
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in ACM Transactions on Autonomous
and Adaptive Systems. This paper has been peer-reviewed but does not include the final
publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Skandylas, C., Khakpour, N., Andersson, J. (2020)

AT-DIFC +: Toward Adaptive and Trust-Aware Decentralized Information Flow Control
ACM Transactions on Autonomous and Adaptive Systems, 15(4): 13
https://doi.org/10.1145/3487292

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-108706

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow
Control

CHARILAOS SKANDYLAS, NARGES KHAKPOUR, and JESPER ANDERSSON, Linnaeus University,

Sweden

Modern software systems and their corresponding architectures are increasingly decentralized, distributed, and dynamic. As a
consequence, decentralized mechanisms are required to ensure security in such architectures. Decentralized Information Flow Control
(DIFC) is a mechanism to control information flow in distributed systems. This paper presents and discusses several improvements to
an adaptive decentralized information flow approach that incorporates trust for decentralized systems to provide security. AT-DIFC+

combines decentralized information flow control mechanisms, trust-based methods, and decentralized control architectures to control
and enforce information flow in an open, decentralized system. We strengthen our approach against newly discovered attacks and
provide additional information about its reconfiguration, decentralized control architectures, and reference implementation. We
evaluate the effectiveness and performance of AT-DIFC+ on two case studies and perform additional experiments and to gauge the
mitigations’ effectiveness against the identified attacks.

CCS Concepts: •Computer systems organization→ Self-organizing autonomic computing; • Security and privacy→ Formal

security models; Distributed systems security.

Additional KeyWords and Phrases: Adaptive Security, Decentralized Information Flow Control, Adaptive Trust, Decentralized Feedback

Loop

ACM Reference Format:
Charilaos Skandylas, Narges Khakpour, and Jesper Andersson. 2021. AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized
Information Flow Control. ACM Trans. Autonom. Adapt. Syst. 0, 0, Article 0 (2021), 32 pages. https://doi.org/0

1 INTRODUCTION

Today, many software systems are characterized by the distribution of behavioral responsibilities onmultiple components
deployed on connected computational devices [4]. The systems provide for openness, which allows devices and
components to join and leave a system at runtime, throughout the system’s life-cycle. Openness can lead to situations
where a centralized control model is perceived as top-heavy and unfit. Thus, decentralized application control is likely
a better fit for open, decentralized systems.

An open and decentralized setting elevates security to a primary system concern. Multiple collaborating processes,
owned by independent stakeholders and each process’s unique security requirements, impel developers to prioritize
security. As a consequence, each process is required to define its individual security policies. However, in a decentralized
system, processes must trust that no other process violates their policies without explicit approval. Tackling security in

Authors’ address: Charilaos Skandylas, charilaos.skandylas@lnu.se; Narges Khakpour, narges.khakpour@lnu.se; Jesper Andersson, jesper.andersson@
lnu.se, Linnaeus University, Växjö, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/0

2 Skandylas, et al.

a pure, decentralized environment requires mechanisms that manage which processes to trust and the extent of trust
for each process.

Trust in decentralized systems has been explored in the past. Current trust-based security solutions focus on allowing
or disallowing communication in the system at the granularity of nodes. These approaches are often domain-specific
and focus on either defending against specific attacks or identifying and/or isolating malicious nodes [1, 11] based on
trust metrics [31] or reputation-based trust [1, 21], lacking the capabilities to deal with fine-grained security policies that
control the access to, modification and propagation of information between entities. Furthermore, they operate under
static enforcement rules [2, 31], even in the presence of dynamic trust and do not feature a dynamic trust architecture.
As a result, given the openness of the system and the lack of peer concession, approaches based solely on trust are
lacking the required tools to deal with the uncertainty, rapid-change in the system, and the dynamicity of trust.

Consider a microservice architecture that implements a web shop that depends on a third-party payment service.
If the payment service is malicious or compromised, there are no guarantees that the payment or the transaction
information will not be tampered with or leaked without the web shop noticing. Information flow control techniques [18]
that track and control the flow of the information in a system can provide the critical guarantees. In a decentralized
setting, a variant of classical information flow control, decentralized information flow control [15] allows each process
to independently specify its policies and provides mechanisms for policy enforcement throughout the system. Current
DIFC mechanisms rely on a globally trusted controller. However, such a controller is impractical as (i) it can not be
reliably agreed upon due to the mutual distrust between the entities of the system and (ii) the system openness and
its decentralized nature designate the controller as the single point of failure, should the controller be compromised
the entirety of the system is compromised, while if the controller is overloaded the system’s security enforcement is
delayed. Moreover, such mechanisms do not consider trust as a significant factor that affects security properties in a
mutually-distrusting-processes setting. Since basic security properties, i.e., confidentiality and integrity are rooted in
the trust between the system components, the policy enforcement model must also be dependent on trust.

To address the above challenges, we proposed AT-DIFC (Adaptive Trust-Aware Decentralized Information Flow
Control) [22], that is an adaptive approach to facilitate trust-aware decentralized information flow control. AT-DIFC
extends DIFC with capabilities for multiple decentralized controllers, each responsible for managing a part of the
decentralized system. The controllers’ capabilities, controlled entities, and policies are dynamically adapted to reflect
changes in the environment, the security of system entities or their trust policies. The system is partitioned into
non-communicating subsystems, satisfying the principle of least privilege, and enhancing security since information
that needs not be shared to third principals will never be transmitted to them. In AT-DIFC, each entity can specify its
policies independently, using a trust-estimate approach based on the information it shares with other entities. The
model enforces information flow control policies that prohibit communication that would entail leakage or illegal
tampering of information. Its adaptation architecture provides the required structures and behaviors for adapting
controllers to meet different stakeholder goals as well as to handle the uncertainty caused by the openness of the model.

However, AT-DIFC suffers from some security weaknesses that make it susceptible to a number of attacks that take
advantage of the system openness and the decentralized nature of its operation. We have identified three categories
of attacks: (i) attacks that aim to discredit other system entities by abusing valid system operations, e.g., by taking
advantage of the capability to dynamically alter security policies at any time to force DIFC policy violations that
result in the defamation of a non-malicious entities, (ii) attacks that attempt to claim illegitimate ownership of process
resources, or perform privileged operations while lacking that privilege. For instance, an attacker could claim to be the
owner of a secret piece of information and attempt to coerce the system to declassify that information, i.e., an action
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 3

that would violate confidentiality. If that information has already been declassified in the system, nevertheless, the
attacker can attempt to use that information in his/her security policies to deceive the system into rejecting valid DIFC
messages, and (iii) attacks that attempt to exploit established countermeasures to starve system resources or stall the
system’s operations. The security of our model and its implementation is critical, because if the policy enforcement
mechanisms are bypassed or compromised, the security guarantees provided by DIFC can no longer be relied upon.
Once the attacker is able to manipulate the trust of system entities at will, since trust is an essential part of the model,
the system’s security policy enforcement becomes unreliable. Resource starvation or stalling of the system operation
can make the system unresponsive and unable to operate normally. In light of these shortcomings, we have enhanced
the AT-DIFC model and in this paper present AT-DIFC+ , an improved version of AT-DIFC, that is able to mitigate the
identified attacks and is extended with additional operations to further improve its security.

This paper extends [22] with the following contributions:

• We extend AT-DIFC to address the newly identified security weaknesses and strengthen the security of its
adaptation and information flow control mechanisms.

• We give a detailed description of the improved AT-DIFC+ model, which includes: (i) the (formal) model, (ii) the
reconfiguration plan generation and reconfiguration operation algorithms, and (iii) an improved planning phase
for our hybrid architecture, which has been revised to improve its efficiency.

• We discuss our reference implementation and provide details regarding the concrete system operation and the
implemented mitigations.

• We evaluate the updated AT-DIFC+ model and its implementation by applying it on two case studies. We
conducted several experiments that evaluate the security of our approach in multiple scenarios, including the
assessment of the improved AT-DIFC+ model. In addition, we conducted experiments to evaluate our mitigations’
effectiveness against the newly discovered weaknesses.

The remainder of this paper is structured as follows. Section 2 provides an introduction to DIFC. In Section 3, we
introduce a running example used in the rest of the paper. Section 4 introduces and describes the approach and provides
a formal specification of the updated AT-DIFC+ model. Section 5 discusses reconfiguration, in particular, reconfiguration
operations, reconfiguration plan generation and utility-based evaluation. A reference implementation of the approach
is described an discussed in Section 6 and Section 7 elaborates on the design of the decentralized adaptive security
architectures. Section 8 details the evaluation of two demonstrator applications. In Section 9, we present related work
and contrast our work. Section 10 concludes and presents future research paths.

2 INFORMATION FLOW CONTROL

Information Flow Control (IFC) is a mechanism to control information flow in a system to enforce confidentiality and/or
integrity. Confidentiality is satisfied, if confidential information cannot leak to public channels and integrity guarantees
that unauthorized users cannot manipulate data [8]. IFC can be enforced with centralized or decentralized mechanisms.
In this paper, we concentrate on Decentralized IFC (DIFC) used to control information flow in a decentralized system
context. DIFC ensures system confidentiality and integrity, even with untrusted code or untrusted users in decentralized
environments. [15]. It allows the designers to control how data flows between application components and the outside
world, by defining policies to be enforced by the system when the data flows to and from an application.

One of the most well known models of decentralized information flow control is the Flume model [13]. In Flume,
tags and labels are used to track how information flows through the system. A label consists of multiple tags. A system

Manuscript submitted to ACM

4 Skandylas, et al.

consists of a set of processes where each process 𝑝 is equipped with a label for secrecy, denoted by 𝑆𝑝 , or a label for
integrity, represented by 𝐼𝑝 but rarely both. For instance, a user of an email client 𝑐 would label his account information
private by adding the 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 and 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 tags to 𝑐’s secrecy label 𝑆𝑐 . That would allow the user to specify policies
for using 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 and 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 in processes that interact with the email client.

Any process can create new tags to define decentralized privileges. A privilege is defined based on capabilities, i.e.,
each tag 𝑔 is associated with two capabilities 𝑔+ and 𝑔−. Each process 𝑝 is equipped with a set of capabilities P𝑝 . For
example, if 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑+ ∈ P𝑐 , then 𝑐 can add 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 to its labels, whereas if 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑− ∈ P𝑐 , then 𝑐 can remove
𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 from its labels. When a process is able to add a tag to its labels, that means that it is able to read or modify
the data associated with that tag, depending on if the label is associated with secrecy or integrity. Since the 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑
tag is associated with a secrecy label, 𝑐 can read the data associated with the password tag. If a process owns both 𝑔+

and 𝑔−, then it fully controls the appearance of 𝑔 in its labels and we say it contains a dual privilege on 𝑔. The set 𝐷𝑝

represents all tags for which 𝑝 has a dual privilege.
In Flume, a system is secure, if and only if all process label changes are safe and all messages are safe. A safe label

change is defined as follows,
{𝑙 ′ − 𝑙}+ ∪ {𝑙 − 𝑙 ′}− ⊆ P𝑝 (1)

where the notation {𝑙}+ refers to the set of tags of a label for which a process has addition capabilities, {𝑙}− refers to
the set of tags for which removal capabilities exist, and - denotes the set difference operator. Informally this means that
in order to update a label 𝑙 of a process 𝑝 to 𝑙 ′, the process must have the capabilities to change the label. Furthermore,
a message from a process 𝑝 to a process 𝑞 is safe, if the following condition holds:

𝑆𝑝 − 𝐷𝑝 ⊆ 𝑆𝑞 ∪ 𝐷𝑞 𝑎𝑛𝑑 𝐼𝑞 − 𝐷𝑞 ⊆ 𝐼𝑝 ∪ 𝐷𝑝 . (2)

Informally, this means that the message receiver must have knowledge of secret information shared by the sender
(i.e., 𝑆𝑝 −𝐷𝑝 ⊆ 𝑆𝑞 ∪𝐷𝑞), while the sender must have permission to modify information transmitted to the receiver (i.e.,
𝐼𝑞 − 𝐷𝑞 ⊆ 𝐼𝑝 ∪ 𝐷𝑝). If for instance, the mentioned user would like to migrate his e-mail account from one client 𝑐 to a
another 𝑛𝑐 , then 𝑆𝑐 − 𝐷𝑐 ⊆ 𝑆𝑛𝑐 ∪ 𝐷𝑛𝑐 which is equivalent to {𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑,𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒} ⊆ 𝑆𝑛𝑐 ∪ 𝐷𝑛𝑐 where 𝑆𝑛𝑐 and 𝐷𝑛𝑐

show the new client’s secrecy and duality labels.

3 RUNNING EXAMPLE

Figure 1 depicts an example item shop microservice architecture. The item shop is composed of seven communicating
modules that belong to three different stakeholders. The item shop itself comprises four microservices: Item, Frontend,
Account and Cart. The item shop communicates with a Payment microservice owned by a bank and its shipping is
handled by a shipping company using two microservices of Shipping and Logistics. The microservices are grouped into
three contexts based on their stakeholder and mutual trust. These three contexts then form a global context to allow
communication between the microservices they contain. Therefore, four trust contexts are shown: ItemShop, Bank,
Shipping Service and Global.

In a classical decentralized information flow control setting, each microservice would correspond to a DIFC process
that defines a single label for its secrecy or integrity. A label in that context specifies the security policy for the
microservices and includes a tag for each piece of security-relevant information. A centralized DIFC controller would
enforce information flow control based on the equations 1 and 2. However, classical DIFC approaches suffer from a few
limitations when applied to a decentralized system like the one shown in Figure 1. First, they do not utilize the already
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 5

established trust between the modules in a given trust context. Second, they are unable to express more fine-grained
security policies at the interface invocation level, or based on trust between the system entities. For example, an
invocation of the add_to_cart interface of the Cart microservice, does not need to know about the customer’s credit
card information, even if the Cart has to store that information to invoke the pay interface of the Payment microservice.
Lastly, the central controller is both a single point of failure and a bottleneck. These four aspects constitute a research
gap we addressed by introducing AT-DIFC, and which we improve upon in this work.

To address the first and third issues, our approach forms trust contexts that combine DIFC enforcement with
techniques based on trust-estimation to incorporate trust in DIFC. We address the second issue by defining our security
policies based on the parameters and return value of the callable interfaces of the modules in the system rather than the
data that each module contains, which allows us to express security policies at a higher granularity. The fourth problem
is approached by equipping each of our trust contexts with a controller, bound to the trust context and responsible
to facilitate information flow control for its direct children, i.e., the context elements. Information is therefore only
propagated upwards when modules belonging to different controllers need to communicate. As a result, should a
controller fail or be compromised, only part of the system enforcement is compromised, as the rest of the controllers
will operate as normal. Furthermore, since enforcement happens at the trust context level, more DIFC messages can be
concurrently verified. Finally, information is only shared with the part of the system that is absolutely necessary to
perform DIFC enforcement. For instance, an exchange between the Item and Cart microservices will be handled by the
Itemshop controller, and thus the Global controller will never learn of that interaction. As a result, the principle of least
privilege is satisfied, since the security critical information is only shared with as few controllers as strictly needed for
enforcing DIFC.

AccountTrust
Control

Trust
Context

Module

Legend

ItemShop

Item Frontend

Global

Bank

Payment

Shipping Service

Shipping LogisticsCart

Fig. 1. Itemshop microservice architecture comprising seven modules and four trust contexts. The three bottom-level trust contexts
are named after their stakeholders.

4 ADAPTIVE TRUST-AWARE DIFC

The section presents Adaptive Trust-Aware Decentralized Information Flow (AT-DIFC+), a revision of AT-DIFC, a
decentralized information flow control model which is able to adapt its architecture to deal with changes in the system
entities or their established trust. It formalizes the basic components, trust computation, security policies and security
goals. In addition, it discusses the security weakness of AT-DIFC, the attacks that could take advantage of them and our
mitigations included in AT-DIFC+.

Manuscript submitted to ACM

6 Skandylas, et al.

4.1 Overview

We model systems as a set of communicating modules where a module is an independent computation unit that
communicates with other modules via message passing. This system model supports many different types of system
architectures, e.g., microservices, multi-agent systems, service-oriented systems, and component-based systems. To
enforce security in such a system, we incorporate trust in decentralized information flow control. The new model,
AT-DIFC is in principle, an extension of the Flume model with trust, adaptation and decentralized control.

We use the widely accepted definition of trust in [7]: “Trust (symmetrically, distrust) is a particular level of the
subjective probability with which an agent will perform a particular action, both before we can monitor such an action
(or independently of his capacity of ever being able to monitor it) and in a context in which it affects our own action”.
This means that trust is the probability that an entity e will take a beneficial action in regard to a trusting another entity
e′. Trust is determined by the confidence level, depending on which, an actor decides whether to give out information or
not. The notion of trust can be broadly classified into two categories: direct trust, and recommended trust. Recommended
trust can additionally be split into two subcategories: active recommended trust and passive recommended trust [1].
Direct trust is defined based on the satisfaction of an entity’s direct interaction with another entity. Recommended
trust is based on indirect interactions [1]. Active recommendation happens when an entity only takes into account its
trusted partners when requesting a recommendation for another untrusted entity. Passive recommendation on the
other hand, takes into account the whole set of paths from one entity to another when requesting a recommendation,
that includes untrusted entities in the system.

To enforce security in a dynamic environment, we utilize AT-DIFC+ to control information flow, where the complete
information needs not be distributed to all controllers, and there is no trusted central controlling authority. The trusted
set of modules varies from module to module and may not be known in advance.

To this end, we organize modules into trust contexts which are formed based on strong trust between their module
members. Furthermore, trust contexts are further organized in a hierarchical structure to facilitate communication
between their modules. We call such a hierarchy of trust contexts a trust architecture. The information flow to/from a
trust context is controlled by a trust context controller that controls information flow by enforcing the context members’
security policies. When an entity attempts to send a message to another, the immediate context controller interposes
the message. Subsequently, the policies of the sender and receiver entities are forwarded to their first common ancestor,
who is then able to enforce security policies for the particular message locally. Whenever a set of mutually trusted
modules form a trust context, information flow between the context’s modules is enabled. Each context controller
acts as a local control point for its sub-hierarchy. Therefore, the overall model comprises "trees" of disconnected trust
contexts that permit information to flow between their members but not between each other. The model is composed of
a forest of communicating trees, where two contexts communicate with each other via their shared ancestors. Therefore,
instead of a single global root, we create multiple localized tree hierarchies, each controlling its descendant sub-trees.

The system entities and their security policies are defined based on the trust evolution over time. Therefore, a trust
architecture should be dynamic and adaptable, which requires a self-organizing trust architecture.

The goal is to form a trust architecture where the information flow is maximized and security policies are enforced. To
that end, the trust contexts must contain modules with the highest mutual trust. Hence, we restructure the architecture
to improve the permitted flow. We merge two sibling trust contexts, split a context when its trust deteriorates or isolate
a maliciously behaving trust context to re-structure the overall trust architecture.

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 7

Figure 2 represents a typical trust architecture. It features an execution of an adaptation plan modifying the
architecture from architecture t0 to architecture t1. The plan consists of two reconfiguration actions, a merge of two
trust contexts, TC12 and TC34 into TC1234, and an isolation of M4. Finally a failed attempt at an invocation from M2 to
M3 on interface 𝑖 is shown whereM′

2s 𝑖 label is propagated to TC12 and then to TC1234 where DIFC validation happens,
whileM′

3s 𝑖 label is forwarded first to TC34 and then to TC1234. SinceM′
2s security policies are satisfied butM′

3s are
not, the invocation validation fails. As a result, M2 is notified of the failure and subsequently, does not perform the
invocation. It is important to note that there are two communication channels in our model. The first channel submits
and receives AT-DIFC+ messages, which propagate through the trust architecture hierarchy. These messages contain
the security relevant information for the invocation but no actual data, and are used to determine whether it is secure
to perform an invocation. The second channel is the application specific channel through which the actual invocation
occurs.

Trust
Control

Trust
Context

Module

Legend

TC12

M1

TC34

TC1234

M2 M3 M4

TC123

M1

TC4

M2 M3 M4

merge(TC12,TC34)
isolate(M4)

trust architecture at t0 trust architecture at t1

TC1234

AT-DIFC
Message

Message

Fig. 2. The AT-DIFC+ concepts, communication and adaptation dynamics. Shown: a merge operation followed isolate operation and a
rejected AT-DIFC+ invocation.

We support two types of trust contexts: (a) atomic trust contexts, that represent contexts whose elements cannot be
separated from each other, and (b) non-atomic trust contexts, the elements of which can be freely relocated. Atomic trust
contexts allow us to trade-off between security and maintaining the system’s functionality. In that way, our approach
can support a larger class of systems, and provide a more realistic model. An atomic trust context is immune to the
operations that we define in AT-DIFC+ and is treated as a single module. As a result, while the functionality within
the context is always maintained and guaranteed regardless of the trust of its members, if a module belonging to that
context is compromised, then the system cannot single it out and isolate it, which entails that the satisfaction of the
security policies of the modules that communicate with the atomic context cannot be guaranteed.

4.2 Formalization of Components

Let C be the set of all context controllers, M be the set of all modules and T be the set of all trust contexts where the
trust contexts, context controllers and modules are mutually disjoint, i.e.,M ∩ T = ∅,M ∩ C = ∅ and C ∩ T = ∅. A
trust context is defined as a tuple 𝑡 = ⟨𝑐, E⟩ where 𝑐 is the context controller and E = {𝑒0, . . . , 𝑒𝑛} is a set of elements
controlled by it with E ⊆ M ∪ T . A module belongs to only a single context, i.e., for any two arbitrary trust contexts
𝑡 = ⟨𝑐, E⟩ and 𝑡 ′ = ⟨𝑐 ′, E ′, ⟩ where 𝑡 ≠ 𝑡 ′, it holds that E ∩E ′ = ∅ and 𝑐 ≠ 𝑐 ′. Amodule is defined as a tuple𝑚 = ⟨𝐼 , _,P⟩
where:

Manuscript submitted to ACM

8 Skandylas, et al.

• 𝐼 = {𝑖0, . . . , 𝑖𝑛} is a set of interfaces where 𝑖 𝑗 = ⟨𝑛 𝑗 , 𝑝 𝑗 , 𝑟 𝑗 , 𝑠⟩ and 𝑛 𝑗 , 𝑝 𝑗 and 𝑟 𝑗 , 0 ≤ 𝑗 ≤ 𝑛 correspond to the name,
parameter set and return value of the interface, respectively. Furthermore, 𝑠 corresponds to a cryptographically
secure token that we use as a version signature for the interface. Each time the interface’s label is modified, a
new version signature is generated and future invocations must use the new signature to invoke the interface.

• _ : 𝐼 → L is a function that maps each interface to a label in L, where L is the set of all labels.
• P is a capability set that enables a module to alter its labels.

The set of atomic trust contexts is denoted by T𝑎 . Elements of an atomic trust context, are treated as a single element
from an outsider’s perspective, i.e., from any other context’s point of view, an atomic context, comprises just a single
entity and its controller. A module is critical, if its functionality is essential to the system and its messages should never
be dropped. The set of critical modules is denoted byM𝑐 .

An invocation is a call to an interface of a module by some other module, defined as a tuple] = ⟨𝑚1, 𝑖,𝑚2, 𝑠𝑖 ⟩ where
𝑚1 is the source module,𝑚2 is the destination module, 𝑖 is the interface of𝑚2 being invoked, and 𝑠𝑖 corresponds to
the sender’s known version signature for the invoked interface. The purpose of 𝑠𝑖 is to ensure that the sender and
receiver are referring to the same version of the interface’s security policies, i.e., to ensure that the security policies of
the interface have not been altered since𝑚1’s last invocation of that interface. Every module holds a label for each of
its interfaces. The tags of the label correspond to the parameters of the interface, set by the module that exposes the
interface (callee), while the tag of the return value, if any, is set by the invoking module (caller). Labels are allowed
to flow through trust contexts to allow for AT-DIFC+ enforcement but are never stored in contexts. If an interface’s
security policies have been altered, which entails a change in the corresponding label, then any module invoking that
interface must also update its label to receive the interface’s new version signature.

A tag is formally defined as a tuple 𝑔 = ⟨𝑜, 𝑖𝑑, 𝑣, 𝑑⟩ where, (i) 𝑜 corresponds to the tag’s owner, i.e., the module that
created the tag and holds complete ownership over it, (ii) 𝑖𝑑 corresponds to a tag ID, an opaque unique token that
identifies the tag, (iii) 𝑣 corresponds to a real value ∈ [0, 1] that represents how much an entity has to be trusted in
order for the tag to be allowed to be part of that entity’s labels, and (iv) 𝑑 corresponds to the maximum distance (i.e.,
the number of visited context controllers to reach its destination) that the specific tag is allowed to flow away from the
module that has created it. A label is defined as a set of tags, i.e., 𝑙 = {𝑔0, . . . , 𝑔𝑛} associated with a specific security
property. Typically the security property is secrecy, though labels can be expressed for integrity or more complicated
properties. We define capabilities that allow to add or remove a tag from a label. A capability allowing the tag 𝑔 𝑗 to be
added to a label 𝑙 is represented as 𝑔+

𝑗
whereas one allowing removal of 𝑔 𝑗 from 𝑙 is represented by 𝑔−

𝑗
. A capability

set refers to a set of capabilities of the module represented by P. The values related to trust value and distance are
selected based on how security relevant the information represented by each tag is. That is to say, if the particular piece
of information is critical, the trust required by its handler will be very high, closer to 1. Distance represents a measure
of indirect trust, it is especially useful when privacy or spread of information is of concern. As an example, consider a
user who wants to directly allow his/her payment module to share his/her credit card details with the bank, but would
not like to allow the bank to share that information further. In that case a very small value of distance is suggested, e.g.,
1. Note that distance limits the spread of information regardless of what the proximity of the modules at certain points
in time is. This means that a module might be highly trusted and therefore, gain a tag at some point time, and become
untrusted later. Even though the tag is now known to that module, since the distance constraint cannot be met, any
message that contains the tag will violate DIFC policies. That implies that even if a module behaves non-maliciously in
order to gain the required tags and then tries to use the tags maliciously, it will not be able to do so.

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 9

Example 1. The Payment microservice of the system in Figure 1 exposes a pay interface that has two parameters user
and amount and returns paid. A label 𝑙𝑝𝑎𝑦 associates a label to the pay interface that describes the policies associated
with each parameter as a tag. For instance, amount is considered highly secret and as a result, it is assigned a trust value
of 0.8 (i.e., 𝑣 = 0.8) and a maximum distance of 1 (i.e., 𝑑 = 1). That means that any entity in the system that receives
or needs to add the amount parameter to its labels has to be at least trusted by 80% and be at most one trust context
away from Payment. The parameter tag user is considered less secret and is assigned 𝑣 = 0.4 and 𝑑 = 5, allowing the
tag to "flow" much further away from Payment and be added to labels of less trusted modules. Table. 1 depicts the
Payment and Shipping modules, each containing a single interface that takes two arguments and a label associated
with that interface. Each of the labels is associated with three tags: two of them are created and fully regulated by the
module via its capability set P that correspond to the interface’s arguments, and the third is controlled by the caller
and corresponds to the interface’s return value.

Table 1. The Payment and Shipping modules, including interfaces, labels, tags and capability sets

Module
Interface
Labels

Tags

Capabilities

Payment
𝑖𝑝𝑎𝑦 = ⟨𝑝𝑎𝑦, {𝑎𝑚𝑜𝑢𝑛𝑡,𝑢𝑠𝑒𝑟 }, {𝑝𝑎𝑖𝑑}, 𝑠𝑝𝑎𝑦⟩
𝑙𝑝𝑎𝑦 = {𝑝𝑎𝑖𝑑, 𝑎𝑚𝑜𝑢𝑛𝑡,𝑢𝑠𝑒𝑟 }
𝑎𝑚𝑜𝑢𝑛𝑡 = ⟨𝐶𝑎𝑟𝑡, 0.8, 𝑎𝑚𝑜𝑢𝑛𝑡, 1⟩
𝑢𝑠𝑒𝑟 = ⟨𝐼𝑡𝑒𝑚, 0.5, 𝑢𝑠𝑒𝑟, 5⟩
𝑝𝑎𝑖𝑑 = ⟨𝑃𝑎𝑦𝑚𝑒𝑛𝑡, 0.5, 𝑝𝑎𝑖𝑑, 1⟩
P𝑃𝑎𝑦𝑚𝑒𝑛𝑡 = {𝑎𝑚𝑜𝑢𝑛𝑡+, 𝑢𝑠𝑒𝑟+, 𝑎𝑚𝑜𝑢𝑛𝑡−, 𝑢𝑠𝑒𝑟−}

Module
Interface
Labels

Tags

Capabilities

Shipping
𝑖𝑠ℎ𝑖𝑝 = ⟨𝑠ℎ𝑖𝑝, {𝑢𝑠𝑒𝑟, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛}, {𝑠ℎ𝑖𝑝𝑝𝑒𝑑}, 𝑠𝑠ℎ𝑖𝑝 ⟩
𝑙𝑠ℎ𝑖𝑝 = {𝑠ℎ𝑖𝑝𝑝𝑒𝑑,𝑢𝑠𝑒𝑟, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛}
𝑠ℎ𝑖𝑝𝑝𝑒𝑑 = ⟨𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔, 0.5, 𝑠ℎ𝑖𝑝𝑝𝑒𝑑, 1⟩
𝑢𝑠𝑒𝑟 = ⟨𝐼𝑡𝑒𝑚, 0.5, 𝑢𝑠𝑒𝑟, 5⟩
𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = ⟨𝑃𝑎𝑦𝑚𝑒𝑛𝑡, 0.9, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 1⟩
P𝑃𝑎𝑦𝑚𝑒𝑛𝑡 = {𝑢𝑠𝑒𝑟+, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛+, 𝑢𝑠𝑒𝑟−, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛−}

4.3 Formalization of Trust

We define the partial function Trust : M ∪ T ×M ∪ T → [0, 1] that returns the trust between two entities, a value
in the interval [0,1]. The function Trust(e, e′) shows how much e trusts e′. We define trust between two entities as a
combination of direct and recommended trust. We opt to use the number of messages successfully exchanged as a basis
for trust. We define direct trust as the number of messages successfully transmitted divided by the number of messages
sent in total. Intuitively, since messages are dropped by a trust context controller when AT-DIFC+’s security policies
are violated, the higher the ratio of accepted to total messages, the more reliable the entity. We define recommended
trust in terms of deferring to the closest entity that can offer a judgment, in the case of a module that is the parent trust
context. In the case of a trust context, we defer to the trust established with the trust context’s parent. To enhance the
reliability of the trust establishment, we set a minimum number of messages as a threshold before which we presume
that direct trust cannot be trusted. In this way, we guard against malicious modules that would be considered trusted in
the initial stages of the system, as they might behave non-maliciously for a small number of messages.

Let 𝛾𝑎 (e0, e1) return the number of messages successfully sent from e0 to e1, i.e., the messages that have not been
rejected by the context controllers. Let the function 𝛾𝑠 (e0, e1) return the number of all messages sent from e0 to e1,

Manuscript submitted to ACM

10 Skandylas, et al.

including those that have been rejected by the context controller. Furthermore, 𝛾𝑇 is a message threshold and the
function Cntxt(e) returns the immediate trust context to which the entity e (i.e., a module or a context) belongs.
The trust function is then defined as follows:

Trust(e0, e1) =

𝛾𝑎 (e0,e1)
𝛾𝑠 (e0,e1) {e0, e1 } ⊆ M, 𝛾𝑠 (e0, e1) ≥ 𝛾𝑇

Trust(Cntxt(e0), e1) {e0, e1 } ⊆ M, 𝛾𝑠 (e0, e1) < 𝛾𝑇

∑
𝑒𝑖 ∈𝑐0

𝛾𝑎 (e0,e𝑖)
𝛾𝑠 (e0,e𝑖)

|e0 | e0 ∈ T, e𝑖 ∈ M ∪ T, 𝛾𝑠 (e0,Cntxt(e1)) ≥ 𝛾𝑇

Trust(e0,Cntxt(e1)) e0 ∈ T, e1 ∈ e ∪ T, 𝛾𝑠 (e0,Cntxt(e1)) < 𝛾𝑇

undefined Otherwise

(3)

In some cases, for instance, when there is only a single module that is vital for the system’s operation but that component behaves
maliciously, e.g., in the case of a compromised safety-critical component such as a mission control module in a flight craft or when
the confidentiality or integrity of an application data are not of high importance and thus functionality takes precedence over the
application’s security, a choice needs to be made between breaking the system’s functionality or tolerating a security impact in order
to keep the system functional. In the latter case, the trust between entities needs to be modified to satisfy the minimum criteria
for functionality. Therefore, the trust between entities is calculated according to our trust function and the tag trust values and
context threshold values are updated as normal, but the system operates slightly differently. The trust values 𝑣 of tags participating in
messages to and from critical modules are modified to meet the minimum values required for messages to succeed. If the system is
updated with trustworthy modules that meet the same functionality as the critical ones, the malicious nodes can be supplanted by
trusted ones, improving the system security. Selecting functionality over security should be decided carefully, as the misbehaving
critical components are able to exfiltrate or modify data passing through them without security policies being enforceable. Since
the messages to and from critical components are never dropped, there is no way to block messages that could lead to inferring
information implicitly.

As the system execution progresses, trust in the system evolves depending on each entity’s behavior. When the policies of modules
are respected, their mutual trust increases, while when the policies are not respected, the mutual trust decreases. Each trust context is
responsible to ensure a reasonable level of trust among its elements. We define two notions, inner and outer trust, which correspond to
the trust within a context and trust towards entities not in the context, respectively.

We define inner trust as the average trust of each context’s members to each other, i.e.,

I(𝑡) =

∑
e𝑖 ,e𝑗 ∈E,𝑒𝑖≠𝑒 𝑗

Trust(e𝑖 , e𝑗)

|E | (4)

where 𝑡 = ⟨𝑐, E⟩ and |E | shows the number of elements in E. Inner trust serves as a measure of how tightly the entities in a trust
context trust each other. Since the trust contexts are formed with this goal in mind, inner trust is used to evaluate the suitability of a
trust architecture in our adaptation decisions (See Section 5.3).

Outer trust is defined as the average trust of each context’s elements to entities or contexts of the other contexts, i.e.,

O(𝑡) =

∑
e𝑖 ∈E,e𝑗 ∉E

Trust(e𝑖 , e𝑗)

|E | (5)

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 11

We define the average trust for each trust context that serves as an indicator of how well a trust context performs in terms of
complying to AT-DIFC+’s security goals. Average trust is defined as:

A(t) = I(t) + O(t)
2

(6)

Entities in the same or sibling trust contexts have the lowest communication overhead and the highest amount of mutual trust.
Elements further away from each other have a higher communication cost and are expected to have lower mutual trust, as they are not
expected to communicate with each other often. A high degree of overall inner trust entails confidence in the system’s often occurring
and tightly grouped interactions, where a high amount of trust between the participants is expected. A high degree of outer trust
entails a high degree of confidence in the rarely occurring or lowly trusted interactions where there is a low trust or uncertainty
towards the particular amount of trust to be placed on the interaction.

4.4 Security Policies

The basic security policies enforced by the system are defined in terms of safe label alteration and safe message passing. Tags incorporate
the notion of trust and have a maximum travel distance, thus the safe operations have to take these aspects into account. Moreover,
since no central tag authority capable of controlling tag creation, deletion and update exists in our model, an additional operation is
required to revoke a tag that is no longer valid. A tag can be invalidated due to either: (i) a security policy change which results in the
tag’s secret information being declassified, or (ii) due to the tag’s owner leaving the system. We call the operation that revokes a tag,
i.e., prohibits the usage of a tag in the system, a tag revocation operation.

Label changes are required to enable communication and facilitate endorsement or declassification. When a module needs to send
some piece of its secret information, the tag corresponding to that information should be added to its labels. After a label change
succeeds, the label’s corresponding interface version signature is also communicated with the module updating its known tags.
Therefore, version signature synchronization after an interface’s policy changes is achieved by label changes for all communicating
modules that invoke an interface. We say a label change from 𝑙 to 𝑙′ is safe for a module𝑚 ∈ M iff

• {𝑙 − 𝑙′ }+ ∪ {𝑙 − 𝑙′ }− ∈ P𝑚 ,
• ∀⟨𝑜, 𝑖𝑑, 𝑣,𝑑 ⟩ ∈ 𝑙′, 𝑣 ≤ Trust(𝑚′,𝑚) and Dist(𝑚′,𝑚) ≤ 𝑑

where P𝑚 is𝑚’s capability set,𝑚′ is the tag’s owner and Dist is a function that returns the distance between two system entities
(number of visited context controllers to reach each other).

Informally, this states that a label change is only permitted iff a module has the capabilities to make the required changes, and for
each tag in the new label, the module is trusted by the tag’s owner and the tag has not flowed too far away. The tag’s owner, i.e., the
module that created the tag is the only actor that is allowed to assign capabilities related to that tag.

Example 2. In order for the Frontend microservice to be able to invoke the pay interface of the Payment microservice successfully,
either amount is already in its labels, or a label changing operation is required to add it. Formally, this is stated as amount ∈ PFrontend,
i.e., Frontend has the capability to add amount to its labels, 0.8 ≤ Trust(Payment, Frontend) and Dist(Payment, Frontend) ≤ 1.

In our model, there exists no concept of an isolated message, rather the modules communicate via invocations. An Invocation can
be expressed either as a single or as two messages depending on whether the invoked interface has a return value or not. If an interface
has a return value, the caller is also able to specify the security properties of the expected return value by adding that tag to its labels.

The second condition for a secure system is that all invocations between modules of contexts are safe, i.e., the interface version
signature of an invocation matches the version signature of the called interface and all messages that belong to invocations are safe.
Informally, a message is safe when the sender already knows about the tags of the receiver, and furthermore, for each tag in 𝑙 the
receiver is trusted enough by the sender and the tag has not flowed too far. A message sent by a module or context𝑚𝑖 with the label
𝑙𝑚𝑖

to another module or context𝑚 𝑗 on interface 𝑖 with label 𝑙𝑚 𝑗
is safe iff:

(1) 𝑙𝑚𝑖
⊆ 𝑙𝑚 𝑗

, and
(2) ∀⟨𝑜, 𝑖𝑑, 𝑣,𝑑 ⟩ ∈ 𝑙𝑚 𝑗

, 𝑣 ≤ Trust(𝑚𝑖 ,𝑚 𝑗) and Dist(𝑜,𝑚 𝑗) ≤ 𝑑

Manuscript submitted to ACM

12 Skandylas, et al.

Example 3. In our running example, an invocation from Item to Payment calling the pay(user, amount) interface which returns
paid, considering that Item knows sItem_pay to be the version signature of pay, will be permitted, iff:

• spay = sItem_pay

• user ∈ lpay, 0.4 ≤ Trust(Item, Payment),Dist(Item, Payment) ≤ 1,
• amount ∈ lpay, 0.8 ≤ Trust(Item, Payment) , Dist(Item, Payment) ≤1, and
• paid ∈ lpay, value(paid) ≤ Trust(Payment, Item) , Dist(Payment, Item) ≤ 1

That informally states that in order for an invocation from Item to Payment invoking the pay interface to be safe, Item and Payment

should trust each other, they should agree on which version of the interface is being invoked and the tags in their pay label must have
their constraints satisfied.

To perform tag revocation, the direct context controller of the module that owns the tag sends a tag revoked special DIFC message
to all direct context controllers of modules that hold any capability over the tag to be revoked. Each such controller, in turn, transmits
a tag revoked message to its controlled modules that hold any capabilities over the revoked tag. The same controllers are additionally
responsible to enforce that no messages with the revoked tag will be accepted. Therefore, each controller holds a list of revoked tags,
that is checked whenever a message is sent from or verified by the controller, and on each label change.

4.5 Security Weaknesses and Mitigations

The AT-DIFC model presented in [22] was susceptible to a few attacks that take advantage of the decentralized and open nature of the
system. These attacks can be categorized into three attack types.

The first type of attacks aimed to exploit the loose definition of tag ownership in our previous model. Since tag ownership was
not explicitly encoded in our model, any module could claim ownership over any tag, including those it did not create and therefore
should not have control over. Since tag ownership grants a module the privilege to assign capabilities related to the owned tag to any
other module, the malicious module could gain partial control of how the particular tag was used in security policies throughout the
system. Note that complete control would be difficult due to the fact that the malicious entity would be competing with the legitimate
tag owner module in terms of setting the tag values. Moreover, since we did not consider the tag lifetime in our previous version of
the model, a module could claim ownership of tags that belonged to modules that have left the system and therefore should have been
invalidated. The illegitimate ownership of tags could then be exploited twofold. (i) If the tag was valid, i.e., the entity that created
it was still in the system, the malicious module could assign any capabilities to itself, thus defeating DIFC mechanism, as it would
be be able to learn the secret information associated with a secrecy-related tag or compromise the integrity of critical information
associated with an integrity-related tag, by modifying it without permission. (ii) If the tag was invalid, since some modules would
still hold a reference to that tag in their labels, the attacker could add that tag to the labels of modules s/he controlled and use it in
communication which would result in DIFC policy violations. The DIFC violations entail a decrease in the trust of modules that would
call the interfaces using the expired tag in their labels.

To mitigate attacks related to tag ownership, we first introduce and enforce a new DIFC operation which we call tag revocation
and was explained in Section 4.4, and secondly add the owner information as an explicit part of the model’s tags. As a result, any
capability assignment or revocation attempt by a module that does not own a particular tag results in an illegal operation which is
penalized by our model. To further strengthen our model, we implemented the opaque tokens that represent owners and tag ids as
cryptographically secure hashes to eliminate the possibility of attacks that rely on guessing them.

The second and third type of attacks are connected and revolve around exploiting valid system operations to either affect the trust
of modules that invoke interfaces of a malicious process, or generate a large number of control message traffic in an attempt to slow
down DIFC enforcement or starve critical system resources. Defaming attacks would attempt to alter the label of an interface while a
message that is part of an invocation to that interface was in the process of being transmitted. This would result in the violation of
the callee policies, and consequently, lowering the caller’s trust. To mitigate this type of attack, we introduce and update a version
signature for each interface. When an invocation’s version signature does not match an interface’s version signature, a special retry
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 13

DIFC message is sent to the caller which forces a label change and the message is retried once the version signature has been updated.
In continuation of this attack, the malicious process could attempt to continue to repeatedly change its interface labels, aiming to
flood the system with retry messages, i.e., this leads to either starving the system resources or degrading the performance of DIFC
mechanism. To mitigate this type of attack, we introduce a maximum acceptable rate of label changes and penalize modules that
exceed it.

4.6 Security Goals

Trust between entities is formed based on their history of conformance to security policies. As a result, trust is dynamic and depends
on the behavior of modules. If the trust contexts remain fixed, the rate of permitted information flowing through the system may drop
significantly, as highly trusted entities might be in far away contexts as opposed to within the required distance for their messages to
be accepted. Furthermore, since tags have a limited scope on how far they can flow, valid invocations of the system will be blocked.
Therefore, as trust in the system evolves, the architecture of the trust contexts is required to adapt accordingly to allow more secure
information flow, hence, the trust architecture becomes dynamic itself.

Our main security goal is to enhance the permitted flow of information in the system, while upholding decentralized information
flow control and enforcing security. To achieve the most permissible system, we need to dynamically restructure the trust architecture
to maximize the average trust, as far as we can. Therefore, we define the system’s security goals as the following:

• Goal 1 The system should maximize the overall average trust, formally:

max
∑
𝑡𝑖 ∈T

A(𝑡𝑖) (7)

• Goal 2 The system must be able to enforce decentralized information control flow and minimize the system’s blocked
functionality.

• Goal 3 The system must be able to identify and handle malicious modules or trust contexts.

Our first goal aims to improve both the system’s permissiveness and the performance of DIFC evaluation in the trust architecture.
Average trust is a composite metric that is affected by how well an entity adheres to the AT-DIFC+ policies of entities within its context
(inner trust) and to the policies of entities outside its context, with which it communicates with (outer trust). Thus, average trust
represents how well a context’s elements summarily comply to AT-DIFC+, and is therefore a reasonable candidate for optimization to
maximize AT-DIFC+ enforcement.

As the average trust in the system increases, entities that share high amounts of trust with each other are moved closer to each other,
that leads in reducing the distance between them, and allowing more functionality to be available to them. Thus, the permissiveness of
DIFC enforcement improves as the modules come closer to each other, and consequently it becomes more likely that the distance
values of tags in labels to be within the range. This allows more of their interfaces to be invocable that can increase the functionality
available to modules in the system. The throughput also can increase, as the DIFC messages need to traverse a smaller part of the
system to reach the common ancestor that will do the enforcement. For example, if the entities belong to the same context, that context
controller can perform DIFC enforcement directly. When the average trust decreases, then the distance between elements that do not
trust each other increases, as they are placed further away from each other. As a result, sensitive information cannot be propagated to
untrusted entities as the distance criteria of tags in entities’ labels will not be met. That entails an improvement to the system security,
as fewer entities interfaces are invocable by malicious or low-trusted modules.

The first part of our second goal is guaranteed by the AT-DIFC+ model, i.e., it can be guaranteed that no messages that do not meet
the security policies of entities will be transmitted. The second part of the goal, which corresponds to the minimization of the blocked
functionality is achieved based on the underlying trust system. If an entity behaves non-maliciously, it will be placed closer to entities
that it communicates with and also behave in a trustworthy manner. Since the closer two entities are, the more functionality becomes
available to them, the blocked functionality becomes less as the average trust in the system increases and entities are dynamically
moved closer to one another when they have a degree of mutual trust.

Manuscript submitted to ACM

14 Skandylas, et al.

We also depend on the trust system to meet our third goal, i.e., to identify and handle malicious entities. Since average trust
represents the extent to which AT-DIFC+ is respected by an entity, that implies that entities with a low average trust do not regularly
conform to AT-DIFC+ policies. Therefore, such entities are placed further away from other entities limiting the functionality exposed
to them. Moreover, we make sure to isolate malicious entities to ensure that critical system information is not leaked to untrusted
actors.

5 RECONFIGURATION IN AT-DIFC+

The system’s principle security goal is to organize the trust context hierarchy, so that the information flow in the system is maximized,
whilst prohibiting information flow to/from untrusted or malicious actors. Information flow in the system is intrinsically linked to
trust, as information is only permitted to flow towards trusted modules. As a result, we may define our approach’s goal: to increase
the trust between the system’s modules and contexts as much as possible. To achieve that, we require a reconfiguration mechanism.
We elaborate on the reconfiguration strategy we employ below.

5.1 Trust Architecture Reconfiguration

In order to achieve Goal 1 and Goal 2, we restructure the trust architecture in a way that increases the information flow in the system.
To this end, we identified three reconfiguration actions:

• Context split that will split a context into two parts: a part in which there is a high amount of trust within its members, and a
part where the trust is lower.

• Contexts merge that enables two contexts that have a high mutual trust relation to fuse into one.
• Context or module isolation that segregates a malicious entity from the system and prohibits messages that carry tags to it.
Messages from the entity are not blocked, as they will be dropped if they do not respect the receiver’s policies.

Every reconfiguration action is associated with one or more threshold variables that are tuned dynamically to achieve our security
goals. We denote the merge threshold by Tr𝑚 and the split threshold by Tr𝑠 . Isolation is dependent on three thresholds that include
the DIFC violation threshold Tr𝑣 , the illegal operation threshold Tr𝑖 , and the potentially malicious operation threshold Tr𝑝 . When the
merge condition of two sibling contexts is met, i.e., A(𝑡1, 𝑡2) ≥ Tr𝑚 , then 𝑡1 and 𝑡2 are merged. Conversely, the condition I(𝑡) ≤ Tr𝑠
entails a context split for the context. An isolation is performed in three cases: (i) when the average message success history is
consistently lower than Tr𝑣 , i.e., when an entity consistently sends messages that violate AT-DIFC+ policies, (ii) when the frequency of
its security policy changes is too high, that is to say, when an interface alters its labels more frequently than the threshold Tr𝑝 , and
(iii) when the number of attempted illegal operations surpasses Tr𝑖 . An operation is illegal if a module has no rights to perform it.
Illegal operations comprise tag revocation or capability assignment related to a tag that the module does not own.

In effect, thresholds act as the conditions where action has to be taken in order to improve the system state. That can happen either
when some contexts act in a more trustworthy way than initially expected, resulting in them being merged, or the opposite that
results in a context split at first and then an isolation. To be able to evaluate whether each threshold is violated, we store the required
information in the context controllers. This information, for each entity 𝑒 , includes: (i) its trust to each entity it communicates with,
(ii) the ratio of successful to unsuccessful messages, which we denote as history(e), and (iii) the number of illegal operations attempted,
which we denote as illegal(e), and the frequency of policy changes, which we denote by policy_change(e). Additionally we define
trusted(e) to be a function that returns the list of entities an entity 𝑒 has communicated with.

5.2 Reconfiguration Plan Generation

Algorithm 1 describes reconfiguration plan generation. A plan consists of three sets of operations: merge, split and isolate. The
operations are planned based on the order by which they are scheduled, denoted by𝑚𝑜 , 𝑠𝑜 and 𝑖𝑜 respectively. A module or trust
context can only be part of one reconfiguration operation. Enforcing this principle, allows the presented algorithm to generate a
deterministic plan where the planned operations are guaranteed to be executed as planned. To achieve that, we maintain the set of
the entities that have already been planned for, i.e., scheduled for a reconfiguration operation and an entity is only a candidate for
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 15

an operation, if it is not an element of that set. In the algorithm, the value of 𝑜𝑝_𝑜𝑟𝑑𝑒𝑟 shows the current operation being planned
according to the order of𝑚𝑜 , 𝑠𝑜 and 𝑖𝑜 . On each loop, the thresholds for the current reconfiguration operation are checked for all
context elements, and if the thresholds are violated, the entity is placed in the corresponding set of planned operations and the set of
scheduled entities. When all reconfiguration operations with that order have been considered, 𝑜𝑝_𝑜𝑟𝑑𝑒𝑟 is incremented and the next
operation is considered.

Given the different possible orderings of the reconfiguration operations and the order in which the trust context elements are
examined, Algorithm. 1 can generate different plans. We run Algorithm 1 multiple times, providing all combinations of values for
𝑚𝑜 , 𝑠𝑜 and 𝑖𝑜 as input, to obtain all possible reconfiguration plans. The two constraints described above, i.e., enforcing that an entity
can take part in a single reconfiguration action in a plan and forcing an ordering on the reconfiguration actions allow us to keep the
number of plans manageable and additionally allow us to generate deterministic plans. The number of plans depends on the number
of entities that satisfy the threshold for each operation but will not, in the worst case, exceed the possible combinations of assigning
each entity to every unique reconfiguration action. Such a large number of plans, however, is not too likely since it would require that
every entity be eligible for every reconfiguration operation at the same time. Merging occurs amongst more trusted entities, while
splitting happens amongst entities with low trust. This will make it less likely that an entity will be a candidate for both a merge and a
split operation in the same plan. Further, an entity is isolated when it is consistently misbehaving over a time period and thus its trust
will be lowered, which makes it less likely to be eligible for a merge operation at the same time. To select among the possible plans, we
propose a utility-based approach that is discussed in Section 5.3.

5.2.1 Context Split. A context split is performed when there is a low amount of trust among its members, leading to separation
between malicious or misbehaving members and trusted parts of the context, thus improving the flow of information. When the
average inner trust of a non-atomic module drops below Tr𝑠 , a context split is required.

To separate a trust context into two partitions with a high amount of inner trust, we apply a modified version of the Fiduc-
cia–Mattheyses graph partitioning algorithm [6]. In each iteration, the Fiduccia–Mattheyses algorithm selects a node to move from
one partition to the other by finding a more optimal cut of the graph. That is achieved by calculating a heuristic gain and maintaining
the partition balance. The gain is typically calculated as the difference between the moving force, i.e., the number of edges what will be
kept if the node moves from one partition to the other, and the retention force, i.e., the number of edges that will be removed when the
node is moved. A balancing condition, e.g., that both partitions should have approximately the same number of nodes, is introduced to
ensure that all nodes are not placed in one partition. The selected node is the node with the maximum gain that does not break the
balance between partitions, if moved. Moving a node to a partition fixes it in place, meaning that the node cannot be moved anymore.
Once all nodes have been fixed, the algorithm terminates. The context split is performed by Algorithm 2.

The context splitting process is performed in five steps:

(1) Graph creation: An undirected weighted graph is generated from the context’s elements. Each element corresponds to
a node and edges correspond to the trust relationship between two nodes. The weight of an edge (𝑒𝑖 , 𝑒 𝑗) is defined as
W(𝑒𝑖 , 𝑒 𝑗) =

Trust(𝑒𝑖 ,𝑒 𝑗)+Trust(𝑒 𝑗 ,𝑒𝑖)
2 .

(2) Graph partitioning: We employ the Fiduccia–Mattheyses algorithm with two minor changes: we consider W(𝑒𝑖 , 𝑒 𝑗) in gain
computation and aim to maximize the gain, as the edges now correspond to trust between entities. Our gain function 𝑔𝑎𝑖𝑛
is computed as the average inner trust of the remaining nodes in one partition, once a node is moved to the other partition
and the average inner trust of the nodes in the other partition once the node is moved to it. Note that I =

∑W(𝑒𝑖 ,𝑒 𝑗)
|E | . The

balancing condition is also simplified to be the difference between the number of nodes of each partition. The balancing
criterion is met when both partitions are of exactly equal size, or their size differs by exactly 1. The resulting two partitions
correspond to two partitions that are more strongly connected in terms of trust between their entities.

(3) New context creation: We create a new trust context 𝑡 ′ and move the elements of the partition with the lower trust to 𝑡 ′.
(4) Connectivity repair : 𝑡 ′ is connected with 𝑡 ′𝑠 parent and all messages that are targeting entities that are now residing in 𝑡 ′ are

redirected to it.
(5) Trust recalculation: The trust of 𝑡 and 𝑡 ′ in addition to their parent’s trust are recalculated.

Manuscript submitted to ACM

16 Skandylas, et al.

Algorithm 1: Reconfiguration Plan Generation Algorithm
Input: The trust context 𝑡 = ⟨𝑐, E⟩ to be reconfigured,𝑚𝑜 , 𝑠𝑜 , 𝑖𝑜 , the order of reconfiguration operations
Output: A plan consisting of sets of merge, split and isolation actions (mergeAc, splitAc, isolateAc)
mergeAc= ∅, splitAc= ∅, isolateAc= ∅ ;
// scheduled is a set that contains entities already part of the plan

scheduled= ∅ ;
// op_order shows the order of the current reconfiguration action

𝑜𝑝_𝑜𝑟𝑑𝑒𝑟 = 0 ;
while op_order < 3 do

for 𝑒𝑖 ∈ E do
if op_order =𝑚𝑜 ∧ 𝑒𝑖 ∈ T ∧ 𝑒𝑖 ∉ T𝑎 ∧ 𝑒𝑖 ∉ scheduled then

for 𝑒 𝑗 ∈ E do
if A(𝑡1, 𝑡2) ≥ Tr𝑚 ∧ A(𝑡2, 𝑡1) ≥ Tr𝑚 ∧ 𝑒 𝑗 ∉ T𝑎 ∧ 𝑒 𝑗 ∉ scheduled then

mergeAc= mergeAc ∪ {(𝑒𝑖 , 𝑒 𝑗) } ;
scheduled = scheduled ∪ {𝑒𝑖 } ∪ {𝑒 𝑗 } ;

end
end

end
if op_order = 𝑠𝑜 ∧ 𝑒𝑖 ∈ T ∧ 𝑒𝑖 ∉ T𝑎 ∧ 𝑒𝑖 ∉ scheduled then

if I(𝑒𝑖) < Tr𝑠 then
splitAc = splitAc ∪ {𝑒𝑖 } ;
scheduled = scheduled ∪ {𝑒𝑖 } ;

end
end
if op_order = 𝑖𝑜 ∧ 𝑒𝑖 ∉ T𝑎 ∧ 𝑒𝑖 ∉ scheduled then

if history(𝑒𝑖) ≤ Tr𝑣∨ illegal(𝑒𝑖) ≥ Tr𝑖∨ policy_change(𝑒𝑖) ≥ Tr𝑝 then
isolateAc = isolateAc ∪ {𝑒𝑖 } ;
scheduled = scheduled ∪ {𝑒𝑖 } ;

end
end

end
𝑜𝑝_𝑜𝑟𝑑𝑒𝑟 = 𝑜𝑝_𝑜𝑟𝑑𝑒𝑟 + 1;

end

Example 4. Let us consider splitting the ItemShop context of our running example. After computing W, the resulting graph is
shown in Fig. 3a. We will call the two graph partitions partA and partB. Initially the whole graph can be considered to be in partA. In
each iteration, the gain of each node is computed by removing that node from a partition and computing the average of the remaining
trust weights. The results for the first iteration are as follows: 𝑔𝑎𝑖𝑛 (𝐴) = 51.6, 𝑔𝑎𝑖𝑛 (𝐼) = 55, 𝑔𝑎𝑖𝑛 (𝐹) = 55, 𝑔𝑎𝑖𝑛 (𝐶) = 56.6. As a
result, the Cart module is selected to be moved and fixed to partB. The resulting partitions are shown in Fig. 3b. Calculating the
balancing criterion yields |E1 | − |E2 | = 3, and since the criterion is not met, we continue iterating. In the second iteration, we fix 𝐴 as
it has yields the maximum gain. After checking balancing criterion again, partA and partB are balanced and therefore our algorithm
terminates. The final state is shown in the rightmost part of Fig. 3.

After a split, we expect the system’s average trust to increase, as there now exist two contexts, the components of which are tightly
trusted, instead of one context containing loosely trusted elements. Furthermore, since the less trusted elements have been separated
from the highly trusted ones in a separate context, they can be merged with contexts they are highly trusted by.

5.2.2 Context Merge. A merge is performed when the members of two sibling contexts are highly trusted. In that way, the rate
of information flow in the system increases, as one less step is required for the communication of the merged contexts’ elements.
Furthermore, previously prohibited interactions with tags that were out of reach become available.
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 17

I

F

A

C

65

75

40
5065

40

(a) Initial Graph,
(partA)

I

F

A

C

65

4065

(b) First Iteration,
partA (left), partB (right)

I

F

A

C

65 75
(c) Second Iteration

partA (left), partB (right)

Fig. 3. Split Algorithm Example.

Two sibling contexts, i.e., contexts with the same controller, are merged when their mutual trust exceeds the trust threshold,
formally: A(𝑡1, 𝑡2) ≥ Tr𝑚 ∧ A(𝑡2, 𝑡1) ≥ Tr𝑚 . The merging process consists of three steps: (1) all elements of 𝑡2 are moved to 𝑡1, (2)
the trust between all elements that now reside in 𝑡1 is recalculated, and (3) the common parent is updated to redirect messages to
elements that formerly belonged to 𝑡2 toward 𝑡1. Finally 𝑡2 is discarded.

Example 5. To merge the Bank and Shipping Service trust contexts, the Shipping and Logistics modules are moved to the Bank
context. Then, the Shipping Service context is deleted and all messages to it are redirected to the Bank. The global context would
therefore contain two contexts: the ItemShop and the Bank.

5.2.3 Module or Context Isolation. Isolation ensures that AT-DIFC+’s security policies are enforced, as secret information cannot
escape the system or be leaked to untrusted actors in the system. The malicious behavior is segregated and cannot spread to the rest
of the system. When the rate of accepted messages sent by an entity drops below Tr𝑣 , the frequency of its interface label changes
is greater than Tr𝑝 , or the number of its illegal operations surpasses Tr𝑖 , that entity is marked for isolation. If a module marked for
isolation belongs to an atomic context, then the whole context is isolated. Critical modules however cannot be isolated. When an
entity is isolated, messages sent to it are dropped or replaced with safe defaults, while the messages sent from that entity are handled
normally. Allowing messages from a malicious entity does not affect the correctness of the system, as all messages that do not conform
to the DIFC rules will be dropped by the corresponding controllers.

Isolation can be too restrictive, as well-behaving entities that share a trust context with malicious ones might be isolated, even
though their behavior is non-malicious. To improve the system’s permissiveness, these entities can be migrated to trust-contexts by
which they are highly trusted. We call this process migration and incorporate it in the isolation reconfiguration operation. It should be
noted that migration can be enabled or disabled based on user preferences.

The Isolation-Migration algorithm is shown in Algorithm 3. If migration is enabled and the entity to be isolated is a context, the
algorithm walks through each entity in that context and attempts to migrate it to one of the contexts that this entity highly trusts.
If the highly trusted entity is a module, the algorithm checks whether that module’s context trusts the particular entity enough by
checking against the merge threshold, and if so, the element is added to that context. If the trusted entity is a context, then the check is
performed against the context directly. If the entity in question is not trusted highly enough by any of its trusted entities, the entity is
isolated along with the context itself. The rest of the algorithm follows the isolation process, the entity is isolated and the messages
sent to it are dropped.

5.3 Utility-based Reconfiguration Evaluation

There exist multiple plans that can steer the system towards maximizing trust, each of which may lead the system to a different
configuration state. Since the behavior of the entities in our system is dynamic and the system is open, the best plan is very difficult to
know in advance. Moreover, the system can only converge to an optimal average trust if the entities in the system remain constant
and behave consistently. Given the uncertainty due to the system openness and the dynamicity in the behavior of its entities, we

Manuscript submitted to ACM

18 Skandylas, et al.

Algorithm 2: Trust Context Split Algorithm
Input: 𝑡 = ⟨𝑐, E⟩ a trust context to be split
Output: 𝑡 ′ the new trust context that was split from 𝑡

p=context(𝑡) ;
// Step1: Calculate the trust weights and build the graph G

W= ∅ ;
for 𝑒𝑖 ∈ E do

for 𝑒 𝑗 ∈ E do
if 𝑒𝑖 ≠ 𝑒 𝑗 then

W(𝑒𝑖 , 𝑒 𝑗) =
Trust(𝑒𝑖 ,𝑒 𝑗)+Trust(𝑒 𝑗 ,𝑒𝑖)

2 ;
W = W ∪ {W(𝑒𝑖 , 𝑒 𝑗))} ;

end
end

end
G=create_graph(E,W) ;
// Step2: Partition G into two parts partA and partB

// Initialize the array of fixed nodes

fixed[]=init_fixed(G,num_fixed) ;
partA=G;
partB=empty_graph();
while !balanced(partA,partB) do

// n is the node with max gain to be moved and fixed

n=calculate_max_gain(partA, partB,fixed) ;
move_node(partA, partB,n) ;
update_weights(partA, partB) ;
// fix n, cannot be moved again.
fixed[n]= ⊤

end
// Step3: Create a new context from partB, remove the elements from t

t’ = create_context(partB) ;
remove_elements(t,partB) ;
// Step4:

redirect(p, partB, 𝑡 ′) ;
// Step5: Update trusts

update_trust(𝑡) ;
update_trust(𝑡 ′) ;
update_trust(p) ;
return 𝑡 ′

believe that a utility based approach is a viable strategy to address the problem of plan generation. Hence, we follow a utility-based
approach to decide which of the available plans is more suitable.

We define two utility functions that guide the selection process by choosing a reconfiguration plan that leads to the maximum gain
by determining how much the average trust of the system improves if an operation is performed. The local utility function only takes
into account the local state of the context in addition to the immediately affected contexts by the change, i.e., it only considers a small
part of the overall system state. On the contrary, the global utility evaluation inspects the whole system state.

Local Utility Evaluation. The function 𝛿𝑚 defines the gain of the merging two contexts, i.e., how much the average trust of a system
improves locally, if we merge the two contexts 𝑡1 and 𝑡2 and obtain t:

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 19

Algorithm 3:Module Isolation-Migration Algorithm
Input: e a module or context to be isolated
Output: Nothing is returned
p=context(e) ;
if migration_enabled ∧ !isModule(e) then

// since t is a context, E is the set of its elements

for 𝑒𝑖 ∈ E do
for 𝑒 𝑗 ∈ trusted(𝑒𝑖) do

if isModule(𝑒 𝑗) ∧ Trust(𝑒𝑖 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (𝑒 𝑗)) > Tr𝑚 ∧ Trust(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (𝑒 𝑗), 𝑒𝑖) > Tr𝑚 then
𝑝 𝑗=context(𝑒 𝑗) ;
add_element(𝑝 𝑗 ,𝑒𝑖);
break;

end
else if Trust(𝑒𝑖 , 𝑒 𝑗) > Tr𝑚 ∧ Trust(𝑒 𝑗 , 𝑒𝑖) > Tr𝑚 then

add_element(𝑒 𝑗 ,𝑒𝑖);
break;

end
end

end
end
isolate(p,e) ;
drop_messages_to(p,e) ;

𝛿𝑚 (𝑡1, 𝑡2) = A(𝑡) − A(𝑡1) + A(𝑡2)
2

(8)

If the result is positive, that means that merging 𝑡1 and 𝑡2 into 𝑡 has a positive local effect on the trust, as the average trust improves.
The function 𝛿𝑠 defines the gain of splitting a context, i.e., how much the trust of the system improves locally, if the context 𝑡 is
replaced by 𝑡1 and 𝑡2 as a consequence of the split operation defined in Section 5.1:

𝛿𝑠 (𝑡1, 𝑡2) =
A(𝑡1) + A(𝑡2)

2
− A(𝑡) (9)

As above if 𝛿𝑠 is positive that means that splitting 𝑡 into 𝑡1 and 𝑡2 has a positive effect to the system, as replacing 𝑡 with 𝑡1 and 𝑡2
improves the overall average trust. Finally, the function 𝛿𝑖 is defined as the rate of blocked messages in the network, if the processes
or contexts of the proposed plan are isolated. This is always a positive effect to the system, as the entities transmitting the messages
are untrustworthy or malicious and isolation reduces verification effort.

A local utility function UL only takes into account the trust context in which the selected adaptation plan executes. We assume
that the adaptation actions are not conflicting, i.e., a context is only involved in one of the adaptations of a plan. Let T𝑚 be the set of
context pairs to be merged, T𝑠 be the set of contexts to be split and T𝑖 be the set of contexts to be isolated. We define the local utility
function as Equation (10) where 𝑤0, 𝑤1 and 𝑤2 are weights placed on each part of the plan based on the perceived importance of each
of the merge, split and isolation actions, respectively. Weight assignment is domain-specific and decided by the user.

UL = 𝑤0 ·
∑

(𝑡,𝑡′)∈T𝑚
𝛿𝑚 (𝑡, 𝑡 ′) + 𝑤1 ·

∑
𝑡∈T𝑠

𝛿𝑠 (𝑡) + 𝑤2 ·
∑
𝑡∈T𝑖

𝛿𝑖 (𝑡) (10)

Local Utility Evaluation. The global utility function UG takes the whole system’s trust into account where T′ is the set of trust
contexts of the system after reconfiguration:

UG =
∑
𝑡∈T′

A(𝑡) −
∑
𝑡∈T

A(𝑡) (11)

Manuscript submitted to ACM

20 Skandylas, et al.

In contrast to the local evaluation, global evaluation provides more accurate results but entails a higher computation time. Depending
on the number of entities and the number of available plans, global evaluation might have a prohibitive cost. On the other hand, if
security is of the utmost importance, local evaluation is not suitable, as it is incapable of seeing the whole picture with regard to
system security. The best decision in terms of selecting the most applicable utility function of the two is application specific, as it
depends on the balance between system response-time and the security prioritization of the application. The global utility function
caters to applications that require high security guarantees. On the contrary, an application that does not require a high level of
security but prioritizes throughput would opt to use the local utility evaluation function.

6 IMPLEMENTATION

This section details our AT-DIFC+ reference implementation which can be found at: https://github.com/LNU-Prosses/ATDIFC.

6.1 Architecture

Fig. 4 shows the architecture of an example system which we will use to describe our reference implementation. Each module
communicates with a shim, a short piece of code that interposes message communication and is responsible to facilitate all AT-DIFC+

interactions with a module. The shim communicates with the module’s immediate trust controller over TCP to facilitate all operations
that require communication with other modules. Each trust controller, in turn, communicates over TCP with its children and parent
context controllers. Every module and its shim have to be co-located on the same host machine so that the shim can have access to the
module’s operations. That is required for the shim to be able to interpose and drop messages that do not conform to AT-DIFC+ policies.

Module A Module B Module C Module D

TCP

Shim A

TCP

Shim B

TCP

Shim C Shim D

TCP

Trust Controller
AB

TCP

Trust Controller
CD

Trust Controller
ABCD

TCP

Fig. 4. Reference Implementation Architecture for AT-DIFC, depicted: Modules, Shims and Trust Controllers

6.1.1 Shim API. The shim provides a uniform domain agnostic interface with the rest of the AT-DIFC+ architecture. It provides
AT-DIFC+ capabilities to the underlying module infrastructure independently of the technology used to implement the decentralized
system. However, the connection and interaction between the shim and the module remains domain-specific. There are two parts that
need to be implemented for each type of decentralized system to facilitate AT-DIFC+, message interposition and a short stub that
allows the module to invoke the shim’s API. The shim API features a set of functions that are exposed to each module to perform
AT-DIFC+ operations including create_tag , assign_cap, create_label , label_change, and send_message.

6.1.2 Trust Controller API. Every AT-DIFC+ controller is associated with a MAPE-K Loop [9] as shown in Fig. 5. Each controller is
responsible to both enforce AT-DIFC+ and improve the trust of the underlying elements it controls. The functionality can be described
by an API that can be split into the three parts shown in the figure. The first part of the API is responsible for all with DIFC enforcement
operations and is situated on the monitoring and analysis phases of the MAPE-K loop. This part is responsible to receive, route and
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 21

verify messages, facilitate label changes and revoke tags. The second part of the API deals with trust calculation and maximization, it
is situated in the analysis phase and is responsible to update the history and trust of modules, and to calculate the various types of
trust of trust contexts. The final part part of the API deals with reconfiguration, it is responsible for reconfiguration planning and
execution of reconfiguration operations. It is situated in the planning and execution phases of the MAPE-K loop.

KnowledgeMonitor Execute

Analyze Plan

Effector

Managed Elements

has_module(c,m)

verify_message(c,ls,lr)
label_change(c,l,m)
revoke_tag(c,t)

D

D

merge(c1,c2)
split(c)R

R

create_plan(c)
local_utility(c,p)
global_utility(c,p)

R

R

R

Sensor

D

D

D
D fetch_label(c,m)

route(c,ls,lr
)

DT
T update_knowledge(c)

R

R

DIFC API
Trust API
Reconfiguration API

isolate(c)

 c: Context
 l: Label
 m: Module
 p: Plan
 t: Tag

Legend

Fig. 5. The Trust Controller APIs mapped to a MAPE-K architecture

6.2 AT-DIFC+ Initialization

On system initialization, the modules are grouped based on their owner preferences, and AT-DIFC+ controllers are formed based on
the owner or stakeholder specification. Each module is accompanied by a set of security policies, which form interface labels and a list
of trust values for the modules it initially communicates with. The threshold values for each trust context are initially set by the owner
or stakeholder and updated dynamically after each reconfiguration operation. When a new module arrives at the system, either it is
claimed by a stakeholder, in which case it is placed in the trust context where the stakeholder’s modules reside, or a new trust context
is created for it. Beyond their initial context placement, there is no difference between the entities claimed by stakeholders and those
that are not; all entities are treated equally by the system based on their behavior in terms of respecting AT-DIFC+

The initial values for each threshold are inherently domain-specific. The threshold values depend on the nature of the data
exchanged within the context and the extent to which it is acceptable for invocations to be limited, if a context split occurs. For instance,
thresholds that belong to a trust context that handles highly confidential data such as credit card or patient record information, would
be assigned high values for merging and splitting. Furthermore, the tags of the modules in that context would be assigned very small
distance values. Such an assignment of thresholds and distance values indicates a preference of protecting the confidentiality of the
data over providing functionality that might cause leaks. With such an initial value placement, splits will preserve the confidentiality
of data but will affect the system functionality, as modules that end up in different contexts after the split might not be able to send
messages to each other. Contexts with a less strict policy with regards to data confidentiality or integrity, would set lower thresholds
that shows a preference for achieving a higher rate of message exchange over limiting the risk of leaks.

6.3 Message Handling

Messages are initiated by the AT-DIFC+ shims and propagated through the AT-DIFC+ controllers until the first common ancestor
of both the sender and the receiver is reached. To achieve that, the direct trust context controller that controls the sender invokes
has_module. If has_module returns true, then the corresponding labels are fetched by fetch_label and verify_message is invoked
on both the sender and receiver labels. Otherwise, the message is propagated upward to the current controller’s parent controller
until fetch_label succeeds or no parent controller exists, in which case, the message is dropped and a DIFC violation is flagged.
fetch_label has the additional responsibility of checking if the returned label contains any of the revoked tags, if that is the case, the
label is considered as invalid and is not returned.

Manuscript submitted to ACM

22 Skandylas, et al.

6.4 Secure Hashes

A number of elements in our system are required to be cryptographically secure, i.e., they should be improbable to guess by an
adversary, to ensure that a malicious module cannot impersonate another or be able to modify the policies of an interface or label
that it does not own. These elements include, the tag owner, the interface version and the tag ID. We use the SHA-3 algorithm [5] to
generate secure hashes for those elements. For the tag ID and interface version elements, once the hashes have been created, they can
be shared in the network and used to identify the corresponding piece of information directly. We store a map from a generated module
hash to each module in that module’s direct context controller. In this way we avoid leaking the ownership of tags to intermediate
controllers or non-owner modules, which do not need know about modules they do not control or communicate with. When label or
tag information has to be retrieved, the direct controller looks at the module hash map and communicates with the corresponding
module. In all other instances of controller to controller or controller to module communication, the shared information always
corresponds to the module hash which does not reveal any information about its origin or functionality.

7 AT-DIFC+ AND DECENTRALIZED CONTROL

In the context of self-adaptive systems, decentralization refers to the distribution of the mechanism that controls self-adaptation
decisions. There are several patterns for decentralized adaptation with different characteristics that match various adaptation goal
types and system decompositions [27].

Fig. 6 depicts AT-DIFC+ activities mapped on a MAPE-K conceptual architecture. An AT-DIFC+ adaptation controller manages
the trust architecture, enforces AT-DIFC+’s security policies and forwards messages. The knowledge base holds information about
the trust and message history for all members in a controller’s current context, including the thresholds for splitting, merging and
isolation, and the context’s current inner and outer trust values. The monitoring mechanism intercepts messages h1 and decides if
they should be locally processed or delegated to the parent context, i.e., h2 . The analysis enforces AT-DIFC+ rules h3 , and updates
the trust h4 and historical data h5 in the knowledge base. Planning h6 - h9 and the corresponding execution h10 , h11 vary depending
on the feedback loop architecture. This is covered in detail below for each of the demonstrator architectures. In general, planning
identifies need and plans the required structure changes while the execution enacts the plan on the current context and sub-contexts.

KnowledgeMonitor Execute

Analyze Plan

Effector

Managed Elements

Message Interception
Routing2

1

DIFC Enforcement
Trust Update
History Update

4

3

5

on Trust Context
on Feedback loop11

10

Merge Planning
Isolation Planning
Split Planning
Architecture Change

6

7

8

9

Sensor

Fig. 6. The AT-DIFC+ decentralized control loop operations per MAPE-K phase.

7.1 Decentralized feedback loop demonstrators

Hierarchical. The hierarchical architecture, depicted in Fig. 7, assigns each trust context in the hierarchy the full responsibility
for the adaptation of all context elements that it encapsulates. The architecture forms a tree of trust contexts, in which each context
controller controls its sub-contexts. The adaptation strategy is that each level optimizes the flow of trust in the layer below. Besides,
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 23

each level initiates its MAPE-K operations once the layer below has completed. This strategy allows the controller to have a complete
view of the state of the controlled sub-hierarchy. The adaptation strategy requires bottom-up coordination, that is, each feedback loop
completes its operations and then updates its parent, which triggers adaptation at the parent-level. Once all controlled elements in a
context have completed, the top-level context controller runs its adaptation loop. This process continues until all top-level contexts
have finished their execution.

Adaptation planning in a hierarchical structure works as follows. Each context attempts to (𝑖) identify if merge, isolation, or split
operations are required. The identification is described in detail in Section 5.1. (𝑖𝑖) We combine the identified operations into candidate
plans. Each candidate is (𝑖𝑖𝑖) evaluated by one of the two utility functions (local or global) defined in Equation 10 and Equation 11.
Finally, in (𝑖𝑣), the planner forwards the best fit the plan for enactment to h9 .

M A P E

Layer N

M A P E M A P E

Layer 1

M A P E M A P E M A P E M A P E

Layer 0

Fig. 7. The hierarchical demonstrator feedback loop.

Hybrid planner. The second demonstrator is a hybrid architecture, which we depict in Fig. 8. The hybrid architecture combines the
regional planner and master-slave patterns.

The master-slave pattern creates a hierarchical relationship between a centralized master component that is responsible for the
analysis and planning, and multiple slave components that are responsible for monitoring and execution. The implication is that the
analysis and adaptation logic (planning) are decided globally, while monitoring and adaptation enactment are preformed locally. It is
common to structure systems in loosely coupled subsystems, where each subsystem has local goals. The regional planner pattern
mirrors this structure for the adaptation control structure. The weakly coupled components(regions) perform adaptations with little
or no impact on other regions. However, the regional control mechanisms benefit from coordination and information exchange to
contribute to system-wide adaptation goals. The hybrid planner architecture is often less effective in trust maximization but offers
lower response time.

The top-level is a single planner that selects a region – a set of trust contexts – to adapt, plans, and adapts the region. The planner
uses the trust contexts in the region below that manages the modules. The levels form several master-slave planners where one
analysis and one planning component handles each region.

Planning is somewhat more complicated in a hybrid setting due to the two levels at which the planner operates: first a region
is chosen to be be adapted, and then region-specific adaptation decisions are made to optimize its average trust. Furthermore, this
planner is capable of exchanging the trust contexts between regions when there is a high degree of interactions between these contexts.
The top-level selects which contexts master-slave loop to trigger, while the master-slave level evaluates the current region’s trust and
optimizes it using a utility evaluation method. The region selection process is based on the activity of each part of the underlying
architecture. The activity is measured in terms of messages that have been exchanged through a part of the architecture. The trust
contexts that make up the region to be adapted are selected based on their hotness, i.e., how many messages have been propagated
through them. A hotness threshold is set and all contexts that meet that threshold are moved to the selected region. As a further
optimization step, we traverse through the selected contexts and move cold contexts, i.e., contexts belonging to hot contexts that
themselves do not meet the hotness threshold, out of the region.

Manuscript submitted to ACM

24 Skandylas, et al.

One particular case at the top-level is communication that crosses regions, i.e., when the planner can identify trust contexts that
belong to different regions, but nonetheless feature a high enough degree of interaction to warrant them being moved to the same
region and eventually merged, if they are trustworthy enough. Bringing those contexts closer, improves the performance of DIFC
enforcement, as fewer intermediate controllers are involved, and increases the permissiveness of DIFC, as interfaces whose policies
contain tags with smaller distance values are now accessible. When such situations occur, the planner rearranges the regions h8 .
The rearranging operation is based on the same concept of hotness as region selection. Trust contexts that are consistently hot are
identified, hinting to the fact that they are part of the same message chain, i.e., they form a sequence of messages that facilitates some
part of the system’s functionality. Those contexts are brought closer together by performing a merge reconfiguration operation. The
dual operation is also performed if a context is consistently cold while all of its siblings are hot, that context is moved out of the
particular parent context by performing a migration operation, if possible.

The master-slave part of the planner behaves similarly to the hierarchical planner with one exception. The plan refers to the whole
region, not a specific lower-level context. The execution either modifies the trust contexts h9 or modifies the regions h10 .

A E
Master

M A E
Slave

Region 0

A E
Master

M A E
Slave

Region n

P

Fig. 8. The hybrid demonstrator feedback loop.

8 EVALUATION

We conducted experiments on two systems to evaluate our approach. The first system is a randomly generated decentralized architecture,
while the second system is an extension of our running example, representing a more realistic microservice architecture. We performed
experiments using all four combinations of decentralized architectures and utility evaluation functions as described in more detail
below.

8.1 Experiment set up

For the randomly generated system, we evaluated each setting and experiment type with 100, 1000, and 10000 modules. Initial trust is
set randomly. Trust contexts are then formed by grouping entities with high mutual trust. The initial hierarchy is constructed as a
balanced tree. For the case studies of 1000 and 10000 modules, we extended the hierarchy with one and two more layers, respectively.

The microservice system is an extension of our running example, depicted in Figure 1. The ItemShop is extended with a Cart
microservice, the Bank is extended with Account and Billingmicroservices and we extend the ShippingCowith a Deliverymicroservice.
We further scale the initial case study to produce the 100 microservices and 1000 microservices case studies, which contain contain 10
and 100 item shops, banks, and shipping companies, respectively. The initial trust assignment is based on our running example and
microservices are grouped according to their stakeholders.

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 25

8.2 Attacker model

We assume that the attacker cannot intercept, read and modify DIFC messages aimed at modules that s/he does not control, s/he
cannot access, decipher or guide the controller’s operations and s/he cannot control the adaptation process. An attacker is assumed to
be any party that controls at least a single module and aims to subvert or exploit the modules s/he does not control to compromise the
confidentiality or integrity of the decentralized system. The attacker aims to infer information that s/he should have no access to or
tamper with the validity of the information in the system. While the DIFC messages themselves cannot be tampered with, the attacker
can legally modify the information and, therefore, impact the integrity of the information in the system by gaining the required labels.
The attacker can affect confidentiality by gaining ownership of tags that are not lawfully owned by modules that s/he controls.

One strategy to obtain ownership is to send a combination of valid DIFC messages that aim to gain the trust of target modules and
then send carefully selected malicious DIFC messages, aiming to learn the desired information by abusing the newly gained trust. In
our newly discovered attacks, the attacker aims to either flood the system with invalid DIFC messages to negatively influence the trust
of the modules that reside in shared or communicating contexts or disrupt the system operation. The attacker may attempt to (i) coerce
the system into revealing tags with a low trust value, (ii) claim ownership of tags of modules that have left the system to disrupt the
system operation by using those tags in his/her modules’ labels, and (iii) attempt to gain capabilities over tags by claiming ownership
over them. Once the attacker controls a tag’s capabilities, he/she can partially control its usage in the system’s security policies.

8.3 Experiment Results and discussion

8.3.1 Average trust - Running Time. Figure 9 depicts the resulting average trust values for both case studies while Table 2 and Table 3
depict total time in milliseconds for 100 adaptation runs. The X axis corresponds to the current adaptation step. The goal of this type
of experiments is to identify the stable behavior of our DIFC architectures, i.e., how the average trust is affected by each combination
of architecture and utility function. In our analysis, we observe that both types of systems perform similarly in terms of trust
maximization and adaptation time. In particular, the hierarchical architecture provides a higher degree of average trust, while the
hybrid architecture provides a shorter adaptation time. In other words, we can identify a trade-off between the time required to adapt
and the amount of achievable average trust. In either setting, the global utility evaluation provides a higher degree of trust, albeit at a
slower adaptation time in comparison to the local utility function. We should also note that even though the hashing and the added
communication required to enforce the interface versioning scheme have an impact on the system throughput, that impact has a
negligible effect on adaptation time. Moreover, it should be noted that our updated region selection process in the hybrid decentralized
architecture has improved its performance in terms of average trust by about 20% when compared to the previous version of our
experiments, for all experiments performed in this evaluation.

Depending on the behavior of the malicious actors in the model, the effectiveness of local utility evaluation varies. When comparing
the microservices and random case studies, we can see that local utility evaluation performs worse in the random case study as the
malicious modules are allowed to invoke any interface of any module in the system, which is a consequence of crossing trust context
boundaries and even region boundaries in the hybrid-planner architecture. In the microservices scenario, the malicious actors are only
allowed to invoke interfaces in a restricted set of the modules, as a consequence, the local utility evaluation has a more accurate view
of the adaptation, since fewer cross-trust context, or cross-region invocations are possible. Furthermore, as shown in Figure 9, the
number of modules affects the number of adaptations required for the maximal trust to be established. We expect that trust stabilizes
when all malicious actors in the system have been isolated, as from that point on, no DIFC message will be blocked, since in this type
of experiments no modules enter or exit the system. Note that as long as at least one malicious actor exists, trust can never reach 100%.

Table 2. Adaptation Time for 100 adaptations (ms) - Random

Modules HierGlob HierLoc HybrGlob HybrLoc
100 2978 630 313 72
1000 853730 16924 8321 1489
10000 3577923 712935 331720 50192

Manuscript submitted to ACM

26 Skandylas, et al.

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#Adaptation Steps

Av
er
ag
e
Tr
us
t(
%)

10 microservices

Hierarchical-Global
Hierarchical-Local
Hybrid-Global
Hybrid-Local

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#Adaptation Steps

Av
er
ag
e
Tr
us
t(
%)

100 microservices

Hierarchical-Global
Hierarchical-Local
Hybrid-Global
Hybrid-Local

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#Adaptation Steps

Av
er
ag
e
Tr
us
t(
%)

1000 microservices

Hierarchical-Global
Hierarchical-Local
Hybrid-Global
Hybrid-Local

(a) Microservices use case

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#Adaptation Steps

Av
er
ag
e
Tr
us
t(
%)

100 random

Hierarchical-Global
Hierarchical-Local
Hybrid-Global
Hybrid-Local

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#Adaptation Steps

Av
er
ag
e
Tr
us
t(
%)

1000 random

Hierarchical-Global
Hierarchical-Local
Hybrid-Global
Hybrid-Local

10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#Adaptation Steps

Av
er
ag
e
Tr
us
t(
%)

10000 random

Hierarchical-Global
Hierarchical-Local
Hybrid-Global
Hybrid-Local

(b) Random use case

Fig. 9. Average Trust

Table 3. Adaptation Time for 100 adaptations (ms) - Microservices

Microservices HierGlob HierLoc HybrGlob HybrLoc
10 713 243 72 16
100 6417 813 436 143
1000 11958 23180 12364 2153

8.3.2 Average trust under increasing attacker presence. Figure 10 shows the average trust in the system after 100 adaptations when the
attacker controls an increasing percentage of the system’s modules, noted in the legend. As the attacker controls a larger part of the
system, the overall maximum possible established trust drops. For 10% of attacker controlled modules, the maximum possible trust is
90%, for 20% and 30% attacker presence the percentages adjust accordingly to 80% and 70%. In both case studies, the average trust
stabilizes very close the percentage of the modules not controlled by the attacker in the hierarchical settings. The hybrid architectures
also stabilize eventually, albeit at a slower rate.
Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 27

10 100 1000
0

0.2
0.4
0.6
0.8
1

Hierarchical

Av
er
ag
e
Tr
us
t(%

)

Glob 10% Loc 10% Glob 20%

Loc 20% Loc 30% Glob 30%

10 100 1000
0

0.2
0.4
0.6
0.8

Hybrid

Av
er
ag
e
Tr
us
t(%

)

(a) Microservices

100 1000 10000
0

0.2
0.4
0.6
0.8
1

Hierarchical

Av
er
ag
e
Tr
us
t(%

)

Glob 10% Loc 10% Glob 20%

Loc 20% Loc 30% Glob 30%

100 1000 10000
0

0.2

0.4

0.6

0.8

Hybrid

Av
er
ag
e
Tr
us
t(%

)

(b) Random

Fig. 10. Average Trust with 10%, 20% and 30% of attacker controlled modules

8.3.3 Functionality versus Security. Figure 11 depicts the average trust after 100 adaptations, when in addition to the attacker
controlling a larger part of the system, 20% of the modules are deemed critical to the functionality and are thus never isolated. As
shown in the figure, in both case studies, the average trust of the system can be noticeably lower depending on the part of the system
that the attacker controls. This happens because all directly communicating modules to a trusted critical component will be eventually
compromised. In the random case study, since the initial trust is allocated randomly and on average each module communicates with a
smaller percentage of the total modules, average trust is slightly higher, but still noticeably lower when compared to the non-critical
modules experiment in 8.3.1.

8.3.4 Average Trust in a dynamic system. Figure 12 shows the average trust of the system after 100 adaptations, when a number
of modules randomly enter or exit the system, between each adaptation. The figure’s legend shows the percentage of change that
happens in terms of module addition or removal. A high rate of change leads to higher uncertainty, and a result, for both case studies,
lower average trust when comparing to the experiments in 8.3.1, where the number of modules is constant and no modules enter or
exit the system. We can also notice that in this type of experiments, the hybrid planner compares more equally to the hierarchical
architecture, as it performs adaptations in a higher rate and is better able to cope with the increasing change in the system. It should
also be noted that uncertainty in terms of modules entering and exiting the system does not affect each case study equally, with the
microservices case study being more affected than its random counterpart.

8.3.5 Average trust with varying operation thresholds. We performed a set of experiments to identify the effects of varying merge, split
and isolation thresholds to the average trust of the system. The results show that the system can reach three distinct states. In the
first state, when the initial threshold values are too strict, no actual progress can be made and while the security policies are always
enforced, the rate of information flowing through the system is limited. On the opposite side, when the thresholds are too permissive,

Manuscript submitted to ACM

28 Skandylas, et al.

10 100 1000
0

0.2

0.4

0.6

0.8

Hierarchical

Av
er
ag
e
Tr
us
t(%

)

Glob 10% Loc 10% Glob 20%

Loc 20% Loc 30% Glob 30%

10 100 1000
0

0.2

0.4

0.6

0.8

Hybrid

Av
er
ag
e
Tr
us
t(%

)

(a) Microservices

100 1000 10000
0

0.2

0.4

0.6

0.8

Hierarchical

Av
er
ag
e
Tr
us
t(%

)

Glob 10% Loc 10% Glob 20%

Loc 20% Loc 30% Glob 30%

100 1000 10000
0

0.2

0.4

0.6

0.8

Hybrid
Av

er
ag
e
Tr
us
t(%

)

(b) Random

Fig. 11. Average Trust after 100 adaptations when 20% of modules are critical

the attacker has sufficient time to compromise the system and a large part of the system will be isolated, as a result. In the case where
the thresholds are set somewhere in between, the system will operate normally and eventually the thresholds will converge to their
optimal values.

8.3.6 Average trust under frequent policy changes. We have performed a number of experiments where the malicious modules in the
system explicitly attempt to defame the entities calling their interfaces as per the defamation attack discussed in Section 4.5. The
results show that while the message throughput in the system is slightly affected, due to a number of messages being retried, the
system trust remains mostly unaffected by the attack. The rate to which the maximum trust can be reached in this case is slower
since fewer messages are successful or considered malicious. If the malicious modules, nevertheless, continue to generate version
signatures, as often as they are able, in attempt to flood the system as discussed in the resource starvation attack in Section 4.5. Once
the threshold Tr𝑝 is surpassed, each of those modules is isolated. All such modules in the system have successfully been identified and
isolated in this experiment.

8.3.7 Impersonation attacks. Our final set of experiments evaluates the effectiveness of our mitigations against tag ownership attacks
discussed in Section 4.5. In our experiments, all such attacks were identified and the modules attempting to illegitimately claim tag
ownership have been isolated once they have attempted to perform more illegal operations than allowed by the Tr𝑖 threshold.

8.4 Threats To Validity

The small total number of experiments is a threat to the validity of this study. More experiments and, specifically, experiments
on different decentralized system architectures are needed. We additionally acknowledge that messages in a real setting may be

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 29

10 100 1000
0

0.2
0.4
0.6
0.8

Hierarchical

Av
er
ag
e
Tr
us
t(%

)

Glob 5% Loc 5% Glob 10%

Loc 10% Loc 20% Glob 20%

10 100 1000
0

0.2

0.4

0.6

0.8

Hybrid

Av
er
ag
e
Tr
us
t(%

)

(a) Microservices

100 1000 10000
0

0.2
0.4
0.6
0.8

Hierarchical

Av
er
ag
e
Tr
us
t(%

)

Glob 5% Loc 5% Glob 10%

Loc 10% Loc 20% Glob 20%

100 1000 10000
0

0.2

0.4

0.6

0.8

Hybrid

Av
er
ag
e
Tr
us
t(%

)

(b) Random

Fig. 12. Average Trust when 5%, 10%, and 20% of the system changes per adaptation

dropped for other reasons than maliciousness, for instance, due to network errors. However, we define the evaluation in terms of
trustworthiness in addition to secrecy, thus, we believe that the network unreliability should be considered an availability concern.

We believe that the randomized experiment does not affect the validity of the results. The experiment results are commensurate to
the microservice case study and conform with our expectations that trust in the system stabilizes once malicious actors are identified
and are isolated. Moreover, we have not performed experiments where the attacker controls the majority of the modules that participate
in the architecture. However, we believe that in that case, the system will rapidly collapse into a segregated state of disconnected
modules controlled by the attacker. As a result, several context hierarchies will be unable to establish the minimum trust required
to operate, and therefore, drop all DIFC messages. From a security point of view, no information will be leaked or tampered with,
however, a large part of the system though will become non-functional. We acknowledge that we have only taken the security of
information flowing through the system into account, and do not tackle problems related to secure data communication or medium
tampering which we consider out of scope. Secure communication can be achieved via encryption. Encryption schemes used in
messaging platforms or applications can be used to facilitate secure multi-party transmission of messages. Medium tampering is
completely out of scope, since we separate the communication channel employed for controlling information flow from the channel
through which the modules communicate with each other.

9 RELATEDWORK

To the best of our knowledge, no other approach that combines trust, decentralized information flow control and decentralized control
to enforce security in open systems has been proposed in the literature. Therefore, we cannot provide a quantitative comparison with
other state of the art research that addresses the exact same problem. In the related work that follows, we compare and contrast each
work with the corresponding aspect of our approach qualitatively.

Manuscript submitted to ACM

30 Skandylas, et al.

Decentralized/Dynamic Information Flow. Several application domains use DIFC to enforce security, e.g., operating systems [12,
17, 20, 30], databases [20], Android applications [16] and SaaS [24]. In operating systems, DIFC controls information flow among
communicating OS-level processes. A user-space library enables the processes to specify security policies and a kernel module to verify
such policies. Roy et al. [17] combine this approach with lexically scoped security regions and a Java Virtual Machine implementation.
In [20], the system tracks sensitive information as it flows through the database system and the applications. The authors in [16]
proposes a context-sensitive DIFC enforcement to enforce security in Android applications via lazy polyinstantiation and secure
network exporting through domain declassification. Tingting and Yong [24] present a DIFC for SaaS, which allows untrusted services
to use private data, while trusted services control the dissemination of that data. All approaches above assume a central, trusted
component to validate and verify system boundary control and DIFC policies. This component requires mutual agreement with each
entity in the system to act as a trusted arbiter. In essence, the trusted component is both a bottleneck and a single point of failure. In
terms of throughput, all valid communication that respects DIFC needs to be validated by the trusted component, which can increase
the system latency, and in case the component is compromised, the whole system is compromised, as DIFC cannot be enforced in any
part of the system. In contrast, our approach has no centralized controller, making it more suitable for open systems. If some system
controllers are compromised, only the parts of the system managed by the compromised controllers are affected. The throughput
in our system is higher as messages only need to reach the first common ancestor in the architecture for DIFC verification. Thus it
provides provisioning for a higher degree of concurrency in the message exchange. In addition, extending the DIFC model with trust
allows our modules to define their trustworthiness and select how much information they share with other parts of the system, even
with controllers independently. We also incorporate the approach in an adaptive architecture, which facilities self-adaptive security.

Decentralized & Adaptive Trust. Several trust-based approaches have been proposed to ensure security in distributed systems. Khan
et al. [11] attempt to isolate malicious nodes in MANET systems. When the trust of a node in the network drops below a specific
threshold, the node is considered malicious, and is isolated. Zhang et al. [31] propose several distributed, adaptive trust metrics for
mobile ad-hoc networks. These metrics include direct trust, communication, energy trust. They, then derive recommendation trust
which uses reliability, familiarity, and integrated direct trust which considers direct trust and recommendation trust. Ahamed et
al. [2] propose an evolutionary model based on historical behavior, behavior feedback, and the total number of actions for each kind.
The model is essential for the proposed trust management system that provides protection mechanisms against attacks. Shehada
et al. [21] propose an adaptive trust and reputation model, which is tolerant to witnesses’ behavioral changes in mobile agent
systems. The model uses direct and reputation values in the evaluation and assesses the witnesses’ honesty. Ahamed [1] presents a
context-aware reputation-based trust model, which has dynamic initial trust modeling capabilities for unknown devices. A model for
separating malicious nodes is incorporated. The above works feature a trust model and aim to identify or isolate malicious nodes.
They target specific types of networks and defend against specific classes of attacks. In contrast to the above methods, our approach
is system-agnostic and applies to any message-passing system. Further, we focus on enforcing message-level security policies that
provide fine-grained control of the system’s information flow. Moreover, our approach is dynamic, as the module security policies,
behavior, and trust may change during the system runtime, which allows for flexible security. In our system, an entity that stops
behaving maliciously can gradually regain its trusted status by transmitting enough AT-DIFC+ respecting messages to regain its peers
trust. We believe the trust-based approaches presented above are not as flexible in terms of the granularity of policy specification and
enforcement, their ability to handle dynamic trust updates and their ability to handle system openness.

Decentralized Feedback Loops. Weyns et al. [27], describe patterns for decentralized control of multiple MAPE loops. They also
highlight decisions to decentralize MAPE-K architectures. Furthermore, Weyns, Malek, and Andersson [26] describe the critical
attributes of decentralized self-adaptive systems using several case studies on decentralized self-adaptation. Sylla et al. propose a design
framework for reliable self-adaptive systems used to compose multiple feedback loop managers[23]. Building on generic autonomic
loops that combine automata-based control and transactional execution, they propose patterns for autonomic loop composition. In this
work, we use the hierarchical pattern [27], and compose the regional planner and master-slave patterns [27] in the hybrid planner.

Manuscript submitted to ACM

AT-DIFC+: Towards Adaptive and Trust-Aware Decentralized Information Flow Control 31

Adaptive Security and Self-Protection. Yuan et al. [28], propose a taxonomy for self-protecting systems and provide an architecture-
based approach to self-protection [29]. They provide architecture adaptation patterns to detect and mitigate security weaknesses in
web applications. [19] compose tactics to mitigate DoS attacks by applying utility-based reasoning to select strategies to apply in the
system. Amad and Roudies [3] utilize a MAPE-K architecture to negotiate and deploy security policies in mobile devices, dynamically.
Dynamic software product lines techniques are used to perform adaptations at runtime. Lamprecht [14] provides a methodology for
runtime security adaptation in non-adaptive systems, uses offline analysis, and dynamically creates policies to trade-off performance
and security. In [25], Tun et al. propose an approach to specify adaptive security under partial environment knowledge which is
dynamically updated, as more information becomes available at runtime. Khakpour et al. [10] provide a method to perform security risk
assessment on adaptations that considers dependencies of components vulnerabilities. Compared to the current work, (i) we combine
information flow control and trust-based methods to enforce security that is a novel approach not present in any of the discussed
work, (ii) we target distributed open systems with multiple feedback loops, where modules can specify their policies individually, (iii)
instead of adapting the underlying system, we adapt the structure and behavior of the superimposed trust architecture, which enables
us to support a broader range of systems compared to the approaches above.

10 CONCLUSION

In this paper, we presented AT-DIFC+, a successor of AT-DIFC, a DIFC model extended with trust and adaptation capabilities that
enables: (i) security policy enforcement in a distributed manner, and (ii) dynamic trust architecture adaptation to ensure security. The
model utilizes a combination of decentralized information flow control mechanisms, trust-based methods and decentralized control
architectures for self-adaptive systems. We have updated the AT-DIFC model and its implementation to mitigate recently identified
attacks and thus provided for extended security capabilities. We applied our approach to two case studies and conducted several
experiments as part of its evaluation. Our experiments show that the mechanism effectively protects the system against the identified
attacks at a small cost to the system’s performance.

As future work, we plan to prove the formal guarantees of our approach and scale our approach to other types of decentralized
systems. In that work, we plan to incorporate further adaptation operations and explore more decentralized control architectures. We
also plan to investigate advanced strategies to generate plans, for example, via SMT or constraint solving. We will also extend the
evaluation with more experiments that consider additional decentralized systems types and eventually evaluate the mechanism on
commercial systems.
Acknowledgement
This work was funded by the Swedish Knowledge Foundation(Grant No. 20160186).

REFERENCES

[1] S. I. Ahamed, M. M. Haque, Md. E. Hoque, F. Rahman, and N. Talukder. 2010. Design, analysis, and deployment of omnipresent Formal Trust Model
(FTM) with trust bootstrapping for pervasive environments. Journal of Systems and Software 83 (2010), 253 – 270.

[2] F. Almenárez, A. Marín, D. Díaz, A. Cortés, C. Campo, and C. García-Rubio. 2011. Trust Management for Multimedia P2P Applications in Autonomic
Networking. Ad Hoc Netw. 9, 4 (2011), 687–697.

[3] M. Amoud and O. Roudies. 2017. Dynamic adaptation and reconfiguration of security in mobile devices. In 2017 International Conference On Cyber
Incident Response, Coordination, Containment Control (Cyber Incident). IEEE, London, UK, 1–6.

[4] K. Bellman, S. Tomforde, and R. P. Würtz. 2014. Interwoven Systems: Self-Improving Systems Integration. In 2014 IEEE Eighth International Conference
on Self-Adaptive and Self-Organizing Systems Workshops. IEEE, London, UK, 123–127.

[5] M. Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
[6] C. M. Fiduccia and R. M. Mattheyses. 1982. A Linear-Time Heuristic for Improving Network Partitions. In 19th Design Automation Conference. IEEE

Press, Las Vegas, NV, USA, 175–181.
[7] D. Gambetta. 1988. Can We Trust Trust? Blackwell, Oxford, United Kingdom, 213–237.
[8] Daniel Hedin and Andrei Sabelfeld. 2012. A Perspective on Information-Flow Control. In Software Safety and Security. IOS Press, 1–29.
[9] J. O. Kephart and D. M. Chess. 2003. The Vision of Autonomic Computing. Computer 36, 1 (2003), 41–50.
[10] N. Khakpour, C. Skandylas, G. S. Nariman, and D. Weyns. 2019. Towards Secure Architecture-Based Adaptations. In 2019 IEEE/ACM 14th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, Montreal Canada, 114–125.

Manuscript submitted to ACM

32 Skandylas, et al.

[11] M. S. Khan, D. Midi, S. Malik, M. I. Khan, N. Javaid, and E. Bertino. 2017. Isolating Misbehaving Nodes in MANETs with an Adaptive Trust Threshold
Strategy. Mobile Networks and Applications 22, 3 (2017), 493–509.

[12] M. Krohn and E. Tromer. 2009. Noninterference for a Practical DIFC-Based Operating System. In 2009 30th IEEE Symposium on Security and Privacy.
IEEE, Oakland, CA, USA, 61–76.

[13] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. 2007. Information Flow Control for Standard OS Abstractions.
SIGOPS Oper. Syst. Rev. 41, 6 (2007), 321–334.

[14] C. J. Lamprecht. 2012. Adaptive Security. Ph.D. Dissertation. Newcastle University.
[15] A. C. Myers and B. Liskov. 2000. Protecting Privacy Using the Decentralized Label Model. ACM Trans. Softw. Eng. Methodol. 9, 4 (2000), 410–442.
[16] A. Nadkarni, B. Andow, W. Enck, and S. Jha. 2016. Practical DIFC Enforcement on Android. In Proceedings of the 25th USENIX Conference on Security

Symposium (Austin, TX, USA). USENIX Association, USA, 1119–1136.
[17] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. 2009. Laminar: Practical Fine-Grained Decentralized Information Flow Control. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland). Association for Computing
Machinery, New York, NY, USA, 63–74.

[18] A. Sabelfeld and A. C. Myers. 2006. Language-Based Information-Flow Security. IEEE J.Sel. A. Commun. 21, 1 (2006), 5–19.
[19] B. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova, G. A. Moreno, T. J. Glazier, and J. M. Barnes. 2014. Architecture-Based Self-Protection:

Composing and Reasoning about Denial-of-Service Mitigations. In Proceedings of the 2014 Symposium and Bootcamp on the Science of Security
(Raleigh, North Carolina, USA). Association for Computing Machinery, New York, NY, USA, 1–12.

[20] D. Schultz and B. Liskov. 2013. IFDB: Decentralized Information Flow Control for Databases. In Proceedings of the 8th ACM European Conference on
Computer Systems (Prague, Czech Republic). Association for Computing Machinery, New York, NY, USA, 43–56.

[21] D. Shehada, C. Y. Yeun, M. J. Zemerly, M. Al-Qutayri, Y. Al-Hammadi, and J. Hu. 2018. A new adaptive trust and reputation model for Mobile Agent
Systems. Journal of Network and Computer Applications 124 (2018), 33 – 43.

[22] C. Skandylas, N. Khakpour, and J. Andersson. 2020. Adaptive Trust-Aware Decentralized Information Flow Control. In 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, Washington, DC, USA, 92–101.

[23] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval. 2017. Design Framework for Reliable Multiple Autonomic Loops in Smart Environments. In 2017
International Conference on Cloud and Autonomic Computing (ICCAC). IEEE, Tucson, AZ, USA, 131–142.

[24] L. Tingting and Z. Yong. 2013. A Decentralized Information Flow Model for SaaS Applications Security. In 2013 Third International Conference on
Intelligent System Design and Engineering Applications. IEEE, Hong Kong, China, 40–43.

[25] T. T. Tun, M. Yang, A. Bandara, Y. Yu, A.Nhlabatsi, N. Khan, K. Khan, and B. Nuseibeh. 2018. Requirements and specifications for adaptive
security: concepts and analysis. In Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS@ICSE 2018, Gothenburg, Sweden, May 28-29, 2018. IEEE, Gothenburg, Sweden, 161–171.

[26] D. Weyns, S. Malek, and J. Andersson. 2010. On Decentralized Self-Adaptation: Lessons from the Trenches and Challenges for the Future. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (Cape Town, South Africa). Association for
Computing Machinery, New York, NY, USA, 84–93.

[27] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka. 2013. On Patterns for
Decentralized Control in Self-Adaptive Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 76–107.

[28] E. Yuan, N. Esfahani, and S. Malek. 2014. A Systematic Survey of Self-Protecting Software Systems. ACM Trans. Auton. Adapt. Syst. 8, 4 (2014),
17–41.

[29] E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari. 2013. Architecture-based Self-protecting Software Systems. In Proceedings of the 9th
International ACM Sigsoft Conference on Quality of Software Architectures (Vancouver, British Columbia, Canada). ACM, New York, NY, USA, 33–42.

[30] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. 2006. Making Information Flow Explicit in HiStar. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7 (Seattle, WA). USENIX Association, Berkeley, CA, USA, 263–278.

[31] D. Zhang, J. Gao, X. Liu, T. Zhang, and D. Zhao. 2019. Novel approach of distributed adaptive trust metrics for MANET. Wireless Networks 25 (2019),
3587–3603.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Information Flow Control
	3 Running Example
	4 Adaptive Trust-Aware DIFC
	4.1 Overview
	4.2 Formalization of Components
	4.3 Formalization of Trust
	4.4 Security Policies
	4.5 Security Weaknesses and Mitigations
	4.6 Security Goals

	5 Reconfiguration in AT-DIFC+
	5.1 Trust Architecture Reconfiguration
	5.2 Reconfiguration Plan Generation
	5.3 Utility-based Reconfiguration Evaluation

	6 Implementation
	6.1 Architecture
	6.2 AT-DIFC+ Initialization
	6.3 Message Handling
	6.4 Secure Hashes

	7 AT-DIFC+ and Decentralized Control
	7.1 Decentralized feedback loop demonstrators

	8 Evaluation
	8.1 Experiment set up
	8.2 Attacker model
	8.3 Experiment Results and discussion
	8.4 Threats To Validity

	9 Related Work
	10 Conclusion
	References

