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Abstract

Security testing is a widely applied measure to evaluate and improve software se-
curity by identifying vulnerabilities and ensuring security requirements related to
properties like confidentiality, integrity, and availability. A confidentiality policy
guarantees that attackers will not be able to expose secret information. In the context
of software programs, the output that attackers observe will not carry any informa-
tion about the confidential input information. Integrity is the dual of confidentiality,
i.e., unauthorized and untrusted data provided to the system will not affect or modify
the system’s data. Availability means that systems must be available at a reason-
able time. Information flow control is a mechanism to enforce confidentiality and
integrity. An accurate security assessment is critical in an age when the open nature
of modern software-based systems makes them vulnerable to exploitation. Security
testing that verifies and validates software systems is prone to false positives, false
negatives, and other such errors, requiring more resilient tools to provide an effi-
cient way to evaluate the threats and vulnerabilities of a given system. Therefore,
the newly developed tool Reax controls information flow in Java programs by syn-
thesizing conditions under which a method or an application is secure. Reax is a
command-line application, and it is hard to be used by developers. This project has
its primary goal to integrate Reax by introducing a plugin for Java IDEs to perform
an advanced analysis of security flaws. Specifically, by design, a graphical plugin
performs advanced security analysis that detects and reacts directly to security flaws
within the graphical widget toolkit environment (SWT). As a second important goal,
the project proposed a new algorithm to find the root cause of security violations
through a graphical interface. As a result, developers will be able to detect security
violations and fix their code during the implementation phase, which reduces the
costs.

Keywords: secure development, application security, static application security
testing, SAST
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1 Introduction

In this 15-credit BSc thesis, we examine software security and secure programming as-
pects. More specifically, software security when programming in the programming lan-
guage Java. Leakage and data integrity are classes of application vulnerabilities and a
massive problem for security. Attackers can utilize such vulnerabilities to steal sensi-
tive information and hack companies and users, e.g., stealing the personal records of 233
million users of eBay [1]. The damage caused to any organization could be severe. For
instance, it could affect revenue and reputation and expose companies to lawsuits. This
problem should be considered during the life-cycle, especially in the development phase
(by secure code development). Two aspects of security are:

• Controlling information flow to a system to block and validate untrusted data.

• Controlling information from a system to avoid information leakage.

Considering some of the most catastrophic security incidents in the past years, it ex-
plains why developers need a more helpful tool to understand the vulnerabilities made by
developers and administrators. There will be advances along these lines the suggestion
that security vulnerability would be helped an active defense, employing a specifically
designed application security testing tool, a vulnerability detection plugin, and a detec-
tion algorithm in this security direction. It is not intended to be presented as a standing
model but rather as an application of Static Application Security Testing (SAST), allow-
ing scans at the code level and finding flaws early in the development process. Developers
are too often neglected in support tools compared to what is available to ordinary users.
Developers have more complex security challenges than ever and need all the help they
can get.

Reax is developed as a specific security tool to control information flow in Java pro-
grams by synthesizing conditions under which a method or an application is secure. The
problem is that Reax does not provide enough information about the root cause of se-
curity violations. Moreover, Reax produces a complex security guard (conditions under
which a method or an application is secure). The main goal of this project is to produce
a root cause analysis algorithm to find the root cause of violations and simplify the pro-
duced security guard to be usable by developers. To demonstrate the result, we produce
a plugin to integrate the engine with Java IDEs and help developers check the security of
their code employing the core engine. The plugin is called Secure_Development_Plugin,
which works with an engine that is implemented using Soot Code Analyzer and Reax to
analyze Java programs at the byte-code level.

As a result, the project develops a tool (as a prototype) that assists developers engaged
in the most varied tasks in a dynamic environment in performing SAST operations using
Reax. The project implemented the prototype by integrating Reax with Java IDEs. As
further assistance on tasks that will always remain a work in progress, one step ahead of
failure, a root cause analysis will be advanced to find the reasons for security violations.
Hopefully, this will give developers a deeper understanding of the nature of the security
violations and make finding solutions more efficient.

1.1 Background

In information technology, a vulnerability is a flaw or weakness in code or design that
creates a potential point of security compromise for an endpoint or network [2]. One or
more attackers exploit a vulnerability to violate the system’s security policy [2].
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In the early 2000s, personal computers became an essential part of our lives. Similarly,
the Internet has become widely used. Thus, the use of internet applications has become
widespread. This fact has led to an increase in the number of attackers. These attackers
exploit vulnerabilities in applications. As a result, secure development has become an
integral part of the program development process[3].

Web applications are vulnerable to violations. Those programs are highly vulnerable
to hacking through many attacks [4]. In many cases, developers fail to protect confidential
information from leakage. Moreover, developers fail to protect their applications from
untrusted inputs in many cases. Here are the most critical web application security risks
for 2021 [5]:

• Broken Access Control

• Cryptographic Failures

• Injection

• Insecure Design

• Security Misconfiguration

• Vulnerable & Outdated Components

• Identification & Authentication Fail-
ures

• Software & Data Integrity Failures

• Security Logging & Monitoring Fail-
ures

• Server-Side Request Forgery

Secure development helps in avoiding such violations by performing security testing.
The testing should be performed during the development phase, not as the final develop-
ment step. The testing confirms that the security controls run as expected. The testing
includes the original security requirements, common security issues, and specially devel-
oped security controls [6]. Secure development helps developers detect vulnerabilities in
the early stages of development and avoid the high costs of later security flaws detection
and repair.

Secure Development Lifecycle (SDL) [7] is a way to avoid the introduction of security
vulnerabilities, defects, bugs, and logic flaws which are the primary cause of software
vulnerabilities. Attackers commonly exploit these vulnerabilities [7]. SDL is a standard
approach where security should be a top priority during the software lifecycle [8]. An
SDL is a process that consists of many phases. Companies produced a lot of SDLs.
Most SDLs include the same primary security phases [8]. The standard SDL includes
requirements, design, implementation, test, and release. The standard SDL is similar to
the waterfall approach [8].

As a result of Bill Gates’s memo, Microsoft unleashed SDL. SDL became mandatory
at Microsoft in 2004 [8]. Many other companies used the same approach as Microsoft’s
SDL processes or created their own.

1.2 Related work

Several previous research has been conducted on cyber security and software vulnerabil-
ity to find effective ways to help programmers code securely. Studies proposed various
algorithms and models to help identify insecure code. Zhang and Myers proposed a new
algorithm called SHErrLoc to help programmers identify errors [9]. SHErLock intro-
duces a general way to find programmer mistakes by performing static and information
flow analysis. The analysis searches for unsatisfiable constraints in programmers’ code.
Then it tries to identify the program expressions most likely to cause unsatisfiability. A
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graph representation of the constraint system identifies the result. Their work is very sim-
ilar to the work in this project. This project also performs a static and information flow
analysis. Such analysis defines unsatisfiable constraints and the root cause of unsatisfiable
constraints. Moreover, In this project, a graphical tool presents the root cause.

The developers need to enforce security constraints at the coding level to control the
information flow [10]. Pullicino proposed a java extension tool called JIF to help the
developer identify common security issues during the software development life cycle.
JIF is a security-typed programming language that extends Java. It supports information
flow control and access control, enforced at compile and run time. The developer can
specify confidentiality and integrity policies for the various variables in their code.

During coding, developers need to perform optimizations and remove unnecessary
synchronization and perform stack-based allocation of objects. This approach helps un-
derstand what object addresses that reference variables store. Giiffhorn and Hammer
introduced JOANA to perform Points-to analysis, which optimizes the Java compilers
[11]. JOANA is a program analysis infrastructure for the Java language. It is available
as a plugin for Eclipse. The developer can navigate through dependence graphs for the
entire Java bytecode. It uses algorithms for language-based security to check programs
for information leaks.

Applications developed by various programmers often integrate services from dif-
ferent providers using third-party code. However, this opens a loophole as the third-
party code may not respect the developed application’s security and privacy. As a re-
sult, information flow tracking for secure information flow. In their study Hedi, Bellow
and Sabelfeld proposed [12]. The tool was used to track the use of sensitive informa-
tion in web applications such as the browser. It is a security-enhanced JavaScript inter-
preter for fine-grained tracking of information flow. The purpose of JSFlow is to enforce
information-flow policies for the whole JavaScript language and track information in the
presence of libraries.

The main problems of these tools:

• They often produce false-positive or false-negative results. E.g., a study of the
use of SherLock to identify synchronizations found that the feedback information
showed incorrect synchronizations [13]. Every false synchronization recorded rep-
resents an actual problem that the tool missed to identify. Similarly, JSFlow requires
a balance of design complexity and usability, allowing permissive enforcement and
library complexity. The algorithm is imprecise; hence it rejects too many secure
programs [14]. Likewise, JOANA has the limitation of giving out false positives
when the Information Flow Control (IFC) technique is used to evaluate interference
[15]. An evaluation was conducted by FILHO [15], using a System Dependence
Graph (SDG) in JOANA to conduct information flow in Java programs. The eval-
uation determined that in 64% of the cases evaluated, there was information flow
in merged programs from same-method contributions by developers, but in manual
analysis of 35 of these cases with information flow, interference was recorded in 15
of them only.

• They cannot find every class of vulnerability. E.g SHErrLoc uses Bayesian pre-
diction and constraint graph hence less precision in error identification [16]. The
model is more likely to identify only the compiler-generated constraints.

• Most of these categories of approaches introduce no information flow. The above
algorithm does not predict violations that cause a leak of sensitive information.
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As a result, it is challenging to enforce countermeasures to avoid leakages [17].
The complexity of tools such as SHErrLoc, and JOANA, among others, makes it
difficult for the developers to predict the sources of security violations. In contrast,
this project uses SCFG (a result of SootCodeAnalyzer) to find the root cause of
security flaws via the proposed algorithms.

• As mentioned, some of them use algorithms for language-based security to check
programs for information leaks. For instance, JOANA only analyses Java pro-
grams. JID is a Java programming extension, while JSFlow tracks information in
JavaScript. While the proposed algorithm in this project is not related to a specific
language, the same approach can apply to all languages.

For that, an additional tool is built to detect vulnerabilities. The tool is called Reax.
Reax is built on a proven approach to detect vulnerabilities [18]. Reax is produced to
compute a maximally permissive controller by converting all variables to Boolean. It
generates security guards to monitor code using symbolic control flow graphs. More-
over, Reax can compute controller handling numerical aspect. The problem is that Reax
does not provide enough information about the root cause of security violations. More-
over, Reax produces a complex security guard (conditions under which a method or an
application is secure).

1.3 Problem formulation

It is often not efficient to depend on developers to fix applications’ security vulnerabili-
ties. For instance, it is time-consuming to find and fix each vulnerability, and the lack of
experience of developers. Reax is a synthesis tool that synthesizes security guards under
which a method/application is secure. Reax does not provide enough information about
the reasons for security violations. This project aims to introduce a root cause analysis
algorithm to find the reasons for violations and demonstrate the result by integrating Reax
and the introduced algorithm with Java IDEs. This project produces a plugin (as a pro-
totype) to help developers check their code’s security. The plug-in are implemented and
called SecureDevelopmentPlugin. The plugin works with an engine that uses SootCode-
Analyzer and Reax to analyze Java programs at the byte-code level. The plugin will help
perform advanced checks on developer code to identify the source of security flaws using
a graphical interface. The graphs make it easier for developers to understand the security
flaw and fix it easily.

The engine is already implemented and consists of SootCodeAnalyzer and Reax.
The engine analyzes the security of programs and source code. Two of the analysis
results are SCFG and the security guard. This project analyzes the engine’s results.
The project integrates this engine with Java IDEs, simplifies the produced security
guard to be usable by developers, and analyzes SCFG (a result of SootCodeAna-
lyzer) to find the root cause of security flaws via the proposed algorithms.

1.4 Motivation

During the software development lifecycle, it is important to perform static application
security testing (SAST), the efficiency of which depends on the tools used. For this pur-
pose, Reax is developed. Reax makes use of formal methods to provide formal guaran-
tees making them dependable and promising. The problem is that Reax does not provide
enough information about the root cause of security violations. Moreover, Reax produces
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a complex security guard (conditions under which a method or an application is secure).
The main goal of this project is to produce a root cause analysis algorithm to find the root
cause of violations and simplify the produced security guard to be usable by developers.
Another contribution of this project is to integrate Reax with Java IDEs. As a result,
developers will be able to perform SAST using Reax without leaving the development
environment.

1.5 Objectives

O1 Develop and implement a new algorithm to find the root cause of
security violations.

O2 Find a solution to simplify the result of Reax (the security guard) to
be readable and usable by developers.

O3 Demonstrating the solutions by Integrating Reax and the algorithm in
the development environment, i.e., as a Plug-in.

1.6 Scope/Limitation

There are many approaches and algorithms to detect software security flaws. Therefore, it
is impossible to implement and compare all possible methods and algorithms. The project
is essentially built to be compatible with Eclipse. Then it is extended to be compatible
with IntelliJ. However, extending the plugin to be compatible with any Java IDE is easy.
Therefore, the plugin is limited to Java IDEs.

Unfortunately, within the period allocated to the project, it is not easy to provide a
stable version in the practical field and software building. Therefore, the work that is
done in this project can be tested only with simple code. However, this report explains
how developers can extend that work to run the tool on more complex code.

The input for the introduced algorithm (that finds the root cause of security violations)
is SCFG generated by SootCodeAnalyzer (the tool that prepares Reax’s inputs). There-
fore, the algorithm is limited to using tools that generate such SCFG for its outputs. SCFG
is explained in Section 2.

1.7 Target group

The primary target group of this project is software development companies concerned
with improving software security or producing software that is immune to hackers. This
target group could also include individual researchers and developers interested in this
field.

1.8 Outline

Section 2 defines the various tools and methodologies employed in this project, including
Security Control Flow Model (SCFG), Reax, and Eclipse. Section 3 outlines the specific
methodology employed to complete the project. Section 4 illustrates the proposed algo-
rithm to find the root cause of security violations, in addition to illustrating the solution
to simplify the result of Reax (the security guard). Section 5 illustrates the specific ar-
chitecture and implementation of a Reax support Secure_Development_Plugin. Section
6 outlines the result and analysis of the project. Section 7 provides a discussion of the
project. Section 8 Conclusion.
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2 Background

Information flow control (IFC)
Two aspects of Security are confidentiality and integrity. A confidentiality policy guaran-
tees that secret information will not be exposed to attackers. In the context of software
programs, this means that the output observed by the attackers is not influenced by the
input confidential information [19]. Integrity is the dual of confidentiality, i.e., the data is
not modified by unauthorized and untrusted data provided to the system [20].

Information flow control (IFC) is producing and applying a policy that regulates infor-
mation flow to prevent attackers from inferring or discovering confidential input data by
observing system outputs [19]. In addition to enforcing integrity by tracking the tainted
and untainted status of variables throughout the control flow of the application [20]. Fur-
thermore, several techniques have been proposed to enforce information flow policies.

SAST-tools can detect many types of vulnerabilities. For instance, SAST-tools per-
form an analysis to track the tainted and untainted status of variables throughout the con-
trol flow of the application [20]. A vulnerability will be reported if a tainted variable I
is used in a sensitive statement. Similarly, SAST-tools can also track the confidential and
non-confidential status of variables throughout the application’s control flow and report a
vulnerability if a confidential variable is used in a sink statement (function or method that
could cause an information leakage to its parameters).

Currently, there are multiple approaches to restrict the unintended disclosure of data.
E.g., access control and cryptography. These mechanisms limit the release of the informa-
tion [19]. Mainly, two classes of approaches exist [21]. The first approach is a run-time
artifact that connects the data with information flow labels developed in programming
languages as well as the operating system level [21]. The second mechanism is a static
mechanism for analyzing data flow.[21].

The tool Reax has been developed to perform static analysis. Reax is a tool to per-
form a discrete controller synthesis for logico-numerical programs via abstract interpre-
tation [18]. To analyze security, Reax follows a new approach. The new approach has
proposed utilizing a permissive monitor using boolean supervisory controller synthesis
that observes a Java program at certain checkpoints and predicts security flaws [17]. A
permissive monitor is required for the following reason. Consider a method with two
branches where the first branch is secure, whereas the second is not secure. Security-type
systems, one of the main techniques for static analysis, reject this program completely.
As opposed to the new permissive monitor, which shows that the method is secure under
specific circumstances [17].

The new approach relies on boolean supervisory controller synthesis [22] to produce
a monitor that monitors a program written in Java or its subset languages at certain check-
points. In addition to producing an executable model of the monitored program. The
executable model includes only observation points and checkpoints[17]. It is proved that
the method is correct and enforces localized delimited release [23]. The new approach
can expect future information flow for Java programs at a predefined checkpoints [17].

2.1 Security Control Flow Graph (SCFG)

The new approach follows the Jimple IR generated by Soot and assigns a security type to
each variable. The security type of a variable may change based on the information flow
(i.e., statements in Jimple). The set of security type is {H,L} or {HIGH, LOW}. SCFG
shows the security semantics of a program is represented by G = ⟨L, V, I, l0, v0,∆⟩ as
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illustrated in [17]. L are the set of configurations. V the state variables. I the uncontrol-
lable inputs. ∆ is defined using specific rules [17]. Configurations is defined as a stack
σ0: . . . : σn of currently active contexts. σk where 0 ≤ k ≤ n represents a statement in a
method or block of instructions. An uncontrollable input is an input that not be prevented
from occurring in a system. Controllable inputs are inputs that the controller issues to
control the system behavior.

Figure 2.1 is an example of simple code and the generated SCFG. According to the
generated SCFG, x inherits parA, and then y inherits x. As a result, if parA is a confi-
dential parameter, y will carry sensitive information. Therefore, at location 2 (print(y)),
will be a leakage for sensitive information.

Figure 2.1: SCFG and Security updates.

In the proposed algorithm in this project, SCFG is one of the algorithm’s primary in-
puts. The algorithm will utilize security updates in SCFG to find the root cause of security
flaws.

2.2 Monitor Synthesis

In this section, the two steps of Monitor Synthesis will be explained.

2.2.1 Step 1- Generating Checkpoint Security Guards

The program is insecure if it arrives at an observation point and the policies have been
violated at that point [17]. An observation point is either a third-party method call or
the exit point of an un-executed branch where the other branch contains a third-party
method call [17]. Each branch guard should be propagated along its path to its controlling
checkpoint to obtain the security guards for a program or a method, [17].
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2.2.2 Step 2- Monitor Construction

In the checkpoints, if the security guards produced in the first step allow the execution pro-
gram to continue its execution to the next checkpoint. Otherwise, action will be applied
to prevent the violation [17]. The new approach aims to develop a tool, Soot Code Ana-
lyzer (SootCodeAnalyzer), to monitor the execution of Java programs at specific check-
points dynamically and Statically. Dynamically, the tool detects the violations and unsafe
branches during the execution of the program and applies suitable countermeasures. The
tool can apply the countermeasure automatically if there is a preferred solution. Other-
wise, it asks the user to make a decision. Statically, the tool analysis is done after coding
and before executing the assigned codes. Along the lines of this thesis and its limitations,
given that there follow coding and its verification and not a system in dynamic use. At
issue, therefore, is the source code, looking for errors and such non-complying rules to
ensure proper coding standards and conventions are used to construct the program.

The main dependencies for SootCodeAnalyzer are Reax and Soot. The steps of the
static analysis (figure 2.2 presents the steps):

• Transform the java code to Jimple code using “Soot”.

• Use “Soot” again to produce a control flow graph of each method.

• SootCodeAnalyzer produces a Security Control Flow Graph (SCFG) for each method.

• SootCodeAnalyzer produces the input for the Reax tool.

• SootCodeAnalyzer sends the input to the Reax tool and receives the result.

• The result will be saved in a map object as “Propagated Guards”.

Figure 2.2: Steps of the static monitoring shown as a graph.
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2.3 Code Handling

To understand how the tool manipulates methods, the methods will be represented as
boxes and arrows connecting them. Each box represents a basic block (a group of state-
ments where there is no jump statement).

To illustrate that, consider the method and its flow chart 2.3. We can identify two
jump statements (“if” statements). We can represent the method by keeping the boxes
and writing the conditions of the “if” statements on the tracks directly, as in Figure 2.4.
The execution can follow one of four tracks. By looking at the last figure, it is clear that
there is no jump statement in the boxes anymore. Therefore, it is possible to compile all
statements of each track in one box as in Figure2.5.

Figure 2.3: Method with jump statements, four branches.
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Figure 2.4: Method with jump statements, four branches.

There are four tracks. The first three tracks have at least one "print" statement. The
question is; assuming that "a" and "b" are confidential information, is the given
method secure?
The print statements in the first three tracks give the attacker valuable information. For
instance, if the program prints "no enough money" without printing the value of z, an
attacker would be able to conclude that a+b<2000 and b<1000. This behavior leads to
another question Is the fourth path secure?
The fourth path does not have a print statement. The fourth path is secure if the other
paths do not exist. However, because of the other paths, the fourth path also becomes
insecure. In the given method, if the program did not print anything, the hackers will be
able to conclude that a+b<2000 and b>1000. As a result, the given method as a whole is
insecure.
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Figure 2.5: Method with jump statements, four branches.

To motivate the developer to use the static monitoring tool, the developer should
be able to integrate the tool with the commonly used java programming programs like
Eclipse.

2.4 The Provided Engine (Reax)

At the beginning of this project, the provided engine consisted of two tools (SootCode-
Analyzer and Reax). SootCodeAnalyzer is the tool that is used to prepare Reax’s inputs.
In this module, SootCodeAnalyzer generates SCFG for the given method. SootCodeAn-
alyzer analyzes each statement in the method. If the statements are not an invocation of
another method, SootCodeAnalyzer analyzes the statements according to their behavior
(the behavior differs according to the statements). Whereas if the statement is a method
(i.e., an invocation to another method), SootCodeAnalyzer will replace the method with
its body. As a result, the generated SCFG will not contain any invoked method.

There is much-related work in this area. The main problems with these tools are that
(i) They often produce false-positive or false-negative results. In addition, they cannot
find every class of vulnerability. In contrast, Reax is a tool that is built on a proven ap-
proach to detecting vulnerabilities. (ii) Most of these categories of approaches introduce
no information flow. In comparison, this project uses SCFG (a result of SootCodeAna-
lyzer) to find the root cause of security flaws via the proposed algorithms. (iii) Some of
them use algorithms for language-based security to check programs for information leaks.
While the proposed algorithm in this project is not related to a specific language, the same
approach can apply to all languages.
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2.5 Objectives of a solution

This project has three objectives

• Develop and implement a new algorithm to find the root cause of security violations.
That is because Reax does not produce enough information about the root cause of
security violations in a program 1.3. The development of this new algorithm will
address this.

• Find a solution to simplify the result of Reax (the security guard) to be readable and
usable by developers. That is because Reax produces a complex security guard 1.2.
This project will make the newly produced security guard simple to use by program
developers.

• Demonstrating the solutions by Integrating Reax and the algorithm with Java IDEs
produces a plugin (as a prototype) to help developers check and identify the security
of their code during coding. The plug-in are implemented and called SecureDevel-
opmentPlugin.

As a result, the project will produce a Static Analysis Security Testing (SAST). SAST
tools are automated tools developed to test the code during the implementation phase [8].
SAST tools perform automated testing and analysis of program source code to identify
security flaws in applications [8]. SASTs help programmers follow some guides in SDL
to ensure the security of their code. There are many advantages to this type of testing.
For example, it does not rely on run time environment. In addition, it is possible to plug
SAST-tools directly into IDE to help developers to find security flaws without leaving the
IDE environment. SAST-tools solve many problems. Some of these problems, according
to Chris Romeo [8] are:

• SAST-tools help developers to detect security flaws in the early stages of develop-
ment. These tools help developers avoid later security flaws detection and repair
costs.

• Avoid repeating known mistakes.

• Customers will have an assurance that the product is secure.

• In addition to catching bugs and viewing the security flaws directly to developers
will encourage them to perform additional analysis. As a result, developers will
learn to produce secure code.
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3 Method

This chapter will explain the scientific approaches to achieving the objectives. Moreover,
This chapter discusses the reliability and validity of the project.

This research follows the Design Science method in order to reach the research results.
The main goal of design science research is to develop knowledge that the discipline
professionals in question can use to design solutions for their field problems. According
to Hevner, the primary purpose of design science research is achieving knowledge and
understanding of a problem domain by building and application of a designed artifact[24].
To apply the Design Science method, the project follows the design science research
process (DSRP). DSRP is a model for producing and presenting information systems
research[25]. This project will cover the following six steps in DS that are illustrated in
the figure 3.6.

Figure 3.6: Design Science Method

• Problem identification and motivation: the project will start with the identification
of the problem. The project will review some security problems and highlight the
most important of these problems. Practical problems will be identified at this stage.
Then the existing models to solve these problems will be evaluated to establish their
problems and why they do not perform as required.

• Objectives of a solution: the project will embark on solving the identified problem
in the previous phases. This requires a solution to be developed. The solution to be
developed must have objectives to be met to measure the success of the solution in
solving the problem

• Design and development: the proposed solution to the problem will be designed
and developed in line with the set objectives. In the beginning, the project will
design and develop a new algorithm that will be used to find the root cause of
security violations in programs. Then the project will come up with a solution
to simplify the result of Reax (the security guard) to be readable and usable by
developers.

• Demonstration: the developed solution will be demonstrated to show how its ef-
ficacy. This will establish how the solution achieves the set objectives and how it
solved the already identified problem. To achieve that, the project will integrate
Reax and the new algorithm with Java IDEs by implementing a new tool (as an
Eclipse plugin) to test the produced solutions.

• Evaluation: the project will check the results of the demonstration step to see how
well the solutions solve the problem. In addition to evaluating the solution’s effi-
ciency and effectiveness.
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• Communication: at the end, the project will share information about the problem,
the set objectives, design and development, analysis, results, discussion, and con-
clusion for this report. In addition to suggesting future work to be carried out on
the project.

As a result, the project will propose and implement an algorithm to find the root cause
of security violations. The algorithm will find the root cause of security violations by ana-
lyzing the generated SCFG that was illustrated in the background section 2.1. Moreover,
the project will produce a new tool (as an Eclipse plugin) called SecureDevelopmentPlu-
gin. The plugin SecureDevelopmentPlugin will be compatible with (Reax). The plugin
will integrate Reax in the development environment. The plugin will use a third tool that
is called SootCoodeAnalyzer. SootCoodeAnalyzer is responsible for preparing the in-
put for Reax. The architecture for SecureDevelopmentPlugin is illustrated in the section
5.3.

The scientific method that is used to evaluate the results of this project is Verification
and Validation. The verification is achieved by performing manual tests for all require-
ments. On the other hand, to preforming the validation, the plugin was tested in its first
version in the presence of the external company Omegapoint.

3.1 Reliability and Validity

As already mentioned, SCFG is produced by SootCodeAnalyzer. SootCodeAnalyzer
are reliable. This means that each time the plugin is running for the same conditions, it
will produce the same results. As a result, the plugin is reliable as well.

All terms in this report have been explained and clarified to avoid confusion or mis-
understanding of this thesis and construct validity.

The performance of the proposed algorithms in this thesis relates to how these algo-
rithms are implemented and the programming language that is used. For this project, all
proposed algorithms are implemented in JAVA. The time complexity for the algorithm is
illustrated in section 4.1.3).

The inputs for the engine are generated by Soot [26]. Soot is a tool to translate the Java
bytecode into Jimple IR. As a result, the use of this project is limited to Java applications
(.class, .jar, and .apk). This plugin is built essentially for Eclipse. However, it could be
extended to any Java IDE, as it is illustrated in section 5.6.
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4 Implementation

This chapter discusses the implementation of the proposed solution. The chapter is di-
vided into two parts where each relates to the set objectives. The first section discusses
the implementation of the first objective. The second section discusses the implementa-
tion of the second objective. The third objective will be implemented in the next chapter
5 to demonstrate the first and second objectives.

4.1 Objective 1: Develop a new algorithm to find the root cause of security viola-
tions

As already discussed, the existing algorithms do not show the root cause of security vi-
olations. The root cause can be established by using a graphical interface that allows
the developers to identify security violations and fix them during the coding phases of
an application. This project proposes and implements an algorithm to find the root cause
of security violations. This section illustrates the algorithm’s inputs, rules, pseudocode,
complexity, and performance. The algorithm tracks the security vulnerability from the lo-
cation of the vulnerability (for instance, a leakage location) backward until the beginning
of the method. The algorithm finds how sensitive information has been transferred from
one parameter to the point of vulnerability. The result is displayed as a tree. This tree
is called a dependencies tree. As a result, the first node in the dependencies tree is the
location of the vulnerability. For instance, Figure 4.7 views an example for a dependen-
cies tree that is readable like this; at the leakage-point, there is leakage for (z). (z) inherits
the confidential-level for both (x) and (y) at the location (z = x + y). (x) inherits (parA)
at the location (x = parA). (y) inherits (parA) at the location (y = parA + 7). (parA) is
(param0). I.e. (parA) is the first parameter of the checked-method.

The algorithm has the following inputs

• SCFG that was illustrated in the background section 2.1.

• Set of all possible paths in SCFG. The set of paths is produced as explained in
Section 2.3 and Figure 2.5.

• The parameters’ initial confidential level for the method the user wants to check.

The algorithm has the following rules

• The algorithm supposes that each path could have loops with multiple branches.

• Each location in SCFG has a list of security updates.

• Each variable in the given method has a confidentiality level. This confidentiality
level could be changed only according to the security updates in SCFG.

• At the execution time of a method, each variable at each transition in the method
will have a specific confidentiality level. The confidentiality level is TRUE: T (con-
fidential) or FALSE: F (not confidential). To make it easier to follow the explanation
of the algorithm, the set of high confidentiality-level variables before each transition
is called the input at that transition. Similarly, the set of high confidentiality-level
variables after each transition is called the output at that transition.

• All transitions in the path are one of two types
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Figure 4.7: the dependencies tree that leads to security violation (i.e., The way in which
confidential information has been transferred from one parameter to the point of violation)

– Normal transition: that does not have a body (i.e single transition between
two different locations)

– Loop transition: that has a body (i.e multi transition where first_location =
last_location)

4.1.1 Algorithm’s Phases

In this section, the project will try to divide the detection of leakage’s root cause into
multiple phases. The root cause analysis algorithm aims to define whether there is infor-
mation leakage. In case of information leakage, the algorithm should define the leakage
location and find the root cause of leakage (i.e., what information is leaked and why the
leakage location has sensitive information).

The first phase in the algorithm is to define the candidate leak locations in the code and
the security policy at each leak location. SootCodeAnalyzer will provide this information
according to the given policy by the user. e.g., assuming the code have the statement
print(y), it is a candidate leakage location since it prints information. The security policy
at that location will be something like ( y ̸= TRUE ). I.e., y should not be or hold any
confidential information.

The algorithm should define whether any security policies are broken or not. The
algorithm should know the confidential level for all variables at the leakage location to
define that. Therefore, the algorithm should perform a virtual execution that simulates
the confidential-level changes for all variables. This could be achieved by executing all
security updates in SCFG from the first to the last location in the function. From the
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algorithm’s inputs and rules, the initial confidential levels of all parameters are prede-
fined by the user in addition that the confidential level for all variables could be changed
only according to the security updates in SCFG. Therefore, the algorithm will be able to
calculate the actual confidentiality level for all variables at each transition. As a result,
the confidentiality level for all variables will be known at all candidate leakage locations.
Therefore, the algorithm will be able to check whether any of the security policies are
broken or not. Consequently, the algorithm will be able to tell whether a leakage happens
or not.

As already mentioned, if there is a leakage, the algorithm should define the root cause
of leakage. Therefore, the algorithm should define why the variables at the leakage lo-
cation have sensitive information. According to algorithm rules, the confidentiality level
for any variables could be changed only according to the security updates in SCFG. That
means the variables at the leakage location gain a high confidentiality level at one or many
of the security updates at the previous transitions. For that, if the algorithm detected a
leakage at the location n (LOCn), The algorithm will trackback all security updates for
leaked variables from that location. First, the algorithm will go back one transition up
in SCFG, and check all security update at the previous location (LOCn-1) to define the
inherited sensitive variables at the location (LOCn-1). Then the algorithm will trackback
all involved sensitive variables at the location (LOCn-1) by moving one transition up to
the location (LOCn-2) and check all security updates at that location. The algorithm will
continue moving up one transition until it reaches the beginning of the function (LOC0),
where it finds the confidential parameters that are leaked.

From the above, the algorithm can be divided into four phases.

1. Find Candidate Leakage Points. This could be achieved according to the given
policy by the user and generated policies by SootCodeAnalyzer.

2. Analyze boolean changes. That means the algorithm should define the high confi-
dential level for each variable at each transition. The confidentiality level for each
variable could be changed according to the security updates in SCFG. The initial
levels at the beginning of the tested method are known. All confidential levels
should be initiated as LOW except the method’s parameters that the user marked it
as HIGH. Then the algorithm goes through the transition in the path sequentially.
At each transition, the new confidential level for each variable will be determined
according to the security update at that transition.

3. Check if there is a leakage. This could be achieved by comparing the confiden-
tiality level for each variable with the policy. If any variable security label does not
comply with the policy (i.g. if the variable has a high confidential level where the
policy says it should be at a low level), that means there is leakage at this transition
for this variable.

4. Track back all leakages from the leakage-point until the beginning of the method.
That means if there is leakage for a variable at a specific transition (according to
the previous step), the algorithm tries to find why this variable is at a high confi-
dential level at that transition. This is achieved by going back one transition and
checking if the variable inherits any other variable with a high confidentiality level.
The algorithm continues to go back one transition until finding all variables were
inherited. This approach is guaranteed since it is impossible that a confidential level
is changed without being affected by a secure update at a specific transition (unless
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this variable is a high confidential parameter from the beginning of the method).
This way, the algorithm will be able to define at which transition a variable inher-
ited sensitive information and what the inherited variables are.

To understand the algorithm, consider the simple method in Figure 4.8. The results of
applying the four phases of the algorithm are as the following:

Figure 4.8: SCFG and Security updates.

1. Find Candidate Leakage Points. A policy in this program is that all parameters
of the method (print) will be exposed to observers. Therefore, location (2) is a
leakage point, and y should not carry sensitive information.

2. Analyze boolean changes. The algorithm goes through all locations and defines
the confidentiality of each variable. At location 0, the developer should define the
confidential parameters. In our example, parA is confidential parameter. According
to the security-updates, x inherits parA (i.e at location 1, x and parA will have
confidential information). Similarly, according to the security-updates, y inherits x
(i.e at location 2, x, y and parA will have confidential information).

3. Check if there is a leakage. According to step 1, y should not carry confidential
information at the location (2). Nevertheless, according to step 2, y carries con-
fidential information. As a result, the algorithm decides that there is a leakage at
location 2.

4. Track back all leakages. The algorithm will trackback the leakage from location
(2) until the beginning of the method to define where y inherited confidential infor-
mation. Therefore, the algorithm goes back one location and finds that y inherits x.
Then, the algorithm continues to go back until defining where x inherited confiden-
tial information. The algorithm will find that x inherits parA. Finally, the algorithm
finds that parA is the method’s first parameter. As a result, the dependencies tree
for that method will be as in Figure 4.9
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Figure 4.9: The dependencies tree that leads to security violation in the method in Figure
4.8

4.1.2 Algorithm’s Pseudo-code

This section discusses and analyzes the four phases of the root cause analysis algorithm
to generate the corresponding pseudo-code.

The first phase in the algorithm is Find Candidate Leakage Points. As already men-
tioned, SootCodeAnalyzer provides the security policy at each leakage point. Therefore,
the pseudo-code for this phase is straightforward and illustrated at pseudo-code phase 1.

pseudocode phase 1: Find Leakage Points
foreach leakage location lk ∈ securityPolicies do

Mark the corresponding transition in the path as leakage point;

The second phase in the algorithm is Analyze boolean changes. In this phase, the
algorithm will execute SCFG for each path virtually. As a start, the algorithm considers
all variables in SCFG to have a low confidential level. Therefore, all variables will have
the value FALSE except the function’s parameters and global variables that appeared in
the security guard, and the user has defined them as sensitive variables. These variables
will have a high confidential level. I.e., they will have the value TRUE. The user is not
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required to define the confidential level for the parameters or the global variables that do
not appear in the security guard because if they do not appear on the security guard, their
confidential level does not affect the security of the function. After initiating all variables
with their initial values, the algorithm will move to the first transition (tra1) in SCFG and
process all security updates at that transition to calculate the new values for the involved
variables at that transition. Then the algorithm will move to the next transition (tra2) and
do the same. The algorithm will keep moving through transitions until it reaches the last
transition in the path. The initial pseudo-code for this phase will be like the pseudo-code
phase 2.a.

pseudocode phase 2.a: Initial pseudo-code for phase 2
Initiate all Boolean variables as false;
Define the involved variables in the security guard;
Let the developer define the sensitive variables in the security guard;
Give all sensitive variables the value true;
while the path has next transition do

tra = next transition in the path;
tra_input = set of the high variables at the begining of the transition;
tra_output = tra_inputput;
Handel the security updates at the current transition;
Update the set tra_output;

According to the algorithm’s rules, the algorithm will counter two types of transi-
tions (Normal transition and Loop transition). It is straightforward how the algorithm
will handle normal transitions. The algorithm will iterate through all security updates at
normal transitions and add all variables that turned in a high confidential level to the tran-
sition output tra_output. Vise versa, the algorithm will remove all variables that turned
in a low confidential level from the transition output tra_output. Pseudo-code phase
2.b illustrates an improved pseudo-code for phase 2 after adding how the algorithm will
handle normal transitions.

pseudocode phase 2.b: initial pseudo-code for phase 2 with normal transitions
handling

Initiate all Boolean variables as false;
Define the involved variables in the security guard;
Let the developer define the sensitive variables in the security guard;
Give all sensitive variables the value true;
while the path has next transition do

tra = next transition in the path;
tra_input = set of the high variables at the begining of the transition;
tra_output = tra_inputput;
if tra is single transition then

Security Update s_u = first Security Update in tra =;
while s_u ̸= null do

Confidintiality Level conf = solve( Right Side Of s_u);
if conf is High then

add the variable at the left side Of s_u to tra_output;
else

remove the variable at the left side Of s_u from tra_output;
s_u = Next Security Update in tra =.
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The second type of transition the algorithm could encounter is Loop transition. To
understand how the given algorithm handles loops, consider a program with a set of vari-
ables G and a loop with two branches. The input for the loop is a set X ⊆ G. The
algorithm will generate the output for each branch in the loop separately. For instance,
the output for the first branch is a set Y, and the output for the second branch is a set Z. In
this case, the output R for the loop will be the union of the three sets X, Y, and Z.
R = X ∪ Y ∪ Z
Then, the algorithm will compare the loop’s input and output (i.e., X and R). If X == R,
then the final result is R. Else, the algorithm repeats the loop with the input R. After many
iterations, the system will reach a fixed point where INPUT = OUTPUT. The worst case
is INPUT = OUTPUT = G.

The purpose of merging the results is to find the worst case. I.e., if a variable reaches
a high state at the end of any iteration or branch, it will stay high in the last result. As a
result, all variables that are candidates to be at a high level after this loop will be included
in the final result R. To make it easier to understand, consider a method that has the loop
in Code 1:

Listing 1: Loop with two branches
1 whi le ( i < 10) {
2 i f ( z < i ) {
3 a = b + 1 ;
4 } e l s e {
5 b = c + 1 ;
6 d = a + 1 ;
7 }
8 i ++;
9 }

The loop has two branches. Figure 4.10 illustrates how the algorithm reaches a fixed
point. In the given example, after four iteration R = X = {c, b, a, d}.

Figure 4.10: Two branches in Code 1.

Pseudo-code phase 2 illustrates the final pseudo-code for phase 2 after adding how the
algorithm will handle loop transitions.
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pseudocode phase 2: Final pseudo-code for phase 2 with loop transitions han-
dling

Initiate all Boolean variables as false;
Define the involved variables in the security guard;
Let the developer define the sensitive variables in the security guard;
Give all sensitive variables the value true;
while the path has next transition do

tra = next transition in the path;
tra_input = set of the high variables at the begining of the transition;
tra_output = tra_inputput;
if tra is single transition then

Security Update s_u = first Security Update in tra =;
while s_u ̸= null do

Confidintiality Level conf = solve( Right Side Of s_u);
if conf is High then

add the variable at the left side Of s_u to tra_output;
else

remove the variable at the left side Of s_u from tra_output;
s_u = Next Security Update in tra =.

else if tra is a loop then
loop_input = tra_input;
loop_output = empty_set;
while loop_input ̸= loop_output do

Result_List = empty_lest;
foreach Branch bra ∈ loop do

branch_output = execute analyzeBooleanChanges for bra
with branch_input = loop_input;

Add branch_output to Result_List;

loop_output = merge loop_input and Result_List;

tra_output = loop_output;

The third phase of the algorithm is to define whether there is any leakage or not. In
phase 1, the algorithm defined the candidate leakage locations and the security policies
at these locations. From phase 2, the algorithm knows the sensitive variables at each
location. Therefore, the algorithm can define if the policy at any location is broken by
assigning the values to variables in the policy and checking if the result is TRUE or
FALSE. Pseudo-code phase 3 illustrates the Pseudo-code for phase 3.

pseudocode phase 3: Find Leakage Points
foreach Leakage location LOCl do ; // Marked at first step

policy = policy at LOCl;
Boolean isbreaked = Check policy at LOCl;
if isbreaked then

Transition Leakage status loc_leak_status = true;
Leaked Variables Set loc_leaked_V ariables = Variables that break the
policy;

In phase 4, the algorithm will define the root cause of leakage for each leakage de-
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tected in phase 3. The algorithm will find why the variables that break the policy in phase
3 are at a high confidential level at the leakage location. The algorithm will go back one
location and check if the sensitive variable inherits any other sensitive variables. The al-
gorithm continues to go back one location until finding all variables are inherited. This
way, the algorithm will be able to define the locations where the variable inherited sensi-
tive information and what the inherited variables are. Then recursively, for each sensitive
inherited variable, the algorithm will trackback these variables until the algorithm reaches
the beginning of the function and define the inherited sensitive parameter. Pseudo-code
phase 4 illustrates the Pseudo-code for phase 4.

pseudocode phase 4: Track Back All Leakages
// First, define the recursive track function
define track(var, loc):

while there is a previous location before the location loc do
loc = the previous location;
Security Update s_u = security update ∈ loc where var is the left side;
if s_u ̸= null then

inherited_variables = all high variables in the right side of s_u;
foreach Inherted Variable inh_var ∈ inherited_variables do

track(var, loc);

// Start tracking from the leakage locations
foreach Location loc Where loc_leak_status = true do

foreach Variable var ∈ loc_leaked_V ariables do
// Track the variable var from location loc.
track(var, loc);

4.1.3 Algorithm’s Complexity

As described in the Pseudo-code, the algorithm traverses all method’s paths and solves
the security updates in each path. Then, the algorithm generates a tree for each parameter
leaked in each path. For each tree, the algorithm should traverse all security updates from
the leakage point to the beginning of the method. In the worst case, all paths have leakage
for all parameters, and the leakage points in all paths are at the end of the path (i.e., the al-
gorithm should traverse all security updates in the path). Assuming the number of param-
eters is P, the number of paths in the method is T, the number of the security updates in the
method is S, each path has nearly the maximum number of the security-updates (i.e., S).
The number of trees in the worst case will be P*T. Therefore, the algorithm will traverse
the security updates (1 + P*T) times. I.e. the algorithm will visit in the worst case ((1 +
P*T) * S) security-updates. As result, complexity = O((1+P ∗T )∗S) = O(P ∗T ∗S).’
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4.2 Objective 2: Simplify The Result Of Reax

Reax gives a complex security guard that makes it hard for developers to follow up and
understand the conditions under which a method or an application is secure. One of
thesis’s objectives is to simplify the security guard. To show the complexity of the gener-
ated security guard by Reax, consider a java method Program4.test with two parameters
(param0 and param1), two pathes (path1 and path2), and 6 locations (statements). The
method follows path1 in case a condition CON1 is true. Otherwise, the method follows
path2. path1 has the locations LOC1, LOC2, LOC4, LOC5, and LOC6. While path2
has the locations LOC1, LOC2, LOC3, and LOC6. Depending on the code, the security
guard for the method before any simplification could be something similar to the code
2. The security-guard is complex and hard to read by the developers. And as much the
method has statements, as much the complexity of the security guard.

The generated security guard by Reax is for the whole method. To simplify the
security-guard, the plugin views the security-guard for each path in the method sepa-
rately. As a result, all variable in the security-guard that has the form "LOC[number]" can
be assigned a value (ether TRUE or FALSE). That is because the locations for each
path are well known (i.e., if the location belongs to the path, the plugin replaces it with
TRUE; else, it will be replaced with FALSE). Similarly, the plugin replaces the condi-
tions in the security-guard with TRUE or FALSE depending on the path (i.e for path1,
CON1 will be TRUE. While for path2, CON1 will be FALSE). The generated security
guard is a set of boolean expressions. To simplify these expressions, the following rules
are used [27].

• Literal removal

• Negation simplification

• AND/OR de-duplication/flattening

• Child expression simplification

• Propagating AND

• De Morgan’s law

As a result, the security-guard for the path1 will be Program4_test = notparam0. While
the security-guard for the path2 will be Program4_test = TRUE. That means, path1 is
secure in case param0 is not a confidential variable. While path2 is always secure.

Listing 2: Security-Guard without simplification
l133 = ( n o t (LOC1 and LOC2) o r n o t param0 ) ;
l 134 = n o t (LOC4 and LOC5 ) ;
P r o g r a m 4 _ t e s t = ( i f CON1 t h e n l133 e l s e l134 ) ;

Listing 3: Security-Guard for path1 after simplification
/ / Se c u r e i f param0 i s n o t c o n f i d e n t i a l .
P r o g r a m 4 _ t e s t = n o t param0 ;

Listing 4: Security-Guard for path2 after simplification
P r o g r a m 4 _ t e s t = TRUE; / / Always s e c u r e .
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5 Demonstration (Design and development the plugin for Eclipse)

IBM started the development of Eclipse in 1990. IBM decided to produce a new devel-
opment platform [28]. The extensibility is the most important property of Eclipse. The
plugin system makes it easy to extend the functionality of Eclipse. Eclipse became an
open-source project in 2001. Similarly, many of the Eclipse plugins are free and open
source. However, there are some commercial tools.

5.1 Basic Architecture

To understand the basic architecture of Eclipse and where plugins can extend Eclipse,
Figure 5.11 shows workbench objects and how they look. Figure 5.12 shows how the
workbench owns views and editors. The workbench windows are the leading window
where users can open more than one workbench. Each workbench could have many ed-
itors. The editor is associated with one workbench and works on a specific input. View
belongs to the Workbench Window. However, they do not work on a specific input. Gen-
erally, the view-part displays information about the selected editor. Lastly, the perspective
specifies the arrangement of Views. When Eclipse starts, the last arrangement is restored.

Figure 5.11: Workbench objects and what they look like [29].

5.2 Eclipse Plugin Development

This section provides a brief introduction to connecting a plugin with Eclipse. Java Class
Files, Extensions, and Extension Points should be defined to produce a plugin. The Java
Class Files allow the implementation of plugin functionality. Eclipse has a class loader as
a module. The class loader does not load plugin classes if the plugin is not used. The other
item that the plugin should declare is the extension. The extensions should be well defined
and at known points. The extension points are also needed for the plugin’s work and its
functionality. A plugin can define any number of extension points. Each plugin contains
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Figure 5.12: Ownership of views and editors[29].

a manifest file (Manifest.mf) and an XML configuration file called (plugin.xml). The
plugin declares the extension points in the manifest. In comparison, it declares extensions
in the XML configuration file. The XML configuration file contains information about
the plugin, such as the plugin’s name is required plugins.

Lazy Loading is a critical feature in Eclipse. The XML and Manifest files contain
information about the extensions and the extension points. Such information and require-
ments are loaded on start-up. In contrast, the classes are only loaded when the plugin is
used. For example, if the plugin adds an item to the context menu, the XML file contains
all information, such as the name and the icon to add the item. The plugin classes will not
be loaded until the user uses the plugin.

5.3 SecureDevelopmentPlugin Design

Figure 5.13 shows the plugin architecture. The interaction between the four layers will
generate the result. Figure 5.14 Shows how layers interact with each other.

Figure 5.13: Plugin Architecture.

The first development for the plugin is designed for Eclipse. The Eclipse Platform
builds upon SWT. Therefore, the user interface of the plugin is built upon SWT. Consid-
ering that it is possible to add the SWT library to other Java IDEs, it will be easy to extend
the plugin to be compatible with other platforms. The algorithms presented in this report
are made independent of any other library.
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Figure 5.14: how layers interact with each other.

5.4 Dependencies

5.4.1 Dependencies From The Given Engine (SootCodeAnalyzer & Reax)

This project depends heavily on SootCodeAnalyzer & Reax. Therefore, an essential part
of this project is the analysis of their components and mechanisms.
SootCodeAnalyzer is a Java project that prepares the input for Reax. SootCodeAnalyzer
consists of a set of classes. Figure 5.15 shows the basic classes and the attributes that are
used by the plug-in.

Figure 5.15: SootCodeAnalyzer-classes.

• stsHelper.reaxResult: has the security guard that is generated by Reax.

• stsHelper.securityPolicies: contains information about the locations where policy
should be tested.

• stsHelper.securityVariables: contains all boolean variables that reflect the confi-
dentiality level for the corresponding variable in the original code.
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• stsHelper.propagatedGuardMaps: contains the guards that are propagated until
the first previous checkpoint.

• stsHelper.sts: presents the generated security control follow graph.

• stsHelper.unit2SrcLocation: contains information about each unit and its context
(i.e to which loop or method it belongs).

• monitor.sts: presents the generated security control follow graph after merging
the transitions that belong to one path and propagating guards up to the nearest
checkpoint.

5.4.2 Other Dependencies

The plugin depends on the other three types of dependencies (Extensions, Extension
Points, and external libraries).
Extensions: org.eclipse.core.resources.markers, org.eclipse.ui.editors.annotationTypes,
org.eclipse.ui.menus, org.eclipse.ui.handlers, org.eclipse.ui.views.
Extension Points: org.eclipse.core.runtime, org.eclipse.jface.text, org.eclipse.core.filebuffers,
org.eclipse.core.resources, org.eclipse.ui.ide, org.eclipse.jdt.core, org.eclipse.ui.
External libraries: simpleGraph.jar, sootclasses-trunk-jar-with-dependencies.jar, log4j-
1.2.17.jar, jbool_expressions-1.17.jar, antlr-runtime-3.5.2.jar, ucanaccess-4.0.4.jar, soot-
Flowdroid-2.6.jar, graphviz-java-0.8.0.jar.

5.5 SecureDevelopmentPlugin Use-Cases

The implemented plugin has the following use-cases, which are also illustrated in the
figure 5.16 below.

1. Run the plugin for a specific class.

2. Select a set of methods from the selected class to check the security.

3. Define whether the security analysis will be for Explicit-Confidential, Implicit-
Confidential, or Integrity

4. Analyze the security and simplify the result (security guard) to be readable for all
possible paths for the selected method

5. Find all violation points according to predefined confidential levels for the method’s
parameters.

6. Define to which path each violation point belongs.

7. View the dependencies tree that leads to a security violation (i.e., How confidential
information has been transferred from one parameter to the point of violation)

8. Allowing the user to apply the fix that the engine provides.
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Figure 5.16: Use Cases Diagram.

5.5.1 Implementation Of starting the plugin (Use-Case 1)

Description Run the plugin for a specific class.
Pre-Conditions Eclipse is running and the plugin is installed.
Main flow

• The user selects the class from the package explorer win-
dow and open the context menu.

• the context-menue is opened with the option "Check Secu-
rity". Figure 5.17.

• the user clicks on "Check Security".

• SecureDevelopmentPlugin is started for the selected class.

Post-Condition the start window (option window) of the plugin is opened. Figure
5.18.

On Eclipse, to add the item "Check Security" to the context menu in the package
explorer, should add the following extension to the file plugin.xml. Code5.

Listing 5: To adding the context-menu in the package explorer
1 < e x t e n s i o n
2 p o i n t =" org . e c l i p s e . u i . menus ">
3 < m e n u C o n t r i b u t i o n
4 a l l P o p u p s =" f a l s e "
5 l o c a t i o n U R I =" p o p u p : o r g . e c l i p s e . j d t . u i . P a c k a g e E x p l o r e r ? endof =

group . e d i t ">
6 <command
7 commandId=" MainAct ionHand le r "
8 i c o n =" s r c / view / i c o n s / s e c u r e I c o n . g i f "
9 l a b e l =" Check S e c u r i t y "

10 s t y l e =" push "
11 t o o l t i p =" Check S e c u r i t y ">
12 < v i s i b l e W h e n >
13 < i t e r a t e o p e r a t o r =" and " i fEmpty =" f a l s e ">
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14 < or >
15 < a d a p t t y p e =" org . e c l i p s e . c o r e . r e s o u r c e s . I R e s o u r c e ">
16 < or >
17 < t e s t p r o p e r t y =" org . e c l i p s e . c o r e . r e s o u r c e s .

name " v a l u e =" * . j a v a " / >
18 < / o r >
19 < / a d a p t >
20 < a d a p t t y p e =" org . e c l i p s e . j f a c e . t e x t . I T e x t S e l e c t i o n "

/ >
21 < / o r >
22 < / i t e r a t e >
23 < / v i s i b l e W h e n >
24 < / command>
25 < / m e n u C o n t r i b u t i o n >
26 < / e x t e n s i o n >

Figure 5.17: Context Menue For A Class.

5.5.2 Implementation Of selecting methods (Use-Case 2)

Description Select a set of methods from the selected class to check the secu-
rity.

Pre-Conditions Use-Case 1.
Main flow

• The user selects a method from the box "All Methods".

• the user click the bottom "–»" to add the method to the box
"Methods To Check"

• the method will be added to the box "Methods To Check"

Post-Condition the methods that the user want to check are added to the box
"Methods To Check". Figure 5.18.
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Figure 5.18: Option Window.

5.5.3 Implementation Of setting the options of an analyzing (Use-Case 3)

Description Define whether the security analyzing will be for Explicit-
Confidential, Implicit-Confidential, or Integrity.

Pre-Conditions Use-Case 1.
Main flow

• The user selects security check options in the start window.

Post-Condition the desired-options are selected. Figure 5.18.

The configuration in this window will be transferred to the object "SynthesisConfigu-
ratons" in SootCodeAnalyzer. Code 6.

Listing 6: Transfering options to SootCodeAnalyzer
1 i f ( c o n i f i d e n t i a l i t y R a d i o . g e t S e l e c t i o n ( ) ) {
2 e x C o n i f i d e n t i a l i t y = e x p l i c i t R a d i o . g e t S e l e c t i o n ( ) ;
3 i m C o n i f i d e n t i a l i t y = i m p l i c i t R a d i o . g e t S e l e c t i o n ( ) ;
4 }
5 e l s e {
6 i n t e g r i t y = i n t e g r i t y R a d i o . g e t S e l e c t i o n ( ) ;
7 }
8 i sMode lRunFreeVer s ion = f r e e V e r s i o n C h e c k . g e t S e l e c t i o n ( ) ;
9 Tool main = new Tool ( e x C o n i f i d e n t i a l i t y , i m C o n i f i d e n t i a l i t y ,

i n t e g r i t y , i sMode lRunFreeVer s ion ) ;
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5.5.4 Implementation Of viewing and simplifying the security guard (Use-Case 4)

Description Analyze the security and simplify the result (security guard) to be
readable for all possible paths for the selected method.

Pre-Conditions Use-Case 2.
Main flow

• In the start window, the user clicks the button "Start".

• The plugin opens the first result window (Security-Guard
Result Window).

• The plugin views the simplified-result (the security guard
for each path in the method).

Post-Condition the security guard for each path is viewed. Figure 5.19.

Figure 5.19 illustrates the Security-Guard for the first path for the method test(...).
The security guard for this path is "!param0 & !pc". param0 is the first parameter for
the selected method. I.e., param0 is parA. Pc is the confidentiality level of the location
where this method is invoked. Therefore, this path is safe if and only if the confidentiality
level of parA is low and the confidentiality level of the location from which this method
is invoked is low. Otherwise, this path is not secure.

Figure 5.19: Security-Guard Result Window. The Security-Guard for the first path for the
method test(...) after simplification.

The original security guard is complex and hard to read by the developers. For in-
stance, consider the simplified security guard for the method that is shown in figure 5.19.
The original security guard for the same method before any simplification is illustrated in
Code 7. This security guard is for the whole method. To simplify the security guard, the
plugin views the security guard for each path in the method separately. As a result, all the
security guard variables with the form "LOC[number]" will be removed. That is because
the locations for each path are well known (i.e., if the location belongs to the path, the
plugin replaces it with TRUE; else, it will be replaced with FALSE). On the other hand, in
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some cases, the security guard will be more complex since it contains some guards from
the checked method (i.e., Omega1, Omega2, etc.). By reproducing the security guards for
each path in the method, the plugin can define the guard’s value, whether it is TRUE or
FALSE.

Listing 7: Security-Guard without simplification
l 133 = ( n o t (LOC2 and LOC0) o r n o t LICtes0param0 ) ;
l 134 = n o t (LOC2 and LOC3 and LOC4 and LOC0} ) ;
P r o g r a m 4 _ t e s t _ 0 = ( i f pc t h e n l134 e l s e l133 ) ;

TO simplify the security-guard, Jbool library is used [27]. Code 8 illustrate how Jbool
simplify a boolean-equation that is given as a string.

Listing 8: simplify a boolean-equation by Jbool
1 S t r i n g s i m p l i f y ( S t r i n g s e c u r i t y G u a r d s A s O n e S t r i n g ) {
2 E x p r e s s i o n < S t r i n g > p a r s e d E x p r e s s i o n = E x p r P a r s e r . p a r s e (

s e c u r i t y G u a r d s A s O n e S t r i n g ) ;
3 p a r s e d E x p r e s s i o n = R u l e S e t . toSop ( p a r s e d E x p r e s s i o n ) ;
4 re turn p a r s e d E x p r e s s i o n . t o S t r i n g ( ) ;
5 }

TO solve boolean-equations. Code 9 illustrate how Jbool solve boolean-equations
according to given values for its variables.

Listing 9: Solving a boolean-equation by Jbool
1 boolean so lveBoo leanExp ( S t r i n g booleanExp , Map< S t r i n g , Boolean >

v a r i a b l e s ) {
2 E x p r e s s i o n < S t r i n g > e x p r e s s i o n = E x p r P a r s e r . p a r s e ( booleanExp ) ;
3 E x p r e s s i o n < S t r i n g > s o l v e d = R u l e S e t . a s s i g n ( e x p r e s s i o n ,

v a r i a b l e s ) ;
4 re turn s o l v e d . t o S t r i n g ( ) . e q u a l s ( " t r u e " ) ? t rue : f a l s e ;
5 }

5.5.5 Implementation Of finding violation points (Use-Case 5)

Description Find all violation points in a method according to predefined con-
fidential levels for its parameters.

Pre-Conditions Use-Case 4.
Main flow

• From Security-Guard Result Window, the user selects a
method and chooses to perform an addition analyze. 5.20.

• the plugin opens a new window (advanced analysis win-
dow).

• the user select under which conditions wants to performs
the additional analysis (i.e. initial confidentiality level for
method’s parameters and pc). 5.22.

• the plugin performs the analysis according to the selected
conditions and view the results.

Post-Condition Advanced-Analysis Window is opened and results is viewed. Fig-
ure 5.21.
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Note: the plugin gives the user the ability to select the confidential levels for the parame-
ters that only appears in the security-guards since other parameters do not affect the result.

Figure 5.20: The user selects a method and chooses to perform an addition analyze

Figure 5.21: Advanced-Analysis Window

Figure 5.22: The user select under which conditions wants to perform the additional
analysis
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5.5.6 Implementation Of defining paths (Use-Case 6)

Description Define to which path each violation point belongs.
Pre-Conditions Use-Case 5.
Main flow

• The user navigates to "path statements" to view the path as
a tree that reflects the source code. Figure 5.23.

Alternative
flow • The user chooses to highlight the source code that belongs

to a specific path. Figure 5.24.

Post-Condition The path is shown in the same window as a tree, or the source
code is highlighted. Figure 5.23.

Figure 5.23: Statements Tree

To reflect the source code as it is illustrated in figure 5.23, the statements that belong
to a sub-method or a loop should be grouped together. To achieve that, the plugin use the
object (SootCodeAnalyzer:stsHelper.unit2SrcLocation) which contains the context for
all transitions in SCFG.

To highlight the code in Eclipse, a marker should be created and declared by adding
the text in Code 10 to the file plugin.xml. This will create a marker with the name
"org.eclipse.viatra2.slicemarker". The plugin uses the created marker to highlight a spe-
cific line using the Code 11.
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Figure 5.24: Highlight the source code for a specific path

Listing 10: Declare a marker for Eclipse
1 < e x t e n s i o n
2 p o i n t =" org . e c l i p s e . u i . e d i t o r s . a n n o t a t i o n T y p e s ">
3 < t y p e
4 markerType=" org . e c l i p s e . v i a t r a 2 . s l i c e m a r k e r "
5 name=" org . e c l i p s e . v i a t r a 2 . s l i c e m a r k e r ">
6 < / t y p e >
7 < / e x t e n s i o n >
8 < e x t e n s i o n
9 p o i n t =" org . e c l i p s e . u i . e d i t o r s . m a r k e r A n n o t a t i o n S p e c i f i c a t i o n ">

10 < s p e c i f i c a t i o n
11 a n n o t a t i o n T y p e =" org . e c l i p s e . v i a t r a 2 . s l i c e m a r k e r "
12 c o l o r P r e f e r e n c e K e y =" org . e c l i p s e . v i a t r a 2 . s l i c e . c o l o r "
13 c o l o r P r e f e r e n c e V a l u e =" 192 ,255 ,192 "
14 c o n t r i b u t e s T o H e a d e r =" f a l s e "
15 h i g h l i g h t P r e f e r e n c e K e y =" org . e c l i p s e . v i a t r a 2 . s l i c e . h i g h l i g h t "
16 h i g h l i g h t P r e f e r e n c e V a l u e =" t r u e "
17 i n c l u d e O n P r e f e r e n c e P a g e =" t r u e "
18 l a b e l ="GTASM S l i c e Marker "
19 o v e r v i e w R u l e r P r e f e r e n c e K e y =" org . e c l i p s e . v i a t r a 2 . s l i c e .

ove rv iew "
20 o v e r v i e w R u l e r P r e f e r e n c e V a l u e =" t r u e "
21 p r e s e n t a t i o n L a y e r =" 0 "
22 t e x t P r e f e r e n c e K e y =" org . e c l i p s e . v i a t r a 2 . s l i c e . t e x t "
23 t e x t P r e f e r e n c e V a l u e =" t r u e "
24 t e x t S t y l e P r e f e r e n c e V a l u e ="BOX"
25 v e r t i c a l R u l e r P r e f e r e n c e K e y =" org . e c l i p s e . v i a t r a 2 . s l i c e . r u l e r "
26 v e r t i c a l R u l e r P r e f e r e n c e V a l u e =" t r u e ">
27 < / s p e c i f i c a t i o n >
28 < / e x t e n s i o n >

Listing 11: Use a marker to highlight a specific line
1 p u b l i c s t a t i c vo id markLine ( i n t l ineNumber ) {
2 IWorkbenchPage page = P l a t f o r m U I . getWorkbench ( ) .

getActiveWorkbenchWindow ( ) . g e t A c t i v e P a g e ( ) ;
3 I E d i t o r P a r t e d i t o r P a r t = page . g e t A c t i v e E d i t o r ( ) ;
4 I T e x t E d i t o r e d i t o r = ( I T e x t E d i t o r ) e d i t o r P a r t ;
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Security Updates JavaScript Jbool
100 200 ms 60 ms
1000 1500 ms 220 ms

Table 5.1: JavaScript VS Jbool

5 IDocument document = e d i t o r . g e t D o c u m e n t P r o v i d e r ( ) . getDocument
( e d i t o r . g e t E d i t o r I n p u t ( ) ) ;

6 IReg ion l i n e I n f o = document . g e t L i n e I n f o r m a t i o n ( l ineNumber −
1) ;

7 F i l e E d i t o r I n p u t i n p u t = ( F i l e E d i t o r I n p u t ) e d i t o r P a r t .
g e t E d i t o r I n p u t ( ) ;

8 I F i l e f i l e = i n p u t . g e t F i l e ( ) ;
9 IMarker marker = f i l e . c r e a t e M a r k e r ( " o rg . e c l i p s e . v i a t r a 2 .

s l i c e m a r k e r " ) ;
10 marker . s e t A t t r i b u t e ( IMarker . CHAR_START, l i n e I n f o . g e t O f f s e t ( ) )

;
11 marker . s e t A t t r i b u t e ( IMarker .CHAR_END, l i n e I n f o . g e t O f f s e t ( ) +

l i n e I n f o . g e t L e n g t h ( ) ) ;
12 }

5.5.7 Implementation Of creating the dependencies tree (Use-Case 7)

Description View the dependencies tree that leads to security violation (i.e.,
How confidential information has been transferred from one pa-
rameter to the point of violation)

Pre-Conditions Use-Case 5.
Main flow

• The user selects a specific violation point.

• The user chooses to view the dependencies tree.

• The plugin views the dependencies tree.

Post-Condition the dependencies tree for a specific violation-point is viewed. Fig-
ure 4.7.

Performance of creating the dependencies tree
As section 4.1.3 shows, the algorithm visits security updates many times. Therefore, the
visiting time for each security update should be reduced to improve the performance.
There are two alternatives to handle security updates

• JavaScript: the plugin is implemented by Java. Java has an embedded JavaScript
engine that can be initiated and executed to handle the security updates.

• the external library Jbool [27].

To define the best alternative, both JavaScript and Jbool were tested to handle a path with
100 update-securities and one thousand update-securities. The result is illustrated in the
table 5.1

It is evident that Jbool is faster and improves the algorithm’s performance. Therefore,
Jbool is chosen to handle security updates.
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5.5.8 Implementation Of applying a fix (Use-Case 8)

The fixing and the fixing process are a part of SootCodeAnalyzer, which is out of this
project. This project is just preparing the input for the fixing process. Therefore, there
is no verification for the result of the fixing process. The verification is only to ensure
that the input for the fixing process is correct and that the fixing process can start usually.

Description Allowing the user to apply the fix that SootCodeAnalyze provide.
Pre-Conditions Eclipse is running and the plugin is installed.
Main flow

• The user select a project from package explorer window and
open the context-menue.

• the context-menue is opened with the option "Fix Security".
Figure 5.25.

• the user clicks on "Fix Security".

• SecureDevelopmentPlugin is started for the selected
project.

• An window to select the entry point is opened "fixing-
window" 5.26.

• The user define the entry point clicks "Start Fixing".

• SootCodeAnalyzer statrt apply the fixing.

Post-Condition SootCodeAnalyzer applied the fixing.

Figure 5.25: Context Menue For A Project.

All project classes are located in a list to the left of the fixing window. When the
developer selects a class, all methods in that class will be displayed in a drop-list on the
right of the window. The developer should select one method as an entry point. In the
fixing window, the user should define the entry point manually. Here are some suggestions
for automating this process

• Search for the method "public static void main(String[] args)". The problem with
this approach

– Some Java projects do not have such a method. For instance, libraries that will
be used in other applications.
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Figure 5.26: Fixing Window.

– Sometimes, developers create the main method in many classes for test pur-
poses.

• Generate the call graph for the project (i.e., a graph that illustrates all project’s
methods with an edge from each method to all its sub-methods). Then the entry
point is the method without any inner edge. The problem with this approach

– it could be time-consuming for big projects.

– Some Java projects do not have an entry point. For instance, libraries that will
be used in other applications.

• The developers mark the entry points with a specific annotation. The problem with
this approach

– Still needs user input.

To check a method, the plugin invokes SootCoodAnalyzer to generate Reax’s input.
Then Reax performs a manipulation and produces an output. The process needs consid-
erable time. Therefore, a database is created to avoid re-running the entire process for a
method if no change has been made to the method since the last manipulation.

To keep the installation and the using of the plugin simple, it is decided to save the
database locally as access file (i.e., file of the type ".mdb"). The database has only one
table with the following columns.

• MethodName (Short Text : 255 char): that should be unique. The best choice is
to use the entire declaration for the method (i.e., full package name, class name,
method name, return type, and parameters).

• MethodHash (Short Text: 255 char): according to this field, the plugin decides
whether the method has changed or not. The approach for generating Method-Hash
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could be changed simply by modifying the method
model.ClassAnalyzer.MethodWithBody.generateHashSignature() in the plugin.

• CheckType (Short Text : 255 char): to save for which options this method was
checked (i.e. Explicit-Confidential, Implicit-Confidential, Integrity ...etc).

• SecureState (Long Text: 230−1 bytes): is the complete result of the analysis which
is done by the plugin. The result is saved in binary form.

To implement this function, two external libraries are used.

• jackcess-2.1.2.jar: to initiate an empty access file.

• ucanaccess-4.0.4.jar: depends on Jackcess and HSQLDB. This driver allows the
plugin to read/write Microsoft Access databases.

Figure 5.27 illustrate the interaction between components in case database is involved.

Figure 5.27: Interacts between components in case database is involved.

5.6 Possible Extensions

This project is finished on top of Eclipse. It is extended to run on top of IntelliJ. IntelliJ
is also an open-source project developed by JetBrains. The plugin can be extended to run
on top of any Java IDE. The interfaces of the plugin depend heavily on SWT. Therefore,
the view does not need many changes to be compatible with any Java IDE. The significant
change is in two classes responsible for the interaction between the plugin and IDE. These
two classes are

• model.SelectedItem: this class is responsible for getting information from Eclipse
about the selected project or class. For instance, project path, package name, com-
pile target, file path, dependencies libraries, etc.

• model.classAnalyzer.classMoifier: this class is responsible for sending informa-
tion from the plugin to Eclipse. For instance, select the source code, highlight the
source code, add an annotation to a method, etc.

It is enough to produce a new version of these two classes to make the plugin compatible
with any other IDE.
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6 Results And Analysis

This chapter collects the results of the demonstration of the implemented algorithm in the
previous chapter. The results are then analyzed to establish how well they address the
research objectives.

Figure 6.28 shows a method with if-statement. As it is shown, that the highlighted
branch has a leakage for both parameters cardNumber and cvc. The dependences tree
shows that there is a leakage for the variable z at the transition print(z). In addition to
showing how z has inherited the confidential level from cardNumber and cvc. This infor-
mation is very valuable for developers to solve security flaws. To fix this flaw, developer
has to break the flow from z to both cardNumber and cvc.

Figure 6.28: Method with an if statement. cardNumber and cvc are highly confidential.

Figure 6.29 shows a method with a loop. As it is shown, the highlighted branch has a
leakage for cvc. The dependences tree shows that there is a leakage for the variable z at
the transition print(z). In addition to showing how z has inherited the confidential level
from cvc. To fix this flaw, the developer has to break the flow from z to cvc. By taking
a look at the while-loop, z does not inherit confidential information since resb is still at
a low confidential level. But in the second iteration, resb has confidential information
about cvc. Therefore, z also inherited confidential information about cvc. It is clear that
the plugin is able to handle the loop efficiently.

Figure 6.30 shows a method with a loop. It is nearly similar to the previous case
in figure 6.29. However, it has a recursive dependency inside the loop. Therefore, any
change for the confidential level for z or resb inside the loop will affect the confidential
level for the other. This result shows that the plugin can handle recursive dependencies
efficiently.

Figure 6.31 shows a method with if-statement and more complex inheritance. The
result shows that there is leakage for just parA despite of z inherts information about
parB because of the condition inside if-statement (i.e. because of parB < 13). Anyway,
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Figure 6.29: Method with a loop. cvc is highly confidential.

partB does not have confidential information because of the statement (parB = 2). The
plugin was able to detect that partB will not confidential and there will be no leakage for
confidential information by partB.

Figure 6.32 shows how the previous result in figure 6.31 will be affected by removing
the statement (parB = 2). In this case, the leakage will be for both parA and parB.
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Figure 6.30: Method with a loop. cvc is highly confidential. Note the recursive depen-
dencies.

Figure 6.31: Method with if statement. ParA and ParB are highly confidential.

7 Evaluation And Discussion

This section discusses and evaluates the work that is done in this project regarding the
three objectives.
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Figure 6.32: Method with if statement. ParA and ParB are high conditional.

7.1 Objective 1: Develop a New Algorithm to Find The Root Cause of Security
Violations

A graphical algorithm was implemented with a path showing how the result is achieved.
The graphs take the results of SootCodeAnalyzer and reax, and plot a graph. that shows
the flow of the steps. The graph may have one or more paths. Each path starts from the
point of leakage, which is indicated by the broken security policy. Then it moves upwards
to the parameters in the method header. For each path in the graph, a leakage path is
drawn. The graph allows the developer to trace the source of information leakage easily.
The code is divided into branches, as shown in figure 6.31 with a graph that indicates
the status of the data carried. Some branches are secure, while others leak sensitive in-
formation. The graphs show which parameters should not carry sensitive information;
otherwise, it will be leaked. As a result, the developers can easily know the path to leak-
ages if left unattended. Then developers can identify and correct any leakage of sensitive
information and improve the code that leads to the leakage and secure sensitive informa-
tion. Compared to other algorithms and tools, most of the existing control information
tools do not use graphs to identify the root causes of a security violation. The graphical
representation gives a clear view of the issues at hand. They summarize and display the
result to facilitate analysis of the data leakage. The graphs illustrate the relationship be-
tween the leakage point and the root cause of leakage. Visual graphs offer clues allowing.
Therefore, it is expected that developers will get a big benefit from this project to produce
higher security software. This will reduce losses caused by security flaws and reduce the
cost of repairing those defects.

The root cause analysis is achieved by logically analyzing the SCFG diagram and
solving all its boolean equations. Solving these equations and expressions is performed
using known and proven logical rules to calculate the values of these expressions. Then
the algorithm tracks the changes in these values. This makes the solution reliable. There-
fore, every time we run the algorithm, it gives the same result.

7.2 Objective 2: Simplify the Result of Reax

The project analyzes the result of Reax. Reax gives developers a complex security guard.
The complex security guard of Reax makes it an un-preferred tool amongst various de-
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velopers who opt to use the complex result to know if their code is secure. The proposed
model ensures the developers can easily understand the result to determine whether the
code is secure or has a security issue. Whereas in Reax, developers cannot easily read the
result since it is a security guard for the whole code, this project takes each path in the
code separately and assign the known values in that path to the variables in the security
guard. Then it is simplified using proven laws and rules of Boolean expressions. As a
result, the security guard will not contain any confusing variables other than the func-
tion’s parameters. In this case, the security guard will tell developers what the parameter
will be leaked and should not be a confidential parameter. A simplified result means
implementing the secure code, and maintenance will be easier to achieve.

7.3 Objective 3: Integrating Reax and The Algorithm in Development Environ-
ment

To demonstrate the proposed solution, a graphical plugin was implemented. The plugin
is created, implemented, and tested in Eclipse. Eclipse is a powerful IDE for Java de-
velopers. Eclipse sends the project’s information to the plugin when a developer chooses
to check a method. The plugin sends this information to the engine. Then the engine
analyzes information and sends back the result. Then, the plugin does additional analysis
and displays the results in a graphical interface. The plugin views the result of Reax. In
addition, it performs advanced analysis on SCFG to produce an advanced result that gives
developers beneficial information to detect security flaws and avoid them. To analyze a
complex code, the plugin should be improved to be compatible with a more advanced
version of Reax that is still under development during the work on this project.

This program was developed primarily to work with Eclipse. In addition to the ability
to extend it to work with all Java IDEs by a bit of modification. To achieve that, The
graphical plugin depends on SWT environment for interfaces. In addition to isolating
functions that send/receive information to/from IDEs in two classes, as is illustrated in
section 5.6. To ensure that this plugin could be extended to other IDEs, the plugin is
improved to work with IntelliJ.

The plugin and the engine can manipulate the files (.class, .apk, .java). To achieve
that, Soot is used to translate the Java bytecode into Jimple IR. Soot could be extended
with the paths for third libraries to ensure a successful loading for the project.

The proposed algorithm that produces dependences trees needs to solve many boolean
equations (thousands in some cases). To guarantee good performance, four points are
considered

• A new structure for boolean equations was implemented.

• A comparison was performed between JavaScript and Jbool. The results of the
comparison are illustrated in table 5.1.

• The performance in this project depends on the component’s performance that is re-
sponsible for representing and handling graphs. For this purpose, a special structure
for the graph component was implemented where the complexity of most functions
is O(1). The code in Appendix A

The produced plugin has many advantages. Developers will be able to perform SAST
using Reax without leaving the development environment. This will increase the possibil-
ity of detecting security flaws in the early stages of development. This helps developers
avoid the high costs of later security flaws detection and repair. Moreover, catching bugs
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and viewing the security flaws and the root cause to developers will increase their knowl-
edge to produce secure code.

The disadvantage is that developers still need to know the confidential level of the
method’s parameters to generate the dependency tree and the root cause for security flaws.
This information is not always available to developers. Another disadvantage is that this
plugin is limited to Java applications.

Omegapoint is involved in the validation process. Omegapoint is an expert in Secure
Digital Transformation and enables secure business for its customers. The plugin was
tested in its first version in the presence of Omegapoint. They were interested in the
project. They agreed that it is promising work and seemed interested in testing the project
practically when it is ready for use in production.

Computer security will always be a work in progress, making this project a small step
forward in software security in uncovering security flaws through a graphical plugin.
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8 Conclusion and Future Work

In this thesis, we present and discuss the project results that investigate how to evaluate
and improve software system security. One of the main contributions of our work is to
develop a new algorithm to find security violations in applications and the root cause of
these violations. The goal was to produce more resilient security controls for developers.

A discussion on different related works has been provided. One of the related works
is Reax. Reax is built on a proven approach to detecting vulnerabilities. Reax generates
security guards to monitor code using symbolic control flow graphs. The problem is that
Reax does not provide enough information about the root cause of security violations.
Therefore, we decided to develop a new algorithm that takes Reax’s output as an input.
The algorithm can find security violations and the root cause of these violations.

As a second contribution, a graphical tool was developed in this project to verify
the developed algorithm. The tool performs advanced security analysis that detects and
reacts directly to security flaws. To address the security needs of developers, a boolean
supervisory controller synthesis was developed to observe Java programs at checkpoints.
At the same time, a command-line application (Reax) was integrated with the tool and
visual aid. As a result, a graphical interface tool was developed to define constraints and
the root cause that leads to security flaws.

This project and the developed tool should help developers define the vulnerabilities
and security flaws that the engine (Reax) detects. In addition to locating the root cause
that leads to vulnerabilities by the proposed algorithm in this project. This should help to
produce applications that avoid unintentional data leakage.

Security flaw detection mechanisms are still unable to detect all software code flaws.
This project is an additional step in improving this situation. The analysis of the control
flow graph offers a way to identify how sensitive information could transfer from one
variable or object to others. The control flow graph could be generated successfully for
.jar, .apk, and .class files. This makes this approach widely applicable. Researchers and
developers can take advantage of this approach by generalizing it to other programs, such
as .exe programs, and improving this approach to produce a more robust and accurate
analysis software capable of detecting a more comprehensive range of defects.

The new algorithm and the developed tool are tested with simple code. Many different
adaptations, tests, and experiments have been left for the future due to a lack of time
(the experiments with actual code need a stable and advanced version of Reax under
development). Future work concerns a deeper analysis of real applications and code and
maybe new proposals to make the algorithm compatible with newer versions of Reax.

This program targets software companies and developers interested in developing se-
cure software. Many aspects can be developed to make the program more beneficial for
programmers and developers. A more stable and advanced version of Reax is under devel-
opment to make the tool more useful for programmers and developers. The tool will help
to analyze complex code and programs. The tool should be improved to be compatible
with the latest versions of Reax. Also, new tools such as Advanced UI to make graphs and
dependencies tree interactive. In the future, there also needs to be improvements and ad-
vancements in the documentation mechanism that makes the tool reliable for companies
to document results. Moreover, The tool currently works on Java. More work is needed
to establish how the tool can use with other programming environments such as .NET or
JavaScript. Finally, there is a need to Automate or semi-automate the determination of
the entry point of Java applications.
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A Appendix 1

Listing 12: Special structure for the graph component where the complexity of most
functions is O(1)

1 p u b l i c c l a s s S p e c i a l G r a p h {
2 p u b l i c i n t s i z e = 0 ;
3 p u b l i c boolean i s D i r e c t e d = t rue ;
4
5 p r i v a t e Map< S t r i n g , HashSet <MyNode>> l a b e l T o N o d e S e t = new

HashMap< S t r i n g , HashSet <MyNode> >() ;
6 p r i v a t e Map< I n t e g e r , MyNode> numberToNode = new HashMap< I n t e g e r ,

MyNode > ( ) ;
7 p r i v a t e Map< S t r i n g , MyNode> nameToNode = new HashMap< S t r i n g ,

MyNode > ( ) ;
8 p u b l i c Map< I n t e g e r , HashSet < I n t e g e r >> v e r t i c e s A n d E d g e s = new

HashMap< I n t e g e r , HashSet < I n t e g e r > >() ;
9 p r i v a t e Map< I n t e g e r , HashSet < T r a n s i t i o n >>

v e r t i c e s A n d O u t T r a n s i t i o n s = new HashMap< I n t e g e r , HashSet <
T r a n s i t i o n > >() ;

10 p r i v a t e Set < T r a n s i t i o n > t r a n s i t i o n s S e t = new HashSet < T r a n s i t i o n
> ( ) ;

11
12 p u b l i c vo id a d d T r a n s i t i o n ( T r a n s i t i o n t r a ) {
13 t r a n s i t i o n s S e t . add ( t r a ) ;
14 addNode ( t r a . s t a r t N o d e ) ;
15 addNode ( t r a . endNode ) ;
16 addEdge ( t r a . s t a r t N o d e . number , t r a . endNode . number ) ;
17 v e r t i c e s A n d O u t T r a n s i t i o n s . g e t ( t r a . s t a r t N o d e . number ) . add ( t r a ) ;
18 v e r t i c e s A n d I n T r a n s i t i o n s . g e t ( t r a . endNode . number ) . add ( t r a ) ;
19 }
20
21 p u b l i c vo id addNode ( MyNode node ) {
22 i f ( nameToNode . g e t ( node . name ) != n u l l )
23 re turn ;
24
25 i f ( node . number < 0)
26 node . number = nodeId ++;
27
28 i f ( addVer t ex ( node . number ) ) {
29 i f ( l a b e l T o N o d e S e t . g e t ( node . l a b e l ) == n u l l ) {
30 l a b e l T o N o d e S e t . p u t ( node . l a b e l , new HashSet <MyNode > ( ) ) ;
31 }
32 l a b e l T o N o d e S e t . g e t ( node . l a b e l ) . add ( node ) ;
33 numberToNode . p u t ( node . number , node ) ;
34 nameToNode . p u t ( node . name , node ) ;
35 }
36 }
37
38 p u b l i c boolean addVer t ex ( i n t v e r t e x ) {
39 i f ( ! v e r t i c e s A n d E d g e s . c o n t a i n s K e y ( v e r t e x ) ) {
40 s i z e ++;
41 v e r t i c e s A n d E d g e s . p u t ( v e r t e x , new HashSet < I n t e g e r > ( ) ) ;
42 re turn true ;
43 }
44 re turn f a l s e ;
45 }
46
47 p u b l i c vo id addEdge ( i n t s o u r c e V e r t e x , i n t t a r g e t V e r t e x ) {
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48 v e r t i c e s A n d E d g e s . g e t ( s o u r c e V e r t e x ) . add ( t a r g e t V e r t e x ) ;
49
50 i f ( ! i s D i r e c t e d ) {
51 v e r t i c e s A n d E d g e s . g e t ( t a r g e t V e r t e x ) . add ( s o u r c e V e r t e x ) ;
52 }
53 }
54
55 p u b l i c Set < T r a n s i t i o n > g e t T r a n s i t i o n s S e t ( ) {
56 re turn t r a n s i t i o n s S e t ;
57 }
58
59 p u b l i c Set < T r a n s i t i o n > g e t O u t T r a n s i t i o n s ( i n t v ) {
60 re turn v e r t i c e s A n d O u t T r a n s i t i o n s . g e t ( v ) ;
61 }
62
63 p u b l i c Set < T r a n s i t i o n > g e t I n T r a n s i t i o n s ( i n t v ) {
64 re turn v e r t i c e s A n d I n T r a n s i t i o n s . g e t ( v ) ;
65 }
66
67 p u b l i c MyNode getNodeByName ( S t r i n g nodeName ) {
68 re turn nameToNode . g e t ( nodeName ) ;
69 }
70
71 p u b l i c MyNode getNodeById ( i n t nodeId ) {
72 re turn numberToNode . g e t ( nodeId ) ;
73 }
74
75 p u b l i c Set < I n t e g e r > g e t A l l I d N o d e s S e t ( ) {
76 re turn numberToNode . ke yS e t ( ) ;
77 }
78
79 p u b l i c i n t s i z e ( ) {
80 re turn g e t A l l I d N o d e s S e t ( ) . s i z e ( ) ;
81 }
82
83 p u b l i c T r a n s i t i o n g e t T r a n s i t i o n ( i n t sou rce , i n t t a r g e t ) {
84 Set < T r a n s i t i o n > O u t T r a n s i t i o n s = t h i s . g e t O u t T r a n s i t i o n s (

s o u r c e ) ;
85 f o r ( T r a n s i t i o n t r a : O u t T r a n s i t i o n s ) {
86 i f ( t r a . g e t T a r g e t ( ) == t a r g e t )
87 re turn t r a ;
88 }
89 re turn n u l l ;
90 }
91 }
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