
Bachelor Degree Project

An Analysis of Data Compression Algorithms in the
Context of Ultrasonic Bat Bioacoustics

Authors: Max Anderson,
Benjamin Luke Anderson
Supervisor: Ilir Jusufi
Semester: HT 2022
Subject: Computer Science

Abstract
Audio data compression seeks to reduce the size of sound files, making them easier to
store and transfer, and is thus a highly valued tool for those working with large sets of
audio data. For example, some biologists work with audio recordings of bats, which are
well known for their frequent use of ultrasonic echolocation, and so these biologists can
accrue massive amounts of high frequency audio data. However, as many methods of
audio compression are designed to specialize in the more common range of frequencies,
they are not able to sufficiently compress bat audio, and many bat biologists instead
work without compressing their data at all. This paper investigates the desiderata of a
data compression method in the context of bat biology, experimentally compares several
modern data compression algorithms, and discusses their pros and cons in terms of their
potential use across various relevant contexts. The paper concludes by suggesting the
algorithm Monkey’s Audio for machines able to handle the higher resource demands it
has. Otherwise, FLAC and WavPack yield similar size reduction rates at a significantly
faster speed while being less resource intensive. Of note is the interesting result
produced by the algorithm 7-ZIP PPMd Solid, which achieved consistently outstanding
results within a single dataset, but its generalizability has yet to be determined.

Keywords: Bioacoustics, data compression, bats, audio data, ultrasonic

Contents
Introduction 1

Background 1
Related Works 2
Problem Formulation 3
Motivation 3
Results 4
Scope 4
Target Group 5
Outline 5

Methodology 6
Research Project 6
Research Methods 6

Interviews 6
Literature Review 7
Controlled Experiment 7
Considered Methods 7

Reliability and Validity 7
Ethical Considerations 8

Theoretical Background 8
Bats 9

Bat Census 9
Bat Research 9

Audio Recording 10
Sampling and Digitizing 10
Nyquist-Shannon Sampling Theorem 10

Data Compression 13
Model and Code 13
Solid vs Nonsolid Archives 13
Audio Codecs 14
General Compression Algorithms 14

Research Project – Implementation 15
Interviews 15

Questions 15
Experiment 17

Dataset A 17
Dataset B 17
PowerShell Script 18
Execution 19
Methods Tested 19
FLAC 19
Monkey’s Audio 20
MP3 20

OptimFROG 20
TTA 20
WavPack 20
WavPack7z 20
LZMA2 (7zip) 20
PPMd (7zip) 21
DEFLATE (ZIP) 21

Results 22
Interview Responses 22

Interview A 22
Interview B 22
Interview C 23
Interviews Summary 24

Experimental Data 24
Dataset A 24
Dataset B-1 25
Dataset B-2 25
Dataset B-3 26

Accuracy 27

Analysis 28
Experiment 28

Dataset A 28
Dataset B-1 30
Dataset B-2 31
Dataset B-3 32
Dataset B Overall 33
General Compression Algorithms 33
Overview 35

Discussion 36
Interviews and Desiderata 36
Experiment 36

Monkey’s Audio 36
FLAC and WavPack 37
MP3 37
Optimfrog 38
TTA 39
WavPack7z 39
General Compression vs Audio Codecs 39
Solid vs Nonsolid 40
Datasets 40

Conclusions and Future Work 42
Research Questions 42

What are the desiderata for an audio compression method from the perspective of
biologists specializing in ultrasonic frequencies? 42

How well are these desiderata satisfied by currently available methods? 42
Which of the examined methods can be recommended for use by the target group within
the various contexts they operate in? 43
What are the best performing audio data compression methods in the context of
ultrasonic bat bioacoustics? 44

Future Work 44

References 46

Appendix A 49
Questions 49
Interview A 51
Interview B 63
Interview C 66
Interview C Follow-Up Questions 70

Appendix B 71
Compression Powershell Script 71
Sample Analysis Python Script 75

1. Introduction
This paper is a 15 HEC Bachelor thesis in Computer Science, primarily investigating
the area of audio data compression. Within this area, special attention is paid to the
context of how data compression operates in the context of biology, and more
specifically how compressing the audio recordings of bats impacts the compression
algorithms and their performance. Bat audio introduces unique data concerns, as their
vocalizations are orders of magnitude higher in frequency than what most compression
methods are intended to accommodate [1].

As a means of catering to the common use cases of storing the sounds of either music
or human speech, many of the current digital audio compression methods overwrite or
discard any data that falls outside of the human-audible range [2]. However, these
heuristics can be detrimental when compressing audio outside the limits of normal
human hearing. This can lead to critical data in fields like biology being mistakenly
discarded as useless noise [3]. Moreover, the high frequencies being recorded during the
study of bat echolocation necessitates high quality recordings with high sampling rates,
leading to the generation of unusually large amounts of data during the study of bat cries
and therefore greater concern for the efficiency of data storage and transfer [4].

This paper intends to elucidate the desiderata for audio file compression for this
context and experimentally determine which method or methods are most appropriate,
focusing on the demands largely unique to high frequency sounds common in
chiropterology, the study of bats.

1.1. Background
Within the field of bioacoustics, defined as the study of sounds made by animals, it is
considered standard to work with audio recordings of animals using computers to store,
transfer, and analyze the data [4]. In order to study the behavior of animals over time,
bioacousticians frequently record for several hours per night for several nights or even
weeks, often using multiple recording devices in different locations [5]. This generates
multiple terabytes of audio which is then stored, duplicated, and transferred in its
entirety multiple times. This results in large amounts of time, money, and energy being
spent on computer processing power and storage space. This is exaggeratedly
problematic when recording animals whose vocalizations are of such high frequency
[3].

This is due to how most audio compression methods determine what data within the
file should be considered air, which in this context means data not needed to represent
the file’s critical information. Frequently found within the structure of modern audio
compression algorithms are components responsible for identifying the data within the
file that corresponds to sound that cannot normally be heard by humans, meaning
sounds with frequencies above 20kHz [2]. In most cases, manipulating this data does
not produce any meaningful changes to the end result, as audio files are only expected
to be heard by people with no other use [2].

However, many species of bats, dolphins, and insects have ultrasonic vocalizations,
which means that these algorithms would incorrectly identify those sounds as air.
Additionally, in order to properly record high frequency audio with sufficient precision,

1

a high sampling rate is needed, meaning that the amount of data in the average
ultrasonic audio file is significantly more than standard audio files of the same length
[4]. Higher quality recordings are also frequently used in order to make it possible to
properly separate sounds from surrounding environmental “noise” [6]. Thus, many
experts within the field of bioacoustics must either find expensive or impractical means
of working with massive amounts of data or accept that the resulting audio will contain
only a small fraction of the original data.

As recording hardware and audio analysis software grow more powerful and
convenient, the field of bioacoustics similarly grows in popularity [7]. However,
without a corresponding improvement in data handling, file transfer time and storage
space may prove to be ever more limiting factors, potentially leading to prohibitively
expensive hardware being deemed necessary for working within the field.

1.2. Related Works
As recently as 2021, Heath et al. [3] reviewed the effects that modern lossy audio data
compression methods have on data accuracy within the field of ecoacoustics, which is a
closely neighboring field to bioacoustics. The study concluded that, should data size
become a larger concern than perfect data accuracy, the most efficient means of lossy
data compression that yields tolerable accuracy loss can reduce the size of a file to
approximately a quarter of the original size. However, it notes that “lossless
compression is always desirable”, and so it presents these methods as tradeoffs for those
unable to handle the amount of data even after lossless compression, thus deferring the
evaluation of these lossless algorithms, which this paper aims to address. Additionally,
it provides a methodological framework from which audio compression algorithms may
be experimentally measured and compared.

Beurden [8] also performed an experimental comparison between several audio
compression algorithms in 2015. Examining exclusively lossless algorithms, this study
measured the metrics of compression speed and proportional file size reduction when
given audio files of varying lengths and sample rates. The set of tested audio is entirely
composed of music, meaning that while the study offers further precedence for
performing such an experiment, its results cannot be generalized to the context of this
project.

Further work done by Hidayat et al. [9] and Chen and Yu [10] also contribute to the
standard for experimentally measuring and comparing the metrics of audio compression
algorithms. The former [9] details in great depth both the implementation of its
methodology for performing the experiment and the mechanisms of the algorithms it
examines, those being Huffman and Arithmetic. The latter [10] performs a similar
experimental analysis on genetic algorithms, thus providing a foundation for evaluating
novel audio compression methods in comparison to existing ones. These studies
exclusively utilize music files for their test data sets, inhibiting the results from being
confidently applicable to ultrasonic bioacoustics and further exemplifying the bias for
human audibility in audio compression methods.

2

1.3. Problem Formulation
As previously mentioned, human audibility bias is pervasive throughout the field of
audio data compression [2], [8], [9], [10]. Consequently, little consideration has been
given to the frequencies that lie outside the comparatively narrow range of human
perception. Ultrasonic sound, defined as the range of frequencies that are too high for
humans to hear, has been neglected when it comes to data compression despite being
fundamental in numerous fields of study and application. This has resulted in many
compression methods fundamentally relying on practices that cannot accommodate
characteristics unique to the ultrasonic range [2]. Therefore, the aim of this paper is to
answer the following research question:

What are the best performing audio data compression methods in the context of
ultrasonic bat bioacoustics?

To fully define, contextualize, and answer this question, several sub-questions will be
explored throughout the course of this paper:

SQ1. What are the desiderata for an audio compression method from the
perspective of biologists specializing in ultrasonic frequencies?

As this project is focused on the use case of bioacoustics, the exact nature of the
audio can best be described and understood by those with the most experience in that
field. Similarly, the specifications for what a compression method should achieve to best
suit this audio should be catered to the requirements of those within the field.

SQ2. How well are these desiderata satisfied by currently available methods?

When analyzing the methods of audio compression that are readily available, how
well do they fulfill the requirements elicited in the previous question? Which metrics
fall short of what is considered necessary and to what extent are they insufficient, and
which requirements are either fully fulfilled or completely ignored?

SQ3. Which of the examined methods can be recommended for use by the target
group within the various contexts they operate in?

Finally, once the previous questions have been sufficiently explored, the methods and
their performance should be contextualized by their potential use. In other words, how
can the results of SQ2 be interpreted and applied by a given member of the target group,
considering the varying use cases they may encounter?

1.4. Motivation
While the bias favoring human perception in data compression makes sufficient sense in
most contexts, the limited consideration given to exceptional cases has created
substantial problems in important areas of scientific research. Those working in the field

3

of bioacoustics, as well as many other fields which commonly interact with ultrasonic
frequencies, consequently consider many of the most popular and supported means of
data compression unfeasible. This results in them having to spend a large number of
resources dealing with massive, uncompressed files or losing significant amounts of
critical data in the process of compressing them. Making this problem worse is the high
sampling rate required to record the high frequencies that define ultrasonic sound,
substantially increasing the amount of data generated. The storage space this data
requires can easily reach several terabytes within a few weeks, even for smaller
projects.

Eliciting and understanding the best way to compress audio files that do not
explicitly prioritize human hearing would make analyzing ultrasonic sounds easier,
faster, and cheaper, resulting in more efficient progress to be made in those fields, and
would lower the barrier of entry to those fields drastically [11]. Additionally, outlining
the theoretical deconstruction of modern compression methods and detailing its
refinement for a specific scientific context can provide a solid foundation for others to
do similar work for other contexts.

1.5. Results
As the goal for this project is to experimentally determine the best audio data
compression algorithm within the context of ultrasonic bioacoustics, the specifics of
what makes one algorithm better than another must be defined. Following the precedent
set by previous works [3], [8], [9], [10], three metrics have been identified as critical for
comparing any examined method:

1. Accuracy: The percentage of data that is not lost or corrupted during
compression

2. Size Reduction: The ratio between a file’s size after compression and its
original uncompressed size

3. Speed: The amount of time taken to compress a given amount of data

Accuracy is measured by comparing the value of all bytes within a file before
compression to the bytes present after decompression. An accuracy of 100% indicates
that every byte from the original file has an identical value to its decompressed
counterpart, with no additional bytes present. Size reduction, also referred to as
compression ratio, is defined as the percentage size of the compressed file in relation to
the size of the original file [12]. For example, if the original file has 400 bytes and the
compressed file has 100 bytes, the compression ratio would be 25.0%. Speed is simply
the number of seconds it takes for a given algorithm to fully compress a file.

A set of selected algorithms will be tested by compressing a set of audio files
representative of what is used by the target group and measuring the metrics listed
above. These metrics will be analyzed and prioritized in order to establish a quantifiable
evaluation with a sufficient comparison.

4

1.6. Scope
This paper and the work discussed within focuses almost exclusively on audio
recordings of bats. While there are many animals with ultrasonic vocalizations, the
extremely broad range of frequencies that is covered by all these animals as well as the
variations in how this data is gathered and analyzed produces too wide of a scope to be
addressed by this project. While it may be possible that the results produced are
applicable to recordings of other animals or other audio common in other fields, the
work done in this project pays no consideration to how these results perform in those
contexts.

1.7. Target Group
This work primarily focuses on the context of recording and analyzing audio recordings
of bats, and therefore biologists and bioacousticians that specialize in chiropterology are
the main target group. Generally, the specific mechanics of data compression are
considered to be too complicated and too niche to be commonly understood by those
outside the field of computer science. As such, it is assumed that the target group has at
most a casual knowledge of data compression.

1.8. Outline
The remainder of this paper details the study and work performed by this project in the
pursuit of answering the previously defined research questions. Section 2, Method
describes the methodology of the paper, which includes a brief overview of how data
will be collected and the framework used to ensure that the project is done ethically and
its results are valid. Section 3, Theoretical Background presents the aggregation of the
performed literature review, isolating the information deemed critical to understanding
the proceeding sections of the paper. Section 4, Research project – Implementation
provides an in depth explanation of the steps taken to gather the data necessary for
answering the research questions. Section 5, Results lists the data gathered by following
the steps defined in Section 4 while avoiding drawing conclusions until further sections.
Section 6, Analysis highlights statistical patterns found within the data and
contextualizes them. Section 7, Discussion describes the deeper mechanisms or
implications of the results that were found to warrant such an explanation. Section 8,
Conclusions and Future Work fully connects the results to the research questions and
uses these connections to propose answers. Additionally, Section 8 mentions several
means of potentially continuing the work done in this project and how this paper would
support such work. Finally, Sections 9 and 10, References and Appendix respectively,
list the outside sources of information that this paper relies on as well as any
documentation created by this project that was deemed unnecessary to report on in its
entirety.

5

2. Methodology
The purpose of this section is to describe the methods by which the research questions
in the previous section will be analyzed and answered. An overview of the techniques
and methods that will be used are given, with each method being discussed in greater
detail thereafter. Finally, the issues of reliability, validity, and ethics are discussed.

2.1. Research Project
Beginning with the goal of answering SQ1, the first topic to consider is what sort of
algorithm is desired. More specifically, what features are required, what qualities are
desired, and what behavior needs to be avoided.

To this end, a small number of interviews will be conducted with experts of various
kinds who regularly work with ultrasonic bat audio. Care will be taken to make contact
both with academic researchers who perform in-depth analysis on ultrasonic bat audio
as well as industry professionals whose primary concern is broad, large-scale data
collection for the purpose of performing censuses.

These experts will be asked a series of questions about their use of ultrasonic bat
audio data, with the intention of understanding the type and amount of data they
frequently work with, how it is used, what they consider to be the most valuable
information in the data, and what they would value in a compression algorithm. The
questions as well as the interviews are available in Appendix A.

Once the desiderata for a compression algorithm have been established from these
interviews, a number of audio compression algorithms will be tested to see how well
they satisfy the requirements, thus answering SQ2. To this end, each algorithm will be
measured on how well it can compress sample data collected from the interviewees by
request. A literature review will also be conducted during this stage to better understand
the performance of each algorithm and gauge whether the experiment’s data would be
generalizable. Finally, to answer SQ3, the collected data and knowledge will be
culminated into brief, qualitative descriptions of the methods that are found to be
recommendable in respect to one or more contexts.

2.2. Research Methods

2.2.1. Interviews
With the objective of eliciting the desiderata referenced in the research questions,
members of the target group will be contacted with a request for an interview. Following
the conceptual framework and design principles outlined by Flick [13], these interviews
will ask a suite of questions designed to produce an overview of the field’s current
practices regarding data handling as well as the requirements that will define the
desiderata moving forward. For health and logistical reasons, interviews will be
conducted via online video calls, and additional questions may be asked in cases where
a response to a prepared question prompts further inquiry.

In cases where a participant expresses interest in answering questions, but cannot or
will not be available for an online video call, the questions will be sent as text via email,

6

and the responses will be gathered via email as well. Any follow up questions,
additional clarification, or further communication shall likewise take the form of
text-based emails.

2.2.2. Literature Review
Once the performed interviews have adequately provided an understanding of the
context that the research questions exist within, a deeper knowledge of the processes
and concepts that fundamentally comprise the problem and its potential solutions shall
be developed. To this end, relevant academic and peer-reviewed scientific literature will
be aggregated and studied, with all sources of prominent background information being
explored in the Theoretical Background section of this paper. This paper shall refrain
from the comprehensive extent to which a paper exclusively performing a literature
review would present its findings in order to communicate only the knowledge required
to understand and interpret the contribution of this project. With this said, a proper
understanding of the subject is critical for making and understanding meaningful
contributions to it [14], and so this review seeks to ensure the novelty and accuracy of
this project’s work.

2.2.3. Controlled Experiment
As outlined previously in Section 1.5, Results, the metrics deemed most critical for
comparing various data compression algorithms are accuracy, size reduction, and speed.
In order to accurately and reliably measure these attributes for multiple compression
algorithms across a variety of contexts, controlled experimentation shall be conducted.
Drawing from the foundational contribution of previous works [3], [8], [9], [10], each
algorithm shall be tasked with compressing an exact copy of a set of data files which are
collected by request from members of the target group so that they are sufficiently
representative of this paper’s scope . After several iterations of this process for each
algorithm using multiple datasets, ensuring that all external variables are kept static, the
resulting measurements shall be statistically analyzed. Finally, the aggregated results
and the knowledge derived from the literature review shall be used to answer the latter
two research sub-questions.

2.2.4. Considered Methods
Initially, surveys were considered as a means of forming a general perspective of the
context that the target group operates within, as well as to appraise the impact of the
problem. However, this was eventually dismissed in favor of the previously discussed
interviews, as the target group lacks a medium of mass contact, e.g., an online forum
with significantly many active members. This means that surveys would have to be
presented to participants individually, at which point the surveys would no longer
possess its main advantage over interviews, that being more efficient administration
[15].

2.3. Reliability and Validity
As with any scientific procedure, the standardization of testing methods and data
collection contributes the bulk of this paper’s reliability [16]. Therefore, the steps,

7

equipment, and testing environments used within this project shall be detailed
thoroughly and precisely to ensure that the results presented in this paper are
reproducible.

Certain metrics common within computer science can vary greatly based on factors
that often go undetected. For example, the speed of compression can be slowed by any
background operations the machine quietly performs during only one test iteration [17].
As such, the validity of the gathered test data relies on controlling the test environment
beyond simply using consistent hardware and software. Therefore, the design and
implementation of the experiment shall be constructed with special attention to the
heightened need for a controlled environment. Additionally, an increase in iterations per
test suite and a critical eye for outliers in the resultant data both serve to diminish the
impact of this issue.

2.4. Ethical Considerations
As will be elaborated on in future sections, much of the work performed by the target
group falls under the category of either scientific research or ecological consulting. As
such, the conclusions of their work are regularly validated, discussed, and challenged by
others in their respective fields. Should the data that these conclusions are based on be
corrupted by some error present with the compression algorithm, the conclusions may
be unverifiable, and the work would consequently be wasted. Therefore, any algorithm
explored in this paper should be held to the same reliability standards as those set by the
scientific community to avoid inadvertently sabotaging the works of others.

Furthermore, to ensure that participants of interviews are not misled and that the
inclusion of their input in this paper is consensual, any and all requests for interviews
shall begin by explaining the context and goals of this paper and their potential
inclusion in it. Additionally, care shall be taken to confirm the participants’ willingness
to have their answers and data shared publicly in this context both before and after their
interview [13]. Moreover, interviewees have been offered full confidentiality to protect
their identities.

Finally, to avoid plagiarism and theft, all works both theoretical and practical that
this project uses as a foundation, inspiration, or support shall be handled with care and
respect. This includes obtaining all software legally, abiding by their license of use, and
properly crediting their source whenever applicable.

8

3. Theoretical Background

3.1. Bats
Bats, classified as mammals within the order Chiroptera, commonly possess the ability
to echolocate, meaning that they measure the distance between themselves and other
organisms or objects by using sound [18], [19], [20]. They do this by emitting ultrasonic
vocalizations at frequencies up to 212 kHz [21] and gauging the delay until the resulting
echoes are heard, as a longer delay means the sound had to travel a correspondingly
longer distance. The primary reason that most species of bats echolocate using
ultrasonic frequencies is that their diet consists largely of small insects, and so if the
wavelength of the sound is too great, the sound would not provide enough precision for
the bats to efficiently hunt [18].

Bats are considered to be important biodiversity indicators due to their global
distribution and their relatively high population sensitivity, which means that
disruptions to an ecosystem have a relatively strong effect on local bat populations [20],
[21], [22]. As a result, measuring bat population growth and decline provides valuable
insight into the general health of an ecosystem, including the impact of climate change,
habitat loss, and disease on the area [21], [22].

3.1.1. Bat Census
Census groups collect and analyze data with the intention of identifying the current
condition of wildlife within a given location [22]. This can include validating the
presence or absence of certain animals, estimating the population of various species, or
identifying potential risks of planned environmental or construction projects.
Commonly encountered within this work is the need to survey a wide geographical area
with minimal interaction with that area to ensure data validity.

Once bat audio has been recorded, it is generally analyzed by means of a number of
automatic detection programs. Such tools are frequently used to process the file–for
instance to apply a high-pass filter or reduce noise [6]–to detect bat sounds within an
audio file, and to identify the number and species of bats in the recording [6], [19], [20],
[22], [23]. However, call structures can vary significantly within a species, making
species identification difficult [21]. As Rydell et al. [23] discuss, manual validation of
the results of these programs is necessary, as the reliability of species identification can
vary wildly.

Species identification is often most concerned with information in the recording such
as the frequency of the highest amplitude sound, the minimum and maximum frequency,
and the timing and duration of the call [18], as well as its harmonics [21].

3.1.2. Bat Research
Bat researchers, otherwise known as bat biologists, regularly monitor the condition and
behavior of bats, both in the wild and within highly controlled experimental test cases.
In both contexts, the analysis of the bats’ vocalizations provides valuable insight into
their behavior and health, and can also act as the primary focus for academic study.
Depending on the type of research, bat audio recordings can contain a wide variance of
background noise [19]. If studying bats in the wild, sounds of the wind, weather, and

9

other animals can be pervasive [19], while bats being studied in a laboratory setting can
have little to no background noise in their recordings at all.

While many of the same analysis programs mentioned in Section 3.1.1 are also
employed during Bat Research, species identification is not always needed, especially in
the case of laboratory research where the bats being studied are known. While the exact
metrics vary significantly based on the research being done, much of the same
information used in census work is still used for research.

3.2. Audio Recording

3.2.1. Sampling and Digitizing
In order to represent real-life analog audio signals as digital signals that can be handled
by computers, they are converted into bounded, discrete-value sequences [24]. This
process involves two steps, sampling and digitizing, which both act to quantize the data
or to approximate the data by restricting its values to a discrete set of values [24].
Sampling an audio signal means taking a measurement of its value at discrete points in
time, and digitizing means converting that measurement to a digital value [24]. A digital
signal is therefore the set of these digitized values at each of the sampling points. Thus,
as the number of sampling points increases, the amount of data needed to represent the
original audio signal increases [24], [25].

Additionally, the samples of recordings can be stored at differing levels of
granularity, often expressed in terms of the number of bits per sample [25] or “bit
depth” [26]. For high-quality audio files, this is frequently 16 bits per sample, though
other values are possible. Higher bit depth also increases the size of the resulting file
[25], [26].

3.2.2. Nyquist-Shannon Sampling Theorem
According to the Nyquist-Shannon sampling theorem, in order to reconstruct an analog
audio signal from its digital signal, the frequency at which the signal was sampled must
be greater than double the frequency of the sound being represented [24], [26], [27]. In
the case of complex signals that must be represented by means of a Fourier transform
(discussed below), the sampling rate must be higher than double the frequency of the
highest non-zero signal in the transform [27]. See Figures 4.1 - 4.4 below for examples
of the effects of different sampling rates above and below this threshold.

10

Figure 4.1: The samples (red dots) form a digital signal, which is enough to deduce the original
analog wave’s properties.

Figure 4.2: A sampling rate twice the original signal’s frequency is the minimum rate which is still
capable of capturing the properties of the original analog signal.

11

Figure 4.3: At a sampling rate equal to the signal’s frequency, the signal is indistinguishable from a flat
line.

Figure 4.4:At a sampling rate less than the signal’s frequency, the digital signal can start resembling
entirely different frequencies than the original signal.

12

3.3. Data Compression
Information theory dictates that it is impossible to create a compression algorithm
capable of reducing the size of any file without losing data in the process [26]. This can
be expressed as a consequence of the pigeonhole principle, which is the mathematical
principle which states that “if n objects are distributed over m places, and if n > m, then
some place receives at least two objects” [28]. For the case of data compression, this is
realized by the fact that there exist 2n different uncompressed files of the size n bits, but
only 2n-1 possible smaller files, meaning it is impossible to map uncompressed files to
smaller compressed files such that each uncompressed file will generate a unique
compressed file. This inability to achieve an injective mapping to a smaller set means
that it is impossible to both compress all files to a smaller size while simultaneously
being able to recover the original, uncompressed files from their compressed versions.
One must either settle for a compression algorithm which is unable to be fully reversed
(thus it loses data, which is called lossy [29]) or one must accept the fact that one’s
lossless algorithm will be unable to reduce the size of all files, and indeed may even
increase the size of certain input files [26].

Phrased in a more intuitive way, if one could use the same algorithm to losslessly
compress any file, then it would be possible to continuously and recursively compress
any file down to a size of nearly zero, which is clearly an impossibility.

As a result of the above law of information theory, compression algorithms are
tailored to their intended purpose [26], [27]. Lossless algorithms are tailored so that they
decrease the size of files considered important in the hopes that the files which grow in
size are unimportant. Lossy algorithms, which have an easier time achieving file size
reduction due to the fact that they throw away unimportant data, must still be tailored in
order to define what data is important.

3.3.1. Model and Code
The tailoring of an algorithm to a specific purpose is expressed through its two
conceptual components: its model and its code. The model of a compression algorithm
is an extraction and expression of redundancies that exist in the data to be compressed
[26], [27]. These redundancies are often domain- and medium-specific; audio of human
speech will feature radically different patterns than those found in the image of a bird.

An algorithm’s code, on the other hand, is the assignment by which symbols or
sequences in the original data are stored in compressed format [26], [27]. For instance,
one could encode a series of coin flips by using 0 for heads and 1 for tails, or one could
encode these as fully spelled out strings Heads and Tails. Generally speaking, the more
common a symbol or sequence is in the source file, the fewer bits a compression
algorithm should ideally use to represent it [26], [27].

3.3.2. Solid vs Nonsolid Archives
One major choice in most compression techniques is whether the compressed archive
should be solid or not. In solid archives input data is compressed together, and patterns
which are found in one file can be reused or refined to efficiently compress other files as
well. This generally achieves more efficient compression ratios because patterns
identified in one file can be reused and refined to efficiently compress other files. One

13

major downside to this is that it can become difficult to extract a single desired file from
the block, at worst requiring that the entire block be decompressed before the file can be
restored [27].

However, in nonsolid archives, the input data is separated into evenly sized chunks or
blocks which are compressed separately. This can be a faster process because generally
fewer patterns are established within less data, patterns will only exist at smaller
distances from each other (requiring less searching for matching patterns), and because
compressing multiple blocks can occur simultaneously by using multiple processing
threads. It’s also slightly more robust, since if data becomes corrupted then the damage
may be contained to that block, whereas in a solid archive the entire thing may be lost
[27].

3.3.3. Audio Codecs
Audio codecs are encoding/decoding techniques which express audio signals as a code
[2]. Modern audio codecs almost invariably feature data compression techniques as a
part of their operation, with the terms codec and compression algorithm being used
synonymously much of the time [2], [25]. These compression techniques often assume
that the input is human speech or music [2], [27]. As a result, audio compression
methods are often centered around a psychoacoustic model, that is to say a model of the
way sound is received and interpreted by the human ear [2], [27], [30]. This so-called
perceptual coding [2], [25], [26] or perceptive coding [30] identifies irrelevant
information in the audio and incorporates specialized techniques such as critical band
analysis [2], M/S stereo coding [26], joint frequency encoding [27], spectral masking
[27], and temporal masking [2], [25], [26], [27] to take advantage of the unique
properties of audio files.

For instance, in the case of multi-channel or stereo audio, separate records are kept of
what should be heard by the left ear versus the right ear. However, these channels rarely
differ by a large degree, and so an audio codec may attempt to compress this
information by combining the two records into one and separately saving stereo data
about the ways in which the channels differed [2], [26], [27].

3.3.4. General Compression Algorithms
General compression algorithms are algorithms that make few assumptions about the
nature of the data being compressed [26], [27]. Many transform the data first into
something simpler or easier to encode.

The two types of transforms used in this study are dictionary based and context
based. Dictionary-based transforms search for commonly repeated sequences and
replace these with shorter references to the sequence, storing a dictionary of references
and their meanings alongside the encoded data [26], [27]. Context-based algorithms
attempt to adaptively build an understanding of the file as it is parsed in order to build
more precise probability models and thus predict future symbols [26], [27].

14

4. Research Project – Implementation

4.1. Interviews
Interviews were conducted with researchers and professionals working with bat
ultrasonic audio data over the period from March 8th to March 17th. Contact was
initiated via an email providing context that described this project and how their
participation would be incorporated.

In order to properly contextualize the results gathered during the interviews, the
interviewees will be categorized based on their normally expected interactions with and
uses of bat audio. These categories, which are expanded upon in the following
subsections, are intended only to summarize the contexts and patterns that were found to
be common during the performed interviews, and are not meant to be representative of
any group, field, or occupation outside of the scope of this paper. For the purposes of
this paper, the interviewees in Interview A and C are categorized as Bat Census, and the
interviewee in Interviewee B are categorized as Bat Research.

4.1.1. Questions
A list of twelve questions was created to be used in the interviews. These questions
were designed to yield insight into the context in which the interviewees encountered
the problem of big data. Additionally, the questions sought to elucidate the impact of the
problem, how the interviewees addressed it, and what metrics would be considered
necessary or desired in a potential solution. The questions and their rationale are as
follows:

1. Briefly, what specifically is your job title/description, how long have you been
doing it, and what is your current project/goal?

This first question acts as an introduction to provide context for the participant’s
answers and how representative of their field they may be.

2. On average, how much bat/ultrasonic audio data do you generate for a project?
How large are individual files on average/at most?

Question 2 serves to quantify the foundational concern of this paper, that being the
amount of data that is generated in the target scope.

3. How impactful is the size/amount of audio data that you work with? Does
storage or transfer of these files consume a problematic amount of storage space
or time?

Similarly to the previous question, this question aims to qualify the impact that this
amount of data has on those in the target group.

4. What software do you use to analyze this audio, and what functions do you
primarily use it for? What can/can't be done automatically?

Question four directly connects to SQ1 by determining what is needed both by and from
the audio in a computer science context.

15

5. What percentage/how much of the average audio file is empty/useless/"noise"?
How do you identify this noise? Is this noise removed somehow before/during
analysis?

The idea of noise pertains to the metric of accuracy in the sense that the loss of data that
represents unneeded sound could be potentially manipulatable with little concern.

6. Does ultrasonic audio data have to be treated significantly differently from other
audio data?

Once again directly relating to SQ1, this question intends to discover any feature or
behavior of ultrasonic audio data that would be unintuitive to someone outside of the
target group’s field.

7. In what format do you generally store bat/ultrasonic audio data (e.g., full
spectrum vs zero crossing, compressed vs uncompressed) and what file types do
you commonly use (e.g., wav, zc, mp3, flac, zip)? Why?

Relating to SQ2, this question attempts to gather potential data compression algorithms
for experimentation while ensuring their contextual relevance.

8. How long do you generally store any given bat audio data and how often do you
generally transfer significant amounts of it?

This question assists in prioritizing the metric of size by quantifying the degree to which
a smaller file size would be beneficial.

9. Would you value a way to reduce the size of the bat/ultrasonic audio data you
work with?

Serving something of a dual purpose, this aims to gather further understanding of the
target group’s perception of the problem and to clarify the intention that these questions
are asked with.

10. Three important metrics for determining the value of a compression algorithm
are:

● Size: How much smaller is the compressed file compared to the original?
● Speed: How much time does it take to compress a file?
● Accuracy: How much detail was lost during compression?

How do you value these metrics? Are there other metrics that are also important
to you?

Question 10 asks for the target group’s prioritization of the metrics that are used to
compare the compression algorithms.

11. Do you know whether anybody has developed a data compression method
focused on ultrasonic audio before? If not, do you know why not?

Depending on the answer provided to this question, it either assists in finding more
algorithms for experimentation or it supports the novelty of this project.

12. It has been rumoured that zero crossing files may be phased out in the future.
What have you heard about this, if anything?

16

Zero crossing files were at one point considered to be included in the experimental
portion of this project, but were eventually considered outside of the scope. This was
due to the significant difference between use cases in which zero crossing files are
common and one where .wav files are common. Nevertheless, question 12 intends to
address SQ2 by asking if zero crossing files are worth considering even in their own
context.

4.2. Experiment
In service of measuring, analyzing, and comparing the performance of different audio
compression methods to address SQ2, How well are these desiderata satisfied by
currently available methods?, four sets of uncompressed audio files in the .wav format
were constructed from data provided by the target group. These files were screened to
confirm that the data was representative, uncorrupted, and not duplications of other files
in the sets. Upon execution of the test, various audio compression methods were
instructed to compress each set, creating compressed copies of the data without altering
the original set’s files. Each method was invoked sequentially, meaning that no two
methods were ever running concurrently, so that the results of each performance were
sufficiently isolated.

The audio data selected to be compressed via the execution of the experiment was
divided into four sets. These sets, hereby referred to as Dataset A, Dataset B-1,
Dataset B-2, and Dataset B-3 respectively, consist of uncompressed .wav files where
each file is present in exactly one set. Files were organized into sets based on the date of
their original recording, so that all files in a given set were recorded no more than three
days apart from each other, and were recorded using the same machine.

Additionally, Dataset A is distinct from the other datasets in terms of the content of
its recording. Datasets B-1, B-2, and B-3 are meant to represent the use case common
to bat biologists, and therefore their files consist of a few seconds of bat vocalizations
gathered in a controlled setting. Dataset A is catered to bat census groups instead, and
so contains approximately one minute long files gathered from a recording device being
placed in a forest where bats are known to frequent. This results in the files containing
many incidental sounds alongside the bat vocalizations, such as wind, insects, and birds.

4.2.1. Dataset A
As a result of needing to record in many locations at once, the recording devices are
somewhat lower budget. The audio is recorded at a sampling rate of 250kHz and the
resultant files have minimal amounts of filtering. The device was set to record
continuously, so much of the data does not contain bat echolocation audio, and other
wildlife sounds and microphone static can be heard at most times.

4.2.2. Dataset B
The contents of the files are focused on bat audio, with almost every file containing bat
echolocation audio. A high-pass filter is used to exclude sounds below a certain
frequency, eliminating most non-bat sounds. The audio of Dataset B-1 is recorded at a
sampling rate of 500kHz, Dataset B-2 at 375kHz, and for Dataset B-3 at 250kHz.

17

4.2.3. PowerShell Script
Automating the process of compressing a large number of files using different
algorithms was achieved via the creation of a PowerShell script (available in Appendix
B as Compression Powershell Script). PowerShell is an open-source program created by
Windows that configures and automates task execution using a unique coding language
and shell. This script recorded the execution time for each method using
Measure-Command, a command that isolates and times specified lines of code. The size
of the compressed files was recorded using Measure-Object, which gives the number of
bytes contained in one or more files. Table 4.1 below explains the executables used to
perform compression, as well as the options used and their meanings.

Executable
(version)

Algorithm /
Format

Option Used Meaning

ffmpeg.exe
(v 5.0.1)

FLAC

MP3

-hide_banner Do not print copyright
notice, build options, or
library versions.

-loglevel error Only errors will be printed
in the log.

MAC.exe
(v 7.61)

Monkey’s
Audio

0 Compression mode
(compression level 2000,
“normal”)

ofr.exe
(v 5.100)

OptimFrog --silent Suppress log output.

--encode Command: encode WAV
file(s) to OFR file(s).

tta.exe
(v 2.3)

TTA -e Encode file.

wavpack.exe
(v 5.4.0)

WavPack -q quiet (keep console output
to a minimum)

7z.exe
(v 21.07)

7-Zip (LZMA2)
NonSolid

7Zip (LZMA2)
Solid

7Zip (PPMd)
Solid

a Add files to archive.

-t7z Create a .7z file as output.

-bb0 Disable output log.

-ms=off Disable solid archival mode.

-ms=on Enable solid archival mode.

18

WavPack7z -mm=PPMd Set compression method to
PPMd.

-myx=0 Disable file analysis (so
codec selection isn’t
overridden)

-m0=WavPack2 Sets WavPack2 as the
compression method 0.

-m1=lzma:d20 Sets LZMA as compression
method 1.

-mb0s1:1 Binds the output of
compression method 0 to the
input of compression
method 1. (thus compressing
non-audio data such as
headers)

Table 4.1: The executables used to perform compression and the options used.

4.2.4. Execution
The experiment was performed using a single machine possessing an x64-based Intel
Core i5-4440 processor, 3.10GHz, and 8GB RAM. It ran on the 64-bit Windows 10
Home operating system, using version 21H1 and the OS build 19043.1645. Care was
taken to ensure that all of the machine’s processes unrelated to the experiment were
either halted or diminished in cases where the process could not be halted. This was
done in service of guaranteeing that the measurements of a method’s performance were
not significantly affected by external factors. Once all methods fully executed their
compression of all datasets, the entire process was automatically reiterated until the
results of ten iterations were recorded.

4.2.5. Methods Tested
Serving as the independent variable of this experiment, several preexisting audio data
compression methods have been tested using the experimental parameters detailed
above. The preexisting methods that have had their performance analyzed this way are
FLAC, Monkey’s Audio, MP3, OptimFrog, TTA, WavPack, 7-ZIP LZMA2 Solid, 7-ZIP
LZMA2 NonSolid, 7-ZIP PPMd Solid, WavPack7z, and ZIP.

FLAC
FLAC is a lossless audio codec that supports streaming and seeking the encoded audio.
The audio is divided into blocks, and each block is encoded separately, which allows the
audio to be quickly decompressed and played starting from any part of the audio [31].

19

Monkey’s Audio
Monkey’s Audio is a lossless audio codec that focuses more on good compression ratios
rather than quick encoding or decoding while still achieving the necessary speed to
support streaming. However, Monkey’s Audio is known to have higher system
requirements during decoding than usual [8].

MP3
MP3 is a lossy audio codec which supports streaming and seeking. It uses perceptual
coding, which permits the codec to discard data or degrade its quality during
compression based on a psychoacoustic model [32]. MP3 generally compresses audio to
approximately 9% of its original size, though the sampling rate is generally limited to
44.1kHz by the standard, which can cause much stronger reductions in file size if the
input audio was of particularly high sampling rate [32]. MP3 was chosen to demonstrate
the deleterious effects of lossy compression on ultrasonic data, and is not expected to
perform well.

OptimFROG
OptimFROG is a lossless audio codec made with the goal of achieving the best
compression ratio possible, largely disregarding the time the process takes. The
compressed files do not support streaming or seeking [33].

TTA
TTA (True Audio) is a lossless audio codec that supports streaming and seeking. While
its performance is competitive with other lossless codecs [8], TTA has relatively few
features [34], which impairs its usability and compatibility and occasionally renders it
unable to compress audio files that other codecs can handle.

WavPack
WavPack is a hybrid audio codec, offering both lossy and lossless modes of
compression. It supports streaming and seeking, generally focuses more on speed of
compression/decompression rather than good compression ratios, and has a relatively
wide range of features to enhance compatibility and usability [35].

WavPack7z
WavPack7z is a plugin for 7zip that allows audio data compressed by 7zip to use the
WavPack audio codec in place of or alongside its usual techniques [36]. WavPack7z was
chosen not for its popularity, but as a comparison to WavPack to explore the possibility
that compressing all of the audio files together with an audio codec could be more
effective than compressing them individually.

LZMA2 (7zip)
LZMA (Lempel-Ziv-Markov chain algorithm) is a dictionary-based general
compression algorithm that features larger dictionary sizes than usual and special
support for cases where the distance between matches is consistent [26], [27].

LZMA2 is a wrapper, which is a container format that can contain multiple blocks of
data, with each block generally using LZMA compression or remaining uncompressed

20

[37]. The advantages of this approach are that different LZMA encoding can be used in
different blocks, that partially incompressible data can be separated out safely, and that
encoding and decoding of multiple blocks can occur simultaneously (e.g. via
multithreading).

PPMd (7zip)
PPMd is an implementation of the context-based general compression algorithm
Prediction with Partial Match. The implementation used by 7zip is described as “Dmitry
Shkarin’s PPMdH with small changes” [38]. The general algorithm of PPM, first
developed by Cleary and Witten in 1984 [39], predicts each upcoming symbol in the
data being compressed using the context established by previously seen symbols in the
data. The difference between the predicted next symbol and the actual next symbol is
what is stored. In the case of accurate predictions, this significantly decreases the
number of different characters that must be stored and thus encoded [26], [27].

DEFLATE (ZIP)
DEFLATE is the general compression algorithm used by ZIP [40]. Deflate first employs
LZ77 compression, another dictionary based algorithm, and then Huffman coding,
which generates codes for sequences in the data based on their frequency [40].

21

5. Results

5.1. Interview Responses

5.1.1. Interview A
Interviewee A is a PhD student using ultrasonic recordings to monitor the populations
of bats in different habitats. During a project, Interviewee A deploys roughly 20
recorders per night over the course of six or seven weeks. Recording continues
uninterrupted for the entire night, approximately 8 hours, generating roughly 10-12GB
of data per device per night, which constitutes 2-3TB of data per project.

Interviewee A stores their audio data for an indefinite period of time. From the initial
recording device, the data must be transferred multiple times while being processed and
backed up. They consider the size of the data to be impactful and storage/transfer to be
time-consuming.

“And of course it's really time consuming. Even to just to take them from one place to
another is really time consuming.”

“Anything to minimize this is really wanted, I think, by anyone who works with
ultrasonic calls.”

When asked about the relative importance of size, speed, and accuracy in a
compression algorithm, Interviewee A said that a loss of accuracy could be acceptable
in exchange for a faster compression process and significantly smaller files. This is due
to the fact that much of the analysis is only concerned with certain key parameters, and
that audio quality outside of these parameters is of lesser importance for species
identification. Interviewee A followed up shortly after the interview directing us to a
figure from a textbook (Figure 4.2 from British Bat Calls: A Guide to Species
Identification [18]) describing what these commonly used call parameters are.

During a discussion of the direction of the field, Interviewee A indicated that, to their
knowledge, using a multitude of cheap detectors with minimal features and high
amounts of noise and empty audio is becoming more popular.

“Wildlife Acoustics have these detectors, actually, you set certain thresholds. So you
can say that I only want you to trigger if you really truly think it's a bat and only record
what we think are bats, and then you get a lot less noise, but now people are moving to
these detectors that I use called AudioMoths. They are super cheap, but they just record
everything. That's why you get 10 gigabytes in a night. And so then there's a lot of
noise.”

5.1.2. Interview B
Interviewee B is a bat biologist doing postdoctoral research on animal behavior and
conservation. During a project wherein Interviewee B records bats, they attempt to limit
the recording length to approximately 3 seconds. In total, a typical project can generate
1-6TB of data, though long projects can add up to more than that.

22

Interviewee B considers file storage to be relatively expensive but that it is becoming
less of a problem. The generated audio data that is deemed relevant is stored for an
indefinite period of time. Long term survey results are usually transferred between
several participants once or twice a year. Interviewee B does consider file transfer to be
quite problematic.

“Transfer is where the real issue lies, and at the moment the best way to transfer
large amounts of audio files is to load them on a hard-drive and physically mail them.
This of course is also a time-wasting aspect.”

When asked about the relative importance of size, speed, and accuracy in a
compression algorithm, Interviewee B responded as follows:

“Accuracy is of utmost importance and completely trumps the other two in my
opinion. After that, size would be more important than time for me.”

5.1.3. Interview C
Interview C was conducted with a group of professional ecological consultants who

have worked on projects requiring large-scale datasets. They provide various ecological
services such as surveys and impact assessments, and are often contracted for the
purpose of guiding infrastructure development projects. Example projects generated
2-4TB of data each, with individual files varying from 1.5MB to 3MB.

Interviewee C considers data storage and transfer to be problematic. Audio data is
generally stored for seven years past the completion of the project. Data is transferred
several times as needed for analysis, and is transferred again in full to third-parties for
reanalysis from time to time, especially when analysis is challenged on contentious
schemes.

When asked about the relative importance of size, speed, and accuracy in a
compression algorithm, Interviewee C was adamant that the full, raw audio data needs
to be recoverable in full to allow for reanalysis, as mandated by company policy and for
some projects by law. After that, the resultant file size is of greater importance than the
speed of compression, and that once analysis is over then ease of access to the data is
relatively unimportant.

“The presumption to keep raw (unaltered) data may limit the value of any
compression software.”

“Once analysed, [the data] can sit in the background somewhere; doesn’t need to be
instantly accessible.”

As the recovery of raw audio data is mandated under such strong terms, Interviewee
C would require extensive testing to prove that any compressed version of the data
would be equivalent to the original, uncompressed WAV files. They also indicated
concerns over whether any novel solution would be well-supported enough to not
become unavailable in the future.

23

“Software can rapidly change or becomes unavailable. I think .wav files will be with
us for a while, but anything that has a small market share may not, so people with
responsibility for storing data may take a little convincing!”

5.1.4. Interviews Summary
● Biologists frequently generate several terabytes of data for each project
● Data storage and transfer is considered onerous due to the size of the data.
● Data is frequently stored for long or indefinite periods of time
● Data is frequently transferred multiple times per project
● Accuracy is of the highest importance, with totally lossless/reversible

compression being listed as an absolute requirement by several interviewees.
● Size reduction is considered more important than the speed of compression.

5.2. Experimental Data
Tables 5.1 - 5.4 display the collected data averaged over ten iterations of performing the
experiment as described in Section 4.2, with each table showing the results from
different datasets. Note that the metric of accuracy is discussed in its own subsection to
avoid potentially misleading representations of the data, as any measurement other than
100% was found to both be exceptional and require contextual explanation.

5.2.1. Dataset A
Speed (seconds) Compressed Ratio

FLAC 344.4 48.76%

Monkey’s Audio 636.6 47.96%

MP3 362.9 1.60%

OptimFrog 1164.0 47.62%

TTA 16.1 0.00%

WavPack 434.9 48.55%

7ZIP LZMA2
NonSolid

11261.8 30.44%

7ZIP LZMA2
Solid

5724.2 30.29%

7Zip (PPMd)
Solid

877.8 26.29%

WavPack7z 1907.6 48.44%

24

ZIP 2299.2 49.50%
Table 5.1: The results produced by compressing Dataset A

5.2.2. Dataset B-1

Speed (seconds) Compressed Ratio

FLAC 2.9 36.27%

Monkey’s Audio 4.7 33.19%

MP3 3.0 1.06%

OptimFrog 9.9 32.09%

TTA 2.5 35.33%

WavPack 3.1 37.06%

7ZIP LZMA2
NonSolid

16.5 40.92%

7ZIP LZMA2
Solid

33.4 41.04%

7Zip (PPMd)
Solid

14.0 41.13%

WavPack7z 13.8 34.21%

ZIP 10.2 51.74%
Table 5.2: The results produced by compressing Dataset B-1

5.2.3. Dataset B-2

Speed (seconds) Compressed Ratio

FLAC 7.8 43.71%

Monkey’s Audio 8.4 40.92%

MP3 7.6 0.85%

OptimFrog 19.1 40.15%

TTA 5.2 42.02%

25

WavPack 6.0 44.24%

7ZIP LZMA2
NonSolid

15.9 46.95%

7ZIP LZMA2
Solid

42.9 46.86%

7Zip (PPMd)
Solid

25.5 45.49%

WavPack7z 20.8 41.40%

ZIP 18.0 55.74%
Table 5.3: The results produced by compressing Dataset B-2

5.2.4. Dataset B-3

Speed (seconds) Compressed Ratio

FLAC 11.4 51.50%

Monkey’s Audio 21.0 50.64%

MP3 16.3 1.63%

OptimFrog 35.2 50.20%

TTA 11.0 51.71%

WavPack 12.5 50.78%

7ZIP LZMA2
NonSolid

57.2 60.63%

7ZIP LZMA2
Solid

93.1 58.63%

7Zip (PPMd)
Solid

115.4 58.24%

WavPack7z 61.6 50.54%

ZIP 35.0 67.66%
Table 5.4: The results produced by compressing Dataset B-3

26

For these tables (see Tables 5.1 - 5.4), speed is expressed as the number of seconds
taken by each method to completely compress the given dataset. Size Reduction is
expressed as the ratio between the size of the compressed set of files and the size of the
initial set of files, converted to a percentage. For example, if given a dataset with a size
of 100 bytes, a method with a size reduction of 60% would have compressed the set to a
size of 60 bytes on average.

5.3. Accuracy
To measure the accuracy of the algorithms, the compressed files produced in each
iteration were uncompressed, and the bytes were compared to the original bytes from
the corresponding original file. Only three algorithms were found to have less than
100% accuracy, those being MP3, OptimFrog, and TTA.

As the only lossy algorithm to be tested, MP3 consistently produced files containing
none of the original files’ critical audio parameters, meaning that the resultant audio
could not be in any way used for its intended purposes. The specifics and implications
of this will be discussed in later sections, but for the purposes of providing quantitative
results, an accuracy of 0% has been given to MP3.

For Datasets B-1 and B-2, the OptimFrog algorithm displayed the following error
message for each file that it compressed, where X is the name of the given file:

“Exception UNKNOWN in file unknown, line 0
description: Exception READERROR in file unknown, line 0
function ReadFile, code 998, Invalid access to memory location.

Errors occurred compressing <.\X.WAV>”

In these cases, OptimFrog compressed the files in a way that, when uncompressed,
lost 1,600 bytes for each file in Dataset B-2, and 16,384 bytes for each file in Dataset
B-1. All bytes present in the files after compression were also present in their original
counterparts, meaning that any loss of accuracy is entirely attributable to these missing
bytes. When comparing this data loss to the original file size, this gives OptimFrog an
accuracy of 99.31% for Dataset B-2, 98.42% for Dataset B-1, and 100% for Datasets
A and B-3.

Similarly, TTA was not able to successfully compress any of the data within Dataset
A, displaying the following error message for each file:

“tta.exe: can't read from input file”

Unlike OptimFrog, TTA did not produce any files when encountering this error, and
therefore the results presented for TTA (see Table 5.1) should not be interpreted as
meaningful performance metrics. Instead, the Speed (seconds) value represents the
number of seconds that TTA took to encounter and display the error for all files in the
dataset, while the Compression Ratio value indicates that there were 0 bytes present
after compression. This outcome gives TTA an accuracy of 0% for Dataset A, and
100% for all subsets in Dataset B.

27

6. Analysis

6.1. Experiment
Across all iterations of the experiment for all datasets, the measured metrics were found
to be remarkably consistent. For each algorithm with a given dataset, the bytes in the
corresponding compressed files had no variation in number or content, confirming their
deterministic implementation. To a lesser extent, speed was also found to be rather
consistent, as the time taken by a given algorithm to compress a particular dataset rarely
fluctuated more than 10%, with most algorithms fluctuating around 5%.

As each dataset is intended to isolate various use cases and contexts to better
understand their interactions with the tested algorithms, the results of each dataset are
individually analyzed in this section with the intention of highlighting statistical patterns
and notable outcomes. Note that due to the significant differences in the amount of data
in each set, the measured values for speed vary greatly across different datasets, and as
such the bounds of the charts’ axis for speed is scaled accordingly. Additionally, all
charts in this section represent the compression ratios of each algorithm via a bar graph
corresponding to the values of the left y-axis, and the speeds of each via a line graph
corresponding to the values of the right y-axis.

6.1.1. Dataset A

Figure 6.1: The chart visualizing the results produced by compressing Dataset A

Dataset A contained the most amount of data across all sets, both in terms of number
of files and the size of each file. Within this set were 490 .WAV files totaling
approximately 12,850 megabytes, or 12.5 gigabytes. Present within these results are two
significant outliers (see Figure 6.1), one being TTA and the other being 7-ZIP LZMA2
NonSolid. As mentioned in a previous section, TTA was not able to successfully
compress any of the data within this set, and as such its compression ratio and speed

28

will not be considered relevant for this analysis. 7-ZIP LZMA2 NonSolid on the other
hand was able to successfully compress the data, and is considered an outlier only due
to its drastically slower speed. To communicate this exceptional result in a potentially
more intuitive way, 7-ZIP LZMA2 NonSolid took almost as long to compress the data
as all of the other ten algorithms combined.

FLAC compressed the dataset in the fastest time, averaging a speed of 344.4
seconds. Yielding similar times were MP3 at 362.9 seconds and WavPack at 434.9
seconds. As stated, 7-ZIP LZMA2 NonSolid was found to be the slowest algorithm by
far at 11261.8 seconds on average, while the second slowest was 7-ZIP LZMA2 Solid at
5724.2. Notably, out of the three general 7-ZIP algorithms, those being 7-ZIP LZMA2
NonSolid, 7-ZIP LZMA2 Solid, and 7-ZIP PPMd Solid, the third yielded a much faster
speed when compared to the other two, with an average of 877.8 seconds and the
smallest compression ratio of all the lossless algorithms at 26.29%.

When looking at the variance between the speeds achieved by a given algorithm
across all iterations of this dataset, the results for each were remarkably consistent.
Taking the ratio between the range of times for an algorithm and the average of those
times, the smallest variances were from MP3, OptimFrog, and 7-ZIP PPMd, which
ranged from 1% to 2%. The largest variances were measured in WavPack and ZIP, both
with around 10.5%, while the others ranged from 4% to 6%. From the perspective of
absolute time, however, WavPack and ZIP were quite differently variable, as the former
fluctuated between iterations by around 48 seconds, while the latter fluctuated around 4
and a half minutes.

The three general 7-ZIP algorithms were all found to have significantly smaller
compression ratios than the other lossless algorithms, the former ranging from 26% to
30% and the latter ranging from 47% to 49%. The only algorithm with a smaller
compression ratio than 7-ZIP PPMd Solid was MP3 at 1.60%, which was the only lossy
algorithm included in the experiment. As will be seen for all datasets, the compression
ratio for MP3 falls far below the other algorithms, consistently yielding ratios
approximately 20 to 30 times smaller across all datasets.

29

6.1.2. Dataset B-1

Figure 6.2: The chart visualizing the results produced by compressing Dataset B-1

Dataset B-1 was the set with the least amount of initial data, containing 92.2
megabytes over 41 .WAV files, and thus resulted in speeds ranging from approximately
5 to 35 seconds. With the exception of the three general 7-ZIP algorithms, the amount of
time taken to compress the complete dataset never had a variance of more than one
second. The general 7-ZIP algorithms all produced times with a variance of around two
seconds, which when converted to a percentage of the average time, was in a
comparable range to the others, that being 2% to 15% across all methods.

The fastest of the algorithms was found to be TTA (see Figure 6.2), with an average
speed of 2.5 seconds. FLAC, MP3, and WavPack yielded similar results with speeds of
2.9, 3.0, and 3.1 seconds respectively. A significant outlier in terms of speed was 7ZIP
LZMA2 Solid with an average speed of 33.4 seconds, while the next slowest is less than
half of that at 16.5 seconds.

In terms of size reduction, MP3 yielded a compression ratio of 1.06%, while the next
lowest ratio was OptimFrog’s 32.09%, followed by Monkey’s Audio with 33.19%. ZIP
yielded the least amount of compression, achieving a compression ratio of 51.74%, and
the remaining algorithms fell in the range of 34% to 41%. With the exception of the
highest and lowest ratios appearing to act somewhat as outliers and the three general
7-ZIP algorithms all nearly the same at approximately 40%, the resultant ratios fall
evenly spread across the 34% to 37% range.

30

6.1.3. Dataset B-2

Figure 6.3: The chart visualizing the results produced by compressing Dataset B-2

As can be seen by comparing Figure 6.2 and Figure 6.3, the results of compressing
the Dataset B-2 followed a similar pattern to the results of Dataset B-1. Just as in that
dataset as well as Dataset A, the metric of size reduction was consistent for each
algorithm down to the byte, and the speeds of most algorithms varied less than a second
across all iterations. When looking at the variation in speed compared to the
corresponding average time, all but two methods possessed a variation of 5% or less,
those expectations being ZIP and 7-Zip LZMA2 NonSolid. These algorithms had a
variation of 10% and 15% respectively, and as the amount of data in this set is
approximately 50% larger than Dataset B-1, containing 138 megabytes over 145 files,
the consistencies between these times are statistically more significant.

TTA was again found to be the fastest algorithm with a speed of 5.2 seconds, with
WavPack, MP3, and FLAC close behind with 6.0, 7.6, and 7.8 seconds respectively.
Additionally, 7ZIP LZMA2 Solid was exceptionally slow with a speed of 42.9 seconds,
however the next slowest speed was 25.5 seconds, meaning that 7ZIP LZMA2 Solid did
not deviate as far from the others as in Dataset B-1.

For all but one algorithm, size reduction was measured to be larger in comparison to
those measured in Dataset B-1. They were more closely spread, mostly ranging from
40% to 47%, with the three general 7-ZIP algorithms occupying the higher end of that
spectrum, and ZIP yielding a significantly larger ratio of 55%. The previously
mentioned algorithm that is exceptional to this is MP3, which yielded the smallest
compression ratio of 0.85%, slightly smaller than what it was measured as in Dataset
B-1. OptimFrog and Monkey’s Audio followed behind with their respective
compression ratios of 40.15% and 40.92%, continuing to mirror the results of Dataset
B-1.

31

The heavy similarity between the results of these two datasets is indicative of, and
likely caused by, the similarities in the content and context of their audio recordings. As
previously stated, these datasets contain around a second or two of isolated bat
vocalizations, and were separated based on their sample rate.

6.1.4. Dataset B-3

Figure 6.4: The chart visualizing the results produced by compressing Dataset B-3

Among all the subsets of Dataset B, B-3 had the most data at 377 megabytes over 185
files, although this is still much less than Dataset A. Just as in all other datasets, there
was no variance in the number or content of bytes measured in the compressed files for
each algorithm across all iterations, and a slight variance in compression speed. 7-ZIP
LZMA2 NonSolid was found to have the largest variance in speed with 7.5%, which is
approximately half the largest variance measured for any one algorithm measured in
both B-1 and B-2.

While TTA, WavPack, and MP3 were once again the fastest performing algorithms
(see Figure 6.4), the slowest speed for this dataset was found to be 7-ZIP PPMd Solid
with a speed of 115.4 seconds.

Size reduction across all algorithms was significantly larger than both B-1 and B-2.
Moreover, the results followed a similar pattern where ZIP yielded the highest ratio,
followed by the three general 7-ZIP algorithms producing comparable results to each
other, then followed by the remaining lossless algorithms being evenly distributed
across a few percentage points of each other, and MP3 being orders of magnitude lower.
In this case, the distribution of the smallest lossless algorithms were much closer
together than in B-1 and B-2, where six algorithms had ratios that fell within a range of
1.5 percentage points.

32

6.1.5. Dataset B Overall

Figure 6.5: The chart visualizing the aggregated results from Dataset B

Analyzing the behavior of the metrics across all subsets of Dataset B shows a
consistent relation between the performance of the algorithms (see Figure 6.5). MP3 had
the smallest compression ratio to a strong extent, OptimFrog had the smallest of any
lossless algorithm, although many others were quite close, and ZIP had the largest. TTA
achieved the fastest compression time while the slowest was typically 7-ZIP LZMA2
Solid, with a single outlier in Dataset B-3, where 7-ZIP PPMd Solid was the slowest.

What can also be seen in Figure 6.5 is that every algorithm yielded the smallest
compression ratio in Dataset B-1 and the largest in B-3, with the single exception of
MP3. Speed fits this pattern as well, however this can be attributed to the number of
bytes per dataset increasing, as B-1 has the least number of bytes and B-3 has the most,
and so this correlation is not meaningfully insightful. The compression ratio on the other
hand is a percentage of the initial number of bytes, suggesting that there may be some
other contributing factor or impactful emergent property.

6.1.6. General Compression Algorithms
Of particular note was the performance of general compression techniques, such as
LZMA2 and PPMd (via 7zip) and DEFLATE (via Zip), on Dataset A. Most of the
compression techniques tested maintained fairly consistent competitiveness across the
different datasets, for instance Monkey’s Audio consistently achieving a slightly better
compression ratio than FLAC at the cost of taking almost twice as long. However, the
general compression algorithms performed remarkably better than audio codecs, but
only for Dataset A, compressing files to an average size of 30.37% for LZMA2 Solid
and 26.29% for PPMd Solid. It is quite unusual for a focused compression algorithm to
perform worse than a general one, so further investigation was performed.

33

Firstly, the audio files were listened to and viewed as spectrograms. This revealed a
significant amount of static and low-intensity noise in the files of Dataset A, and
relatively low amounts of distinct or high-intensity sounds. Intuitively this makes sense,
as Dataset A came from lower-quality recorders which are left on for long periods of
time, meaning that the recording quality would be lower and there would be fewer
periods of high activity proportionally. A comparison between the spectrograms of
example files from each dataset is shown in Figure 6.6 as a demonstration.

Figure 6.6: Example spectrograms from Datasets A (top), B-1, B-2, and B-3 (bottom).

In an attempt to measure the amount of static noise versus high-intensity sounds in
these files, a Python script was written (available in Appendix B as Sample Analysis
Python Script) to convert the audio to arrays of samples and calculate the ratio of the
following two values: the difference between the maximum and minimum sample
(range), and the standard deviation of the samples (σ). The hope was that the amount of
noise in a file would be correlated with either the effectiveness of the general
compression algorithms or the relative ineffectiveness of the audio codecs. While the
results seem to suggest that this calculation properly captures the noise levels visible in
the spectrogram, this does not appear to relate to the difference in compression
efficiency. This is primarily due to the poor effectiveness of general compression
techniques on Dataset B-3, despite it also featuring static noise. See Figure 6.7 below
for example raw outputs from the script and Table 6.1 for the average range/σ values
alongside some example compression ratios each dataset achieved.

34

Figure 6.7: Raw outputs from the Sample Analysis Script.

Dataset A Dataset B-1 Dataset B-2 Dataset B-3

Range / σ 40.08 284.73 126.30 48.67

Compression
Ratio (FLAC)

48.76% 36.27% 43.71% 51.50%

Compression
Ratio (PPMd)

26.29% 41.13% 45.49% 58.24%

Table 6.1: The average Range/Standard Deviation of the samples of each dataset, compared to two
example compression ratios they achieved.

6.1.7. Overview
Across all datasets, some commonalities can be found. In terms of speed, the slowest
was always one of the general 7-ZIP algorithms, although none of them can be thought
of as the slowest since the dataset dramatically influenced their relative rankings. The
same cannot be said about compression ratio, however, as ZIP yielded the largest ratio
in every dataset by a significant margin and MP3 yielded the smallest. When
considering only the lossless algorithms, Dataset B consistently found the smallest
compression ratios in OptimFrog, Monkey’s Audio, and WavPack7z, all of which being
within only one or two percentage points of each other. Dataset A does not share this
pattern however, as the general 7-ZIP algorithms yielded significantly smaller ratios,
with 7-ZIP PPMd Solid achieving the smallest ratio of all lossless algorithms across any
dataset.

35

7. Discussion

7.1. Interviews and Desiderata
In order to address SQ1: What are the desiderata for an audio compression method from
the perspective of biologists specializing in ultrasonic frequencies? interviews were
conducted with a number of experts working with ultrasonic bat audio.

Interviewees were chosen from a range of fields relevant to ultrasonic bat
echolocation audio, and interviews conducted with biocensus consultants working in
industry, a field researcher, and a lab researcher.

All of the interviewees indicated that they store data for long or indefinite periods of
time, transfer entire datasets multiple times per project, and generally consider the size
of the data to be onerous.

Two of the interviewees indicated a strong need for lossless compression, one for
scientific reasons and one for legal/contractual reasons. Moreover, all used programs for
analysis which require the use of raw WAV files. Consequently, any compression
method would need to be reversible, potentially multiple times without degradation,
ruling out the possibility of lossy audio compression techniques even for the interviewee
who was amenable to accuracy loss.

All of the interviewees indicated that file sizes were of importance to them, and
expressed notable irritation with the lack of available options for managing the
magnitude of data.

None of the interviewees indicated any use cases that demanded a degree of speed
for compression or decompression anywhere near what most popular audio codecs
boast. This is due to the fact that analysis must be done on WAV files, so compression is
only concerned with easing storage and transfer, in contrast with audio codecs which
aim for additional features such as being immediately playable and seekable.

Overall, the desiderata of an audio compression method, from the perspective of
biologists specializing in ultrasonic frequencies, imply the following qualities in a
solution: a lossless compression technique that emphasizes compression ratio but does
not entirely sacrifice compression speed. A proper audio codec is not necessary, as the
compressed files do not need to be playable or seekable. The ability to quickly retrieve a
single file from storage is not necessary, but the data tends to be split into a large
number of very small, similar files, which implies solid compression techniques could
be effective.

7.2. Experiment
To address SQ2, How well are these desiderata satisfied by currently available
methods?, as well as SQ3, Which of the examined methods can be recommended for use
by the target group within the various contexts they operate in?, a controlled experiment
was performed judging the effectiveness of various compression techniques on data
provided by experts working with ultrasonic bat audio.

7.2.1. Monkey’s Audio
Out of the lossless audio codecs, Monkey’s Audio displayed the best compression ratio
without suffering issues with compatibility or file destruction. However, Monkey’s

36

Audio also took substantially longer to compress the data than the main competing
codecs, FLAC and WavPack. Moreover, Monkey’s Audio is known to consume more
system resources than usual, and on certain devices this may become prohibitive. This
would especially be the case if it were desirable that compression occur on the recording
device. Doing so would allow the devices to record for longer, but lower-quality devices
may not have the additional processing power required to support a heavy compression
process as offered by Monkey’s Audio.

According to the desiderata established by the interviews, Monkey’s Audio qualifies
it to be the main recommendation, with the exception of using 7zip PPMd on data
resembling Dataset A (more on that in the General Compression vs Audio Codecs
subsection). However, the additional demands may make Monkey’s Audio infeasible for
certain use cases, so it cannot be the sole recommendation.

7.2.2. FLAC and WavPack
Both FLAC and WavPack consistently performed quite well across all of the datasets.
As expected from lossless codecs, none of the audio data was compromised upon
compression and decompression. Both codecs achieved good compression ratios and
very quick compression speeds. These codecs can be equally recommended for data
similar to Datasets B-1, B-2, and B-3, in cases where the additional resource
requirements for Monkey’s Audio cannot be met, when compression time is of higher
value than the small gain in compression efficacy, or when a popularized compression
method is needed as indicated by Interviewee C.

It was noted during testing that the decompression rate of FLAC seemed slightly
superior to WavPack, but as this was not mentioned as an important desideratum by
interviewees it was not included as a controlled measure in the experiment and should
not be used to form a conclusion.

As the two came out so similarly, neither one can be recommended over the other
based on the primary desiderata. Ancillary features such as compatibility with certain
programs or hardware, tagging preferences, or WavPack’s support for a lossy algorithm
under the same format may be the deciding factor between these two.

7.2.3. MP3
MP3 was found to have the greatest size reduction, consistently achieving a
compression ratio slightly above 1% of the original file size. It also performed the task
fairly quickly, achieving a speed comparable to the fastest algorithms for each dataset.
However, MP3’s accuracy was by far the worst of the algorithms tested, making it not
viable for the use cases examined in this thesis. This accuracy loss is partly due to the
generally lower fidelity that lossy compression methods aim for, as well as the
psychoacoustic model of MP3 removing sounds outside of the range of human hearing.

As an example, see audio file M01250 from Dataset B-2 in Figure 7.1 below,
expressed as a Mel spectrogram of the original WAV file (top) and the compressed MP3
file (bottom). Take special note of the difference in scales, as the MP3 is limited to
24kHz frequencies, destroying virtually all of the useful data from the ultrasonic audio
in the WAV.

37

Figure 7.1: Example of a WAV file and the loss of ultrasonic data in the resulting MP3.

This destruction cannot be trivially remedied, as it’s based on the limited bit
rate/sampling rate. As per the Nyquist-Shannon sampling theorem, the highest pitches
that can be recorded are of frequencies less than half the sampling rate. In order to
record the sounds typical for bat echolocation research, a sampling rate of at least
250kHz would be necessary, which would multiply the size of the compressed file by a
factor of approximately 5 compared to its current 48kHz sampling rate. Given that MP3
is generally expected to achieve a compression ratio of 9%, increasing the sampling rate
to 250kHz would improve the quality of the audio, but at that point a ~45%
compression ratio would yield very little advantage over true lossless compression.

7.2.4. Optimfrog
As mentioned in Section 5.3, the OptimFrog algorithm consistently produced an error
message when compressing files in Datasets B-1 and B-2. To better understand what
had occurred to produce the error message, the compressed files were decompressed
and analyzed. As OptimFrog is a lossless algorithm, the bytes present in the
decompressed file should be identical to the original corresponding file. When
comparing the bytes of the original file and decompressed file, it was found that all
bytes of the files were identical until the end, at which point the decompressed file
ended sooner than the original. For Dataset B-2, all decompressed files were found to
be missing exactly 1,600 bytes from the end of the original file, and all decompressed
files from Dataset B-1 were missing exactly 16,384 bytes each.

Further inspection found that while the standard .wav format contains a header with a
length of 44 bytes, the files in Dataset B-1 contained 1024 bytes headers and Dataset
B-2 files had 288 byte headers. Decoding these extra bytes into readable text showed

38

that extra headers were added to the files by the recording device and its software.
While the other tested methods were able to correctly identify this additional header
data and begin compression at the correct byte offset, OptimFrog assumed a header of
exactly 44 bytes, and was therefore unable to begin and end the compression process at
the correct positions.

Also of note is that while these shorter uncompressed files are still able to be listened
to with this ending data removed, OptimFrog cannot cannot compress the file a second
time. Attempting to do so produces an UNEXPECTEDEOF error message, indicating
that the ending bytes that were lost in the initial compression were necessary for
OptimFrog to successful compress the file.

7.2.5. TTA
Unlike OptimFrog, TTA’s failure to compress Dataset A was not found to be
attributable to any misreading of header data. Modifying the bytes present in the headers
of these files so that their structure more closely resembled the other sets produced the
same error. While the exact mechanism that led to this failure was not able to be
determined in the scope of this paper, this behavior is seemingly consistent with the
reputation that TTA has of lacking the compatibility of other codecs.

7.2.6. WavPack7z
WavPack7z was included to explore the possibility that compressing all of the audio
files together with an audio codec could be more effective than compressing them
individually. It appears that using WavPack7z generally compresses slightly more
efficiently than WavPack on its own, at the cost of taking substantially longer. However,
the compression efficiency of WavPack7z did not manage to beat the efficiency of other
audio codecs focused on efficiency such as Monkey’s Audio, and so for the use case
being examined in this study does not seem to be a worthwhile option.

7.2.7. General Compression vs Audio Codecs
Broadly speaking, the general compression algorithms performed more slowly and
achieved worse size reduction than the dedicated audio codecs–with one notable
exception in Dataset A–though both types of algorithms managed to maintain 100%
accuracy. While this result was expected, the use of compression algorithms that do not
specifically focus on the compression of audio was important in order to gauge the
relative effectiveness of the techniques which do, as this gives insight into the
effectiveness of this focus. Overall, it seems that audio codecs benefitted less in terms of
compression ratio when used on the ecological data in this thesis than they often do
when compressing human-focused audio such as speech and music, though they did still
benefit. This implies either that some of the unique qualities of the ecological audio are
not being considered or that design choices made in consideration of the unique
qualities of speech and music are not applicable in this ecological audio.

As mentioned in the analysis, it was found that general compression algorithms were
exceptionally effective on Dataset A, whereas audio codecs maintained roughly similar
effectiveness across all the datasets. Investigating the files more closely revealed a
noticeably higher amount of static noise relative to activity spikes in the files of Dataset

39

A. However, analysis was not able to confirm that this was related to the unusual
effectiveness of general compression techniques. This is because Dataset B-3 also
featured significant, albeit lesser, levels of static noise relative to activity spikes, but
was far less effectively compressed by the general compression algorithms in
comparison to the audio codecs.

While it is possible that either Dataset A or Dataset B-3’s performance was
anomalous, and that noise versus activity is indeed related to general compression
algorithm effectiveness, it cannot be seen from only the available data which is
anomalous. It is therefore not possible to conclude whether this metric is of value,
whether there are other metrics that could reveal the surprising effectiveness of general
compression algorithms, or whether some of the data is damaged or otherwise
unrepresentative of ordinary ultrasonic bat audio data.

Though it cannot be proven from this experiment whether the solution will apply
generally to data gathered in the same style as Dataset A, within the scope of this study
the recommendation is to use 7zip’s PPMd algorithm to compress such data due to its
outstanding size reduction while maintaining 100% accuracy.

7.2.8. Solid vs Nonsolid
In this experiment, the LZMA2 algorithm was tested twice, once creating a solid
archive and once a nonsolid archive, in order to test the difference between the two.
Broadly speaking, the results were as theory would predict in that it took substantially
more time to create a solid archive than a nonsolid one, but the compression efficiency
of the solid archive was superior.

Somewhat surprising, however, was how small the difference in efficiency was. Solid
archival generally grants the greatest improvements when the input is a large number of
small, similar files, which would have implied more significant improvements in the
datasets tested than what was experimentally tested. As it stands, it does not seem like
solid archival of audio files is worth the added time and risk of data corruption that it
costs, though more work could be done in the future to see if other algorithms gain more
efficiency from being made solid rather than not.

7.2.9. Datasets
As previously discussed, the files used in the experiment were categorized into datasets
based primarily on the context of their recording, such as date, location, and sample
rate. Thus, the amount of data in each dataset differs from each other quite drastically,
ranging from 92 MB in Dataset B-1 to 12,850 MB in Dataset A, as some contexts
produced more data than others. While this can partially be attributed to recordings with
higher sample rates requiring more data per second of audio, the number and duration of
files varies for each set vaguely proportionally. For example, Dataset A contained 490
files with an average duration of 55 seconds, while Dataset B-1 had 41 files at an
average of 3 seconds. This means that the results corresponding to larger datasets are
more likely to be statistically significant in comparison to smaller datasets, as those
values represent the average performance for a given algorithm with respect to that
dataset. Phrased in a potentially more intuitive way, having more data to compress
requires more execution time for an algorithm, which in turn provides more

40

measurements of that performance, thus reducing the impact that any exceptional
measurement has on the final average.

While files may have been omitted from sets in an attempt to have all datasets
contain a consistent number of files, bytes, or seconds of audio, the difference in sample
rates means that it is not possible to have all of these metrics consistent. Additionally,
these sets were intended to represent use cases common to the target group, and the total
amount of data and number of files produced cannot be thought of as independent from
that context. While it is possible that the performance of one or more algorithms is
meaningfully correlated to the number of files within a set or the average duration of
those files, the execution of other experiments that are designed to isolate these
variables would be required in order to confirm or deny this.

41

8. Conclusions and Future Work

8.1. Research Questions
In Section 1.3, Problem Formulation, four research questions were presented as a
framework for the structuring and interpretation of this paper and the work done within
it, one main question and three sub-questions. This section presents the knowledge and
findings of the project as detailed in previous sections as answers to these questions.

SQ1. What are the desiderata for an audio compression method from the
perspective of biologists specializing in ultrasonic frequencies?

The desiderata mentioned in SQ1 were elicited primarily from the data collected during
interviews, while following the precedent set by previous related works [3], [8], [9],
[10]. These studies served as a foundation for how to objectively measure and compare
the contextual value of audio data compression algorithms, and provided a standardized
means of communicating these metrics to the target group. The metrics of data accuracy,
file size reduction, and compression speed were selected from and defined by these
works, which were then presented to the target group in interviews to judge their
applicability and sufficiency.

To summarize the elicitation within Section 7.1, Interviews and Desiderata, the
responses generated from the interviews strongly suggest that the three metrics of
accuracy, size reduction, and speed are the main desiderata for an audio compression
method within the context of bat biology. Moreover, with some degree of contextual
variance, the metrics are prioritized as accuracy being the highest, and speed being a
tertiary yet still significant concern.

SQ2. How well are these desiderata satisfied by currently available methods?
With a thorough understanding of what the target group expects and demands from an
audio data compression algorithm, the experimental results may now be interpreted in a
more qualitative manner. Generally speaking, the algorithms analyzed in this paper fall
short of being a versatile tool for all or even most bioacousticians. The degree to which
they satisfy the established desiderata varies significantly depending on the specific
properties of the files’ content, with some algorithms failing to compress files in certain
contexts entirely. As such, the value of each algorithm must be thought of as contingent
on whether they are to be considered advisable for legitimate use. Moreover, as the
properties that cause this contingency are either obscure or ambiguous, there lacks
precision in the ability to identify use cases where the performance of an algorithm can
be expected to be worthwhile.

With this in mind, the tested algorithms predominantly do not sufficiently satisfy the
desiderata established, even when properly contextualized. While most algorithms did
achieve 100% data accuracy, their ability to reduce the size of a file does not reach a
point that would materially affect bat biologists’ ease in storing or transmitting data.
This would likely not change the feeling that physically mailing hard-drives is the best
way to transfer large amounts of audio data. So, while the existing recommendations do
offer value, there remain significant challenges in managing so much data as well as
clear avenues for improved processing of this specific type of audio data.

42

SQ3. Which of the examined methods can be recommended for use by the
target group within the various contexts they operate in?

As discussed in the previous sections, the algorithm with the best compression ratio
across all datasets was MP3, which also achieved speeds that were near what the fastest
algorithms were measured at. However, as these metrics were strictly the byproduct of
MP3’s drastically low accuracy, it cannot be considered a viable solution in the context
of ultrasonic bioacoustics.

Similarly, as both TTA and OptimFrog were not able to accurately parse files created
by software commonly used in the field, they too should be discarded as valid options.
Even though TTA and OptimFrog achieved 100% accuracy for at least half of the
datasets, the reasons that lead to the files being corrupted cannot be easily predicted by
those with only a casual knowledge of data compression, as this paper assumes of the
target group. Furthermore, when compared against alternatives within datasets where
these algorithms did not produce any data loss or corruption, their performance in all
metrics were not found to be significantly better, meaning that their risk of failure is not
meaningfully outweighed by their successes.

Therefore, the remaining algorithms which have consistently compressed all datasets
without any loss of data will be considered equal in the metric of accuracy, as all of
them yielded a result of 100% for all iterations with no measured variance. Comparing
these algorithms will focus primarily on the other two metrics of speed and size
reduction, with the latter being prioritized higher in accordance with the results of the
case studies.

Dataset A was intended to represent use cases where lower cost recording devices
were placed in the wild and set to record mostly continuously, as opposed to a more
controlled laboratory environment. In this case, 7-ZIP PPMd Solid was found to achieve
remarkably good size reduction at almost a quarter of the original size, while still
yielding reasonable speed and perfect accuracy. However, the extent to which this result
is generalizable is unknown, as more testing is needed to identify the reasons behind
this outcome and why similar performance is not measured in other datasets. For these
reasons, this algorithm is recommended to be used over the alternatives in this context,
with a note that care should be taken to ensure that the data intended to be compressed
is sufficiently similar to the test data. Should speed ever outweigh size reduction as a
priority in these cases, especially if the ability to stream the audio is needed, FLAC and
WavPack consistently perform approximately 2.5 times faster, although their size
reduction is much worse, yielding around half of the original size.

Dataset B was split into three subsets based on their initial sampling rate and
recording conditions, although all were intended to represent the use cases of short files
containing isolated bat audio recordings. While interesting patterns arise when looking
at the metrics and how they change with respect to the sample rate, the conclusion of
which algorithm to recommend in practical use is relatively consistent throughout.
Monkey’s Audio yields the best size reduction, although its competitors are not as far
behind in comparison to Dataset A. For example, in Dataset B-3 Monkey’s Audio
achieves a size reduction less than 1 percentage point better than FLAC and WavPack,
though FLAC and WavPack perform almost twice as fast. With this in mind, Monkey’s

43

Audio is recommended for this context in spite of this small difference, as an
improvement of 1 to 3 percentage points can be very impactful when on the scale of
several terabytes. However, if Monkey’s Audio is too resource intensive for a particular
usage, for instance if compression is to be performed on the recording device and
computer power is very limited as a result, FLAC and WavPack serve as good
alternatives.

Finally, results seem to indicate that solid compression is not particularly worthwhile
for any of the datasets, given the risks it imposes and the extra time it takes in exchange
for relatively little compression efficiency. However, solid vs nonsolid archival was
only formally tested for LZMA2, so there remains a chance that nonsolid compression
would be significantly more detrimental when using other techniques.

What are the best performing audio data compression methods in the context of
ultrasonic bat bioacoustics?

With the sub-questions answered, the answer to the main question can be properly
articulated. Due to the high demand of perfect accuracy from the target group, lossless
algorithms can be considered better than lossy, especially when accounting for the
significant bias against ultrasonic frequencies present in most lossy algorithms. Between
lossless algorithms, FLAC, WavPack, and Monkey’s Audio all consistently perform
better than their competitors, although the unique results of Dataset A suggest that
7-Zip PPMd Solid is the best algorithm within specific contexts.

8.2. Future Work
There exists a possibility that a novel compression algorithm could be designed with the
specific intention of catering to desiderata specific to the context of ultrasonic
bioacoustics. Due to the high complexity of implementing an algorithm of that scale
from scratch, such a project would most likely begin as an extension of or a
modification to an existing compression algorithm. As such, this paper may serve as
foundational literature that assists in the selection of an algorithm to work with, and
may provide a deeper understanding to the mechanisms that impact its eventual design
and implementation.

Furthermore, the conclusion of the experiment performed in this paper suggests a
significant difference between the two use cases represented by the datasets. As
previously mentioned, 7-ZIP PPMd Solid yielded the best size reduction in Dataset A,
but was consistently much worse in Dataset B. A potential direction to extend this work
would be to create a means of identifying which use case a given audio file falls under,
and therefore which algorithm would produce the best results for that file. This would
not only assist those in the target group by providing further information relevant to
their context, but it would quite likely deepen the understanding of how and why these
algorithms produce their respective results, providing further foundational literature.
Moreover, PPMd’s effectiveness on Dataset A granted the best compression ratios out
of the entire experiment, and Interviewee A’s claim “now people are moving to these
detectors that I use” implies that this type of file may become more popular in the near
future. Therefore, a compression algorithm tailored to these low-quality recordings with
long periods of low activity could be of substantial use to the field of bat research.

44

Finally, more research remains to be done on whether these results would apply to
other bioacoustic purposes, for instance in the recording of other animals or
environments. While recording ultrasonic frequencies causes especially outsized
difficulties for bat researchers, the general concept of gathering long recordings with
long periods of silence on lower-quality recorders could also apply to other wildlife
researchers. As progress is made in developing solutions for bat researchers, more
studies on the generalizability of these findings could bring benefits to adjacent fields.

45

References
[1] A. Dobson, “Titley Scientific FAQs,” Titley Scientific, Jun. 19, 2010.

https://www.titley-scientific.com/eu/support/faqs (accessed Feb. 02, 2022).

[2] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proceedings of the

IEEE, vol. 88, no. 4, pp. 451–515, Apr. 2000, doi: 10.1109/5.842996.

[3] B. E. Heath, S. S. Sethi, C. D. L. Orme, R. M. Ewers, and L. Picinali, “How index

selection, compression, and recording schedule impact the description of ecological

soundscapes,” Ecology and Evolution, vol. 11, no. 19, pp. 13206–13217, Aug. 2021,

doi: 10.1002/ece3.8042.

[4] M. P. Mcloughlin, R. Stewart, and A. G. McElligott, “Automated bioacoustics:

methods in ecology and conservation and their potential for animal welfare monitoring,”

Journal of The Royal Society Interface, vol. 16, no. 155, p. 20190225, Jun. 2019, doi:

10.1098/rsif.2019.0225.

[5] A. López‐Baucells, N. Yoh, R. Rocha, P. E. D. Bobrowiec, J. M. Palmeirim, and C.

F. J. Meyer, “Optimizing bat bioacoustic surveys in human‐modified Neotropical

landscapes,” Ecological Applications, vol. 31, no. 6, Jun. 2021, doi: 10.1002/eap.2366.

[6] J. Xie, J. G. Colonna, and J. Zhang, “Bioacoustic signal denoising: a review,”

Artificial Intelligence Review, vol. 54, no. 5, pp. 3575–3597, Nov. 2020, doi:

10.1007/s10462-020-09932-4.

[7] R. C. Whytock and J. Christie, “Solo: an open source, customizable and inexpensive

audio recorder for bioacoustic research,” Methods in Ecology and Evolution, vol. 8, no.

3, pp. 308–312, Nov. 2016, doi: 10.1111/2041-210x.12678.

[8] M. van Beurden, Lossless Audio Codec Comparison, 4th ed. 2015. [Online].

Available:

http://www.audiograaf.nl/losslesstest/Lossless%20audio%20codec%20comparison%20-

%20revision%204.pdf

[9] T. Hidayat, M. H. Zakaria, and N. Che Pee, “Comparison of Lossless Compression

Schemes for WAV Audio Data 16-Bit Between Huffman and Coding Arithmetic,”

International journal of simulation: systems, science & technology, Feb. 2019, doi:

10.5013/ijssst.a.19.06.36.

46

[10] H. Chen and T. L. Yu, “Comparison of Psychoacoustic Principles and Genetic

Algorithms in Audio Compression.” Accessed: May 16, 2022. [Online]. Available:

http://dx.doi.org/10.1109/icseng.2005.28

[11] B. J. Cardinale et al., “Biodiversity loss and its impact on humanity,” Nature, vol.

486, no. 7401, pp. 59–67, Jun. 2012, doi: 10.1038/nature11148.

[12] J. Joshi, S. Porwal, Y. Chaudhary, and M. Jain, “Data Compression Methodologies

for Lossless Data and Comparison between Algorithms,” International Journal of

Engineering Science and Innovative Technology (IJESIT), vol. 2, no. 2, pp. 142–146,

Mar. 2013.

[13] U. Flick, The SAGE Handbook of Qualitative Data Analysis. SAGE, 2013.

[14] J. W. Knopf, “Doing a Literature Review,” PS: Political Science & Politics, vol.

39, no. 01, pp. 127–132, Jan. 2006, doi: 10.1017/s1049096506060264.

[15] J. Blair, R. F. Czaja, and E. A. Blair, Designing Surveys. SAGE, 2013.

[16] S. Messick, “VALIDITY,” ETS Research Report Series, vol. 1987, no. 2, pp. i–208,

Dec. 1987, doi: 10.1002/j.2330-8516.1987.tb00244.x.

[17] U. Kulisch, Computer Arithmetic and Validity: Theory, Implementation, and

Applications. Walter de Gruyter, 2013.

[18] J. Russ and K. E. Barlow, British Bat Calls: A Guide to Species Identification.

Anchor Books, 2012.

[19] O. Mac Aodha et al., “Bat detective—Deep learning tools for bat acoustic signal

detection,” PLOS Computational Biology, vol. 14, no. 3, p. e1005995, Mar. 2018, doi:

10.1371/journal.pcbi.1005995.

[20] C. L. Walters, A. Collen, T. Lucas, K. Mroz, C. A. Sayer, and K. E. Jones,

“Challenges of Using Bioacoustics to Globally Monitor Bats,” in Bat Evolution,

Ecology, and Conservation, New York, NY: Springer New York, 2013, pp. 479–499.

Available: http://dx.doi.org/10.1007/978-1-4614-7397-8_23

[21] K. E. Jones et al., “Indicator Bats Program: A System for the Global Acoustic

Monitoring of Bats,” in Biodiversity Monitoring and Conservation, Oxford, UK:

47

Wiley-Blackwell, 2013, pp. 211–247. Available:

http://dx.doi.org/10.1002/9781118490747.ch10

[22] V. Stathopoulos, V. Zamora‐Gutierrez, K. E. Jones, and M. Girolami, “Bat

echolocation call identification for biodiversity monitoring: a probabilistic approach,”

Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 67, no. 1, pp.

165–183, Feb. 2017, doi: 10.1111/rssc.12217.

[23] J. Rydell, S. Nyman, J. Eklöf, G. Jones, and D. Russo, “Testing the performances

of automated identification of bat echolocation calls: A request for prudence,”

Ecological Indicators, vol. 78, pp. 416–420, Jul. 2017, doi:

10.1016/j.ecolind.2017.03.023.

[24] J. (Y) Stein and Stein, Digital Signal Processing: A Computer Science Perspective.

Wiley-Interscience, 2000.

[25] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on models of

human perception,” Proceedings of the IEEE, vol. 81, no. 10, pp. 1385–1422, 1993, doi:

10.1109/5.241504.

[26] K. Sayood, Introduction to Data Compression. Elsevier Science, 2017.

[27] M. Mahoney, “Data Compression Explained,” Apr. 15, 2013.

http://mattmahoney.net/dc/dce.html

[28] B. Kim and Z. Rafii, “Lossy Audio Compression Identification,” in 2018 26th

European Signal Processing Conference (EUSIPCO), Sep. 2018, pp. 2459–2463.

[29] I. N. Herstein, Topics in Algebra, 2nd ed. John Wiley & Sons Incorporated, 1975.

[30] J. Watkinson, The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4. Taylor &

Francis, 2004.

[31] J. Coalson, “FLAC,” documentation.

https://xiph.org/flac/documentation_format_overview.html (accessed May 15, 2022).

[32] The Library of Congress, “MP3 (MPEG Layer III Audio Encoding),” May 03,

2017. https://www.loc.gov/preservation/digital/formats/fdd/fdd000012.shtml (accessed

May 16, 2022).

[33] F. Ghido, “OptimFROG,” Main. http://losslessaudio.org/ (accessed May 15, 2022).

48

[34] A. Djuric, “TTA Lossless Audio Codec - Format Description,” Tau Software.

https://www.tausoft.org/en/true_audio_codec_format/ (accessed May 16, 2022).

[35] “WavPack Audio Compression.” https://www.wavpack.com/ (accessed May 16,

2022).

[36] “WavPack7z.” https://www.tc4shell.com/en/7zip/wavpack7z/ (accessed May 16,

2022).

[37] A. Diaz, “Xz format inadequate for long-term archiving.”

http://lzip.nongnu.org/xz_inadequate.html (accessed May 16, 2022).

[38] “7z Format - 7-Zip Documentation.” https://documentation.help/7-Zip/7z.htm

(accessed May 16, 2022).

[39] J. Cleary and I. Witten, “Data Compression Using Adaptive Coding and Partial

String Matching,” IEEE Transactions on Communications, vol. 32, no. 4, pp. 396–402,

1984, doi: 10.1109/tcom.1984.1096090.

[40] PKWARE, Inc., .“ZIP File Format Specification,” Jul. 15, 2020.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT (accessed May 16,

2022).

A. Appendix A

B.1. Questions
The purpose of this questionnaire is to assess the current state of ultrasonic audio

data management, especially in regard to ultrasonic bat vocalizations. The goal is to
create a novel data compression method for this purpose, as most audio data
compression techniques are focussed on the human range of hearing and may not be
suitable for ultrasonic audio as a result.

We define data compression as a process to reduce the size of a data file, often by
either restructuring or modifying the data, for the purpose of making storage or transfer
more efficient.

1. Briefly, what specifically is your job title/description, how long have you been
doing it, and what is your current project/goal?

2. On average, how much bat/ultrasonic audio data do you generate for a project?
How large are individual files on average/at most?

49

3. How impactful is the size/amount of audio data that you work with? Does
storage or transfer of these files consume a problematic amount of storage space or
time?

4. What software do you use to analyse this audio, and what functions do you
primarily use it for? What can/can't be done automatically?

5. What percentage/how much of the average audio file is empty/useless/"noise"?
How do you identify this noise? Is this noise removed somehow before/during
analysis?

6. Does ultrasonic audio data have to be treated significantly differently from
other audio data?

7. In what format do you generally store bat/ultrasonic audio data (e.g., full
spectrum vs zero crossing, compressed vs uncompressed) and what file types do you
commonly use (e.g., wav, zc, mp3, flac, zip)? Why?

8. How long do you generally store any given bat audio data and how often do
you generally transfer significant amounts of it?

9. Would you value a way to reduce the size of the bat/ultrasonic audio data you
work with?

10. Three important metrics for determining the value of a compression algorithm
are:

· Size: How much smaller is the compressed file compared to the original?

· Speed: How much time does it take to compress a file?

· Accuracy: How much detail was lost during compression?

How do you value these metrics? Are there other metrics that are also important to
you?

11. Do you know whether anybody has developed a data compression method
focussed on ultrasonic audio before? If not, do you know why not?

12. It has been rumoured that zero crossing files may be phased out in the future.
What have you heard about this, if anything?

Finally, would you be willing to provide us with sample files of bat/ultrasonic audio
of the kind(s) you generally work with?

50

B.2. Interview A

Researcher A:
All right. I hope we've got that set up.

Interviewee:
Yep. That's fine.

Researcher A:
All right. So we are going to interview to you today about ultrasonic about
vocalizations.

Interviewee:
mm-hmm <affirmative>

Researcher A:
We're hoping to develop a novel data compression method, and we wanted to get your
opinion on the matter.

Interviewee:
mm-hmm <affirmative>

Researcher A:
So we've got some questions for you.

Interviewee:
Yep. Cool.

Researcher A:
Briefly, what is your job title and description? How long have you been doing it and
what's your current project or goal?

Interviewee:
So I'm a PhD student. I've been doing this PhD since 2016 but I've been working with
bats for 15, 20 years almost. And so now I'm my project. I, yeah, I use ultrasonic
recording methods to monitor bats in different habitats populations. So primarily I'm
using ultrasonic data and a lot of it.

Researcher A:
Yeah. We heard as much. You're with [website], right?

Interviewee:
Yes. So that's one of the projects. [Description of current project.] So, and we hope we'll
be to continue that again, this year.

51

Researcher A:
Everyone I’ve shown that to thinks it's very interesting. So very nice. On average, how
much ultrasound audio data do you usually generate for a project?

Interviewee:
Well, you can say that per detector per device per night, that it goes out if I'm recording
for the entire night, it's 10 gigabytes.

Researcher A:
All right.

Interviewee:
And I am often deploying 20 of these per night, maybe over six, seven weeks. So,

Researcher A:
Oh, that's a large amount.

Interviewee:
Yeah, it's a large amount. So, I mean, I sit with currently with, I think I've got now my
sixth hard drive, which is two terabytes and I also have to back up these things
somewhere. So they're backed up either on our server here or backed up on the cloud.
And of course it's really time consuming. Even to just to take them from one place to
another is really time consuming. And I use a slightly faster computer for processing, so
it runs on like 32 cores. So it's a little bit faster when it's processing the stuff for me, but
of course it's really slow because it has to go through all the noise files as well. And this
takes time. So yeah, anything to minimize this is really wanted, I think, by anyone who
works with ultrasonic calls.

Researcher A:
I hope so. Yeah. And I think you basically asked, answered the next one. How impactful
is the size? So pretty impactful and annoying.

Interviewee:
Yeah.

Researcher A:
What software do you use to analyze the audio? Like what do you, what do you use it
for? What can you not do automatically?

Interviewee:
So at the minute I'm using Kaleidoscope, which is a purchased software from Wildlife
Acoustics. I think I mentioned before that, I think they do have some form of
compression option within the software. I've not used it, then I've not heard people talk

52

about it, but it could be worth checking out what they do. I don't know what it is there.
Yeah. How they're handling it.

Researcher B:
I looked into it and like, they seem to have it, but it is, infuriatingly hard to find any
details about it whatsoever. Like where it's used, how it works. We can find like two
paragraphs explaining how it works, but nothing like where it's used or anything it's

Interviewee:
Yeah.

Researcher B:
Quite a mystery.

Interviewee:
Yeah. Other softwares I've used are... there's an open source, one called BatScope 4 and
then there's BatSound, which is…

<redacted due to disclosure of personal information>

… BatSound. Which is one of these it's kind of like the industry standard. I guess
people everywhere use it,

Researcher A:
Just jotting that down. Right. What percentage how much of the average audio file do
you consider to be the noise and how do you identify it?

Interviewee:
Yeah, so there's a lot of noise cause I'm just recording continuously and the detectors
that I use at the minute don't trigger for a bat. You can, so Wildlife Acoustics have these
detectors, actually, you set certain thresholds. So you can say that I only want you to
trigger if you really truly think it's a bat and only record what we think are bats, and
then you get a lot less noise, but now people are moving to these detectors that I use
called AudioMoths. They are super cheap, but they just record everything. That's why
you get 10 gigabytes in a night. And so then there's a lot of noise. I would say, if you
have say, I, I divide them into like 10, second sound files when I record. And maybe
like, it could be like 10% or useful and the rest are noise.

Researcher A:
Yeah. That's more than I would think of. And I, so

Interviewee:
Yeah, because it, and it just depends on the site. If it's a really active site, maybe it's, it's
slightly less, but there are no triggering settings in AudioMoth, which I've not actually

53

tested, but you can trigger a little bit, but you'll still get a lot of noise. But I should say
with the noise, it's always, we always have to check those noise files, at least a certain
percentage of them because sometimes there's, if it's a very quiet call, you might miss
the, the software might miss the fact there's a bat there cuz Kaleidoscope will go
through your files and say, this is bats and this is noise, but you still wanna check those
noise files. I check 10% of them and then just delete them.

Researcher A:
All right. Just to filter out. That makes sense.

Interviewee:
Yeah.

Researcher A:
All right then. I guess that's not particularly relevant, but cuz you mostly deal with
ultrasonic audio your data, right? Mm. Although I believe bats do a lot of chirping too.
Just normal social calls and neuro ultrasonic. Are those particularly relevant to your
work?

Interviewee:
Yeah. And some of those are, you know, audible of course. And, and, and also I should
say, I mean we're often interested also in, in some of the audible signs because I worked
in a project where we recorded both bats and birds. So we had somebody who we
worked with, the bird data, someone who worked with the bat stuff. So you can record
everything with these detectors. I mean, you get a lot of crickets. This is actually one
thing that's really infuriating. If you have crickets they're really loud and they just
dominate the sound files. So you get lots of these sound files.

Researcher A:
I never really hated crickets for it, but <laugh>,

Interviewee:
<Laugh> that, I mean, that could be interesting still for some people they might want to
look at cricket cause you can identify the species of cricket by the pattern of the, the
sonogram. So yeah.

Researcher A:
Do you yeah, so you say, would there be any difference in how you have to treat like
your ultrasonic audio data, compared to if someone wanted to use a human hearing
range audio data like the birds, do you treat the data any different?

Interviewee:
I guess at the minute it's I guess the softwares are more developed for
auto-identification of ultrasonic signs for bats, particularly cuz now they have these

54

huge libraries and it's a bit, there's a lot more possibility to do this auto identification, I
guess, with the, with birds and things at the minute, people are still just listening to the
files actually and saying, it's that bird? It's this bird cuz it's not, they're not there yet. I
don't think with bird auto identification. So I guess that's the difference is that I can do a
lot of sort of semi-automatic processes. I can let a software do a lot of the hard work and
I just do a bit of checking, with birds they are really checking everything,

Researcher A:
I guess it might be because you can listen to the birds in the first place.

Interviewee:
So yeah. Yeah. That helps <laugh>. Yeah.

Researcher A:
All right. What format do you usually store your ultrasonic audio data in?

Interviewee:
They are wav files

Researcher A:
Full spectrum then

Interviewee:
Mm-Hmm <affirmative> yeah full spectrum wav files.

Researcher A:
All right. Then that's quick one there. Why that? Just to make sure you don't lose any of
the data?

Interviewee:
Because it's the format that these detectors record in. Oh, that's the primary reason.
Yeah, and I mean, there's no reason for me to convert it because again, again, the
softwares I guess are primarily handling wav files.

Researcher A:
Yeah,

Interviewee:
I'm not sure if they can handle other ones or not, I'm not sure

Researcher A:
I heard they sometimes use zero crossing where they it's basically very rare. Yeah.

Interviewee:

55

Yeah. That is for Anabat, which is particular company. They produce these yeah. Zero.
You, you can also do it with some other change but Anabat's the primary product that
you do that with and you lose, you get a lot, you sort of lose information with this zero
crossing. So it means that the, the, yeah, the files are kind of compressed in a sense and
easier to handle, but then it's quite difficult to identify some species. So there's a
particular group called the Myotis group. And I think with zero crossing, it can be quite
difficult to separate them. It's already really difficult anyway. But then with zero
crossing, it becomes worse.

Researcher A:
Yeah. Currently only they only record like one frequency with the zero crossing don't
they? So that's,

Researcher B:
You can't even tell like how many bats are around just with zero crossing files. Just how
many times a noise has been made.

Interviewee:
Yeah. But it's the same with, I mean, what I do, I can't say that there were 50 bats
because there's no way to say how many individuals, so what you tend to say is that in a
ten second period, if you have more than two pulses of a call, then you can say a bat
pass happened, as in a bat flew past your microphone. And then you say how many bat
passes there were. And that does is a rough proxy for how many bats, but you can never
say how many bats.

Researcher A:
They might just be doing circles around you.

Interviewee:
Exactly. They can do this, just pass your microphone constantly.

Researcher A:
Once they learn where the microphone is, they're just messing with you.

Interviewee:
<Laugh> yeah. So yeah, there are ways to try and people have tried to come up with
ways to get numbers, but it's very difficult.

Researcher A:
Yeah.

Interviewee:
Modeling.

56

Researcher B:
So bats of the same species roughly are very hard to tell apart just from their sounds?

Interviewee:
Yeah. You couldn't say individuals. No, mm-hmm <affirmative>

Researcher B:
Okay.

Researcher A:
All right. How long do you usually store your like a given recording and how often do
you usually like have to transfer it around?

Interviewee:
I mean, they're stored forever because I mean it's publicly funded data. And I would say
moving it, I have to take it yeah. From initially from the device, which is stored in an
SD card. And then it has to go onto a hard drive probably first of all in the field. And
then I have to back it up somewhere more secure, like a cloud solution. I, I use Box,
which is very clunky and very slow. But that's what we're supposed to use at university.
We're not really allowed to use data storage, like cloud solutions that are outside of
Sweden. So no American based ones. Box apparently in theory is, I don't know, you
have weird policies, but anyway, we use Box and I also have a server also it's very slow.
And then I guess I have to move it. When I'm using my processing computer, it's not my
computer, it's one for the whole department. So then I have to transfer it onto there
normally by hard drive. And then I gotta transfer back the outputs that I get as well, A
little bit of transferring

Researcher A:
On that one. Yeah. <Affirmative> several times with several terabytes. Seems a lot.
Yeah. All right. I guess this is our biggest one for us. So normally when you talk about
compressing something, it, it, you get to speed, size, and accuracy as the main criteria.
So how fast can you compress it, how small does it get, and how much do you lose
when you do that? How would you like rank those importance? Is it okay to lose some
accuracy in order to make it really quite small?

Interviewee:
I mean, I guess it depends how much you lose. But, that's the tricky thing. I mean, for
me, I think some speed would be good. Absolutely. but as I said with some species, it's
like, you don't mind so much cuz you know, if you use a little bit of information, you'll
still get, you'll be able to get to the species identification, but for some of them you
really do need good quality data. So I guess, I guess I'd have to almost see some
examples of how that might look to kind of really judge, because

Researcher A:

57

Have you, have you heard of MP3?

Interviewee:
Yes.

Researcher A:
These are usually considered to be lossy, which means that they've thrown out a lot of
the accuracy and a lot of people can't really tell compared to like a .wav file is like, so
that would be the kind of thing we're thinking of. Cause you can get an MP3 down to
5% of the original size and people won't really notice. Mm. But it can also make it more
difficult for like a computer analysis thing. Cause you're throwing out things that people
are listening to the computer can still tell something's a little off. Would that be a, would
that level of like compression be alright? Where it's <garbled> to listen to.

Interviewee:
Yeah. I mean, cause I'm doing two things with this data, I guess it's one that I, I do
listen, but I would say I use my ear a little bit, but I actually, I'm actually more looking
visually at how these frequencies who distribute it in time and across the frequency
range. So you're looking at the visual representation of it. And I'm also looking at what
the, the, the metrics the software have kicked out. So what was the, what was the
highest frequency? What was the lowest frequency? Where was the energy with the, the
most where the energy was the highest? What was that frequency? These are certain
parameters that are really important when you're looking at bats species identification.
So as long as you're not losing the top frequencies, the bottom frequencies, these most
powerful frequencies, I think it's okay. But if you start to lose something on the top and
bottom, it could really affect identification for some species.

Researcher A:
All right. I think we might want to press you a little bit to get like, like some kind of
complete list for what's important there. If you have just slow. Yeah. I can something to
point me to,

Interviewee:
I can maybe just take I'm trying to think. I could probably take a there's like maybe I can
get an image out of one of the books that I use of, of these key parameters that we look
at.

Researcher A:
That would be wonderful.

Interviewee:
But it is really like looking at these kind of max min values. Also like the start time and
the end time, how long is the call in total? It's the sort of information that we're looking
for? I guess what, what might be a problem is that if you have these very weak calls,

58

maybe compression might make it really hard for the computer to extract those values.
Then you've gotta think about how important are these really weak calls anyway which
is something we always try and think about. It's that if it's really weak was the bat really
where you think it was, could it have been quite far away and actually it's not really
useful.

Researcher A:
So I see.

Interviewee:
Yeah. So it's, it's, it's tricky. <Laugh> but I can send you a list of sort of the key things
we're looking at. Yeah.

Researcher A:
I'd appreciate that. Cuz if we're gonna make our own compression, we can make sure
we keep the key stuff in.

Interviewee:
Yeah.

Researcher A:
And then toward this, you would say like, since they're stored forever, I assume that you
would quite like to get quite small that would be quite important. And then if it takes a
little while to get to that size, but then the storage is easier, that's probably be maybe not
directly for your work, but just as a general uses of resources would probably be the
angle?

Interviewee:
Yeah. Yeah, I think so.

Researcher A:
All right. I guess if that's the most important Ben, anything I missed on that one?

Researcher B:
No, I suppose it's up to us to figure out the exact numbers of all that, but I suppose just
kind of like rough rule of thumb if it, if you could like spend a week to reduce the file
size by half and like all of the, you know, sending it around and transmitting the data is
like now ha like twice as fast, would that be worth it or is a week just like sending it
around twice as fast? Just like less than a week. Yeah, it's kind of,

Interviewee:
Yeah. I mean it could be worth it because I mean I already maybe spent maybe like for
the processing of like a whole survey, like where a whole summer's worth of data might
take me, like the, the first processing might take a couple of weeks. So actually in the

59

scheme of things, it's a huge amount of time, extra as long as the quality is still there.
Yeah.

Researcher B:
Mm-Hmm <affirmative> okay. Yeah. That's a good rough, number to start with. So
thank you very much.

Researcher A:
All right. And then I guess some rumors, I suppose, do you know if anyone else is like
developing any other data compression and methods? I think you mentioned the wildlife
acoustic. Yeah. I think it's a dot wac. Yeah. You the anything else? That's

Interviewee:
The only one I'm aware of and I've not really heard it been talked about so much more,
the people talk about like, oh, I've got so much data is kind of the complaint, but not that
there's any real solutions out there.

Researcher B:
Yeah. That's a lot of what we're finding too. Just a lot of like, someone should do
something about this, dot dot dot

Interviewee:
The only other companies, I guess that could be looking at it. It could be worth. Cause I
mean, they're kind of on top of it as a French or, well, they're not a company they're
they're they are a research group, actually. SonoChiro. Have you heard of SonoChiro?

Researcher A:
I don't believe so, no.

Interviewee:
No? They're a French group and they have been doing lots of stuff. And they have their
own software. And I could imagine if anyone was gonna be looking at it, it would be
them. Cuz they seem to be quite on top of everything when it comes to like <garbled>

Researcher A:
Would their, would their solution end up being proprietary?

Interviewee:
You have to. I mean it's a, they, they software is they sell it. Yeah.

Researcher A:
Alright then. So I guess it's part of the university. I don't think we would be allowed to
use that then.

60

Interviewee:
They are. I think they are a university. Yeah. I dunno whether they also have a small
company cuz they, cause they are actually selling this product. They, they may well
have a small company and they make a detector called well, I think they at least work
with the company who make the detector Dodotronic. And it's also quite a low cost
detector Dodotronic.

Researcher A:
I think I found it, a microphone

Interviewee:
They're actually doing quite a lot there, but I, I, Wildlife Acoustics are kind of the main
big company. Petterson. I mean, they're also big, but they're so traditional that I can't
imagine they're working with that. They're very much, they're a bit more old school
maybe than that's like Wildlife Acoustics. And then you also have the people around
AudioMoth people who made AudioMoth. Now they're also a research group. They're
not really so much for-profit, but they may well be looking at this kind of thing too, but
I have not heard about it.

Researcher A:
All right. And then, Hey, this is actually very rumor. I've heard a rumor that zero
crossing files are not, are gonna be phased out in the future. Any idea about that?

Interviewee:
I don't know. I've not heard. I mean, I, I was at a workshop some years ago with Anabat
were there and they very much promote zero crossing. So I mean that's a huge part of
their business. So I, I don't know, I've not heard that.

Researcher A:
Heard from someone else I've spoken to about this and it was very off the cuff, so

Interviewee:
Yeah. But I know people are moving more and more to like full spectrum recording
people want, that

Researcher A:
Makes sense to me.

Interviewee:
Yeah.

Researcher A:
All right. I think that's all the ones I have written down. Anything I missed?

61

Researcher B:
Nothing in particular, I suppose. Just kind of, because we're not as familiar with this
field as you are obviously. Is there anything else you would want like that we may be
overlooking from audio compression and just like, make sure you do this or don't do
this, that just kind of like an outsider wouldn't really be able to just kind of guess from
looking in?

Interviewee:
I can't think of anything to, I mean, me, I think the main thing is people will want the
quality to be there still. Yeah. Because it is it's difficult anyway to work with these these
files and to get, to get enough good data from them. But no, I can't think of anything if I
think of anything, I could always ping you an email, but yeah.

Researcher B:
Nothing

Interviewee:
Comes to my name.

Researcher B:
Yeah.

<redacted due to disclosure of personal information>

Researcher A:
Yeah. this has been very good. Great. Thank you very much for your time.

Interviewee:
Yeah. It's really interesting. It's good that somebody's looking at this. I think cuz it's
really needed

Researcher B:
When, when we started looking into this, we were kind of nervous that like, oh this like
is such a common problem. Of course there's gonna be like dozens and dozens of like
way better people than us trying to solve it. And just like what we find it really seems
just to be like, nobody's really tried yet. So we're hopeful we can actually add something
pretty helpful to this.

Interviewee:
Yeah. Excellent.

Researcher B:
Thank you very much.

62

Interviewee:
Yeah. Thank you. Good luck with everything.

Researcher A:
You too. Bye.

Interviewee:
Okay. Bye.

Figure A.1:Picture of Figure 4.2 from British Bat Calls: A Guide to Species
Identification [18], provided by Interviewee A after the interview.

B.3. Interview B
The purpose of this questionnaire is to assess the current state of ultrasonic audio data
management, especially in regard to ultrasonic bat vocalizations. The goal is to create a
novel data compression method for this purpose, as most audio data compression
techniques are focused on the human range of hearing and may not be suitable for
ultrasonic audio as a result. We define data compression as a process to reduce the size
of a data file, often by either
restructuring or modifying the data, for the purpose of making storage or transfer more
efficient.

63

1. Briefly, what specifically is your job title/description, how long have you been doing
it, and what is your current project/goal?

I’m a bat biologist (since [year]), currently doing postdoctoral research at [university].
My two main focuses are animal behavior and conservation. Both aspects of my work
make extensive use of bioacoustics. One of my current projects is an investigation on
individuality of bats’ use of echolocation and its importance to foraging strategies.

2. On average, how much bat/ultrasonic audio data do you generate for a project? How
large are individual files on average/at most?

A typical project can generate anywhere from 1 to 6 terabytes, long projects can add up
to more than that. I make sure the individual files are not too large so that analysis is
easier – I limit recording length to 4 seconds, which at a sampling rate of 375kHz
creates files that are about 3 megabytes in size.
I work generally with .wav files without compression as all the information is
important. For some projects I use zero-crossing files.

3. How impactful is the size/amount of audio data that you work with? Does storage or
transfer of these files consume a problematic amount of storage space or time?

Impacts of size/amount for work: a. much of my work is done on the spectrogram rather
than the oscillogram, and the larger the file the longer it takes to generate a spectrogram;
b. much of the analysis that can be automated has to be manually audited, again –
time-consuming due to both file size and amount of files;
Impacts of size/amount for storage or transfer: Storage is becoming less of a problem
though still relatively expensive (US$300-400 for a 4TB hard-drive). Transfer is where
the real issue lies, and at the moment the best way to transfer large amounts of audio
files is to load them on a hard-drive and physically mail them. This of course is also a
time-wasting aspect.

4. What software do you use to analyse this audio, and what functions do you primarily
use it for? What can/can't be done automatically?

For .wav files I use SasLab Pro by Avisoft Bioacoustics. I’m often interested in call
duration, intervals, amplitude, and frequency distributions. Depending on the quality of
the recording (which itself depends on project conditions, i.e. field/lab/controlled etc.),
these can be automated to a degree.
For field surveys that need species ID I use for Sonobat for .wav files and Analook for
ZC files. Both can run automatically (depending on region and the amount of acoustic
overlap between local species) to a certain degree of accuracy and both provide much
better results after post processing manual auditing.

64

5. What percentage/how much of the average audio file is empty/useless/"noise"? How
do you identify this noise? Is this noise removed somehow before/during analysis?

First, noise or empty is not useless as it provides information about intervals between
calls which is very important. “Noise” can be different things: it can be biological in
origin or anthropogenic, and these may also be of use. In most cases, when you set the
recording regime there are three strategies to reduce unwanted noise: 1. Recording
schedule: setting the recorder to sleep during the day excludes a lot of anthropogenic
and biological non-bat noise. 2. High-pass filter: most bat calls are in the ultrasonic
range so setting an appropriate HP filter (adapted to local species frequencies) excludes
most non-bat biological sounds (crickets/katydids etc. do get recorded). 3.
Gain/amplitude threshold: gets rid of most wind-generated sounds or low-quality
recordings.
The same strategies can also be applied during analysis to exclude some of the noise
that escaped recording regime filters.
Most analysis software and some recorders have the ability to cut silence out of the files
while preserving the time-stamp of the calls and in this way, they preserve information
about intervals. Personally, I do not use these features because I like to have an accurate
visualization, but this is only me and this feature can be very useful to reduce file sizes.
The feature works according to a pre-determined amplitude threshold.

6. Does ultrasonic audio data have to be treated significantly differently from other
audio data?

No, but in order to record ultrasound accurately you must have a very high sampling
rate (most people use 250—375kHz) which significantly increases file size.

7. In what format do you generally store bat/ultrasonic audio data (e.g., full spectrum vs
zero crossing, compressed vs uncompressed) and what file types do you commonly use
(e.g., wav, zc, mp3, flac, zip)? Why?

Mostly I use and store full-spectrum, uncompressed .wav files because they conserve a
accurately as possible all the acoustic features of the calls.
I use ZC as well, mostly because I still use older recorders that ZC is their only output.
They are actually not bad for long-term acoustic field surveys because storage is not an
issue and because it is relatively easy to create filters for species ID without needing
programming skills. That being said, I do not convert full-spectrum recording to ZC.

8. How long do you generally store any given bat audio data and how often do you
generally transfer significant amounts of it?

Store – indefinitely, depending on project, after getting rid of non-relevant files.
Transfer – that really depends on the project. Long term survey results are usually
transferred between several recipients once or twice a year, but every

65

group/researcher/practitioner usually develop their own working strategy, so I can’t say
this is representative of anything.

9. Would you value a way to reduce the size of the bat/ultrasonic audio data you work
with?

Obviously, but not at the expense of introducing distortions of any kind.

10. Three important metrics for determining the value of a compression algorithm are:
• Size: How much smaller is the compressed file compared to the original?
• Speed: How much time does it take to compress a file?
• Accuracy: How much detail was lost during compression?
How do you value these metrics? Are there other metrics that are also important to you?

Accuracy is of utmost importance and completely trumps the other two in my opinion.
After that, size would be more important than time for me.

11. Do you know whether anybody has developed a data compression method focused
on ultrasonic audio before? If not, do you know why not?

I do not know.

12. It has been rumoured that zero crossing files may be phased out in the future. What
have you heard about this, if anything?

This definitely seems to be the direction, for a number of reasons: 1. Memory cards
constantly get cheaper and with higher storage capacities. 2. Full spectrum recorders are
no longer more expensive than ZC ones, and real-time recording is no longer an issue
due to improved buffering capabilities. 3. Automated species ID tools for full-spectrum
recordings are improving.

Finally, would you be willing to provide us with sample files of bat/ultrasonic audio of
the kind(s) you generally work with?

Attached to the email are several files.

B.4. Interview C
Data compression consultation

Contributors: <redacted> (Director), <redacted> (Principal Ecologist), <redacted>
(Senior Ecologist), <redacted> (Consultant)

Responding to the following brief and associated questions:

66

We define data compression as a process to reduce the size of a data file, often by either
restructuring or modifying the data, for the purpose of making storage or transfer more efficient.

Questions Combined responses

1. Briefly, what
specifically is your job
title/description, how long
have you been doing it,
and what is your current
project/goal?

The contributors are professional ecological
consultants of between 5 and 25+ years, who have
worked on projects requiring large-scale data sets
(wind farm, road scheme, new nuclear).
We have several ongoing projects.

2. On average, how much
bat/ultrasonic audio data
do you generate for a
project? How large are
individual files on
average/at most?

Amount of data very variable.
· New nuclear (oldest project generating data

set, dating back to 2013/14): 7m recordings,
2TB (collected on the older SM2s).

· [Location] road scheme (later): similar (but
SM4s)

· [Location] road scheme: 3TB
· Windfarm (2021): 4TB
Individual files vary from 1.5 to 3MB.

3. How impactful is the
size/amount of audio data
that you work with? Does
storage or transfer of
these files consume a
problematic amount of
storage space or time?

Yes, storage and transfer are both problematic!
However, it is worth noting that the presumption is
that a RAW Dataset will be retained in every
circumstance so that the files as originally collected
are available to a third party in case of dispute or
change.

4. What software do
you use to analyse this
audio, and what functions
do you primarily use it
for? What can/can't be
done automatically?

Batch processing: BTO Acoustic Pipeline or SonoBat
Viewing/manual analysis: SonoBat, Kaleidoscope –
or BatExplorer/Analook when using detectors that
were developed with that software.
Have used BatSound as a viewer in the past.

67

5. What percentage/how
much of the average audio
file is
empty/useless/"noise"?
How do you identify this
noise? Is this noise
removed somehow
before/during analysis?

Several points here: (i) files that are just ‘noise’ and
(ii) the ‘noise only’ parts of recordings that also
contain bat calls...
(i) Percentage of files that are ‘just noise’ can be

minimised by making sure detectors are
appropriately located, but there are
environmental factors that vary from site to
site that can’t be controlled through location
(including weather). Those elements are best
reduced by setting appropriate filters on
recording.

Such files can be identified and labelled as such by
the software used for sound analysis and even sorted

out into separate folder(s), but they are retained –
see response to Q3.

(ii) The ‘noise only’ parts of recordings that also
contain bat calls tend to be short (and at the
end of each recording), and are reduced by
appropriate trigger settings.

6. Does ultrasonic audio
data have to be treated
significantly differently
from other audio data?

While our equipment may collect non-ultrasonic
data, we don’t do anything with that data, nor set out
to collect it deliberately.

7. In what format do
you generally store
bat/ultrasonic audio data
(e.g., full spectrum vs
zero crossing, compressed
vs uncompressed) and
what file types do you
commonly use (e.g., wav,
zc, mp3, flac, zip)? Why?

All data is full spectrum uncompressed these days
and stored as .wav files retained – see response to
Q3.
For the oldest project we were involved with, we
collected files that were compressed (.wac) to save
storage space, because in those days detectors only
had room for two 32GB cards. We then had to
decompress them and store as both raw (compressed)
and decompressed (pre-analysis) versions.
Now that detectors can support larger SD cards, there
is no need to collect as .wac and decompress. Whilst
the decompression process could run in the
background, it still required some interaction, which
was relatively quick at each point but intermittent
and disruptive.

8. How long do you
generally store any given
bat audio data and how
often do you generally
transfer significant
amounts of it?

This is a commercial/legal decision; tends to be
seven years post-completion (not post-collection).
Once analysed, it can sit in the background
somewhere; doesn’t need to be instantly accessible.
However, the presumption to keep raw (unaltered)

68

data may limit the value of any compression
software.

9. Would you value a
way to reduce the size of
the bat/ultrasonic audio
data you work with?

Yes, but need to deal with point above (i.e. extensive
testing to ensure that the product stored is as good as
the raw data would be, to justify not keeping the raw
data itself), and data needs to be retrievable in the
.wav format that all analysis software uses.

10. Three important
metrics for determining
the value of a
compression algorithm
are:
· Size: How much

smaller is the
compressed file
compared to the
original?

· Speed: How much
time does it take to
compress a file?

· Accuracy: How
much detail was
lost during
compression?

How do you value these
metrics? Are there other
metrics that are also
important to you?

Accuracy and the raw storage issue (as noted in the
previous answer). Important that the compression
process does not lose any components of the bat calls
or associated metadata.

11. Do you know whether
anybody has developed a
data compression method
focused on ultrasonic
audio before? If not, do
you know why not?

As noted, Kaleidoscope allows the collection of data
in a compressed format (.wac), but the files then need
to be decompressed for analysis (which is not what
you are suggesting here). We don’t know of any
other attempts; perhaps the answer to Q9 is the main
reason why!

12. It has been rumoured
that zero crossing files
may be phased out in the
future. What have you
heard about this, if
anything?

We don’t use ZC files as we believe this format loses
some elements of the call and therefore decreases the
ability of analysts (machine or human) to provide an
accurate identification.

We would be willing to provide you with sample files of bat/ultrasonic audio.

69

A.4.1 Interview C Follow-Up Questions
Presumption re keeping raw/unaltered files: good question.

Who
presumes/demands this
and what are the terms
of it?

Most companies will have a retention policy for data. In
addition, the revised bat survey guidelines (due later in 2022)
will say:

The value of recording bat activity is that there is an auditable
record of work carried out. Bat echolocation data collected
during bat surveys should be stored in case this auditable
record requires later scrutiny. The data should be stored in its
raw form and in its entirety.” (but I should say that I added the
last sentence to the draft, and that hasn’t yet been approved so
there is time to modify/caveat it!).

It is for legal reasons or
company policy (or
both)?

The reason is to enable a third-party to take the files and
reanalyse them, potentially using different software. This has
been necessary from time to time where analysis is challenged,
particularly on contentious schemes.

Is it defined somewhere
how precisely stored
files need to match the
originals, or is it more a
matter of "proving" that
the original and the
compressed/decompres
sed versions hold equal
value?

As noted above, the files would need to be available for
reanalysis, potentially using different software (I have been
working on a project which recently had to request a third-party
put manually analysed data through proprietary ‘auto-ID’
software because of lack of confidence in the original
identifications). This might not have ben possible if the
original files had not been retained.

There is a risk, when ‘mucking about’ with files, that they will
become corrupted or otherwise changed, rendering reanalysis
impossible.

If evidence can be supplied that the original and the
compressed/decompressed versions hold equal value, then
maybe that would be OK. However, software can rapidly
change or becomes unavailable. I think .wav files will be with
us for a while, but anything that has a small market share may
not, so people with responsibility for storing data may take a
little convincing!

As an example, we used SonoChiro software to auto-ID bat
sound files back in 2013/14, but the SonoChiro designer moved
on, and there are no functioning versions of SonoChiro left...

70

B. Appendix B

B.1. Compression Powershell Script
for (($i = 1); $i -lt 11; $i++) {

Compress-Dataset -setNumber 1 -iterationNumber $i

Compress-Dataset -setNumber 2 -iterationNumber $i

Compress-Dataset -setNumber 3 -iterationNumber $i

Compress-Dataset -setNumber 4 -iterationNumber $i

}

function Compress-Dataset {

param ($setNumber, $iterationNumber)

Set-Location $PSScriptRoot

Remove-Item Output*

$dataSetPath = "TestSet" + $setNumber

$files = Get-ChildItem -Path . -Filter $dataSetPath*.wav -File

Create the Excel file that records the measured times if it doesn't

exist

$outputFile = "output" + $setNumber + "(" + $iterationNumber +

").csv"

if (!(Test-Path $outputFile)) {

New-Item -path . -name $outputFile -type "file"

}

Print uncompressed file size

$inputFileSize = ($files | Measure-Object -Property Length -Sum |

Select-Object -expand sum)

"Original WAV size (bytes)`t" + $inputFileSize | Out-File $outputFile

#Table Headers

"Type`tTime`tSize (bytes)`tCompressed Ratio" | Out-File $outputFile

-Append

FLAC

$time = Measure-Command {

$files | ForEach-Object {

71

& .\Exes\ffmpeg.exe -hide_banner -loglevel error -i

$dataSetPath\$_ Output\$_.flac

}

}

$fileSize = (Get-ChildItem -Filter Output*.flac -File |

Measure-Object -Property Length -Sum | Select-Object -expand sum)

"FLAC`t" + $time.ToString() + "`t" + $fileSize + "`t" + ($fileSize /

$inputFileSize) | Out-File $outputFile -Append

Write-Host "FLAC Finished"

MonkeyAudio

$time = Measure-Command {

$files | ForEach-Object {

& Exes\MAC.exe .\$dataSetPath\$_ Output\$_.ape -c2000

}

}

$fileSize = (Get-ChildItem -Filter Output*.ape -File |

Measure-Object -Property Length -Sum | Select-Object -expand sum)

"MonkeyAudio`t" + $time.ToString() + "`t" + $fileSize + "`t" +

($fileSize / $inputFileSize) | Out-File $outputFile -Append

Write-Host "Monkey's Audio Finished"

MP3

$time = Measure-Command {

$files | ForEach-Object {

& Exes\ffmpeg.exe -hide_banner -loglevel error -i

$dataSetPath\$_ Output\$_.mp3

}

}

$fileSize = (Get-ChildItem -Filter Output*.mp3 -File |

Measure-Object -Property Length -Sum | Select-Object -expand sum)

"MP3`t" + $time.ToString() + "`t" + $fileSize + "`t" + ($fileSize /

$inputFileSize) | Out-File $outputFile -Append

Write-Host "MP3 Finished"

OptimFROG OFR

$time = Measure-Command {

72

$files | ForEach-Object {

& Exes\ofr.exe --silent --encode $dataSetPath\$_ --output

Output\$_.ofr

}

}

$fileSize = (Get-ChildItem -Filter Output*.ofr -File |

Measure-Object -Property Length -Sum | Select-Object -expand sum)

"OptimFROG OFR`t" + $time.ToString() + "`t" + $fileSize + "`t" +

($fileSize / $inputFileSize) | Out-File $outputFile -Append

Write-Host "OptimFROG OFR Finished"

TTA

$time = Measure-Command {

$files | ForEach-Object {

& Exes\tta.exe -e $dataSetPath\$_ Output\$_.tta

}

}

$fileSize = (Get-ChildItem -Filter Output*.tta -File |

Measure-Object -Property Length -Sum | Select-Object -expand sum)

"TTA`t" + $time.ToString() + "`t" + $fileSize + "`t" + ($fileSize /

$inputFileSize) | Out-File $outputFile -Append

Write-Host "TTA Finished"

WavPack

$time = Measure-Command {

$files | ForEach-Object {

& Exes\wavpack.exe -q $dataSetPath\$_ Output\$_.wv

}

}

$fileSize = (Get-ChildItem -Filter Output*.wv -File | Measure-Object

-Property Length -Sum | Select-Object -expand sum)

"WavPack`t" + $time.ToString() + "`t" + $fileSize + "`t" + ($fileSize

/ $inputFileSize) | Out-File $outputFile -Append

Write-Host "WavPack Finished"

Set-Location $PSScriptRoot\$dataSetPath

7Zip (LZMA2) NonSolid

73

$time = Measure-Command {

& ..\Exes\7z.exe a -t7z ..\Output\LZMANonSolid.7z $files -bb0

-ms=off

}

$fileSize = (Get-Item ..\Output\LZMANonSolid.7z | Measure-Object

-Property Length -Sum | Select-Object -expand sum)

"7-Zip (LZMA2) NonSolid`t" + $time.ToString() + "`t" + $fileSize +

"`t" + ($fileSize / $inputFileSize) | Out-File ..\$outputFile -Append

Write-Host "7Zip (LZMA2) NonSolid Finished"

7Zip (LZMA2) Solid

$time = Measure-Command {

& ..\Exes\7z.exe a -t7z ..\Output\LZMASolid.7z $files -bb0 -ms=on

}

$fileSize = (Get-Item ..\Output\LZMASolid.7z | Measure-Object

-Property Length -Sum | Select-Object -expand sum)

"7-Zip (LZMA2) Solid`t" + $time.ToString() + "`t" + $fileSize + "`t"

+ ($fileSize / $inputFileSize) | Out-File ..\$outputFile -Append

Write-Host "7-Zip (LZMA2) Solid Finished"

7Zip (PPMd) Solid

$time = Measure-Command {

& ..\Exes\7z.exe a -t7z ..\Output\PPMdSolid.7z $files -bb0 -ms=on

-mm=PPMd

}

$fileSize = (Get-Item ..\Output\PPMdSolid.7z | Measure-Object

-Property Length -Sum | Select-Object -expand sum)

"7-Zip (PPMd) Solid`t" + $time.ToString() + "`t" + $fileSize + "`t" +

($fileSize / $inputFileSize) | Out-File ..\$outputFile -Append

Write-Host "7-Zip (PPMd) Solid Finished"

WavPack7z

$time = Measure-Command {

& ..\Exes\7z.exe a -t7z ..\Output\WavPack7zSolid.7z $files -bb0

-ms=on -myx=0 -m0=WavPack2 -m1=lzma:d20 -mb0s1:1

}

74

$fileSize = (Get-Item ..\Output\WavPack7zSolid.7z | Measure-Object

-Property Length -Sum | Select-Object -expand sum)

"WavPack7z Solid`t" + $time.ToString() + "`t" + $fileSize + "`t" +

($fileSize / $inputFileSize) | Out-File ..\$outputFile -Append

Write-Host "WavPack7z Solid Finished"

ZIP

$time = Measure-Command {

& Compress-Archive $files ..\Output\Zip.zip

}

$fileSize = (Get-Item ..\Output\Zip.zip | Measure-Object -Property

Length -Sum | Select-Object -expand sum)

"ZIP`t" + $time.ToString() + "`t" + $fileSize + "`t" + ($fileSize /

$inputFileSize) | Out-File ..\$outputFile -Append

Write-Host "ZIP Finished"

}

B.2. Sample Analysis Python Script
import sys
import glob
import numpy
import librosa

ratioList = []
for �ile_path in glob.glob("*.wav"):

samples, sampling_rate = librosa.load(�ile_path, sr = None)
rangeStDevRatio = (max(samples) - min(samples)) / numpy.std(samples)
print(�ile_path, " Range/STDEV: ", rangeStDevRatio)
ratioList.append(rangeStDevRatio)

print("Average of all: ", numpy.mean(ratioList))

75

