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a b s t r a c t

We introduce a class of one-dimensional continuous reflected backward stochastic Volterra inte-
gral equations driven by Brownian motion, where the reflection keeps the solution above a given
stochastic process (lower obstacle). We prove existence and uniqueness by a fixed point argument
and derive a comparison result. Moreover, we show how the solution of our problem is related to a
time-inconsistent optimal stopping problem and derive an optimal strategy.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

In recent years backward stochastic Volterra integral equa-
ions (BSVIEs) have attracted a lot of interest due to their
odelling potential in problems related to time-preferences of
ecision makers, asset allocation and risk management in mathe-
atical finance among other fields, for which the related optimal
ontrol problems are time-inconsistent meaning that the asso-
iate value-function does not satisfy the dynamic programming
rinciple.
Lin [1] was first to introduce and study a class of BSVIEs

riven by Brownian motion. They can be described as follows:
or a given Lipschitz driver f and a square integrable terminal
ondition ξ solving a BSVIE consists in finding an adapted process
Y , Z) satisfying the equation

(t) = ξ +

∫ T

t
f (t, s, Y (s), Z(t, s))ds −

∫ T

t
Z(t, s)dW (s).

In a series of papers, Yong [2–4] systematically studied a general
class, including the M-solution, of BSVIEs of the form:
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f the paper. The authors gratefully acknowledge the financial support pro-
ided by the Swedish Research Council grants (2020-04697) and (2016-04086),
espectively.
∗ Corresponding author.

E-mail addresses: nacira.agram@lnu.se (N. Agram), boualem@kth.se
B. Djehiche).
https://doi.org/10.1016/j.sysconle.2021.104989
0167-6911/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
Y (t) = ξ (t) +

∫ T

t
f (t, s, Y (s), Z(t, s), Z(s, t))ds −

∫ T

t
Z(t, s)dW (s).

This was followed by a quite extensive list of papers including
Djordjević and Janković [5,6], Shi, Wang and Yong [7], Wang and
Yong [8], Hu and Øksendal [9], Wang and Zhang [10], Wang, Sun
and Yong [11], Popier [12] and Wang, Yong and Zhang [13], to
mention a few.

In problems related to mathematical finance, the BSVIE is
satisfied by the value function of time-inconsistent optimal con-
trol and equilibrium problems related to stochastic differential
utility such as in Di Persio [14], dynamic risk measures such as in
Yong [3], Wang and Yong [8] and Agram [15] and dynamic capital
allocations such as in Kromer and Overbeck [16]. The BSVIE is also
satisfied by the adjoint process of a related stochastic maximum
principle related to equilibrium recursive utility and equilibrium
dynamic risk measures, such as in Djehiche and Huang [17],
Wang, Sun and Yong [11] among many more papers (see [13] for
further references).

The purpose of the paper is to introduce and study a version
of the above BSVIE whose first component of the solution Y
is constrained to be greater than or equal to a given obstacle
process L. This is achieved by including as a part of the solution
a process K (t, ·) (parametrized by t), which should be adapted to
the filtration generated by the one-dimensional Brownian motion
W and increasing for each t , in the sense that the equation
considered is of the form

Y (t) = ξ (t)+
∫ T

f (t, s, Y (s), Z(t, s))ds+
∫ T

K (t, ds)−
∫ T

Z(t, s)dW (s),

t t t

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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• f (t, ·, y, z), which (for each (t, y, z) ∈ [0, T ] × R2) is an
adapted process w.r.t. the filtration (Ft )0≤t≤T generated by
the one-dimensional Brownian motion W ,

• ξ (t), which is a random variable (parametrized by t), is
FT -measurable.

Moreover, it is also required the so-called Skorohod flatness con-
dition under which K (t, ·) is ‘flat’ whenever Y (t) > L(t) holds.

Our main results are:

• to introduce the reflected BSVIE,
• to establish existence and uniqueness of the solution,
• to prove a related comparison result,
• to show how the solution to the reflected BSVIE solves a

time-inconsistent stopping problem.

We may remark that for simplicity, the driver in the above re-
flected BSVIE is only allowed to depend on Y and Z(t, s) but the
results can be extended to driver depending also on Z(s, t). To
the best of our knowledge, this class of reflected BSVIE and its
connection to time-inconsistent optimal stopping problems seem
new.

The content of our paper is as follows. After some preliminar-
ies in Section 2, we give a formulation of the class of continuous
reflected BSVIEs with lower obstacle. In Section 3 we derive exis-
tence, uniqueness and comparison results. Finally, in Section 4,
we give an application to time-inconsistent optimal stopping
problems.

Notation and preliminaries

Let (Ω,F,P) be a complete probability space on which is
defined a standard one-dimensional Brownian motion W =

W (t))0≤t≤T . We denote by F := (Ft )0≤t≤T its natural filtration
augmented by all the P-null sets in F .

Let B(G) be the Borel σ -field of the metric space G. In the
sequel, C > 0 represents a generic constant which can be
different from line to line.

In this paper we only consider reflected BSVIEs driven by a
one-dimensional Brownian motion. Extension to higher dimen-
sions being straightforward.

We define the following spaces for the solution.

• S2 is the set of R-valued F-adapted processes (Y (u))u∈[0,T ]

such that

∥Y∥
2
S2 := E[ sup

t∈[0,T ]

|Y (t)|2] < ∞ .

• H2 is the space of progressively measurable processes
(v(u))u∈[0,T ] such that

∥v∥
2
H2 := E

[∫ T

0
|v(s)|2ds

]
< ∞.

• L2 is the set of R-valued processes (Z(t, s))(t,s)∈[0,T ]×[0,T ] such
that for almost all t ∈ [0, T ] Z(t, ·) ∈ H2 and satisfy

∥Z∥
2
L2 := E

[∫ T

0

∫ T

t
|Z(t, s)|2dsdt

]
< ∞ .

• K2 is the space of processes K which satisfy

• for each t ∈ [0, T ], u ↦→ K (t, u) is an F-adapted and
increasing process with K (t, 0) = 0;

• (t, u) ↦→ K (t, u) is continuous and K (·, T ) ∈ H2.
2 2
The spaces (H , ∥ · ∥H2 ) and (L , ∥ · ∥L2 ) are Hilbert spaces.

2

2. Formulation of the problem

We investigate existence of a unique triple (Y , Z, K ) of pro-
cesses taking values in R × R × R+ which satisfy the following
reflected BSVIE with one obstacle associated with (f , ξ , L):

Y (t) = ξ (t) +

∫ T

t
f (t, s, Y (s), Z(t, s))ds +

∫ T

t
K (t, ds)

−

∫ T

t
Z(t, s)dW (s), (1)

(where K (t, ds) is the Lebesgue–Stieltjes measure induced by the
function s ↦→ K (t, s)), such that

(a) Y ∈ H2, t ↦→ Y (t) is continuous and Z ∈ L2;
(b) Y (t) ≥ L(t) P-a.s. , 0 ≤ t ≤ T ;
(c) The process K enjoys the following properties:

(c1) K ∈ K2;
(c2) The Skorohod flatness condition holds: for each 0 ≤

α < β ≤ T ,

K (t, α) = K (t, β) whenever Y (u) > L(u)
for each u ∈ [α, β] P-a.s. ,

Definition 1. A solution of (1) is a triple (Y , Z, K ) ∈ H2
×L2

×K2

satisfying (1) for every t ∈ [0, T ] P-a.s. , and satisfying the
obstacle condition (b) and the Skorohod flatness condition (c2).

Remark 2.

(1) The Skorohod flatness condition (c2) implies in fact that∫ T

t
K (t, ds) = 0 whenever Y (t) > L(t) for each t ∈ [0, T ] P-a.s.

(2)

This form is more natural for the reflected BSVIE (1), since
only (K (t, s), s ≥ t) is involved in the definition of Y (t).

(2) In the case of a standard reflected BSDEs, the condition (c2)
is analogous to∫ T

0
(Y (s) − L(s)) dK (s) = 0, P-a.s.

where the integral is to be interpreted in the Lebesgue–
Stieltjes sense. It would be interesting to have a similar
characterization for the Volterra type reflected equations.

We make the following assumptions on (f , ξ , L).

2.1. Assumptions on (f , ξ , L)

A1) The terminal condition ξ (t), parametrized by t is a B([0, T ])
⊗FT -measurable map ξ : Ω × [0, T ] −→ R which satisfies

sup
0≤t≤T

E[|ξ (t)|2] < ∞;

A2) The driver f is a map from Ω × [0, T ] × [0, T ] ×R×R onto
R which satisfies, for any fixed (t, y, z) ∈ [0, T ]×R×R, the
process f (t, ·, y, z) is progressively measurable. Moreover,

(i) sup
0≤t≤T

E
[(∫ T

t |f (t, s, 0, 0)|ds
)2

]
< ∞,

(ii) There exists a positive constant cf such that P-a.s. , for
all (t, s) ∈ [0, T ]

2 and y, y′, z, z ′
∈ R,

|f (t, s, y, z) − f (t, s, y′, z ′)| ≤ cf
(
|y − y′

| + |z − z ′
|
)
.
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(iii) For some α ∈ (0, 1/2] and c1 > 0, for all (y, z) ∈ R×R
and all 0 ≤ t, t ′ ≤ s ≤ T ,

|f (t ′, s, y, z) − f (t, s, y, z)| ≤ c1|t ′ − t|α,

and for some β > 1/α and c2 > 0,

E[|ξ (t) − ξ (t ′)|β ] ≤ c2|t ′ − t|αβ

and

E

[(∫ T

0
|f (0, s, 0, 0)|2ds

)β/2]
< ∞.

A3) The obstacle (L(u), 0 ≤ u ≤ T ) is a real-valued and
F-adapted continuous process satisfying

L(T ) ≤ ξ (t), t ∈ [0, T ] and E[ sup
0≤u≤T

(L(u))2] < ∞. (3)

Remark 3.

(1) Assumption (iii) is similar to (H̃1) in [10] and implies that

E

[(
sup

0≤t≤T

∫ T

t
|f (t, s, 0, 0)|2ds

)β/2]
< ∞ (4)

which is stronger than (i) since β > 1
α

> 2.
(2) As we will see it below, the assumptions (A1), (i) and (A3)

yield existence of a unique process (Y , Z, K ) which satisfies
(1) along with (Y , Z) ∈ H2

× L2, Property (b) and K
satisfying (c1) except the continuity of (t, u) ↦→ K (t, u).
Assumption (iii) yields the continuity of Y and the bi-
continuity of K (·, ·) which in turn guarantees the Skorohod
flatness condition (c2).

(3) The condition L(T ) ≤ ξ (t), t ∈ [0, T ], will be explained in
connection with the proof of Proposition 6.

. Existence and uniqueness of solutions to reflected BSVIEs

In this section we derive existence, uniqueness and a compar-
son result for continuous reflected BSVIEs. We have

heorem 4. Suppose the assumptions (A1), (A2) and (A3) are
atisfied. Then the reflected BSVIE (1) associated with (f , ξ , L) admits
unique solution (Y , Z, K ) which satisfies (a), (b) and (c). Moreover,
e have P-a.s. the representation, for every t ∈ [0, T ],

(t) = ess sup
τ≥t

E
[∫ τ

t
f (t, s, Y (s), Z(t, s))ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Ft

]
,

(5)

here the essential supremum is taken over F-stopping times τ

aking values in [0, T ].

emark 5. We note that the representation (5) does not imply
hat Y is a supermartingale, as it can easily be checked.

Inspired by the approach suggested in [1,10] and [3] to solve
he ordinary BSVIE by identifying an accompanying true mar-
ingale, we derive a unique solution to the reflected BSVIE (1)
ssociated with (f , ξ , L) by applying the notion of Snell envelope
long with a contraction argument to an accompanying super-
artingale Ỹ (t, ·), parametrized by t , defined below from which
e obtain Y by setting Y (t) := Ỹ (t, t). To this end, we first
onsider the case where the driver f does not depend on (Y , Z).
hen, we consider the general case where f depends on (Y , Z).
 i

3

.1. Driver independent of Y and Z

Consider the following reflected BSVIE

(t) = ξ (t) +

∫ T

t
f (t, s)ds +

∫ T

t
K (t, ds) −

∫ T

t
Z(t, s)dW (s), (6)

here the driver f does not depend on (Y , Z). We have

roposition 6. Under Assumptions (A1), (A2) and (A3), there exists
unique solution (Y , Z, K ) to the reflected BSVIE (6) associated with

(f , ξ , L) which satisfies the properties (a), (b) and (c). Moreover, it
dmits the representation (5).

roof. The proof is based on existence and uniqueness of the
rocess (̃Y , Z, K ) which satisfies the following reflected BSDE,
arametrized by t , associated with (f , ξ , L): P-a.s., for every t ∈

[0, T ],

Y (t, u) = ξ (t) +

∫ T

u
f (t, s)ds +

∫ T

u
K (t, ds)

−

∫ T

u
Z(t, s)dW (s), u ∈ [0, T ], (7)

where

(d) Ỹ (t, ·) ∈ S2, K (t, T ) ∈ L2(P), Z(t, ·) ∈ H2;
(e) Ỹ (t, u) ≥ L(u) P-a.s. , 0 ≤ u ≤ T ;
(f) K (t, ·) is continuous and increasing, K (t, 0) = 0 and satisfies

the following version of the Skorohod flatness condition: for
each 0 ≤ α < β ≤ T ,

K (t, α) = K (t, β) whenever Ỹ (t, u) > L(u)
for each u ∈ [α, β] P-a.s. ,

which is equivalent to the property∫ T

t
(̃Y (t, u) − L(u)) K (t, du) = 0, P-a.s.

solution (Y , Z, K ) to (6) is obtained from (̃Y , Z, K ) by setting
(t) := Ỹ (t, t).
• Existence of a solution. For a fixed t ∈ [0, T ], set

(t, u) :=

∫ u

t
f (t, s)ds + L(u)1{u<T } + ξ (t)1{u=T }, u ∈ [0, T ].

n view of (i) and the continuity of the obstacle process L, the map
↦→ Γ (t, u) is continuous on [0, T ). Moreover, by (A1) and (A3),

t holds that, for each t ∈ [0, T ],

sup
0≤t≤T

E
[

sup
0≤u≤T

|Γ (t, u)|2
]

≤ 8 sup
0≤t≤T

E
[
|ξ (t)|2 +

(∫ T
t |f (t, u)|du

)2

+ sup
0≤s≤T

(L(s))2
]

< ∞.

onsider the process (̃Y (t, u), u ∈ [0, T ]) defined by

(t, u) := ess sup
τ≥u

E
[∫ τ

u
f (t, s)ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Fu

]
,

(8)

here the essential supremum is taken over F-stopping times τ

aking values in [0, T ]. The process Xt (u) := Ỹ (t, u)+
∫ u
t f (t, s)ds,

≤ u ≤ T satisfies

t (u) = ess sup
τ≥u

E
[∫ τ

t
f (t, s)ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Fu

]
, u ∈ [0, T ],

.e. it is the Snell envelope of the processes (Γ (t, u))0≤u≤T which

s the smallest continuous supermartingale, parametrized by t ,
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hich dominates the continuous process Γ (t, ·). Furthermore, by
Doob’s inequality it holds that

sup
0≤t≤T

E
[

sup
0≤u≤T

|̃Y (t, u)|
2
]

≤ C sup
0≤t≤T

E
[

sup
0≤u≤T

|Γ (t, u)|2
]

< ∞. (9)

n particular, the processes Γ (t, ·) and Ỹ (t, ·) are uniformly inte-
grable and the processes Γ (·, u) and Ỹ (·, u)) are square-
integrable. Furthermore, the supermartingale (̃Y (t, u) +

∫ u
t f (t, s)

ds)0≤u≤T is square-integrable.

By the well known techniques related the Snell envelope which
use the Doob–Meyer decomposition along with the martingale
representation theorem (see e.g. [18], Proposition 5.1), there ex-
ists a unique adapted increasing continuous process K (t, ·) such
that K (t, 0) = 0 and K (t, T ) ∈ L2(P) and an F-adapted process
Z(t, ·) ∈ H2 such that, P-a.s., for every t ∈ [0, T ],

Y (t, u) = ξ (t) +

∫ T

u
f (t, s)ds +

∫ T

u
K (t, ds)

−

∫ T

u
Z(t, s)dW (s), u ∈ [0, T ],

for which the properties (d), (e) and (f) are satisfied. Moreover,
the process∫ u

0 Z(t, s)dW (s), u ∈ [0, T ], is a uniformly integrable martin-
gale and

E
[

sup
0≤u≤T

|̃Y (t, u)|
2
+

∫ T
t |Z(t, s)|2ds + K 2(t, T )

]
≤ CE

[
|ξ (t)|2

+
∫ T
t |f (t, s)|2ds + sup

0≤u≤T
(L(u))2

]
.

(10)

Hence, since Y (t) = Ỹ (t, t), it satisfies P-a.s. the representation
(5) and the following estimate for (Y , Z, K ) holds:

E
[∫ T

0 |Y (t)|2dt +
∫ T
0

∫ T
t |Z(t, s)|2dsdt +

∫ T
0 K 2(t, T )dt

]
≤ CE

[∫ T
0 |ξ (t)|2dt +

∫ T
0

∫ T
t |f (t, s)|2ds + T sup

0≤u≤T
(L(u))2

]
,

(11)

which is finite by the assumptions (A1), (i) and (A3). Thus,
(Y , Z, K (·, T )) ∈ H2

× L2
× H2.

Next, we will show that the maps (t, u) ↦→ Ỹ (t, u),
∫ u
t f (t, s)

ds,
∫ u
0 Z(t, s)dW (s) and K (t, u) are continuous.

Before we establish bi-continuity, we derive the following
estimates.

Lemma 7. For any β > 1, there exists a positive constant Cβ

depending only on β, c1 and T such that

E
[(∫ T

0 |Z(t, s) − Z(t ′, s)|2ds
)β/2

]
≤ CβE

[
|ξ (t) − ξ (t ′)|β

]
+E

[
sup

0≤u≤T
|̃Y (t, u) − Ỹ (t ′, u)|

β

]
+|t − t ′|

αβ
2

(
E

[
sup

0≤u≤T
|̃Y (t, u) − Ỹ (t ′, u)|

β

])1/2

.

(12)

roof. First we note that, given t, t ′ ∈ [0, T ], denoting by ∆ξ :=

(t) − ξ (t ′), ∆Ỹ (u) := Ỹ (t, u) − Ỹ (t ′, u), ∆Z(u) := Z(t, u) −

(t ′, u), ∆f (u) := f (t, u) − f (t ′, u) and ∆K (ds) := K (t, ds) −

(t ′, ds) and applying Itô’s formula to |̃Y (t, u) − Ỹ (t ′, u)|
2
and the
4

korohod flatness condition (f), we have, for any 0 ≤ u ≤ T ,

|∆Ỹ (u)|
2
+

∫ T
u |∆Z(s)|2ds = |∆ξ |

2
+ 2

∫ T
u ∆Ỹ (s)∆f (s)ds

+2
∫ T
u ∆Ỹ (s)d∆K (ds) − 2

∫ T
u ∆Ỹ (s)∆Z(s)dW (s)

≤ |∆ξ |
2
+ 2

∫ T
u ∆Ỹ (s)∆f (s)ds − 2

∫ T
u ∆Ỹ (s)∆Z(s)dW (s).

(13)

aking expectation, we obtain

E
[
|̃Y (t, u) − Ỹ (t ′, u)|2 +

∫ T
u |Z(t, s) − Z(t ′, s)|2ds

]
≤ E

[
|ξ (t ′) − ξ (t)|2

]
+2E

[∫ T
u (̃Y (t, u) − Ỹ (t ′, u))(f (t, s) − f (t ′, s))ds

]
.

(14)

oreover, by Burkholder–Davis–Gundy’s inequality, (iii) and
oung’s inequality it follows that, for any β > 1, there exists
positive constant Cβ depending only on β, c1 and T such that

12) holds. □

• Continuity of the map (t, u) ↦→ Ỹ (t, u). Using (iii) we have,
or 0 ≤ t, t ′, u ≤ T ,

|̃Y (t, u) − Ỹ (t ′, u)|

=

⏐⏐⏐ess sup
τ≥u

E
[∫ τ

u f (t, s)ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Fu

]
−

ess sup
τ≥u

E
[∫ τ

u f (t ′, s)ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Fu

] ⏐⏐⏐
≤ ess sup

τ≥u
E

[∫ τ

u |f (t, s) − f (t ′, s)|ds + |ξ (t) − ξ (t ′)|
⏐⏐⏐Fu

]
≤ E

[∫ T
u |f (t, s) − f (t ′, s)|ds

+ |ξ (t) − ξ (t ′)|
⏐⏐⏐Fu

]
≤ Tc1|t ′ − t|α + E

[
|ξ (t) − ξ (t ′)|

⏐⏐⏐Fu

]
.

y Doob’s maximal inequality and (iii), since β > 1/α ≥ 2,

E
[

sup
0≤u≤T

(
E

[
|ξ (t) − ξ (t ′)|

⏐⏐⏐Fu

])β
]

≤

(
β

β−1

)β

E[|ξ (t) − ξ (t ′)|β ]

≤ c2
(

β

β−1

)β

|t − t ′|αβ
.

Hence,

E
[

sup
0≤u≤T

|̃Y (t, u) − Ỹ (t ′, u)|
β

]
≤ C |t ′ − t|αβ

, (15)

where C := 2β

(
Tc1 + c2

(
β

β−1

)β
)
.

In view of Kolmogorov’s continuity theorem (see [19], Theorem
I.2.1.), (t, u) ↦→ Ỹ (t, u) is continuous (admits a bicontinuous
modification). In particular, t ↦→ Y (t) := Ỹ (t, t) is continuous.

• Continuity of the map (t, u) ↦→ g(t, u) :=
∫ u
t f (t, s)ds. For any

0 ≤ t < t ′ ≤ T , we have

E
[

sup
0≤u≤T

|g(t ′, u) − g(t, u)|β
]

≤ CE
[⏐⏐ ∫ t ′

t f (t, s)ds
⏐⏐β +

(∫ T
0 |f (t ′, s) − f (t, s)|ds

)β
]

.

y Hölder’s inequality and (iii), we have

E
[⏐⏐ ∫ t ′

t f (t, s)ds
⏐⏐β]

≤ |t ′ − t|β/2E
[(∫ T

0 |f (t, s)|2ds
)β/2

]
≤ |t ′ − t|β/2 sup

0≤t≤T
E

[(∫ T
0 |f (t, s)|2ds

)β/2
]

≤ C |t ′ − t|β/2
,

here the constant C is due (4). Moreover,[(∫ T

|f (t ′, s) − f (t, s)|ds
)β

]
≤ (c1T )β |t ′ − t|αβ

.

0
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herefore, since α ∈ (0, 1/2], we have[
sup

0≤u≤T
|g(t ′, u) − g(t, u)|β

]
≤ C(1 + |t ′ − t|β(

1
2 −α))|t ′ − t|αβ

≤ C |t ′ − t|αβ
. (16)

ince αβ > 1, by Kolmogorov’s continuity theorem t ↦→ g(t, u)
:=

∫ u
t f (t, s)ds is continuous (admits a bicontinuous modifica-

tion).
• Continuity of the map (t, u) ↦→

∫ u
0 Z(t, s)dW (s). By

Burkholder–Davis–Gundy’s inequality and (12), we have

E
[

sup
0≤u≤T

|
∫ u
0

(
Z(t, s) − Z(t ′, s)

)
dW (s)|

β

]
≤ ( β

β−1 )
βE

[(∫ T
0 |Z(t, s) − Z(t ′, s)|2ds

)β/2
]

≤ ( β

β−1 )
βCβE

[
|ξ (t) − ξ (t ′)|β + sup

0≤u≤T
|̃Y (t, u) − Ỹ (t ′, u)|

β

]
+( β

β−1 )
βCβ |t − t ′|

αβ
2

(
E

[
sup

0≤u≤T
|̃Y (t, u) − Ỹ (t ′, u)|

β

])1/2

.

herefore, by (iii) and (15), it holds that[
sup

0≤u≤T
|

∫ u

0

(
Z(t, s) − Z(t ′, s)

)
dW (s)|

β
]

≤ Ĉβ |t − t ′|αβ
.

ence, in view of Kolmogorov’s continuity theorem, (t, u) ↦→
u
0 Z(t, s)dW (s) is continuous (admits a bicontinuous modifica-
ion).

• Continuity of the map (t, u) ↦→ K (t, u). This follows from the
fact that
K (t, u) = Ỹ (t, u) − Ỹ (t, 0) −

∫ u
0 f (t, s)ds +

∫ u
0 Z(t, s)dW (s),

(t, u) ∈ [0, T ]
2,

and the bi-continuity of each of the terms on the r.h.s.
With Y (t) := Ỹ (t, t), we obtain a solution(Y , Z, K ) to (6) which

atisfies (a), (b) and (c1). It remains to check the Skorohod flatness
ondition (c2). Indeed, in view of the property (f), for each fixed
∈ [0, T ], it holds that, for each 0 ≤ α < β ≤ T ,

K (t, α) = K (t, β) whenever Ỹ (t, u) > L(u) for each u ∈ [α, β] P-a.s. ,

Thanks to the bi-continuity of Ỹ (·, ·) and K (·, ·), by sending t to u
it holds that for each 0 ≤ α < β ≤ T ,

K (u, α) = K (u, β) whenever Y (u) = Ỹ (u, u) > L(u)
for each u ∈ [α, β] P-a.s.

By virtue of the bi-continuity of these mappings, Eq. (7) holds
for every t ∈ [0, T ], P-a.s.

• Uniqueness of the solution. Let (Y ′, Z ′, K ′) be another so-
lution to (1) associated with (f , ξ , L) satisfying (a), (b) and (c).
Define Ŷ := Y − Y ′, Ẑ := Z − Z ′ and K̂ := K − K ′, and
correspondingly ˆ̃Y := Ỹ − Ỹ ′. Applying Itô’s formula to |̂̃Y |

2
and

taking expectation we obtain, for each fixed t ∈ [0, T ],

E
[
|̂̃Y (t, u)|

2
+

∫ T

u
|̂Z(t, s)|2ds

]
= 2E

[∫ T

u

ˆ̃Y (t, s)̂K (t, ds)] , u ∈ [0, T ].

But, by the flatness condition (f), we have
∫ T
u

ˆ̃Y (t, s)̂K (t, ds) ≤

0 P-a.s. which implies that E
[
|̂̃Y (t, u)|

2
]

= 0 and E[∫ T
u |̂Z(t, s)|

2
ds

]
= 0 for all u ∈ [0, T ]. Therefore, Ỹ (t, ·) = Ỹ ′(t, ·)

and Z(t, ·) = Z ′(t, ·) and then K (t, ·) = K ′(t, ·) P-a.s. Hence
Y = Y ′ P-a.s. , by the continuity of the map (t, u) ↦→ Ỹ (t, u). □

3.2. The general case. Proof of Theorem 4

Let E := H2
× L2 be the Hilbert space endowed with

∥(Y , Z)∥2
= ∥Y∥

2
+ ∥Z∥

2 .
E H2 L2

5

Consider the map Φ from E to itself for which (Y , Z) =

Φ(U, V ), where∫ t
0 K (t, ds) := Y (t) − Y (0) −

∫ t
0 f (t, s,U(s), V (t, s))ds
+

∫ t
0 Z(t, s)dW (s), t ∈ [0, T ].

(17)

Proposition 8. Assume (A1), (A2) and (A3). Then there exists
δ > 0 depending only on the Lipschitz constant of f such that Φ

is a contraction mapping on the space E([T − δ, T ]).

Proof. Let X := (U, V ) and X ′
:= (U ′, V ′) be two elements of E

and define X = (U, V ) = X − X ′, Y = Y − Y ′, Z = Z − Z ′, K =

− K ′ and for s, t ∈ [0, T ], f̄ (t, s) := f (t, s,U(s), V (t, s)) −

(t, s,U ′(s), V ′(t, s)). We have
t

0
K (t, ds) := Y (t)−Y (0)−

∫ t

0
f̄ (t, s)ds+

∫ t

0
Z(t, s)dW (s), 0 ≤ t ≤ T .

From Proposition 6, we have P-a.s.

Y (t) = ess sup
τ≥t

E
[∫ τ

t f (t, s,U(s), V (t, s))ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Ft

]
,

′(t) = ess sup
τ≥t

E
[∫ τ

t f (t, s,U ′(s), V ′(t, s))ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Ft

]
.

hus,

Y (t)
⏐⏐ ≤ ess sup

τ≥t
E

[∫ τ

t
|f̄ (t, s)|ds

⏐⏐⏐Ft

]
≤ E

[∫ T

t
|f̄ (t, s)|ds

⏐⏐⏐Ft

]
.

oting that by the Cauchy–Schwarz inequality and (ii) we have

E
[∫ T

T−δ

(∫ T
t |f̄ (t, s)|ds

)2
dt

]
≤ δE

[∫ T
T−δ

∫ T
t |f̄ (t, s)|

2
dsdt

]
≤ 4c2f δE

[∫ T
T−δ

∫ T
t |U(s)|

2
dsdt +

∫ T
T−δ

∫ T
t |V (t, s)|

2
dsdt

]
≤ 4c2f (δ

2
+ δ)∥(U, V )∥2

E([T−δ,T ]).

(18)

Therefore,

E
[∫ T

T−δ
|Y (t)|

2
dt

]
≤ E

[∫ T
T−δ

(
E

[∫ T
t |f̄ (t, s)|ds

⏐⏐⏐Ft

])2
dt

]
≤ E

[∫ T
T−δ

(∫ T
t |f̄ (t, s)|ds

)2
dt

]
≤ 4c2f (δ

2
+ δ)∥(U, V )∥2

E([T−δ,T ]).

On the other hand, by Itô’s formula applied to |̃Y (t, u)|
2
, taking

expectation and using Young’s inequality, we obtain

E
[∫ T

u
|Z(t, s)|

2
ds

]
≤ 2E

[∫ T

u
Ỹ (t, s)f̄ (t, s)ds

]
.

In view of (8), we have for any u ∈ [0, T ],

|̃Y (t, u)| ≤ ess sup
τ≥u

E
[∫ τ

u
|f̄ (t, s)|ds

⏐⏐⏐Fu

]
≤ E

[∫ T

u
|f̄ (t, s)|ds

⏐⏐⏐Fu

]
.

herefore,

E
[∫ T

u |Z(t, s)|
2
ds

]
≤ 2E

[∫ T
u Ỹ (t, s)f̄ (t, s)ds

]
≤ 2E

[∫ T
u f̄ (t, s)E

[∫ T
s |f̄ (t, r)|dr

⏐⏐⏐Fs

]
ds

]
≤ 2E

[∫ T
u |f̄ (t, s)|E

[∫ T
u |f̄ (t, r)|dr

⏐⏐⏐Fs

]
ds

]
= 2E

[(∫ T
u |f̄ (t, r)|dr

)2
]

.
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n particular, in view of (18),

E
[∫ T

T−δ

∫ T
t |Z(t, s)|

2
dsdt

]
≤ 2E

[∫ T
T−δ

(∫ T
t |f̄ (t, r)|dr

)2
dt

]
≤ 8c2f (δ

2
+ δ)∥(U, V )∥2

E([T−δ,T ]).

umming up, we have

(Y , Z)∥2
E([T−δ,T ]) ≤ 8cf (δ2 + δ)∥(U, V )∥2

E([T−δ,T ]).

ow, choosing δ > 0 such that δ2 + δ < 1/8cf , yields that Φ is
contraction mapping on E([T − δ, T ]) and thus admits a unique
ixed point which yields the unique solution of the reflected BSVIE
1) associated with (f , ξ , L) over [T − δ, T ]. □

We are now ready to give a proof of Theorem 4.

roof. By repeatedly applying the fixed point argument of
roposition 8 over adjacent time intervals of fixed length δ,
atisfying δ2 + δ < 1/8cf , and pasting the solutions that we
describe below, we finally obtain existence of a unique solution
in H2

× L2
× K2 to the reflected BSVIE (1) over the whole time

nterval [0, T ].
Since we are dealing with Volterra-type integrals where the

driver f depends on t , we paste two adjacent solutions as fol-
lows. Fix such a δ and let (Y 0, Z0, K 0) be the unique solution of
1) on E([T − δ, T ]). Consider the accompanying reflected BSDE
(̃Y 0(t, ·), Z0(t, ·), K 0(t, ·)), with lower obstacle L, parametrized by
t ∈ [0, T ], defined by

Ỹ 0(t, u) = ξ (t) +
∫ T
u f (t, s, Y 0(s), Z̃0(t, s))ds

+
∫ T
u K̃ 0(t, ds) −

∫ T
u Z̃0(t, s)dW (s),

u ∈ [T − δ, T ],

where K̃ 0(t, T − δ) = 0. In particular, Ỹ 0(t, T − δ) ∈ L2(FT−δ).
Moreover, by Proposition 8, we have P-a.s.

(̃Y 0(t, t), Z̃0(t, s), K̃ 0(t, s)) = (Y 0(t), Z0(t, s), K 0(t, s)),

(t, s) ∈ [T − δ, T ]
2, t ≤ s.

On the time interval [T − 2δ, T − δ], we consider the BSVIE

Y 1(t) = Ỹ 0(t, T − δ) +
∫ T−δ

t f (t, s, Y 1(s), Z1(t, s))ds
+

∫ T−δ

t K 1(t, ds) −
∫ T−δ

t Z1(t, s)dW (s),
t ∈ [T − 2δ, T − δ].

(19)

Since the length of the time interval [T − 2δ, T − δ] is δ, we may
apply Proposition 8 to obtain a unique solution (Y 1, Z1, K 1) ∈

H2([T − 2δ, T − δ])×L2([T − 2δ, T − δ])×K2([T − 2δ, T − δ]) to
the reflected BSVIE (19).

Now, with

Y (t) :=

{
Y 0(t), t ∈ [T − δ, T ],

Y 1(t), t ∈ [T − 2δ, T − δ],

and

(Z(t, s), K (t, s))

:=

⎧⎨⎩ (Z0(t, s), K 0(t, s)), (t, s) ∈ [T − δ, T ]
2, t ≤ s,

(̃Z0(t, s), K̃ 0(t, s)), t ∈ [T − 2δ, T − δ] × [T − δ, T ],

(Z1(t, s), K 1(t, s)), (t, s) ∈ [T − 2δ, T − δ]2, t ≤ s,

the process (Y , Z, K ) solves the reflected BSVIE (1) over the time
interval [T − 2δ, T ].

By repeating the same reasoning on each time interval [T −

(m + 1)δ, T − mδ], m = 1, 2, . . . , n (where n is arbitrary) with a
similar dynamics but terminal condition Ỹm−1(t, T − mδ) at time
T − mδ, for t ∈ [T − (m + 1)δ, T − mδ], we construct recursively,

m m m 2 2 2
for m = 1, 2, . . . , n, a solution (Y , Z , K ) ∈ H × L × K on (

6

each time interval [T − (m+1)δ, T −mδ]. Pasting these processes,
we obtain a unique solution (Y , Z, K ) of the reflected BSVIE (1) on
the full time interval [0, T ]. □

A closer look at the way the estimate (10) is derived in e.g. [18]
or [20], we obtain the following proposition as a direct conse-
quence of the estimate leading to it.

Proposition 9. If instead of (A1) and (A2), we assume that

E[ sup
0≤t≤T

|ξ (t)|2] < ∞ and E

[
sup

0≤t≤T

(∫ T

t
|f (t, s, 0, 0)|ds

)2]
< ∞,

then

∥Y∥
2
S2 := E

[
sup

0≤t≤T
|Y (t)|2

]
< ∞.

3.3. A comparison result for reflected BSVIEs

In this section we derive a comparison theorem, similar to
that of [18], Theorem 4.1 for standard reflected BSDEs, which
extends [8], Theorem 3.4., for non-reflected BSVIEs. We follow the
method of the proof in [8] and first derive a comparison when
the driver f does not depend of y, extending [8], Proposition 3.3,
since in this case the proof is based on the comparison principle
for reflected BSDEs, and then proceed to the proof of the general
case using an approximation scheme. Some of the imposed con-
ditions on the coefficients can be relaxed at the expense of heavy
technical details that we omit to make the content easy to follow.

Proposition 10. Let (f , ξ , L) and (f ′, ξ ′, L′) be two sets of processes
which satisfy the assumptions (A1), (A2) and (A3) and suppose
further that

(i) ξ (t) ≤ ξ ′(t), P-a.s. , 0 ≤ t ≤ T ,
(ii) f (t, s, z) ≤ f ′(t, s, z), for all (t, z) ∈ [0, s] × R, a.s., a.e.

s ∈ [0, T ],
(iii) L(s) ≤ L′(s), 0 ≤ s ≤ T , P-a.s.

Let (Y , Z, K ) be a solution of the reflected BSVIE associated with
(f , ξ , L) and (Y ′, Z ′, K ′) be a solution of the reflected BSVIE asso-
ciated with (f ′, ξ ′, L′). Then

Y (t) ≤ Y ′(t), 0 ≤ t ≤ T , P-a.s.

Proof. For each fixed t ∈ [0, T ], let Ỹ (t, ·) and Ỹ ′(t, ·) be the
standard BSDEs accompanying Y and Y ′ respectively, constructed
in a similar way to the one described in the proof of Proposition 6:
For each fixed t ∈ [0, T ],

Ỹ (t, u) = ξ (t) +
∫ T
u f (t, s, Z(t, s))ds

+
∫ T
u K (t, ds) −

∫ T
u Z(t, s)dW (s), u ∈ [0, T ].

similar form for Ỹ ′ holds. We may apply the comparison the-
rem ([18], Theorem 4.1) for standard reflected BSDEs to obtain
hat, for each fixed t ∈ [0, T ],

(t, u) ≤ Ỹ ′(t, u), 0 ≤ u ≤ T , a.s.

ince, the maps (t, u) ↦→ Ỹ (t, u), Ỹ ′(t, u) are continuous, it
ollows that

(t) := Ỹ (t, t) ≤ Ỹ ′(t, t) =: Y ′(t), 0 ≤ t ≤ T , a.s. □

heorem 11. Let (f , ξ , L) and (f ′, ξ ′, L′) satisfy the assumptions

A1), (A2) and (A3) and that either the map y ↦→ f (t, s, y, z) or
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↦→ f ′(t, s, y, z) is nondecreasing. Assume further that

H1) ξ (t) ≤ ξ ′(t), P-a.s. , 0 ≤ t ≤ T ,
H2) f (t, s, y, z) ≤ f ′(t, s, y, z), for all (t, z) ∈ [0, s] × R,

a.s., a.e. s ∈ [0, T ],
H3) L(s) ≤ L′(s), 0 ≤ s ≤ T , P-a.s.

Let (Y , Z, K ) be a solution of the reflected BSVIE associated with
(f , ξ , L) and (Y ′, Z ′, K ′) be a solution of the reflected BSVIE asso-
ciated with (f ′, ξ ′, L′). Then

Y (t) ≤ Y ′(t), 0 ≤ t ≤ T , P-a.s.

Proof. The proof follows the same steps of the proof of Theorem
3.2 in [8]. We sketch it and leave some technical details related
to Peng’s monotone convergence theorem [21] which are by now
standard in the literature related to reflected BSDEs.

Assume the map y ↦→ f (t, s, y, z) is nondecreasing. Set Y0(·) =

Y ′(·) and for n ≥ 1, consider, the following sequence of reflected
BSVIEs with the same lower obstacle L

Yn(t) = ξ (t) +

∫ T

t
f (t, s, Yn−1(s), Zn(t, s))ds +

∫ T

t
Kn(t, ds)

−

∫ T

t
Zn(t, s)dW (s).

In view of the assumption (H2) and the monotonicity of f in y,
we may apply Proposition 10, to obtain that, for every n ≥ 1,

Y ′(t) = Y0(t) ≥ Y1(t) ≥ · · · ≥ Yn(t) ≥ Yn+1(t), t ∈ [0, T ], a.s.

If we show that (Yn, Zn, Kn)n≥1 converges to (Y , Z, K ) w.r.t. the
norm defined, for a given θ > 0, by

∥(Y , Z, K )∥2
θ := E

[∫ T

0
eθ t

|Y (t)|2dt +

∫ T

0
eθ t

∫ T

t
|Z(t, s)|2dsdt

+

∫ T

0
eθ t

|K (t, T )|2dt
]

which is equivalent with the norm defined on the space H2
×

L2
×H2, then the limit process (Y ∗, Z∗, K ∗) satisfies the reflected

BSVIE

Y ∗(t) = ξ (t) +

∫ T

t
f (t, s, Y ∗(s), Z∗(t, s))ds +

∫ T

t
K ∗(t, ds)

−

∫ T

t
Z∗(t, s)dW (s)

along with the Skorohod flatness condition (obtained by taking
a.s. converging subsequences) w.r.t. the same lower obstacle L. By
uniqueness of the solution, we have Y ∗(·) = Y (·) which in turn
entails the comparison principle.

To show convergence, let Ỹn(t, ·) be the solution to the stan-
dard reflected BSDEs, parametrized by t ∈ [0, T ], accompanying
Yn (i.e. Ỹn(t, t) = Yn(t)), constructed in a similar way to the one
described in the proof of Proposition 6, defined, for each fixed
t ∈ [0, T ], by

Ỹn(t, u) = ξ (t) +
∫ T
u f (t, s, Yn−1(s), Zn(t, s))ds

+
∫ T
u Kn(t, ds) −

∫ T
u Zn(t, s)dW (s), u ∈ [0, T ],

For n,m ≥ 1, set δỸ (t, s) := Ỹn(t, s) − Ỹm(t, s), δZ(t, u) :=

Zn(t, u) − Zm(t, u), δf (t, s) := f (t, s, Yn−1(s), Zn(t, s)) − f (t, s,

Ym−1(s), Zm(t, s)) and δK (t, u) = Kn(t, u) − Km(t, u).

7

For any θ > 0, we may apply Itô’s formula to eθu
|δỸ (t, u)|

2

along with the Skorohod flatness condition to obtain

E
[
eθu

|δỸ (t, u)|
2
+

∫ T
u eθs

|δZ(t, s)|2ds
]

≤ 2E
[∫ T

u eθsδỸ (t, s)δf (t, s)ds
]

− θE
[∫ T

u eθs
|δỸ (t, s)|

2
ds

]
≤ −θE

[∫ T
u eθs

|δỸ (t, s)|
2
ds

]
+E

[∫ T
u eθs

(
θ |δỸ (t, s)|

2
+

1
θ
|δf (t, s)|2

)
ds

]
≤

2c2f
θ
E

[∫ T
u eθs

(
|Yn−1(s) − Ym−1(s)|2 + |δZ(t, s)|2

)
ds

]
.

Therefore, with Yn(t) = Ỹn(t, t), we have

E
[∫ T

0 eθ t
|Yn(t) − Ym(t)|2dt

]
+ (1 −

2c2f
θ
)E

[∫ T
0

∫ T
t eθs

|Zn(t, s) − Zm(t, s)|2dsdt
]

≤
2Tc2f

θ
E

[∫ T
0 eθs

|Yn−1(s) − Ym−1(s)|2ds
]
.

oreover, in view of the estimate in Proposition 3.6 of [18], there
xists a constant C independent of n and m such that

E
[
|δK (t, T )|2

]
≤ CE

[∫ T
t |δf (t, s)|2ds

]
≤ 2Cc2f E

[∫ T
t

(
|Yn−1(s) − Ym−1(s)|2 + |δZ(t, s)|2

)
ds

]
.

herefore,

E
[∫ T

0 eθ t
|δK (t, T )|2dt

]
≤ 2Cc2f E

[∫ T
0 eθ t

∫ T
t |Yn−1(s) − Ym−1(s)|2dsdt

]
+2Cc2f E

[∫ T
0 eθ t

∫ T
t |δZ(t, s)|2dsdt

]
≤

2Cc2f
θ

E
[∫ T

0 eθs
|Yn−1(s) − Ym−1(s)|2ds

]
+ 2Cc2f E

[∫ T
0 eθ t

∫ T
t |δZ(t, s)|2dsdt

]
,

ince

E
[∫ T

0 eθ t
∫ T
t |Yn−1(s) − Ym−1(s)|2dsdt

]
= E

[∫ T
0 |Yn−1(s) − Ym−1(s)|2ds

∫ s
0 eθ tdt

]
≤

1
θ
E

[∫ T
0 eθs

|Yn−1(s) − Ym−1(s)|2ds
]
.

hus, by choosing θ > 2c2f (1 + 2T ), it follows that (Yn, Zn, Kn)n is
Cauchy sequence w.r.t. the norm ∥ · ∥θ . □

. Application to time-inconsistent optimal stopping prob-
ems

Let (X(t), t ∈ [0, T ]) be an F-adapted process. In many fi-
ancial applications X may model the price of a commodity.
uppose that (f , L, ξ ) satisfies the assumptions (A1), (A2) and (A3)

of Section 2. We propose to solve the following optimal stopping
problem associated with (f , ξ , L):

sup
τ≥t

J(t, τ ), (20)

or

(t, τ ) := E
[∫ τ

t
f (t, s, X(s))ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

]
, (21)

here the supremum is taken over F-stopping times τ taking val-
es in [t, T ]. More precisely, we would like to find an F-stopping
ime τ ∗

t , indexed by t , such that
∗

t = argmax J(t, τ ).

τ≥t
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Let (Y (t), t ∈ [0, T ]) defined by

Y (t) := ess sup
τ≥t

E
[∫ τ

t
f (t, s, X(s))ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

⏐⏐⏐Ft

]
(22)

be the value-function associated to the optimal stopping problem
(20).

In financial applications, the functional J represents the yield
of an investment in a commodity with price process X , where f
is the utility rate per unit time, L is the utility function at the
stopping time τ and ξ is the utility at the final time T .

The dependence on t in Eq. (21) implies that the optimal stop-
ping problem is in general time-inconsistent which is similar to
time-inconsistency in optimal stochastic control (see e.g. [17,22]).

In time-consistent optimal stopping problems (i.e. when f and
ξ do not depend of t), the process Y would be the value function
of the stopping problem (20). In particular Y (0) = sup

τ≥0
J(0, τ ). This

is not the case here. However, we have

sup
τ≥t

J(t, τ ) ≤ E[Y (t)].

Now, if we can find an F-stopping time τ ∗
t such that

Y (t) = E

[∫ τ∗
t

t
f (t, s, X(s))ds + L(τ ∗

t )1{τ∗
t <T } + ξ (t)1{τ∗

t =T }

⏐⏐⏐Ft

]
then τ ∗

t is optimal for J(t, ·) since

J(t, τ ∗

t ) = E[Y (t)] ≤ sup
τ≥t

J(t, τ ) ≤ E[Y (t)]. (23)

In view of Proposition 6, there exists a unique process (Z, K ) ∈

L2
× H2 such that

Y (t) = ξ (t) +

∫ T

t
f (t, s, X(s))ds +

∫ T

t
K (t, ds) −

∫ T

t
Z(t, s)dW (s),

and (Y , Z, K ) satisfies the properties (a), (b) and (c) of . Moreover,
Y is constructed so that, for every t ∈ [0, T ], Y (t) = Ỹ (t, t),
where Ỹ (t, ·) is the accompanying reflected BSDE associated with
(f (t, s, X(s)), L(s), ξ (t)), parametrized by t , which satisfies

Y (t, u) = ξ (t) +

∫ T

u
f (t, s, X(s))ds +

∫ T

u
K (t, ds)

−

∫ T

u
Z(t, s)dW (s), u ∈ [t, T ],

and for which (̃Y (t, ·), Z(t, ·), K (t, ·)) satisfies the conditions (d),
(e) and (f) displayed in the proof of Proposition 6.

Proposition 12. Suppose the assumptions (A1), (A2) and (A3) are
satisfied. For each t ∈ [0, T ], denote by τ ∗

t the stopping time

τ ∗

t = inf{t ≤ u ≤ T ; Ỹ (t, u) = L(u)}

with the convention that τ ∗
t = T if Ỹ (t, u) > L(u), t ≤ u ≤ T .

Then τ ∗
t is optimal in the sense that

Y (t) = E

[∫ τ∗
t

t
f (t, s, X(s))ds + L(τ ∗

t )1{τ∗
t <T } + ξ (t)1{τ∗

t =T }

⏐⏐⏐Ft

]
.

(24)

Moreover, τ ∗
t is an optimal strategy for J(t, ·) i.e.

τ ∗

t = argmax
τ≥t

J(t, τ ).
8

Proof. We have

Y (t) = ξ (t) +
∫ T
t f (t, s, X(s))ds +

∫ T
t K (t, ds) −

∫ T
t Z(t, s)dW (s)

= Ỹ (t, τ ∗
t ) +

∫ τ∗
t

t f (t, s, X(s))ds +
∫ τ∗

t
t K (t, ds) −

∫ τ∗
t

t Z(t, s)dW (s).

Now, the Skorohod flatness condition (f) along with the continu-
ity of the map u ↦→ K (t, u) imply that∫ τ∗

t

t
K (t, ds) = 0.

Thus, taking conditional expectation we finally obtain

Y (t) = E

[∫ τ∗
t

t
f (t, s, X(s))ds + L(τ ∗

t )1{τ∗
t <T } + ξ (t)1{τ∗

t =T }

⏐⏐⏐Ft

]
,

since, by continuity of the map u ↦→ Ỹ (t, u), we have Ỹ (t, τ ∗
t ) =

L(τ ∗
t )1{τ∗

t <T } + ξ (t)1{τ∗
t =T }. In view of (23), it follows that τ ∗

t =

argmax
τ≥t

J(t, τ ). □

Remark 13. The choice of stopping time τ ∗
t as the first hitting

time of the accompanying Snell envelope Ỹ (t, ·) of the obstacle
L instead of the value function Y , as it is the case for standard
reflected BSDEs, is simply due to fact that for Volterra type
equations we have

Y (t) ̸= Y (u) +

∫ T

u
f (t, s, Y (s), Z(t, s))ds +

∫ T

u
K (t, ds)

−

∫ T

u
Z(t, s)dW (s), u ≥ t.

Remark 14. The same approach can be applied to find an optimal
solution to the following optimal stopping problem related to
time-inconsistent recursive utility functions

J(t, τ ) := E
[∫ τ

t
f (t, s, X(s), Y (s), Z(t, s))ds + L(τ )1{τ<T } + ξ (t)1{τ=T }

]
,

(25)

provided that (f , ξ , L) satisfies (A1), (A2) and (A3).
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