is extracted. Spectroscopy, scintillation (using radioactive atoms that are traced), and many other
methods such as SPR and NMR (see the previous subsection) can be used.

3.3.2 | Inhibition of cell growth

When cells depend on a certain enzyme for their growth, it is often easier to estimate the effect of an enzyme inhibitor
on cellular growth. In a typical assay, starting from a given density of cells, the cells are left with increasing concentra-
tions of the inhibitor for a certain period of time (e.g., 48 h) and a growth curve is drawn for each concentration, from
which IC50 is estimated. Repeated measurements can be made with cells that carry mutant proteins to estimate their
sensitivity. Care should be taken, however, not to over-interpret the results when compared to calculated binding ener-
gies. The effect of the drug on cells likely depends on other factors than enzyme inhibition, such as the expression of
proteins other than the drug target, permeability, efflux, and more. Still, it is possible in some cases to generate cells
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that are rather homogeneous except for a given mutation. For example, Ba/F3 cells are particularly useful in kinase
drug discovery, and as they can be made to depend on a specific kinase for their growth; isolation of mutants can there-
after be performed.25

IC50 values measured for cell-growth experiments may represent the clinical situation better than those measured at
the enzyme level. One must however note that these depend on the cell-line in question; both the actual values and the
difference between sensitive and mutant strains may differ as a function of the cell line. On the other hand, issues such
as drug uptake by the cells, efflux, and drug metabolism are not expected to vary much as long as it is only the drug tar-
get that is modified (as is the case with Ba/F3 cells for example).

3.3.3 | Antibacterial compounds: minimum inhibitory concentrations

In antibacterial drug development, the minimum inhibitory concentration (MIC) is often used to assess the efficacy of
compounds against bacteria.26 MIC is defined as the lowest concentration needed to inhibit the visible growth of a
microorganism after an incubation for a given period of time (18–20 h is typical26). MIC50 and MIC90 are related terms
and represent the concentrations of the compound which are needed in order to inhibit the growth of 50% and 90% of
multiple isolates, respectively.27 Fold changes in MIC or related values indicate resistance, and can be mapped to spe-
cific mutations.28 However, care should be taken to examine whether additional genetic changes can be ruled out.

4 | ESTIMATION OF THE GIBBS BINDING ENERGY CHANGE UPON
MUTATION, ΔΔGb S!Rð Þ, BY THEORETICAL METHODS

The estimation of protein–drug affinities by computational methods remains a challenge for computational chem-
ists.29,30 It is desired to achieve “chemical accuracy,” that is, to be within 1.0 kcal/mol of the experiment which is about
1.5 kT (kT is the thermal energy, and is equal to 0.6 kcal/mol at room temperature). When calculating binding Gibbs
energy changes upon mutations, ΔΔGb S!Rð Þ, it is important to be able to yield values that are meaningful in the clinic,
where a fivefold increase in Kd (or sometimes less31 can lead to drug resistance. This makes the requirement for accu-
racy even stronger. On the other hand, ΔΔGb S!Rð Þ values are sometimes easier to calculate, and usually yield more
accurate values than absolute Gibbs binding energies.

Some theoretical methods to calculate ΔΔGb S!Rð Þ values are presented in this section. In general, the methods
require considering the two variants (sensitive and resistant) separately. Often, ΔΔGb S!Rð Þ is estimated from the sepa-
rate binding energies (Equation (6)). The individual ΔGb values need not necessarily be so highly accurate as systematic
errors may cancel when the two values are compared.

4.1 | Molecular mechanics based approaches

Molecular mechanics (MM) based approaches rely on extensive sampling of the system in question. Energies are esti-
mated using a potential energy function and a set of parameters collectively termed force field (FF). There are many
free, academic, and proprietary software that can be used for such calculations. Normally, parameters are already avail-
able for proteins, lipids, nucleic acids, salt ions and water but not for drugs. Modeling of the drugs can be facilitated by
use of specialized tools or webservers developed to this aim (such as ATB,32 CHARMM-GUI,33,34 easyAmber,35

LipParGen,36 and SwissParam,37 see Table 2). As such servers do not always correctly recognize the molecular struc-
ture, it is advisable to run a short simulation of the drug in solution to make sure that the energy is conserved, that aro-
matic and hetero-aromatic rings are planar (or do not deviate much from planarity) and that the structure is not
otherwise distorted.

Neutralizing ions (in case the solutes, i.e., protein and ligands, have a total charge different than zero together) and
salt ions are normally added to the simulation box. The choice of ions38 and their concentrations should be made in line
with the experiments. Of note, there is a difference in affinity to proteins between Na+ and K+ ions,39 which can also
affect the organization of water.40 Ion FF parameters41 are also of importance, with multiply-charged ions posing a par-
ticular challenge.42,43
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4.1.1 | Estimation of dissociation constants directly from a simulation

A straightforward way to calculate Kd is to run simulations that would sample enough binding and unbinding
events41,44 (Figure 2). If sampling of many such events is possible during a long molecular dynamics (MD) or Monte
Carlo simulation, it is possible to approximate Kd as

Kd ¼C
1�α

α
, ð8Þ

C is the concentration of solutes (protein and drug) in the simulation box and α is the fraction of simulation time that
the complex is present. The concentration of the solutes (proteins and drug) is usually considered with respect to the
number of water molecules since the density of water is known. To consider the effect of mutations, Kd is estimated for
the sensitive strain first and thereafter for any desired mutants, allowing the estimation of fold resistance or of
ΔΔGb S!Rð Þ from Equations (5) and (6).

Although such calculation is simple in principle, sampling enough binding and unbinding events is often achievable
only for fast reactions with relatively high Kd (higher than 10�3 mol/dm3), when atomistic simulations are used. It is
also important to run multiple simulations (an ensemble) rather than a single one, even if very long, to ensure repro-
ducible conclusions.45 This is true in all cases when MD simulations are used, but is especially important here owing to
the requirement for sampling of multiple events (which relies on a long trajectory).

TABLE 2 Tools that enable parametrization of ligands such as drugs for molecular mechanics calculations

Tool
Webserver
(Y/N)

Supported
software

Supported
ligand FF Link

ATB Y Amber GROMOS 54A7 https://atb.uq.edu.au

GROMOS

GROMACS

LAMMPS

CHARMM-
GUI

Y Amber CGEN-FF http://www.charmm-gui.org

CHARMM

Desmond

GENESIS

GROMACS

LAMMPS

NAMD

Open-MM

easyAmber N Amber GAFF https://biokinet.belozersky.msu.ru/
easyAmber

LigParGen Y BOSS OPLS-AA http://zarbi.chem.yale.edu/ligpargen

CHARMM

Desmond

GROMACS

LAMMPS

MCPRO

NAMD

Open-MM

TINKER

SwissParam Y CHARMM MMFF https://www.swissparam.ch

GROMACS
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An alternative to simple calculations of Kd from MD simulation is to use enhanced sampling methods, or coarse-grained
(CG) simulations where better sampling is achieved but the accuracy may not be as high. CG simulations save computational
time not only due to the use of fewer particles but also since the required time-step can be considerably longer (sometimes by
more than an order of magnitude46), as the CG particles are heavier than the corresponding atoms and the frequency of vibra-
tions is lower. Thorough parametrization of CG FF parameters makes such calculations increasingly more accurate.47

4.1.2 | Free energy perturbation and thermodynamic integration

In free energy perturbation (FEP) and thermodynamic integration (TI) the system is allowed to transform between two
states A and B which may differ in their atomic compositions or bonds (e.g., when considering mutations, Figure 3).
The free energy profile is recorded along the transition and its integration yields the free energy that is required for the
transformation. Such methods are thus suitable in particular for calculation of ΔΔGb(S!R) values in a straightforward
manner. For such calculations, the drug is kept bound while the system is transformed from the sensitive variant S to
the resistant variant R or vice versa. A similar calculation is carried out without the drug, to account for the free energy
of change in the drug-free protein:

ΔΔGb S!Rð Þ ¼ΔGcomplex
S!R �ΔGprotein

S!R : ð9Þ

ΔGcomplex
S!R is the Gibbs energy associated with mutating the protein in the complex (protein–drug) and ΔGprotein

S!R is the
Gibbs energy associated with mutating the protein in a simulation without the drug present.

Since we are interested in calculating the change between systems S and R that never sample the same energy basin
(the mutations do not just happen spontaneously), there is a need to sample intermediate configurations in which the
system is transformed in a non-natural (referred to as “alchemical”) manner between the two states. This is done by
using a coupling parameter, λ, such that λ varies between 0 (representing the initial system, e.g., S) and 1 (representing
the final system, e.g., R). By varying λ in small steps, it is possible to calculate the free energy change as48:

ΔF¼�1
β

XN
i¼1

e�β Hiþ1 p,qð Þ½ �� Hi p,qð Þ½ �
D E

i
: ð10Þ

Here, β = (kT)�1 where k is the Boltzmann constant and T is the temperature, h� � �i represents an ensemble average, H
(p, q;λ) is the Hamiltonian of the system which depends on the momenta p and coordinates q of the system and on the

FIGURE 2 Direct calculation of Kd from MD simulations. Multiple binding and unbinding events must be evident. To study mutations,

the simulations should be repeated for the wild type and mutant by modifying the residue that is mutated (cyan)
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simulated system which is given by the value of λ. N is the number of steps in which λ is modified, such that H1(p, q) = H
(p, q;0) and HN(p, q) = H(p, q;1) with all other values of i representing values of λ such that 0 < λi < λi+1. This method to
calculate changes in the free energy (written here in general as ΔF, but usually used with the NpT ensemble to yield the
change in Gibbs energy) is called FEP.

Alternatively, it is possible to consider the change in λ and calculate the free energy along the pathway as49:

ΔF ¼
ð1
0

∂H
∂λ

� �
λ

dλ: ð11Þ

This method is known as TI. There are different ways to calculate ΔΔGb S!Rð Þ or indeed ΔF from TI,48 including discrete
TI (DTI), in which, similar to FEP, multiple equilibrium simulations are run, each for a discrete value of λ. The free
energy is then estimated by integrating over dH

dλ

� �
λi
. As clear from Equation (11), there is always a need to run simula-

tions with multiple values of λ.
In practice, the free energy is nowadays estimated from intermediates generated from alchemical simulations using

methods such as Bennett acceptance ratio (BAR),50 and its extension multistate Bennett acceptance ratio (MBAR).51

BAR can be calculated directly in MD software packages such as CHARMM52 and GROMACS.53 MBAR is implemented
in the PyMBAR51 and FastMBAR54 packages. Practical aspects of running such simulations are discussed in Refer-
ences 55,56.

TI and FEP are based on sound theory, and can in principle be highly accurate (subject to the accuracy of the FF, of
course) for ΔΔGb S!Rð Þ calculations. However, the computational requirements are often higher than non-alchemical
methods such as MM/PBSA, MM/GBSA, and LIE (see Sections 4.1.3 and 4.1.4). As clear from Equations (10) and (11),
accuracy will depend on the number of discrete steps used while varying λ. The length of the trajectory is also of impor-
tance, and both aspects will govern the speed by which the calculation is completed. Another aspect is the length of
equilibrium simulations of the non-perturbed end states, where λ = 0 or 1.57 Another approach, thermodynamic inte-
gration with enhanced sampling-protein mutations58 uses an enhanced sampling protocol rather than unbiased MD
simulations in TI.

There is an issue of concern when mutations do not conserve the overall charge of the protein. MD simulations nor-
mally apply periodic boundary conditions (PBCs, Figure 4a) to avoid artifacts arising in the boundary of the simulated
system. In PBC, the simulation box is replicated in three dimensions, which mimics an infinite crystal. Forces between
the atoms are however truncated at a certain distance that must be smaller than half the dimension of the simulation
box. Non-bonded interactions (of which the Coulomb contributions are the most dominant) are calculated explicitly
within the cutoff and approximated thereafter. When a charge is introduced in the system upon FEP or TI, simple cal-
culation of ΔG S!Rð Þ is no longer accurate (see Reference 59 for the contributing factors to this). The same is true when
a charge is removed. Thus, when ΔG S!Rð Þ involves a mutation from a charged amino acid to a neutral one (or vice
versa), a simple calculation using Equations (10) and (11) is insufficient and corrections should be introduced. One

FIGURE 3 Direct calculation of the binding energy change from simulations. With methods such as FEP and TI, it is possible to

estimate the free energy change when gradually mutating a residue from its initial state to a final state. In the example shown, the structure

of the Abl1 protein is presented where a single mutation, Phe317!Val317 leads to drug resistance. In the simulations, the side chain of Phe317

(violet) will be gradually mutated into Val317 (pink). The simulations should be run in the presence and absence of the drug (Equation (9)).

The drug (dasatinib) is shown here in light gray
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correction that has been suggested for such cases, involves Poisson–Boltzmann (PB) calculations on top of the simula-
tions.59 Another alternative is to change another charge simultaneously with the mutation, for example, by making a
small ion neutral.60

When calculating ΔΔGb S!Rð Þ (Equation (9)) from FEP or TI, the effect of charge modification might cancel out.
Indeed, in a large-scale study, it was found that finite size effects were minimal for such calculations with several differ-
ent systems and FFs.57 Note that, in the aforementioned study the overall charge of the system was not kept zero upon
mutation which is rather unusual in MD simulations, but can be dealt with to some extent.61

Setting up calculations of ΔΔGb S!Rð Þ is tedious, but has been simplified by the use of tools such as pmx62 and
QresFEP.63 The first tool is used in conjugation with the GROMACS simulation software.53 The second is used with the
Q package,64 where calculations employ stochastic boundary conditions (SBCs, Figure 4b) rather than PBC. Charge-
changing mutations can lead to artifacts even with SBC. In QresFEP, these can be dealt with by simultaneously modify-
ing the charge of a small ion such as Cl�.

4.1.3 | MM/PBSA and MM/GBSA

MM/PBSA (Poisson–Boltzmann solvated area) and the closely related MM/GBSA (generalized Born solvated area) are
two popular methods that rely directly on equilibrium MD simulations to calculate ligand binding energies. The
methods take advantage of the fact that the intermolecular and intramolecular interactions are anyway calculated in an
MD simulation of a protein–ligand complex (or of other complexes, e.g., protein–peptide,66 peptide–RNA,67 etc.). Con-
sidering a protein and a ligand, the binding energy can be estimated as:

ΔGb ¼ GPLh i� GPh i� GLh i: ð12Þ

Here, PL, P, and L refer to the complex, protein, and ligand, respectively. In most cases, a single simulation is run for
each variant, from which ΔΔGb S!Rð Þ values are estimated using Equation (9). To further reduce the cost of the calcula-
tions, it is possible to use single minimized structures (discussed in Reference 68), but MD simulations are run most
often, either for better sampling or because further analysis than just calculating ΔGb is of interest.

Estimation of the Gibbs energies from MD requires some approximations, as these are not directly available from
the simulations. An approximation of the Gibbs energy for any of the systems can be achieved by energy
decomposition:

FIGURE 4 Boundary conditions commonly used in molecular dynamics simulations.65 (a) Periodic boundary conditions (PBCs).

Replicas are made in all directions to mimic an infinite system. (b) Stochastic boundary conditions (SBCs). Atoms are restrained within a

certain distance from the boundary (dashed line). Reprinted from Reference 65, with permission from Elsevier
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G¼EbondþEelþEvdW þGsolv
pol þGsolv

np �TS: ð13Þ

Ebond, Eel, and EvdW are the potential energies associated with bonds, electrostatic and van der Waals (vdW) interactions
in each molecule. These are available directly from MD. In practice, Ebond is not necessary (as long as only a single sim-
ulation is used for each variant) as the protein and ligand are not normally covalently bonded. If they are, simple
MM/PBSA or MM/GBSA calculations are not adequate, as it is no longer possible to separate the terms in
Equation (13).

Gsolv
pol and Gsolv

np together account for the solvation energy. The first term is the (normally much larger, in absolute
values) polar contribution to the solvation energy. In MM/PBSA, it is calculated by solving the Poisson–Boltzmann
equation (PBE) numerically. In MM/GBSA, it is approximate by using generalized Born (GB) solvation, a computation-
ally cheaper approximation; several GB approximations exist.69 In both cases, many parameters need to be considered
including the approach (MM/PBSA or MM/GBSA), choice of atomic partial charges and radii, the dielectric coefficient
of the solutes and how the actual calculation takes place (the numerical approach to solve the PBE or which model to
use for MM/GBSA).

Gsolv
np is almost always approximated as

Gsolv
np ¼ γAþb, ð14Þ

where γ is a surface tension term, A is the solvent accessible surface area of the molecule, and b is a correction parame-
ter. The theory on which Equation (14) is based is built upon early developments dealing with the solubility of
gases,70,71 and was later found to be applicable for the solubility of hydrophobic compounds.72 A calculation of hydra-
tion energies for functional groups representing amino acids, after parametrizing the atomic radii and charges, have
shown an overall good agreement with the experimental reference (R = 0.93).73 Errors with respect to the experiment
were smaller than 0.5 kcal/mol. Such errors might however be too high when a whole protein is considered (as when
calculating protein–drug binding energies), since a protein includes many amino acid residues and the errors gather. It
might be argued that, since in ΔΔGb S!Rð Þ calculations only a single side-chain is modified, the error might not be so
high. However, as discussed above (Section 3.1.4), a change as small as 1 kcal/mol might lead to drug resistance. More-
over, the errors calculated for the hydration of some organic compounds, namely 2-methylpyrazine, 1,2-ethanediamine,
and 1,2-ethanediol were 2.3, 3.4, and 4.3 kcal/mol, respectively,73 and the approximation of the Gsolv

np for drugs, which
are small molecules but often with several organic groups is thus questionable. Thus, if the difference in the Gsolv

np term
is large between the resistant and sensitive variants, other methods should be used to calculate ΔΔGb S!Rð Þ.

The last term that needs to be accounted for is the change in conformational entropy upon ligand binding. The for-
mation of a complex often limits the number of microstates that are available for sampling by the drug and by the pro-
tein, especially when considering the side chains that interact directly with the drug. Accounting for the
conformational entropy in MM/PBSA and MM/GBSA is often performed by extracting a given number of snapshot
structures from the simulations and then performing normal mode analysis (NMA) subject to some preparation,68,69 for
example, considering only a subset of protein atoms closer to the drug. Another approach is to run separate simulations
for the complex, protein and ligand, from which the internal energy and entropy can be calculated directly (the entropy
can be estimated from either NMA or covariance analysis). Performing NMA involves a robust energy minimization
(EM), and then obtaining and diagonalizing the Hessian matrix, that is, the matrix of second derivatives of the energy.
There are several difficulties with this. First, it is required that the maximum forces are very small after EM, otherwise
the modes are not accurate. This is not always easily achievable and might require several cycles of minimization that
make the process slow. Second, obtaining and diagonalizing the Hessian matrix is a lengthy process. Hence, the confor-
mational entropic term (TS) is often ignored, the justification for this being that it is smaller than other terms. Consider-
ing calculations of ΔΔGb S!Rð Þ, it may be argued that the effect of a single (or few) mutations on the entropy of the
complex with respect to the protein is indeed negligible. However, this is certainly not true in many cases! We have
shown that there might be modifications to the number of distinct configurations that a protein can attain as a function
of drug binding for specific mutations74 (which implies changes in the entropy) and that drug resistance can depend
primarily on changes of the conformational entropy (resistance to dasatinib owing to the F317L mutation in Abl131).
Thus, ignoring the entropic term when calculating ΔΔGb S!Rð Þ cannot always be justified. Recognizing the
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computational cost involved with calculating the entropic term, a method, termed “interaction entropy” was devel-
oped75 that approximates TS from fluctuations in the protein–ligand interaction energy ΔEint

pl :

TΔS¼�kT ln eβΔE
int
pl

D E
: ð15Þ

This approximation does not take into account all contributions to the entropy but it has been shown to improve the
correlation to experimental values and reduce the mean absolute error when tested on a set of protein–ligand
complexes.76

Overall, the accuracy of these methods depends on the protocol and the system,68 there is no “one size fits all” solu-
tion. Relying on default parameters without prior knowledge is thus not advisable, despite the availability of tools that
are designed to make MM/(G)PBSA calculations fast to set-up and simple to run. Free energy calculations (FEP and TI)
include fewer parameters, and are more robust from a theoretical standpoint—but they are slower.

4.1.4 | Linear interaction energy

Linear interaction energy (LIE) is an approach developed to calculate protein–ligand binding affinities from equilib-
rium MD simulations. Its advantage over alchemical methods is that intermediate (unphysical) states that combine the
reactant and product (as in FEP and TI) need not be considered. The underlying idea was to consider the free energy
change associated with the transfer of a ligand from a solvent to the protein interior. Considering the Gibbs energy of
binding:

ΔGb ¼ΔG ligð Þ
g!p�ΔG ligð Þ

solv : ð16Þ

ΔG ligð Þ
g!p is the Gibbs energy associated with the transfer of the ligand from gas-phase to the protein binding pocket, and

ΔG ligð Þ
solv is the Gibbs energy of solvation for the ligand, that is, the Gibbs energy associated with the transfer of the ligand

from gas-phase to the solvent.
Based on observations regarding the solvation free energies of nonpolar compounds (see the discussion regarding

MM/PBSA and MM/GBSA, Section 4.1.3, and examination of the size of vdW interactions involving the solutes in MD
simulations), a formula was suggested to calculate ΔGb from MD simulations77 as:

ΔGb ¼ α El�p
vdW

D E
� El�s

vdW

� �� 	
þβ El�p

el

D E
� El�s

el

� �� 	
þ γ: ð17Þ

In this equation,α, β, and γ are system-dependent parameters. El�□
vdW

D E
and El�□

el

D E
are the vdW and Coulomb interac-

tions energy between the ligand (l) and the protein or solvent (p and s, respectively). These are calculated by running
two simulations—one for the protein–ligand complex and one for the ligand in water (which should in most cases be
run anyhow to ensure that the ligand parameters are correct). From the linear response approximation, β should be
equal to 0.5,78 but it has been shown that treating it as an independent parameter may lead to better agreement with
experimental measurements.

To calculate ΔΔGb S!Rð Þ, simulations of all complexes need to be run, and in addition a single simulation of the
ligand in water. Thereafter, binding energies are calculated from Equation (17), and then relative free energies with
Equation (6). Parametrization of the multipliers in Equation (6) based on available data point(s) should be performed
and tested to obtain reliable predictions.

LIE has been used extensively with the Q modeling package64 and SBC (Figure 4b). When using SBC, titrable pro-
tein residues that are close to the boundary (and residues outside the solvation sphere, if any) should be neutralized to
avoid artifacts due to reduction or lack of the dieletric screening.79 Likewise, the same boundary conditions should be
used for the protein and ligand.

A faster variant of LIE, linear interaction energy-continuum electrostatics (LIECE) that applies robust energy-
minimization followed by a calculation of Gsolv

pol by solving the PBE has been developed.80 The electrostatic contribution
is estimated as a sum of the Coulomb energy in vacuo and solvation energy. Being fast, LIECE was used in
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computational screening campaign as one of four scoring functions.81 It can be used for rapid screening of ΔΔGb S!Rð Þ
values, but the results should thereafter be verified by a more accurate approach.

LIE may be more efficient than MM/GBSA when using a truncated spherical system82 as implemented in the com-
puter program Q.64 It has been reported to be less accurate than MM/GBSA for some systems,83 and conversely for
others (in comparison to MM/PBSA).84 Overall, like MM/(G)PBSA, although it is fairly easy to use out-of-the-box, care
should be taken to ensure that the parameters used are representative, and in general TI and FEP are more robust from
a theoretical standpoint.

4.2 | Methods that involve quantum mechanics

4.2.1 | Direct QM calculations using truncated binding site cluster models

QM calculations can capture interactions that are difficult to account for in MM, mainly owing to the inherent limita-
tions of a FF-based treatment (see Reference 85 for an extensive review in the context of protein–ligand interactions).
The downside is the much higher computational cost, and (especially for post-Hartree–Fock [HF] methods, such as
MP2 and coupled-cluster) the tremendous increase in resources as function of the system size. Whereas density func-
tional theory (DFT) calculations generally scale as N3 where N is the number of basis functions that are used, MP2
scales as N5 and CCSD(T) as N7. Post-HF methods have a great advantage in that the calculations can be systematically
improved by using larger basis sets and higher levels of theory, although one should be aware of the limitations of each
method; MP3 for example is in general not better than MP2.86 DFT is often considered as the working horse of compu-
tational chemistry. With an appropriate functional, the results can be more accurate than those obtained with methods
that are much more demanding. Choosing the right functional however is not an easy task, and often requires trial cal-
culations using cleverly selected small systems (where the DFT results can be compared to those obtained from, for
example, CCSD(T) theory87).

Another set of methods that can be used for QM calculations are the so-called “semi-empirical methods.” In such
methods, approximations are used to calculate energies and gradients orders of magnitude faster than ab initio or con-
ventional DFT calculations. The development of semi-empirical methods relies on parametrization based on experi-
mental values and/or other QM calculations (e.g., DFT). With semi-empirical methods, whole proteins and even
multiple peptide complexes can be considered.88 However, at present they cannot be considered accurate enough for
calculations of ΔΔGb S!Rð Þ if the aim is to study how individual mutations affect binding, even if they can be used for
biochemical studies.89

When DFT is used, calculations of protein–drug binding energies are often performed with a truncated model that
only represents a small part of the system, for example, the drug and few side chains that interact with it directly. This
is known as “the cluster approach”90 or “QM cluster”85 calculations. QM cluster calculations are used for the following
reasons:

1. Computational cost.
2. Accuracy trade-off—while it might be possible to consider a full protein with a bound drug, this would require the

use of a smaller basis set and a simpler (local) DFT functional; the associated errors might then be too large.
3. The inherent DFT self-interaction error becomes larger as a function of system size.91

Choosing which residues to include in the calculations is important for computational cost and accuracy. Too few,
and the model will not capture enough of the interaction; too many, and the computational cost will be prohibitive.
Moreover, the larger the model, the more likely it is that the apo (non-drug bound) structure will be different than the
drug-bound one, which in turn would result in ΔGb values that are too favorable31 (e.g.,, see Figure 5).

QM calculations always give the internal energy of the studied system as an output, so that, using four calculations
the internal binding energy change upon mutation (not Gibbs energy) can be estimated (similar to Equation (6), but
with ΔEb not ΔGb). If all the molecules are studied without constraints, it is possible to correct for the zero point energy
(ZPE) due to vibrations. However, optimization of a cluster model of the apo-protein without constraints may lead to
structures that are not a true representation of the system, because fragments taken from individual side chains may
interact in a way that does not reflect the full protein. Hence, constraints on some of the atoms are often used to keep
the amino acid residues in place. For example, whereas the drug atoms and protein atoms in the first binding shells are
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free to move, constraints are put on the second shell protein atoms keeping them in place. ZPE corrections cannot be
used in such case, but might cancel out when binding energy changes upon mutation are of interest.

Another important issue with cluster models, and QM calculations in general in the context of binding energies in
solution, is the representation of the solvent. Accounting for the solvent can improve the accuracy, and considering the
cost of desolvation of the components formally yields Gibbs energy values. To this end, implicit treatment of the solvent
by models such as PCM,92 COSMO,93 and SMD94 is highly useful since it is challenging to model the solvent molecules
explicitly.

The choice of the solvent is also of importance. The environment that surrounds the binding site in the protein is
not as polar as water, making the case for considering solvents of lower dielectric constant such as tetrahydrofuran
(ϵr = 7.58)95 as more representative. On the other hand, the reaction takes place in water, and using the solvated drug
in a reference environment of much lower dielectric constant may lead to over-binding (since the reference is too unsta-
ble). As a result, considering water as the solvent may be a better choice, especially for polar or charged drugs. The drug
is anyhow expected to leave the solvent and reach the protein's interior.

A somewhat different approach96 is to run the calculation in gas phase and correct for enthalpy, entropy, and
solvation:

ΔGb ¼ΔEbþΔHcorr�TΔSþΔΔGsolv: ð18Þ

ΔHcorr is the enthalpy correction from room temperature vibrations (quantum thermochemistry). Similarly, ΔS is calcu-
lated in the gas phase by assuming that each molecule behaves as a pure (ideal) gas. The differences in solvation ener-
gies of the complex and components (protein and drug) are calculated separately. Estimating ΔGb this way requires full
optimization and calculation of the Hessian matrix which is computationally demanding and may lead to errors in the
structure (vide supra). An empirical scheme has been suggested96 that relies on the partition coefficient P of the drug
between water and octanol, a property that is used much in medicinal chemistry. In similarity with the LIE approach,
the affinity is then calculated from the interaction energy:

C¼ αΔEbþβ log Pþ γ: ð19Þ

FIGURE 5 Building a model for QM calculation of protein–drug binding energies. Three models are shown for Abl1 binding to the drug

dasatinib (Figure 2), with (a) three (b) five, and (c) nine interacting residues. In this case, the binding energy was within �1 kcal/mol of the

experimental value with the first two models, whereas the third resulted in an over-stabilization of the complex, which may be explained by

the apo-structure adopting another (more stable) conformation. Adapted from Reference 31 with permission from The Royal Society of

Chemistry
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C is the affinity which can be for example Kd whereas α, β, and γ are empirical parameters that are specific to the sys-
tem in question. This approach could in principle be used to calculate ΔΔGb S!Rð Þ values by considering changes in the
affinity upon mutation.

4.2.2 | Fragmentation-based methods

As explained above, it is impractical to consider the whole protein as is for QM calculations. In fragmentation-based
methods, the whole protein is considered fully quantum mechanically by dividing the system into fragments and sum-
ming on the interactions between the fragments in some way. In general, fragment based methods yield ΔEb and solva-
tion needs to be considered separately to account for the Gibbs energy. Two methods that have been used to assess
protein–ligand interactions are divide and conquer HF (DCHF) and fragment molecular orbital (FMO). Both
approaches are started with a division of the protein into smaller fragments. In DCHF,97 the fragments include a core of
interest and a buffer zone which affects the core due to its proximity to the core, but which should not be included when
summing up on the interactions (Figure 6).

In FMO, the total energy of the system is obtained by considering the sum of the energies of monomers, dimers,
timers, and so on, up to a given order. Truncating the interactions at dimers yields the following approximation to the
system's energy:

EFMO2 ¼
X

Eiþ
X
j> i

Eij�Ei�Ej

 �

: ð20Þ

The system can be further divided into layers that are considered at different levels of theory, for example, by calculat-
ing interactions involving the ligand and nearby protein residues at the MP2 level and all other interactions at the HF
level.98

Different approaches can be used to consider the effect of solvation, since solvating each fragment separately is
not an option. For example, empirical approaches such as GBSA or PBSA can be used, sacrificing the theoretical
robustness for efficiency and practicality. Another approach, EE-GMFCC-CPCM was developed specifically for sol-
vating proteins in fragmentation calculations99 and was employed for estimating protein–ligand binding affini-
ties.100 In EE-GMFCC-CPCM, the fragment-based calculation is run in vacuo first. Thereafter, charges at the

FIGURE 6 DCHF—an example for a subsetting schemes for the interaction between polyglycine (Gly)n (upper) and polyalanine in an

α-helical structure (bottom). Reprinted (adapted) with permission from Reference 97. Copyright (2010) American Chemical Society
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surface of the cavity enclosing the solute are calculated in an iterative self-consistent manner, and the energy is
corrected accordingly.

The advantage of fragment based division methods is that the energy is calculated with full-QM, but at fraction of
the cost of a typical calculation. Moreover, it is possible to consider contributions from individual residues which is use-
ful to explain resistance mutations. However, to use such methods quantitatively it is important to consider not only
the QM level of theory but also how the system is divided into fragments and how the effects of solvation are handled.

4.2.3 | QM/MM

Estimation of ΔΔGb S!Rð Þ values by MM and QM-based methods has been discussed above. MM-based methods are
faster, and in many cases accurate, as modern FFs are well suited for such calculations and sampling can be extensive.
QM methods can succeed in modeling interactions that are not captured well by MM, such as when metals in the pro-
tein binding site bind directly to the ligand, when other special types of bonds are involved, or when QM effects such as
exchange play a significant role in the binding. Moreover, polarization is not accounted by the most commonly used
FFs, whereas polarizable FFs have hitherto not been as extensively optimized as non-polarizable once; in QM, contribu-
tion from polarization is always included. It might thus be tempting to use a combined QM/MM approach for calcula-
tions of ΔΔGb S!Rð Þ. In principle, methods that are used in MM such as TI and FEP can also be used in QM/MM
calculations. However, the bottleneck of the QM/MM calculations is the QM part, and running extensive simulations is
hence too demanding. A QM-based LIECE variant (QM-LIECE) has been developed, where the electrostatic contribu-
tion to the binding energy, ΔEl�p

el , is calculated with a QM approach.101 To calculate ΔEl�p
el quantum-mechanically, a

divide-and-conquer approach was used where the protein was broken down to fragments whose contribution was
summed up. It can be envisioned that other empirical approaches (e.g., Equation (19)) might also be used. Another pos-
sible approach is to use a much faster but much less accurate QM method, for example, a semi-empirical potential.102

Alternatively, MM potentials can be fit to reproduce QM/MM interactions, in essence generating an MM-QM/MM
correction.103

All-in-all, QM/MM has not been used much for calculating ΔGb and ΔΔGb S!Rð Þ for protein–ligand complexes. On
the one hand, free energy methods such as TI and FEP require extensive sampling, where the QM part is limiting.
On the other, cluster models such as used in full-QM calculations require the estimation of solvent effects at the same
time for the QM and MM parts. QM/MM-P(G)BSA can be performed, but suffers from the same limitations as MM-P
(G)BSA (vide supra, Section 4.1.3).

4.3 | Machine learning

Machine learning (ML) is getting increasingly popular in chemistry.104 ML methods are useful when large
amount of data is available to train the ML algorithm, and require that the data are formatted in a certain
way.105 In the context of calculating ΔΔGb S!Rð Þ values, it should be noted that ML approaches are liable to fail more
than physics-based methods when new data are presented,106 such as a mutation that was not considered before. When
studying resistance mutations, the amount of data is more limited and at present it is difficult to see how accurate cal-
culations of ΔΔGb S!Rð Þ will be made possible based on ML alone. For calculations of protein–ligand affinities (Kd,
ΔGb) from structural features, ML approaches might perform better than other statistics-based scoring functions,
but slower, physics based methods (MM/PBSA, MM/GBSA, LIE, FEP, TI, etc.) tend to be more accurate.107 Yet,
even at present, ML can be a useful tool to understand resistance mutations. To gain a realistic model of
protein–ligand interactions in solution, MD simulations can be used to gain multiple data points from a single
simulation, for example, protein–ligand interactions (number of contacts, different interaction-energies), surface
area, orientation, and distances.108 These can thereafter be used to develop a ML model. On top of improving
the performance of ML, extracting features from MD simulations might be useful to shed light on the factors
which are affected to a higher degree by resistance mutations, providing a structural and physical understanding
of the reasons behind the emergence of resistance.109 In this sense, ML methods are of great potential since they
can highlight the importance of features that are hidden in the data and are important to drug binding and the
effect of mutations.
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5 | LIMITATIONS AND PITFALLS IN COMPUTATIONAL ESTIMATION OF
THE AFFINITY CHANGE UPON MUTATION

5.1 | Comparison to the experiment (what is measured there, actually?)

Reproducing the results of experimental measurements by computer-aided calculations is often regarded as a sign of
success of the computational method. While this is indeed an important prerequisite to show that the modeling is accu-
rate enough, the reconstruction of an experimental measurement is in itself no proof that the computational study is
correct in any way. Rather, the prediction should be “right for the right reason,” which requires an understanding of
the experiment through which a certain measurement is obtained.

Very often, especially when considering a large volume of data points as required for ML and studies involving
many targets, there is a tendency to concentrate on the end results without realizing that those are not necessarily mea-
sured in the same way. Some factors that can influence the measurements are given here; more details on conforma-
tional changes and non-trivial resistance mechanisms are discussed in the following sections (Sections 5.2 and 7.1).

5.1.1 | Substituting the dissociation constant

Resistance mutations affect a single protein which, through interactions with other biomolecules, affects cells (be it
human or animal cells, or those of pathogens) and eventually the whole organism, leading to a clinical manifestation
(the drug does not work as expected any more). Experimental measurements related to proteins (Kd, Ki) are thus closer
in essence to whatever a computational chemist can calculate, but are not always possible to come by, in which case it
might be assumed that the observables at the protein and cellular level are related:

K Rð Þ
d

K Sð Þ
d

≈
O Rð Þ

O Sð Þ , ð21Þ

R and S refer to the resistant and sensitive variants, respectively and O is an observable such as EC50, IC50, or MIC50.
Here, on top of making sure that the experimental conditions are the same for the measurements if all variants, it is
important to consider the reaction. Equation (4), for example, implies that both the concentration of the substrate and
KM are the same, and while the first is likely true for values reported together, the second might differ between
mutants.9 Similarly, when comparing EC50 values, it is important to consider that any modification in the mutant pro-
tein might also affect these values irrespective of the therapy. Let us consider, for example, a mutation that leads to
(1) a lower drug binding affinity and (2) a modified turnover rate for a certain enzyme. In this case, EC50 and Ki values
reflect both changes, but Kd will only reflect on the binding. On top of this, when considering any type of MIC measure-
ments, it is necessary to verify what are the differences between the microorganisms in question. Bacterial strains may
differ in more than one genetic trait, which might also limit the usefulness of Equation (21).

5.1.2 | Protein domains

Many proteins include multiple domains, which can be expressed and studied separately. Expression of human proteins
in bacterial cells, which is done in order to achieve sufficient quantities of such proteins in reasonable time can be a
challenge, and considering only the domain of interest (e.g., the catalytic domain of an enzyme where the drug binds)
can lead to better yield (i.e., more protein). Likewise, it may be necessary to consider only some parts of the protein in
order to get a crystal structure of a drug-bound protein which is then used as a starting model in calculations. Often
times, it is safe to assume that resistance mutations affect the binding through interactions within the same domain of
the protein as the one in which they reside. However, this is not always the case. When calculating ΔΔGb S!Rð Þ values it
is therefore important to consider if the modeled protein includes all the domains that were used in the experiment or
not. If a structure of the protein with additional domains is available, it could be interesting to examine if the resistance
mutations affect domain-domain interactions within the protein (Figure 7).
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5.1.3 | Binding to other proteins

Some proteins adopt a particular conformation upon binding to other proteins, or require other proteins for their activa-
tion/inhibition. It can be envisioned that such binding affects the dynamics of the protein in question. Moreover, resis-
tance mutations might interfere with this protein–protein binding. As in the case of a multi-domain protein, care
should be taken to understand the nature of interactions between the protein that is the drug target (and where the
resistance mutation occurs) and its binding partner(s). On the other hand, it might be possible to gain insights on resis-
tance even when the binding partner is absent, if the ns-scale dynamics of the protein of interest is not perturbed.109

5.1.4 | Posttranslational modifications

Many proteins undergo posttranslational modifications (PTMs) including phosphorylation, glycosylation, nitrosylation,
acetylation, covalent binding to lipid groups (e.g., myristoylation), and more. These change the physico-chemical prop-
erties of the protein. Consequently, the protein structure110 is modified and also its dynamics.111–115 Consequently, it is
important to consider whether the experimental assay, and the relevant protein structure, involve PTMs—these may
influence the structure and dynamics of the drug sensitive and drug-resistant variants, not necessarily in the exact
same way.

5.1.5 | The dynamics of the drug-free protein

Some of the approaches discussed above model the protein–drug interaction without extensive sampling of the free pro-
tein whose dynamics and to some extent also local structure might change upon mutation. For example, some muta-
tions modify the size of the drug-binding pocket.9,116 Such changes are not captured by methods that use only the
complex, such as MM/(G)PBSA with a single simulation for each state (Section 4.1.3), LIE (Section 4.1.4), and QM clus-
ter methods (Section 4.2.1). When using alchemical methods (Section 4.1.2) there is a need to have long enough sam-
pling in the simulations to include such changes. The use of unbiased simulations to model the binding (Section 4.1.1)
is perhaps the best way to ensure that such effects are captured, but as discussed above it is not practical for real-life sit-
uations at present.

FIGURE 7 Drugs that bind to multi-domain proteins. The viral NS3/4A protease is a drug target for treatment of hepatitis C. Inhibition

is aimed at the protease domain, and many structures with inhibitors include only this domain. However, as shown in the figure, inhibitors

(center, stick representation) may also interact with the helicase domain and domain-domain interactions might be important for drug

binding. In such cases, it is important to consider both domains when studying resistance mutations
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5.2 | Proteins that adopt multiple states

Many proteins that are drug targets can adopt multiple states that are structurally distinct. Protein kinases for example
adopt active and inactive states, and abnormal activation of such proteins leads to disease.115 Many proteases are nor-
mally inactive, as there is no need for them to digest cellular proteins. In such enzymes, cleavage of some part of the
protein can trigger activation. Receptors become active upon conformational changes. Overall, the list of proteins that
adopt multiple states is long. Regulation of the free energy landscape that governs the transition between the states is
often allosteric, that is, it is based on changes that occur at a site that is at a distance from the site of action (the site of
action can be a catalytic site, a binding site for an effector protein, or a binding site for a molecule that is transported, to
give a few examples).117 The affinity of a drug to a protein can vary with the state. Importantly, mutations that affect
the equilibrium between states (Figure 8) may lead to drug resistance which will often be manifested in experiments

FIGURE 8 Resistance mutations might affect non-binding conformations. FLT3, an important molecular target in acute myeloid

leukemia, binds quizartinib, a highly specific inhibitor, when the protein is in its inactive state. MD simulations however show no difference

in protein–drug interactions when considering only the inactive state and comparing the wt protein with two mutants, D835F and Y842H,

that lead to resistance. Instead, it was suggested that the mutations affect the active state and make it less probable for the protein to adopt a

conformation that is prone to bind quizartinib. Calculations of ΔΔGb S!Rð Þ that are based on the inactive state will not correctly account for

the full conformational dynamics of the enzyme. Reproduced from Reference 118 with permission from Wiley Periodicals, Inc
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(where multiple states are sampled) but not in computational studies that only consider a single state. An example for
this is the drug imatinib. Imatinib has the kinase Abl1 as its target and it binds the inactive state. There are several
dozen resistance mutations against imatinib. Some of these, such as Abl1/G250E, make the enzyme more efficient
thereby leading to resistance. Compound mutations (two mutations that involve the same copy of the gene,
e.g., G250E/T315I) are even more potent in increasing the catalytic efficiency.9 This has an indirect effect on drug resis-
tance that will not be captured by calculations involving the drug in the inactive state (such calculations, if performed
correctly, should yield ΔΔGb S!Rð Þ values that underestimate the effect of the mutation). See Figure 8 for another
example.

5.3 | Neutral mutations in the drug target

The use of a drug applies strong evolutionary pressure on entities such as viruses, bacteria, parasites, and tumor cells.
All of these typically evolve much faster than normal human cells. Mutations gather all the time, and not all of these
lead to resistance. Here, too it is important to consider that not all mutations that appear in the drug target are resis-
tance mutations; some are neutral mutations, whereas another mechanism leads to resistance. An assay that examines
the growth of cells or bacteria might not be able to differentiate between these. An accurate computational study can in
fact be useful to reveal that the mutation does not have an effect, but we must remember that an error in the order of
1.4 kcal/mol translates to one order of magnitude difference in affinity in room temperature (Table 1), so that accuracy
in the calculation is a necessity.

6 | BEYOND BINDING AFFINITIES—THE USE OF COMPUTATIONAL
MOLECULAR SCIENCE TO EXPLAIN RESISTANCE MUTATIONS

An accurate calculation of binding affinities upon mutation is desired to show that the method that has been used
(algorithm, choice of structure, FF or DFT functional, etc.) is adequate, and to enable prediction. However, a molecular
modeling study can yield additional information that is of interest but which is not easily (or not at all) accessible to the
experiment. Several such studies are summarized below. The aim is to give examples of how the effect of resistance
mutations at the molecular level can be studied, rather than to present a complete overview.

6.1 | MD simulations explain vandetanib resistance in atomistic detail

Vandetanib is an inhibitor of the RET kinase. Fusion of RET with other genes make it overactive in lung adenocarci-
noma, a type of lung cancer. Vandetanib has therefore been studied as a potential therapy for this type of cancer. A
RET mutation, S904F, had been observed in a patient who became unresponsive to vandetanib therapy in a clinical
trial. Efforts were thereafter been made to estimate whether RET/S904F is a resistance mutation. Once this had been
confirmed, it became important to establish how the mutation actually leads to resistance.119 A kinetic experiment
identified that the mutant's catalytic efficiency was twice that of the drug-sensitive variant. The structures of the wild
type and mutant enzymes were solved, but did not reveal marked differences (Figure 9a). A decreased flexibility in two
key protein regions upon mutation was shown in MD simulations, by analysis of the protein's Cα root mean square
fluctuations (RMSF), when vandetanib was bound (Figure 9b). This suggests that the affinity of the drug to the mutant
protein at its active state is increased, which was confirmed by an estimation of the ΔΔGb S!Rð Þ value. Further analysis
suggested that structural modification is needed to explain the discrepancy between the calculated and observed affini-
ties. The simulations also revealed a modification in a hydrogen-bonding network connecting two of the kinase's
regions (the activation loop and the glycine-rich loop, Figure 9c). In summary, the simulations highlighted structural
modifications at the protein that could not be observed at the crystal structure and which likely contribute to resistance.
This is also a good example of a study that goes beyond a simple reconstruction of the experimental observable: whereas
the mutation S904F leads to resistance, this is apparently not because it decreases the affinity of the drug directly but
due to a structural modification.
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6.2 | Resistance against HCV NS3/4A protease inhibitors

NS3/4A inhibitors are widely used in the treatment of hepatitis C, a viral disease caused by the hepatitis C virus,
HCV. Multiple mutations in residue Asp168 limit the efficacy of such inhibitors, but also the replication capacity of
the virus. Lately, a secondary mutation was observed that increased the replication capacity of some Asp168

mutants.120 The authors then used MD simulations to identify how this secondary mutation, which is not at the sub-
strate binding site, restores the activity of the protease. Using MD simulations, they followed on the hydrogen-
bonding network in the substrate binding site and observed a tighter binding between an arginine residue of the
protease and a glutamate residue of the substrate upon mutation (Figure 10). This study demonstrate the usefulness
of MD simulations in explaining complex phenomena in drug resistance, in this case compensatory effects by sec-
ondary mutations, which are common in resistance to antiviral drugs.

FIGURE 9 Molecular dynamics simulations explain resistance to vandetanib. (a) Superposition of the structures of wt (cyan)

and mutant (green) RET, shown with a close-up into the site of S904F mutation. (b) Cα RMSF of two protein regions of the

inhibited (top) and ATP-bound protein, calculated from MD simulations. (c) Snapshots from MD simulations showing the

hydrogen-bond interactions between Glu734 and Arg912 in the wt and S904F variants. Reproduced from Reference 119, CC-BY 4.0

license
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6.3 | Compound mutations in Abl1

Abl1 is the first target for specific kinase inhibitors that has become of clinical use. The first marketed Abl1 inhibitor,
imatinib, is used for treatment of chronic myeloid leukemia since 2001 and is still a best seller. However, many resis-
tance mutations make imatinib ineffective. Newer drugs are available which are less sensitive to mutations yet the
T315I mutation leads to resistance against all but one, ponatinib. No single mutation was identified that drives resis-
tance against ponatinib, but compound mutations, i.e., two mutations in the same copy of the gene, can lead to resis-
tance even against this inhibitor.25 Almost all of these mutations are a combination of two mutants, where each of
these in itself does not lead to ponatinib resistance. For example, ponatinib overcomes the Y253H mutation and the
T315I mutation in a clinical setting, but the combination Y253H/T315I leads to resistance, for reasons that were not
clear. Kinetic studies provided a hint: many of the double-mutants are more active than a single mutant that in itself
does not lead to sufficient resistance. Thus, it is likely that the double mutants shift the conformational space so that a
configuration that is prone to bind ponatinib is less often available. MD simulations indeed show changes in the activa-
tion loop of the protein. The dynamics of this loop is modified upon mutation, which is likely to affect both catalysis
and drug binding,9 as shown in Figure 11.

6.4 | Resistance to an antifungal drug mediated via a distal lysine to glutamate
mutation

Antifungal treatment is also subject for resistance mutations as the microscopic pathogenic fungi have ample time to
develop resistance to treatment. The oxaborole inhibitor AN2690 is an inhibitor of Candida albicans LeuRS, an enzyme
that is essential to C. albicans' synthesis of Leu-tRNA. AN2690 binds covalently to an AMP cofactor instead of the
amino acid. Unfortunately, C. albicans can become resistant to treatment with AN2690 through resistance mutations.
One of these is K510E. The lysine residue is not located in the vicinity of the bound drug, but about 9 Å away, and it
was hence not clear how its mutation leads to drug resistance. Simulations of the wt and mutant variants revealed three
configurations, of which one was prone to bind the inhibitor (I state) and another one, called K state, was the most

FIGURE 10 A secondary NS3/4A mutation restores the protein's activity introduced by a resistant mutation through modifying the

active site hydrogen-bonding network. The average number of hydrogen bonds between active site residues (including those of the substrate)

is shown on the figure for prevalent interactions and demonstrated with lines, whose width is proportional to the average number of h-

bonds in the simulations. Substrate residues are shown in green on the right-hand side of the figure, key residues are indicated on the left.

The single mutant is shown on the top, the double mutant on the bottom, with a cation-π interaction indicated (shown as a double line on

the right). Note the strengthening of the charge–charge interaction involving Arg155 of the protease and Glu4 of the substrate. Adapted from

Reference 120, CC-BY 4.0 license
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stable. Free energy calculations revealed a larger difference in the Gibbs energy between the two states in the mutant
protein, suggesting a potential mechanism for drug resistance based on a modification in the conformational energy
landscape of the protein,121 (Figure 12).

7 | RESISTANCE MECHANISMS OTHER THAN RESISTANCE MUTATIONS

Although the topic of this article is resistance mutations, a short discussion is included here that covers other resistance
mechanisms, for completeness.

7.1 | Background on additional resistance mechanisms

Mutations in the drug target are only one of many mechanisms by which resistance to therapy is mediated. Additional
resistance mechanisms are briefly summarized in Table 3. Resistance mechanisms are not mutually exclusive, and can
occur together with resistance mutations and with other means of drug resistance.

Efflux is mediated by proteins that pump exogenous molecules (including drugs) out of cells, and is an effective mech-
anism if the molecular drug target is intracellular. Another trivial resistance mechanism is overexpression of the drug tar-
get, effectively leading to a need to increase the concentration of the drug in order to bind more of the target molecules.
This may lead to a phenomenon known in cancer therapeutics as “tumor drug addiction,”122 where tumor cells express so
much of the drug target that it becomes overactive. Thus, growth of the tumor slows down when the therapy is removed;
this is however only a temporary effect as the tumor reacts by growth of cells that do not overexpress the drug target.

A less trivial mechanism is bypass of the drug target through activation of another protein (or pathway) with a bio-
logical effect that is similar to that of the inhibited drug target. This may happen via activating mutations, leading to a
protein that takes over the role of the drug target, or by another mechanism that leads to overexpression or over-
activation of genes that compensate for the drug target's effects.

Drug metabolism takes place most often in the liver, and is an important factor in determining the drug's toxicity
and efficacy. However, various enzymes can inactivate the drug inside cells, effectively rendering it useless. This is a
common means of resistance against antibiotic therapy, but can also occur in cancers.123

In the case of an antimicrobial treatment, additional mechanisms may lead to resistance. These include changes in
the target organelle (such as ribosome methylation or modification of membrane lipids). In addition, modification to
the target organism's cell wall may prevent the entry of the drug in the first place.

7.2 | Studying additional resistance mechanisms by methods that stem from
computational molecular science

Few of the above-mentioned resistance mechanisms (Table 3) can be studied effectively by molecular simulation methods.
Mathematical/evolutionary modeling is often more appropriate to this aim.124,125 However, even in such models, the use of
chemical concepts such as chemical activity126,127 can be incorporated into the simulations. Moreover, defining the degree of
resistance as fold-IC50 (f IC50

) has been used to include measurements of drug-sensitivity directly128,129:

FIGURE 11 The dynamics of T315I and E255V/T315I mutants of Abl1. RMSF, calculated for simulations of Abl1, reveals that there is a

decrease in the plasticity of the activation loop (A-loop) residues upon this mutation. In the E255V/T315I double mutant, the flexibility is

enhanced (see the highest RMSF for A-loop residues). Since A-loop dynamics is important for activation, this likely stabilizes the active

conformation that does not bind ponatinib, which decreases the binding affinity and increases the catalytic efficiency. Reproduced from

Reference 9 with permission from Elsevier
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f IC50
¼ ICR

50

ICS
50

: ð22Þ

The f IC50
values can be used to follow on the emergence of resistance irrespective of the cause of resistance.

When details on the molecular mechanism of resistance are known, MD simulations become a useful tool to
understand the causes of drug resistance. Such simulations have been used, for example, to explain how naturally
occurring amphipathic amines lead to resistance against peptide antibiotics.130 Overall, mathematical and evolution-
ary modeling can be used together with molecular simulations to explain resistance from a clinical and molecular
standpoint.

FIGURE 12 Molecular dynamics simulations and free energy landscape analysis reveals why the K510E mutation in the fungal protein

Candida albicans LeuRS leads to drug resistance. (a) In the wt protein, the side chain of residue Tyr487 can adopt primarily two

conformations, one that is similar to the inhibitor-bound conformation, I, and another where it is hydrogen bonded to Lys510, K. A third

conformation, S is less common in the simulations and is not shown. The simulations were run in the presence of a substrate. (b) Free

energy landscapes, extracted from metadynamics simulations of the wt and the mutant show that the I conformation is higher in energy

with respect to the K one, especially in the mutant, suggesting why the inhibitor binding energy is affected despite the large distance

between residue 510 and the substrate (or inhibitor). Adapted with permission from Reference 121. Copyright (2015) American Chemical

Society

TABLE 3 Resistance mechanisms other than resistance mutations

General resistance mechanisms

Efflux of drugs outside of cells (expression of efflux pumps)

Overexpression of the drug target

Overexpression or activation of genes that compensate for the inactivity of the drug target

Mutations in other genes, leading to activation of additional pathways

Cellular modification of the drug

Resistance mechanisms specific for microorganisms

Changes in the target organelle

Modification of the cell wall, preventing drug entry

FRIEDMAN 25 of 31

 17590884, 2022, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1563 by L
innaeus U

niversity, W
iley O

nline L
ibrary on [21/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 | CONCLUSIONS

A plethora of tools is available for the estimation of binding affinity changes upon mutations in proteins. Some excel at
being fast (ML, MM/GBSA, MM/PBSA, LIE) whereas others are more accurate or specific (FEP, TI, QM-based
methods). Given the overall good performance of MM FFs, and the availability of tools to automate running of the sim-
ulations, MM-based FEP with BAR or MBAR analysis provides overall good accuracy at affordable speed. QM and
QM/MM methods have a potential to succeed where the binding involves difficult cases (change of charge upon muta-
tion, covalent binding to the inhibitor, metals in the binding site). To this aim, however, it is necessary to develop better
protocols to consider solvent effects or enable efficient sampling to afford free energy calculations.

It is unlikely that calculations will replace experimental measurements for estimating affinity changes upon muta-
tion any time soon. However, as presented in this article, calculations can be useful to shed light on the molecular
mechanisms that underlie resistance due to mutations. MD simulations are the computational method of choice for
this, as they provide multiple observables that might be hidden from the experiment. Care should be taken to run such
simulations accurately, as too many studies in the literature present analyses that rely on insufficient data (e.g., a single
simulation), wrong assumptions about the experimental reference (e.g., missing domains that are important for the
interaction), and so on. It is also important to realize that an agreement between the calculated and measured values
does not necessarily mean that the calculation is accurate; to know this, we must understand the biological system very
well and consider the details of the measurement. Likewise, as highlighted in some of the examples, a disagreement
between the experimental value and the calculated one does not imply that the calculations are wrong or inaccurate.
Rather, such a disagreement requires an explanation, which might shed light on a molecular mechanism of resistance
that could not be foreseen by analyzing the experiment.

In summary, when executed properly and with reference to the experiment, calculations of binding affinity changes
upon mutation contribute much to our understanding of drug resistance, which is of utmost importance in contempo-
rary medicine. Simulations help us to know our enemy—explaining resistance mutations is the first step in
combating them.
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APPENDIX A.: REACTION AFFINITY

The formal definition of affinity refers to reaction affinity, which is the negative partial derivative of the Gibbs energy
with respect to the extent of reaction, at constant pressure and temperature131:

A¼� dG
dξ

� �
T,p

, ðA1Þ

where the change in the extent of reaction is:

dξ¼ dnx

dνx
: ðA2Þ

Here, nx and νx are the amount and stoichiometric coefficient of x, respectively, and x is a reactant or product.
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