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Mean‑field theory of social laser
Alexander P. Alodjants1, A. Yu. Bazhenov1, A. Yu. Khrennikov2* & A. V. Bukhanovsky1

In this work we suggest a novel paradigm of social laser (solaser), which can explain such Internet 
inspired social phenomena as echo chambers, reinforcement and growth of information cascades, 
enhancement of social actions under strong mass media operation. The solaser is based on a well‑
known in quantum physics laser model of coherent amplification of the optical field. Social networks 
are at the core of the solaser model; we define them by means of a network model possessing power–
law degree distribution. In the solaser the network environment plays the same role as the gain 
medium has in a physical laser device. We consider social atoms as decision making agents (humans 
or even chat bots), which possess two (mental) states and occupy the nodes of a network. The solaser 
establishes communication between the agents as absorption and spontaneous or stimulated 
emission of socially actual information within echo chambers, which mimic an optical resonator of 
a convenient (physical) laser. We have demonstrated that social lasing represents the second order 
nonequilibrium phase transition, which evokes the release of coherent socially stimulated information 
field represented with the order parameter. The solaser implies the formation of macroscopic social 
polarization and results in a huge social impact, which is realized by viral information cascades 
occurring in the presence of population imbalance (social bias). We have shown that decision 
making agents follow an adiabatically time dependent mass media pump, which acts in the network 
community reproducing various reliable scenarios for information cascade evolution. We have also 
shown that in contrast to physical lasers, due to node degree peculiarities, the coupling strength of 
decision making agents with the network may be enhanced 

√

〈k〉 times. It leads to a large increase of 
speed, at which a viral message spreads through a social media. In this case, the mass media pump 
supports additional reinforcement and acceleration of cascade growth. We have revealed that the 
solaser model in some approximations possesses clear links with familiar Ising and SIS (susceptible‑
infected‑susceptible) models typically used for evaluating a social impact and information growth, 
respectively. However, the solaser paradigm can serve as a new platform for modelling temporal social 
events, which originate from “microscopic” (quantum‑like) processes occurring in the society. Our 
findings open new perspectives for interdisciplinary studies of distributed intelligence agents behavior 
associated with information exchange and social impact.

The current life-style may be characterized as a sequence of on-line representations in various networks. The 
rapid growth of information (network) resources in terms of information exchange and processing leads to an 
exponential growth in the information being processed. Sometimes, enormous (social) enhancement effect can 
result from unimportant, at first sight, information spread. Contrary, in some cases, socially actual informa-
tion and knowledge rapidly attenuate. How fast does socially actual (s)-information spread in social networks 
and communities and how are these communities transformed under some perturbations? These questions are 
becoming critical for a well-functioning society. To find answers to these questions we suggest a novel paradigm 
of social laser, shortly solaser, which is based on a well-known in quantum physics laser model of coherent ampli-
fication of an optical field. The model may be explored to describe real life socially actual information processing 
and reinforcement in the presence of strong mass media action, which is determined as a mass media pump.

Lasers represent one of keystone achievements obtained in quantum theory and experiment within more 
than 100  years1,2. Current quantum technologies provide designing of various laser-like quantum devices, which 
produce  photon3,4 or coherent matter  states5. At the heart of these devices, we can infer seminal laser principles 
of bosonic stimulation and amplification. These principles were laid back in the 60s of the last century by the 
fathers of modern laser  science6–8.

Understanding the physics of laser generation and coherence has always been a key task for laser physics. 
Main (coherent) statistical features of laser irradiation were explained by examining photon second order correla-
tion function within quantum and nonlinear optics  theory9–13. Another theory of phase transitions and critical 
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phenomena based on statistical and thermodynamic approach was able to explain coherent phase ordering in 
condensed  matter14, and macroscopic coherent effects of  superconductivity15.

The relationship between these two theories has always been the subject of heated debates that beneficially 
affected laser science as a whole. The main difference between the two fundamental theoretical approaches 
is that initially phase transitions were considered only for thermodynamic equilibrium  systems15. However, 
laser systems are not thermodynamically equilibrium. Physically, it is more suitable to discuss some analogies 
occurring in open (driven-dissipative) and thermodynamically equilibrium laser-like systems exhibiting phase 
 transitions16–18. Current status of various approaches applied to studies of phase transitions occurring in quantum 
driven-dissipative open systems it is possible to find  in18.

Nowadays, the role of thermodynamic equilibrium in the photon gas coherence is under  discussion19–24. The 
interaction of these theories and relevant discussions has reached a qualitatively new level, cf.25–30.

With the development of quantum technologies in practice, scientists were able to experimentally observe a 
Bose-Einstein condensate (BEC), a new macroscopic coherent state of matter. It was found for  atoms31, exciton-
polaritons32,  photons33,  magnons34, and  phonons35. Remarkable achievements in this area are also due to signifi-
cant progress in manipulation and trapping of quantized light field, which represents an indispensable tool for 
current cavity QED technologies, cf.36,37. To some extend, the application of various theoretical approaches to 
study the systems exhibiting BEC and/or lasing phenomena is a matter of convenience for the system descrip-
tion. In real life systems are not usually in thermal equilibrium due to their open (driven-dissipative) nature, and 
finite size effects should also be considered. Sometimes it is possible to examine system within short time scales 
when influence of various dissipative processes may be neglected. In this case we are able to use thermodynamic 
approach. In particular, such terms as “atom laser” and “polariton laser”, which are actually not lasers in their 
original sense and denote the coherent (ordered) state of matter, have been established for atomic and polariton 
condensates, respectively. Moreover, exciton-polariton condensates are also not in thermodynamic equilibrium. 
However, trapped in microcavity exciton-polaritons clearly exhibit phase transition to condensation in a strong 
matter-field coupling  regime32.

The examples discussed above relate to condensed or solid state systems, which are ordered in a certain way, 
or not ordered at all, like gases. The study of phase transitions in complex structured systems has recently been 
of great  interest38–40. Although systems, such as spin glasses, have been studied for a long time, these are various 
complex networks that are in the focus  now41. The main reason for the growing interest in such systems is the 
large-scale Internet network development and digitalization, which cover all aspects of humans  life42. Providing 
subscribers with an opportunity to socialize globally, the Internet itself has become a social phenomenon that 
unites people in various social communities and on business and educational platforms. By examining phase tran-
sitions in such networks, we are able to make some conclusions (within certain limits) about social, information, 
communication, and emotional processes occurring in  cyberspace43–45. In particular, public (social) networks 
promote a coherent macroscopic social impact involving a large number of people on-line. They provide infor-
mation amplification and cascading, which may be elucidated by computer-mediated social  studies46. In real life, 
coherent processes occurring in the networks provide social cohesion, which in some cases leads to cascading 
social processes (Arab spring, Occupy Wall Street movements, etc. ) in different  countries47–49.

One of intriguing problems at the nexus of modern quantum physics and statistical physics, social sciences, 
cognitive and computer-oriented studies is how close various statistical (laser-like) physical models may describe 
“on-line” social events occurring due to current Internet communication facilities. From physical point of view 
the coherent processes discussed are similar to laser field generation, which results in huge energy release in 
ensemble of two- (or multi-) level oscillators under population inversion conditions. Andrei Khrennikov was 
the first who defined the social laser revealing the analogy between the formation of laser irradiation and real 
life social actions. He regarded coherent social processes as laser-like actions of a new type, cf.50,51. This deep 
analogy manifests itself at different stages of laser irradiation  formation52. For example, the use of a resonator 
in a convenient laser is similar to the social effect of echo chambers, which has been experimentally obtained 
within social networks, cf.53–55. In this regard, the social laser paradigm, based on the use of socially-oriented 
networks as laser “medium”, significantly differs from the ideas of exploring laser-like models outside physics, 
established many years ago,  see56, cf.57. Since the laser system is an open system, it can attract more people at 
each act of social laser stimulation.

Notably, current studies of processes occurring in social communities are based on fundamentals of statisti-
cal physics and phase transitions theory. Traditionally, the approach of statistical physics is applied to complex 
systems description, which can include various social networks exhibiting social communities, cf.58. In particular, 
statistical Ising model is at the basis of many socially oriented statistical models, which are related to the exchange 
of information between  people40,59–62. A simplified two-level (spin-like) decision making (DM) agents model may 
be used in this case; DM agents represent so-called social  atoms63. In particular, Ising-like models suppose col-
lective opinion formation and social  impact64,65, epidemic, information and rumor  spreading66–68. However, the 
major part of the models examined is thermodynamically equilibrium, whereas real-life social processes require a 
non-equilibrium approach. In this sense, the problem of non-equilibrium phase transition is of primary interest, 
as it may appear in laser-like systems possessing Ising-like Hamiltonians, cf.18,69. Such models become crucial for 
feature modelling of distributed intelligence systems, which presume artificial and natural intelligence agents of 
DM behaviour and their interaction capacity in the framework of a socially oriented  network70.

This work aims to establish a simple (generic) model of a solaser as a system possessing the second order 
(non-equilibrium) phase transition, which presumes a complex network topology inherent to real network social 
communities. To be more specific, we examine networks, which may be characterized by means of power law 
degree distribution function. Such networks allow for a relative simple analytical  description44. Here it is the 
good place to mention the quantum field approach to modeling of cognition and consciousness  (Vitiello71,72) 
explaining the long range correlations in the brain.
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Results
Equilibrium phase transition in Ising model on complex networks. Network models with Ising‑type 
interaction. We start with the Ising model defined on annealed networks. We assume that two-level (spin-1/2) 
quantum systems randomly occupy N nodes of a complex network—see Fig. 1. In the framework of social com-
munity analysis we model DM agents with these simple quantum systems and assume that they possess informa-
tion exchange action. Thus, we represent this community as a graph with non-trivial (specific) properties. The 
Ising Hamiltonian of the model reads as

where σ z
i  , i = 1, ...,N , characterize the i-th agent DM spin component.

The first term in (1) characterizes interaction between DM agents. In real life such an interaction is imple-
mented by some information exchange, which is still hidden for an external “observer” within the Ising model. 
Notably, for this model we cannot predict directly how information is relevant to DM agents inhomogeneously 
distributed over the network. However, we can conclude how this information spreads within the network 
because of the first term in (1), which depends on the network topology. The sum in (1) is performed over the 
graph vertices with certain adjacency matrix Aij proportional to Jij , which stores the information about the graph 
structure: matrix element Aij = 1 if two vertices are linked and Aij = 0 otherwise.

Parameter hi in (1) characterizes the coupling of a DM agent with external (information) field. We examine 
the case when this information is the same for all DM agents and represents classical (strong) information 
pumping. In other words, we set hi = h for arbitrary i (hereafter for simplicity we put the Planck and Boltzmann 
constants � = 1 , kB = 1).

We are interested in the annealed network approach that presumes a weighted, fully connected graph model. 
The network dynamically rewires. We recast parameter Jij that indicates the coupling between the nodes in 
Eq. (1) through probability pij as Jij = Jpij , where J is a constant, and pij is the probability for two nodes i and j 
to be connected:

where Aij is an element of the adjacency matrix, ki is i-th node degree, which indicates an expected number of 
the node neighbors and is taken from distribution p(k). In (2) �k� = 1

N

∑

i
ki is an average degree. Noteworthy, 

the annealed network approach is valid for pij ≪ 1 and large enough N, cf.44. Thus, the strength of two spins 
interaction Jij is a variable parameter and depends on particular network characteristics; it is greater for two pairs 
of nodes with the highest k coefficient.

In practice, different approaches provide an explanation for a real world network  topology40. Such networks 
may exhibit the power-law degree distribution, cf.73. Since the number of nodes is large enough, N ≫ 1 , we are 
interested in network structures, which admit continuous degree distribution p(k). To be more specific, in this 
work we examine networks with distribution function p(k) defined as

where γ is a degree exponent that covers anomalous ( 1 < γ < 2)—Fig. 1a, scale-free ( 2 < γ < 3)—Fig. 1b, and 
random ( γ > 3)—Fig. 1c regimes, cf.44. The properties of scale-free networks possessing distribution (3) for 
γ = 2 and γ = 3 should be calculated separately.

The normalization condition for p(k) is represented as

(1)H = −
∑

ij

Jijσ
z
i σ

z
j − 1

2

∑

i

hiσ
z
i ,

(2)pij = P(Aij = 1) =
kikj

N�k� ,

(3)p(k) = (γ − 1)k
γ−1

min

kγ
,

Figure 1.  Power-law degree distribution networks for (a) γ = 1.5 , (b) γ = 2.5 and (c) γ = 4.5 , which 
correspond to anomalous, scale-free and random regimes, respectively, (d) power–law degree distributions in a 
logarithmic scale for the networks given in (a–c). The number of nodes is N = 1000.
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The scale-free networks possess preferential attachment phenomena, which result in hubs appearance. The 
largest hub is described by degree kmax called a natural cutoff. The condition

can be used if the network with N nodes possesses more than one node with k > kmax.
From (4), (5) we immediately obtain

Figure 1d demonstrates probability distribution function (3) plotted in a logarithm scale for the networks 
shown in Fig. 1a–c. The node degree fluctuations grow at γ ≤ 3 , cf.69. Hubs in Fig. 1d appear as dots in the right 
corner of the distribution function. The number of hubs and their size dramatically grow with vanishing γ in 
the anomalous regime where kmax/kmin > N , cf. Fig. 1a and the green line in Fig. 1d.

Real-world networks mostly possess degree exponent γ > 2 . The Bianconi-Barabási (BB) network appro-
priately models such a network. In particular, the BB network is based on a fitness model, which accounts that 
the probability of the newly attached node link is proportional to its fitness  parameter44. This parameter may 
be interpreted in the framework of statistical mechanics approach and leads to γ = 2.25538. In particular, it is 
possible to map the BB network to gas particles assuming that energy of each node is determined by its fitness 
parameter. As a result, we can clearly distinguish the new BEC phase of the network. The network condensation 
phenomena presumes super-hub formation, which accumulates a huge number of links; strictly speaking, such 
a network is not a scale-free any more.

The statistical properties of networks may be characterized by means of the n-th moment for the degree 
distribution defined as:

where n is a positive integer. In this work, we are interested in the first and normalized nth order ( n = 2, 3, 4 ) 
degree correlation functions, which are defined as

In Fig. 2 we represent the main properties of scale-free network statistical characteristics as a function of 
degree exponent γ.

Remarkably, the nth order correlation functions defined in (7) diverge at γ = 1 . On the contrary, their com-
bination ζ ≡ [K (1)]2K (4)/[K (2)]3 remains finite.

Network topology stimulating phase transition. Here, we use the Hamiltonian formalism, which is common in 
physics and widely used in the framework of DM agents interaction, see e.g.40,61,62,64,65. It allows to speak about 
some social energy stored in   (1). In this sense, the interpretation of social spin is straightforward: different 
spin components correspond to agents preferences with the same spin energy. For example, with no external 
information in elections people as DM agents can prefer to vote in a candidate or reject them without any social 
energy changing. The external (information) field or interaction with other agents influences our potential deci-
sions. External information may be enough to flip our decision or not. In this case, the temperature, T, represents 
some vital macroscopic parameter, which manifests about microscopic processes occurring in the system .

In physics temperature indicates energy exchange for the canonical ensemble of fixed number of particles with 
the thermal bath. In social science it is also possible to introduce social temperature; it stands for some sophis-
ticated (fitting) parameter, which may be discussed in the framework of various models in economy, finance, 
etc., cf.74–76. In this work, we assume that social temperature indicates abilities of DM agents for information 
exchange with other agents and with an environment, respectively. In other words, thermalization, which is a 
key-stone problem for any physical system, may be achieved in social networks through information exchange. 
In this case, the system approaches thermal equilibrium at time periods long enough. Comparing our model 
with the models, which presume money exchange financial markets, we can identify the temperature parameter 
as an average number of messages per agent in the network, cf.74,75.

In this work we consider the mean-field approach to the system described by the Ising Hamiltonian (1). At 
social level of DM, the system is totally characterized by the order parameter Sz defined as

(4)

+∞
∫

kmin

p(k)dk = 1.

(5)

+∞
∫

kmax

p(k)dk = 1

N

(6)kmax = kminN
1

γ−1 .

(7)K (n) ≡ �kn� =
kmax
∫

kmin

knp(k)dk,

(8)ζn ≡ K (n)

K (1)
, n = 2, 3, 4.
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and represents a weighted average spin component, cf.56. Collective variable Sz obeys self-consistent equation

where β ≡ 1/T is reciprocal temperature; in (10) substitution 1N
∑

i
... →

kmax
∫

kmin

...p(k)dk is performed.

At high enough temperatures and external field h = 0 Eq. (10) admits non-zero solution for collective spin 
component Sz . This solution corresponds to some ferromagnetic (FM) phase possessing Sz  = 0 and indicat-
ing some certain DM at macroscopic level. Critical reciprocal temperature βc , which provides this solution, is 
determined from Eq. (10) and represented as

where parameter ζ2 defined in Eq. (8).
The dependence given in (11) admits simple interpretation in the framework of information exchange. In 

particular, the strongest interaction between the DM agents evokes the highest critical temperature, Tc ≡ 1/βc . 
Simultaneously, a large number of hubs can manifest the activity of DM agents. In this limit ζ2 is also large enough 
and corresponds to high temperature of phase transition Tc . Critical temperature Tc becomes very large ( βc ≃ 0 ) 
in the vicinity of γ = 1 where ζ2 enormously increases, see Fig. 2a. In the opposite case, for large degree exponent 
γ the ζ2 approaches kmin and critical temperature becomes Tc ∝ kmin.

Remarkably, similar arguments are still true in the mean-field approximation if we neglect degree correlations 
in the network and suppose in (11) ζ2 ≃ �k� , which leads to

Equations (11), (12) play a crucial role in phase transition occurring in the finite size Ising model. The equa-
tions establish a clear connection between the system temperature and network statistical properties. For a given 
temperature, T, the critical value, ζ2,c , is determined from (11) as

Then, in Eq. (10) we expand the function tanh(x) ≈ x − 1
3
x3 with x = β

2
(4JSzk + h) . In this limit we can 

represent Eq. (10) in the form of

(9)Sz =
1

N�k�
∑

i

ki�σ z
i �,

(10)Sz =
1

�k�

kmax
∫

kmin

kp(k)tanh

[

β

2
(4JSzk + h)

]

dk,

(11)βc =
1

2Jζ2
,

(12)Tc ≃ 2J�k�.

(13)ζ2,c =
T

2J
.

Figure 2.  Dependence of (a) ζ , 〈k〉 , ζ21 ≡ ζ2 , ζ31 ≡ ζ3 and ζ41 ≡ ζ4 on degree exponent γ for kmin = 1 , 
N = 1000 , and (b) ζ21 (dash line) and 〈k〉 (solid lines) on N for kmin = 1 and different values of γ . Both figures 
are plotted in logarithmic scale.
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where coefficients A and B are defined as

From (14) in the vicinity of critical point ζ2 = ζ2,c at h = 0 we obtain

The properties of parameter ζ may be inferred from Fig. 2a. The magnitude of ζ is finite at γ = 1 and reaches 
its maximum value at γmax ≃ 1

2
[ln(N)+ 2−

√
ln(N)[ln(N)− 4]] , which implies γmax ≈ 2.21 for the networks 

with N = 1000 nodes established in Figs. 1 and 2a, respectively.
Equation (16) establishes the second order phase transition from paramagnetic (PM) state ( Sz = 0 ) to fer-

romagnetic (FM) one ( Sz  = 0 ), which occurs if normalized degree correlation function obeys the ζ2 ≥ ζ2,c 
condition. For social network systems, such a phase transition means transformation from disorder to some 
ordering state with opinion formation or voting. Hence, phase transition for the analysed Ising model appears 
only due to finite size effects, cf.40,59,60,62.

Remarkably, for power-law degree distribution networks parameter ζ2 is the function of number of nodes N. 
The dependence of ζ2 versus N for various γ is shown in Fig. 2b. As clearly seen, ζ2 grows significantly within the 
anomalous domain of γ . Therefore, social networks, which possess a growing number of hubs (decreasing γ ), 
promote the occurrence of some ordering state; it may be characterized in terms of definite social polarization, 
which is discussed in more detail below.

In the presence of non-vanishing external (pump) field h for ζ2 → ζ2,c the order parameter may be obtained 
in the form

The right-hand part of the Eq. (17) is valid for large degree exponent γ with the valid factorization of param-
eters ζ2 and ζ . Notably, the main features of average degree 〈k〉 in this limit resembles ζ2 , see Fig. 2.

Non‑equilibrium phase transition in solaser. Basic approach. In this section we examine the social 
lasing effect as a non-equilibrium phase transition that occur in social systems possessing some specific features. 
The model we discuss in this work may be formulated in a general form in terms of the quantum field theory 
apparatus.

For simplicity we consider N two-level systems (TLS), which comprise gain laser medium; each system is 
inherent to a well-distinguished ground ( |g� ) and excited ( |e� ) states possessing different energies Eg and Ee , 
( Ee > Eg ), respectively. We describe TLS at states |e� and |g� by bosonic annihilation and creation operators, âj and 
â†j  for ground state and b̂j and b̂†j  for excited state, respectively. We characterize the jth TLS by resonant frequency 
(energy) of transition ωj = Ee,j − Eg ,j ( j = 1, 2, ...,N ); note that we use units where the Plank constant equal to 1.

We assume that interaction of TLSs ensemble with irradiation occurs in the resonator, which supports a 
multimode regime described by an annihilation (creation) field operator f̂v , (f̂v

†
) , which freely evolves in time 

with common frequency ω , see Fig. 3a, cf.77. Within the framework of dipole and rotating-wave approximations, 
the generic Hamiltonian of the system is given by:

where gj characterizes interaction strength (energy) of TLS with field f̂v . Thereafter, we assume that gi = g for 
all TLS. In (18) kj is the jth node degree, which can be understood as a mean number of modes occurring in a 
physical laser resonator.

Physically, 2g represents so-called vacuum Rabi-splitting frequency, which indicates the rate, at which one 
quantum excitation may appear due to the interaction with a resonator field, cf.37. From quantum theory it is 
known that even in the absence of photons in a resonator (so-called vacuum state) the resonant probability of 
TLS transition from the ground state to the excited one within time t is W = sin2[gt] , cf.78. Considering short 
time intervals such as gt ≪ 1 we can obtain W ≃ g2t2 . Thereby, resonant excitation probability W of TLS is 
proportional to g2.

In (18) P is an external strong classical field, which drives the gain medium. In physical laser the pump field 
is introduced into the resonator with the same frequency, ω , which is inherent to a laser mode, see Fig. 3a.

In the framework of Heisenberg-Langevin formalism from (18) we obtain: 

(14)ASz − BS3z +
h

2T
= 0,

(15)A = ζ2

ζ2,c
− 1, B = ζ

3

ζ 32

ζ 32,c
.

(16)Sz =
[

3

ζc

(

ζ2

ζ2,c
− 1

)]1/2

.

(17)Sz ≃
(

3h

4Jζcζ2,c

)1/3

≃
(

3h

4J�k�c

)1/3

.

(18)Ĥ = −1

2

N
∑

j=1

ωj(b̂
†
j b̂j − â†j âj)+

1

N

N
∑

j=1

kj
∑

v=1

[

ωf̂v
†
f̂v + gj(f̂v

†
â†j b̂j + b̂†j âj f̂v)+ iP(f̂v

† − fv)
]

,

(19a)
˙̂
fv = (−iω − κ)f̂v − ig

N
∑

j=1

p̂j + P(t)− iF̂ph,
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 where p̂j = â†j b̂j and Ŝzj = b̂†j b̂j − â†j âj define the jth TLS polarization (excitation) and levels population imbal-
ance (inversion) operators, respectively; Ŝzj,0 is a constant operator. For TLS, which establishes a DM agent 
features these operators may be recognized in the framework of quantum approach to DM theory, cf.79,80.

In Eq. (19) we describe the quantum model of driven-dissipative laser system in its general form; F̂ph, F̂1,2 
are standard Langevin quantum noise operators, which characterize laser medium coupling with the environ-
ment, cf.7.

(19b)˙̂pj = (−iωj − Ŵj)p̂j + igŜzj

kj
∑

v=1

f̂v − iF̂1

(19c)˙̂Szj =
1

τj
(Ŝzj,0 − Ŝzj)+ 2ig

kj
∑

v=1

(f̂v
†
p̂j − f̂v p̂

†
i )− F̂2

Figure 3.  Sketch of (a) physical and (b) social laser systems, respectively. The processes, which are allowed in 
the solaser for TLS representing agent of DM, are shown in (c). The model of physical laser presumes interaction 
of resonator modes (only one mode is shown) with the ensemble of two level-oscillators (atoms) in the presence 
of an optical pump. At the core of solaser there is an echo chamber, which provides circulation and amplification 
of some privileged mode for the s-information field in a social network (illustrated with the red directed edges) 
in the presence of a strong social mass media pump. In (c) |g� and |e� are (emotionally) ground (neutral) and 
excited states, respectively.
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The non-equilibrium features of the model given in Eq. (19) are characterized by parameters κ , Ŵj and τj . 
Physical lasers possess Fabry-Pérot (or some other) resonators, which in practice play a crucial role in forma-
tion and amplification of laser  irradiation77. The medium, which possess some decay from resonator modes, is 
placed in the resonator Fig. 3a. The atoms composing the medium can absorb and emit near-resonant photons, 
which carry out some information. Without using a resonator, photons may be absorbed or lost after several acts 
of absorption and re-emission. With a resonator, laser field is reflected many times and gained before leaving 
the resonator. The losses of laser irradiation may appear, for example, due to non-ideal resonator mirrors. The 
resonator Q (quality)-factor for a given laser mode in this situation is determined by photon lifetime τph ∝ 1/κ 
in this mode, where κ characterizes photon loss rate from the  resonator77. Vanishing κ corresponds to high 
Q-factor resonators, which prevent the leakage of laser field photons from the resonator. Roughly speaking, 
different resonator modes possess different values of κ . We neglect these differences in our model. We account 
non-equilibrium features of TLS in (19) by TLS depolarization (dephasing) rate Ŵj and spontaneous emission 
characteristic time τj , respectively.

The solaser model. Throughout this work we restrict ourselves by mean-field theory. In this case, we replace the 
operators in (19) by their mean values setting pj(t) = �p̂j� , E(t) = �f̂v� , σ z

j (t) = �Ŝzj� and �F̂ph� = �F̂1,2� = 0 in 
average. As a result, from (19) we obtain semi-classical equations as following (cf.8) 

 In (20) σ z
j (t) describes the population imbalance for jth ( j = 1, 2, ...,N  ) TLS; σ z

j (t) = 1 if two-level system 
occupies the upper |e� state, and σ z

j (t) = −1 if it occupies the lower one, σ z
j,0 is a constant value of population 

imbalance for jth TLS, which we specify below.
Let’s consider how the solaser system may be recognized in the framework of Eq. (20). Schematically, the 

solaser is shown in Fig. 3b.
At the core of solaser in Fig. 3b there is a social network system, which plays the role of the gain medium 

as it occurs with a usual physical laser device, cf. Fig. 3a. We propose so-called (social) s-atoms representing 
DM agents, which we model as a simple quantum-like TLS. For the solaser model we consider a ground state as 
emotionally neutral state. The “upper” state may be identified as emotionally excited (anger or happiness) state 
possessing some other social energy Ee . In Fig. 3c we summarize possible decisions of the agent in the framework 
of solaser paradigm. Such decisions are inherent to spreading or not, some socially actual information by a DM 
agent. In contrast to the routine Shannon’s information approach, here we discuss so-called s(social)-information 
related to some social news and events, which are meaningful only in terms of the problem for DM agents. The 
social field, E, possesses social energy, ω , and acts as a carrier for s-information establishing social influence as a 
result. It is worth to notice that for some specific tasks in social and financial network systems we can interpret 
E as an information field which possess interference effects like a wave-function in quantum mechanics, cf.52,80.

Thus, we can recognize s-information spreading as a process of “absorption” and “emission” of s-quanta 
performed by spatially distributed DM agents similar to “common” two-level atoms, see Fig. 3c. Practically, we 
can consider these quanta of s-information as meaningful messages (like posts, tweets, retweets, emails, etc. ), 
containing some contextual information.

Emotional excitation of the agent emerges in two ways. Each act of s-photon absorption evokes probabilistic 
excitation of DM agent, which for simplicity possesses only two |g� and |e� quantum-like mental states, respec-
tively, see Fig. 3c. On the other hand, an agent can change his/her state |g� to |e� under the mass media pump 
influence.

An agent in excited (emotional) state |e� can return back to its original (emotionally neutral ground) state in 
several ways as well. The transition of DM agent to state |g� occurs spontaneously, emitting s-photon (posting or 
publishing some tweet, for example). Stimulated transition to ground state |g� that is accompanied with emission 
of s-photon occurs in the presence of external s-photon, see Fig. 3c. The stimulated transitions, which occur in 
solaser coherently, are especially responsible for the amplification of information field. Spontaneous emission 
processes are incoherent; in physics they exhibit quantum nature of matter-light  interaction6–8.

On the contrary, information amplification occurs due to (socially) stimulated emission process. As shown in 
Fig. 3c, stimulated emission presumes posting of a message stimulated by another. Remarkably, in this situation 
a DM agent can post spontaneous content, which reflects his/her feelings.

Roughly speaking, messages posted “spontaneously” may be distinguished from a “stimulated” one only by 
analysing the posting time. We expect socially stimulated posts of a DM agent to appear within the time when 
his/her followers are online. In this sense “stimulated” posts occur coherently as an immediate response to some 
discussions and posts appearing in social media. On the contrary, spontaneous emission occurs incoherently 
without any connection with some events in social media. Both of them depend on psychological state of DM 
agents. Moreover, in contrast to physical systems, socially stimulated posts may appear more “spontaneously” 
since they reflect some emotional variability of a DM agent for time moment of online posting. Remarkably, in 
this situation decision making appears under uncertainty and may be described in the framework of quantum 

(20a)Ė(t) = (−iω − κ)E(t)− ig

N
∑

j=1

pj(t)+ P(t),

(20b)ṗj(t) = (−iωj − Ŵj)pj(t)+ igkjE(t)σ
z
j (t),

(20c)σ̇ z
j (t) =

1

τj
(σ z

j,0 − σ z
j (t))+ 2igkj(pj(t)[E(t)]∗ − [pj(t)]∗E(t)).
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approach to human  cognition79–83. Human decisions occurring under uncertainty within limiting time clearly 
demonstrate quantum-like probabilistic features, cf.84–89. In this sense quantum approach to solaser, which we 
explore ab initio in this work, seems fully justified.

Notably, emotionally excited agents can change their mental state without any emission of s-photons. It may 
happen, for example, as a result of some discussions (“collisions”) with some other agents. The solaser quantum 
paradigm accounts all possible changes, which may occur with DM agent states |e� and |g� in the presence of 
s-information or without it.

Echo chambers as a solaser “resonator”. Without driving field P s-information disseminates in social media and 
may become lost after several (or, even many) steps, which are characterized by s-photon lifetime τph ∝ 1/κ . To 
be more specific, for a network community we can define τph as an average lifespan of a post. For well-known 
social media it varies from few minutes to several months, cf.90,91. For example, Twitter content changes very fast 
and message gets pushed down the page quickly.

Simultaneously, we can obtain (almost exponential) decrease of public attention to some events, for example, 
decreased attention to the Brexit and US presidential elections in 2016, cf.92. In Eq. (20) the jth TLS dephasing 
parameter Ŵj is responsible for such a behaviour and characterizes potential attenuation of a DM agent’s atten-
tion to information field E.

The situation changes drastically in the presence of so-called echo chambers occurring with network com-
munities, which possess absorption and re-emission of one type of contextual information for a given community, 
cf.93. Current socially oriented networks technically serve facilities on simultaneous s-information sharing with 
many users. For example, DM agents promote s-information spreading by posting, twitting, and re-twitting. The 
context of some meaningful information may be specified using hashtags. New facilities of social networks have 
generated principally new social phenomena with information dissemination, which are called echo chambers 
and  homophily94. An echo chamber occurs in relatively close social networks, which possess selection and rein-
forcement of some contextual information (beliefs) due to information exchange and repetition inside the net-
work, preventing it from other opinions, rebuttal, etc. The echo chambers in social network communities appear 
due to homophily feature of individuals, which support tendency to be connected together with similar  people95. 
As a result, the echo chamber effect provides information induced selection (social polarization) of users (DM 
agents) who make their decisions being in good agreement with the information circulated in an echo chamber. 
Moreover, when DM agents encounter non-contextual (contradicting) information, they try to counteract this 
information and keep their beliefs. This is not surprising since famous social media environments like Twitter, 
Instagram, Facebook, Reddit, VK, Telegram, etc. contribute to formation of like-minded networks, unified by 
some key features and preferences for the content. In real world s-information spreading in the presence of echo 
chambers may be studied by examining topological properties of social networks and their specific peculiarities.

Remarkably, echo chambers occurring in current social media resemble laser resonators, which are able to 
enhance photon lifetime τph . We expect an echo chamber to sufficiently prolong s-information lifetime in social 
media as well, cf.96. In this regard we can introduce an echo chamber Q-factor parameter as cf.37

In currently available quantum technologies high Q-factor resonators fulfill condition Q ≫ 136. The Q-factor 
for social echo chambers is a sophisticated question. We can suppose that high Q-factor echo chambers fulfill 
the condition ω ≫ 2π/τph . Clearly, such a condition may be achieved with some news representing keystone 
topics and remarkable events (like Brexit, Arab Spring, US elections, etc.) admitting frequent information re-
circulation (in some form) and long time discussions. The discussions enable to examine steady state regimes 
of social behaviour. Homophily as an important social peculiarity may be associated here with the assumption 
that DM agents (TLS) interact with some common s-information field E, which is contextual (resonant) to the 
most part of DM agents within chosen social media (or networks), see (20). The interaction strength of a single 
TLS with E is characterized with g-parameter, see (20). Practically, we can recognize g as the rate, at which single 
DM agent polarization appears due to the interaction with echo chamber information field.

The tendency of DM agents to interact with only one type of s-information (which supports echo chamber) 
promotes a single mode regime when a social system produces one large macroscopic information field E96. This 
regime may also recognized as a information laser limit, cf.52.

Solaser phase transition. We are starting with Ginzburg-Landau equation

which governs solaser mean field E evolution in time (see section“Methods”). It is worth to notice that we restrict 
ourselves by third-order nonlinear term in Eq. (22) that is proportional to |E|2E . The saturation effects which 
may lead to higher order nonlinearities in (22) are neglected.

Equation (22) admits significant simplification if we suppose that all TLSs in an echo chamber are intrinsically 
close to each other, i.e. we assume that conditions

(21)Q = ω

κ
=

ωτph

2π
.

(22)Ė = −



κ −
N
�

j=1

(g2kjσ
z
j,0(Ŵj − i�j)

�2
j + Ŵ2

j



E −
N
�

j=1

4g4k3j τjŴj(Ŵj − i�j)σ
z
j,0

(�2
j + Ŵ2

j )
2

|E|2E + P,

(23)Ŵj = Ŵ, τj = τ , �j ≃ 0



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8566  | https://doi.org/10.1038/s41598-022-12327-w

www.nature.com/scientificreports/

are fulfilled. The right-hand part of equation in (23) implies “strong” echo chamber effect when all DM agents are 
in complete resonance with circulated single mode information field E. The steady-state solution of (22) reads

where σz ≡
∑

j
σ z
j,0 = Nσ z

0  is macroscopic population imbalance; σ z
0 = 1

N

∑

j
σ z
j,0 is normalized population imbal-

ance. The laser threshold is determined from (24) as

or, for normalized population imbalance σ z
0  defined as

where we made definition g(k) ≡ g
√
�k� which we explain latterly.

Equations (25), (26) represent one of the key result of this work. In particular, solaser gain medium implies 
dependence σz,thr ∝ 1/�k� , which imply threshold-less laser phenomena ( σthr → 0 ) within anomalous domain 
1 < γ < 2 . The combination of the parameters in denominator of (26) may be recognized as collective coupling 
parameter

for N two-level systems with complex network field E. In physics there exists 
√
N  scaling law for matter-field 

interaction strength g if it occurs in gases, lattice environments, cf.37. However, as we can see from (27), the net-
work environment can improve this scaling 

√
�k� times. Since 〈k〉 may be large enough (see anomalous domain 

in Fig. 2a), collective parameter G admits significant improvement.
The macroscopic parameter of population imbalance σz in laser theory plays a role of reciprocal temperature 

β , which is relevant to the whole system characterization for the Ising  model16. Noteworthy, σz,thr vanishes for 
large average node degree 〈k〉 . In this sense the solaser represents a low-threshold laser system due to network 
peculiarities. On the other hand, for a given population imbalance, σz Eq. (24), defines a threshold average node 
degree 〈k〉thr in the form

Comparing (24) with (14), we can conclude that information field amplitude E (instead of Sz ) represents the 
order parameter for dissipative phase transition to the laser (to be more specific, hereafter we are fixing the phase 
by considering real E)16. We rewrite (24) as

where coefficients A and B are defined as

Notably, coefficients A, B may be also obtained from laser rate-equations, cf.12. From (29) it is possible to infer 
that (phase) transition to lasing occurs at A = 0.

In the vicinity of threshold point, i.e. for the networks, which possess �k� → �k�thr from (29) at P = 0 for the 
order parameter we get

Thus, above the threshold, i.e. for network nodes N, which admit condition �k� ≥ �k�thr an establishment of 
finite (non-zero) information (social) field E occurs; it is accomplished with non-zero polarization (excitation) 
of TLS. We can recast order parameter E in the vicinity of �k� ≃ �k�thr through pumping P as

where ζ3,thr is normalized third order degree correlation parameter ζ3 taken at the threshold point, cf. (8). The 
right-hand part of the equation in (32) is valid for the networks for which ζ3 approaches 〈k〉2thr.

Equations (11–17) and (25–32) demonstrate an analogy between phase transitions occurring in the Ising 
model, which is considered by current social networks studies, and the solaser model, which we establish here, 
cf.17. In particular, an average node degree becomes a vital parameter for both of them within a random regime 
of complex networks where ζ2,3 admits factorization, i.e. for γ > 3 , see Fig. 2.

(24)
(

g2�k�σz
Ŵ

− κ

)

E − 4g4�k3�τσz
Ŵ2

E3 + P = 0,

(25)σz,thr =
κŴ

g2�k� ,

(26)σ z
0,thr =

κŴ

g2N�k� ≡ κŴ

[g(k)]2N ,

(27)G = g(k)
√
N = g

√

N�k�

(28)�k�thr =
κŴ

g2σz
.

(29)AE − BE3 + P = 0,

(30)A =
( �k�
�k�thr

− 1

)

κ , B = 4g2τκζ3

Ŵ

�k�
�k�thr

.

(31)E =
√

A

B
=

√

Ŵ

4g2τζ3,thr

( �k�
�k�thr

− 1

)

,

(32)E =
(

PŴ

4g2τκζ3,thr

)1/3

≃
(

PŴ

4g2τκ�k�2thr

)1/3

,
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Dependence (32) for information field on social mass media pump P plays a crucial role in solaser features. 
In physics, gain medium pumped by strong classical field, which may be coherent or incoherent, see Fig. 3a. 
The latter possesses a broad  spectrum77. In the framework of social studies the role of coherent mass-media 
pump is straightforward. It strongly supports echo chamber transition frequency ω . The role of an incoherent 
social mass-media pump may be much more interesting, since in this case DM agents are influenced by strong 
and wide spectrum of different viewpoints. However, even in this case the social pumping effect may be strong 
enough due to so-called confirmation bias, which result from individuals’ feature to absorb information in a way 
that confirms one’s prior beliefs supported by an echo chamber. In social networks confirmation bias possess 
amplification by means of so-called filter bubbles; they display only the information that individuals are likely 
to agree with, while excluding opposing  views97.

Solaser dynamics and information diffusion. Viral information cascades in solaser. Modern social 
media creates unprecedented opportunities for DM agents to influence each other. This is facilitated by various 
Internet-based resources sharing applications (e.g. YouTube), blogs and microblogs (e.g. LiveJournal, Twitter 
etc.), social networks (e.g. Facebook, Myspace, VKontakte). In this sense, information field E responsible for the 
influence of DM agents cannot be considered as a constant in time, cf. (32).

For example, some information published by the user can almost immediately become “viral” and accessible 
to millions of people. It can provoke a rapid growth of so-called information  cascades98,99. In this case, dissemi-
nation of information in social media is the object for close attention of researchers who work in the field of 
mathematics, computer science, statistical physics, sociology and psychology.

Time dependent phenomena for the solaser may be inferred from Ginzburg–Landau equation (22). In par-
ticular, from (22) for average s-photon number variable nph = E2 (which corresponds to number of retweets, 
as example) we obtain

where we recover slow time dependence of pump P → P(t) on time.
Equation (33) may be recognized as a rate equation for the number of photons generated by laser at the out-

put, cf.8. In the framework of social media studies, the similar equation (with P = 0 ) characterizes a so-called 
susceptible-infected-susceptible (SIS) epidemic model, which describes information spread in social media based 
on the growth of infected agents population, cf.44,66. Recent remarkable applications of such a model to rumor 
and misinformation spreading are given  in100,101.

In laser theory the pump field plays a crucial role. It is used to create required population inversion σz . Then, 
the pump may be switched-off, P = 0 . In this limit Eq. (33) admits a simple analytical solution

where we define v = n̄/(A− Bn̄) ; n̄ is an average photon number at initial time t = 0.
Figure 4a exhibits another important result of this work and explains the role of the mass media pump in the 

solaser. As seen in Fig. 4a, we plot solutions of Eq. (33) for s-photon average number nph for various pump P(t). 
We can suppose that nph describes reinforcement of some viral information supported by the echo chamber. 
Parameter g2〈k〉σz/Ŵ in this case simply describes message diffusion rate whereas κ characterizes recovery rate; 
the s-photons escape from the echo chamber, which amplifies this information with rate κ , cf. Eq. (24).

The blue curve in Fig.  4a is relevant to typical S-shape behavior, which is relevant to the SIS model and charac-
terizes the (exponential) growth of nph above the threshold ( A > 0 ). The pump field creates the solaser threshold 
and then switches off, P = 0 . This limit corresponds to growing information cascade, which is schematically 
depicted in Fig. 4b. In the solaser, a cascade starts with a “spontaneously” posted message. Then, in the presence 
of required inversion, or a relevant average node degree this message evokes avalanche of messages (s-photons) 
in the network created by other DM agents as a result of socially stimulated emission phenomena, cf. Fig. 3b.

In particular, such a cascade may be described in the framework of cascade generating function, which char-
acterizes details of cascade microscopic dynamics, cf. patterns (3), (5) given in Fig. 2  of102. At the same time, the 
information cascade shown in Fig. 4b may be explained in the framework of structural virality paradigm, which 
considers viral information  diffusion103.

In the presence of the pump of mass media an average s-photon number, as it is shown Fig. 4a, follows pump 
main features. In particular, a permanent pump possesses essential acceleration of information diffusion, see the 
red curve in Fig.  4a. For the black and magenta curves we suppose that P(t) = P0sin[νt] , where P0 is a pump 
field amplitude, and ν is frequency of the pump variation. In adiabatic approximation ( ν ≪ ω ) DM agents follows 
mass media pump evolution, which is clearly seen for the black and magenta curves behavior shown in Fig. 4a, 
respectively. Within the established time window, the green curve may be associated with power law decay of 
an information cascade. In contrast, the black line in Fig. 4a characterizes the exponential decay of the cascade 
demolished by mass media pump P(t) = P0e

−νet . Within the large time window, it approaches the blue curve 
obtained at P = 0.

Thus, the plots in Fig. 4a may reproduce a variety of information cascade properties obtained experimentally 
depending on a mass media pump field action P(t), cf.49,90,101,104,105.

In particular, the SIS model in the framework of solaser possesses simple and very elegant interpretation. 
The DM agent is initially susceptible to s-photon. The s-photon absorption evokes infection of the agent with 
some probability, which corresponds to transition to the excited state. Then, s-photon emission (which practi-
cally implies posting a tweet, for example) changes the s-photon number (number of tweets) and simultaneously 

(33)ṅph = 2Anph − 2Bn2ph + 2P(t)
√

nph,

(34)nph = Ave2At

1+ Bve2At
,
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transfers DM agent to the ground state back. Notably, the same agent again becomes susceptible to absorb 
s-photon, which agrees with basic SIS model  predictions100,101. Thus, the total number of emitted s-photons in 
the solaser model is accompanied with diminishing of population inversion. The lasing threshold in this case 
corresponds to the epidemic threshold.

If the lasing threshold does not fulfill ( A < 0 ), the properties of nph strictly depends on the pump P. In par-
ticular, in this limit it is possible to obtain

For A < 0 Eq. (35) provides critical pump field Pc = A2n̄ when nph = n̄ . For P > Pc the nph grows 
exponentially.

How fast s‑information may be reinforced in solaser? This is a keystone question that we can address to the sola-
ser paradigm from the beginning. Up to date it is unclear how network peculiarities affect solaser gain medium, 
cf. Fig. 3b. As we have already pointed out, Fig. 4 and (34) may be understood in the framework of various mod-
els of disease spreading. To be more specific, even simple SI model can help to create a link between information 
growth presented in Fig. 4a and network peculiarities. To demonstrate that, let us examine the solaser model 
well above the threshold with a switched-off pump field, P = 0 (we can simply neglect by κ for the SI model in 
this limit). At any time moment we suppose that all DM agents in a social network belong to two large classes 
of “infected” or “susceptible” individuals. A DM agent belongs to set of “infected” population if he/she posts 
a message about some potentially viral content. Otherwise, he/she is “susceptible” (S). Notably, transfer from 
“infected” to “susceptible” agents within this model is not provided, which is clearly inherent to the SI approach.

We suppose that an “infected” agent posts the message, which is passed to a “susceptible” one (here we refer 
to so-called SI model for simplicity). Both of them are part of the solaser social network community, see Fig. 4b. 
Within the time interval dt a probability that corresponds to the message passage to a “susceptible” agent is 
ǫdt (we suppose that ǫ is small enough, ǫdt ≪ 1 ). Then, let us assume that “susceptible” agent j possesses node 
degree kj . In this case a “susceptible” agent receives the message (becomes “infected”) with probability ǫkjdt . The 
enhancement of this probability kj times is obvious: people more intensively communicated with individuals who 
possess more (communicative) links in social media. Let us assume that kj approaches its average value 〈k〉 . Frac-
tion of nodes with average degree k, which are “infected” in the network, is define as I, and the fraction, which are 
not “infected”, is defined as 1− I , respectively. A simple equation that governs I variable is represented as (cf.44)

The solution of Eq. (36) is

(35)nph = (eAt(A
√
n̄+ P)− P)2

A2
,

(36)İ = ǫ(1− I)�k�I .

Figure 4.  (a) Time dependence of average s-photon number nph(t) for A = 1 and B = 0.25 . Pump rates are: 
P = 0 (blue curve), P = 1 (red curve), P(t) = sin(0.37t) (green curve), P(t) = sin(1.3t) (magenda curve), and 
P(t) = e−0.12t (black curve), respectively. (b) Viral Information cascade in solaser network. The cascade starts 
with a socially stimulated repost (retweet) in the presence of spontaneously posted message, which together 
deliver information to two other agents in the network and initiate new “spontaneously” or socially stimulated 
messages. The messages occur in accordance with the rules explained in Fig. 3c.
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where I(t = 0) = I0 defines the initial condition.
Comparing Eq. (37) with (34) we can conclude that ǫ ≃ 2g2σz/Ŵ.
Equation (37) provides a definition of characteristic time scale tk required to achieve 1/e fraction of all “sus-

ceptible” DM agents; from (37) we obtain

where we omit the term with κ , which is relevant to losses.
The obtained in (38) plays an important role for complex networks with the power-law degree distribution, 

which mimics a real life social media. Actually, the characteristic time scale tk is inversely proportional to the rate, 
at which a viral message spreads through social media. As it is follows from the inset to Fig. 2, social networks 
with degree exponent γ > 3 may be recognized as socially passive in the framework of interaction exchange. 
The situation changes in the solaser limit. Echo chambers provide increasing of information exchange and social 
excitation of network agents. For the networks with power-law degree distribution it means vanishing degree 
exponent γ , which leads to clusterization and hubs appearing, cf. Fig. 1. The rate of information transfer enor-
mously increases ( tk vanishes) within anomalous network domain 1 < γ < 2 which corresponds to growing 
〈k〉 . Notably, such an effect almost no longer depends on κ . This regime corresponds to a so-called superstrong 
coupling regime, when coupling between TLSs and resonator field behaves strongly enough during one round 
trip in the resonator, cf.106. Hence, we can conclude that in the framework of social laser paradigm we can expect 
huge acceleration of information spread and rapid information cascade, which result from a superstrong coupling 
regime. We can represent such a condition in the form

where ωFSR is a free spectral range of the resonator, which is inversely proportional to the “size” of the  resonator106.
In quantum physics, a strong coupling regime provides observation of various coherent matter-field interac-

tion effects, like exciton-polariton Bose-Einstein  condensates32. Roughly speaking, in this limit we need no popu-
lation imbalance at all. It may be also seen from definition (25); threshold value of σthr vanishes at g(k) ≫ κ ,Ŵ 
for large N, cf. Fig. 2b.

We expect that it is possible to obtain condition (39) by choosing an appropriate network topology within 
1 < γ < 2 domain. This result represents an important impact for current social science. It means that in the 
presence of a strong mass media pump and echo chambers occurring in social media we do not need to obtain a 
large population inversion, which leads to large number of emotionally excited people. It is enough to have some 
strong majority who can attract people, create echo chambers in social networks and provide necessary network 
communicative topology (which characterised by some specific γ for power-law networks, in particular). It is 
worth noticing that huge information cascades in this situation appear due to a spontaneous DM process. Then, 
all population is likely to follow these cascades.

Methods
We may recognize social laser as a “usual” laser possessing complex network medium, which mimics a real-
world social system and undergoes strong external information pressure. In this regard we assume that in the 
regime of solaser each of TLS adiabatically follows information field E, which evolves with frequency ω . To be 
more specific, we consider solutions of Eq. (20) setting E(t) = Ee−iωt , P(t) = Pe−iωt and pj(t) = pje

−iωt , which 
remove “fast” oscillations from Eq. (20). Setting σ̇ z

j (t) = 0 we assume that within new time scales population 
imbalance slowly varies with time. Then, from Eq. (20) we obtain 

 where �j ≡ ωj − ω is detuning from the resonant interaction of TLS with s-field. Detuning simply character-
izes opinion diversity of a DM agent (described by frequency ωj ) from the information mode (with frequency 
ω ) supported by echo chamber. From quantum theory it is known that the resonance condition implies �j = 0 , 
which corresponds to maximal excitation of TLS. For large values of �j the probability of TLS excitation vanishes 
as W ∝ 1/((2g)2 +�2) , cf.78.

In the framework of social science �j indicates how s-information (which is carried out by field E) is sensi-
tive (relevant, contextual) to internal mental levels of the jth DM agent. In practice, �j represents a stochastic 
(in time) variable obeying a distribution function. However, in the presence of strong echo chamber effect a 
social network system clearly exhibits extreme polarization of social community, which may be described by 
macroscopic population of two DM levels, cf.107. Thus, in this limit we expect to obtain �j ≃ 0 for all DM agents 

(37)I = I0e
ǫ�k�t

1− I0 + I0eǫ�k�t
,

(38)tk =
1

ǫ�k� ≃ 1

2A
,

(39)G ≫ Ŵ, κ , ωFSR ,

(40a)Ė = −κE − ig

N
∑

j=1

pj + P,

(40b)ṗj = −(i�j + Ŵj)pj + igkjEσ
z
j ,

(40c)σ z
j = σ z

j,0 + 2iτjgkj(pjE
∗ − p∗j E),
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affiliated with a given echo chamber. We examine laser solution of Eq. (40), which is reminiscent to phase transi-
tion paradigm, cf.8. In the zeroth order approximation we can assume that σ z

j ≈ σ z
j,0 (40) and ṗj = 0 , which imply

Substituting Eqs. (41) into (40c) we obtain TLS population imbalance in the first order approximation as

Thus, steady-state polarization of TLS obtained from (40b), reads

Equation (43) admit clear interpretation in the framework of current studies of echo chamber effect occur-
ring in social media. As known, echo chambers promote polarization of social network communities shifting 
the entire group’s ideology to the extreme. Especially, it is clearly seen in social networks with political context, 
cf.104,108. Such a polarization exhibits strong bimodality of the distribution function for DM  agents96. Moreover, 
due to psychological reasons DM agents work to shift their opinion within echo chamber realities. As it is follows 
from (43) the polarization is maximal for �j ≃ 0 , i.e. in the limit of suppression of opinion diversity.

Substituting (43) into (40a) we arrive at complex Ginzburg–Landau equation (22).

Discussion
In this work we offer the social laser concept to explain growing and fast-paced processes, which appear in cur-
rent social media. The solaser, as any physical laser device, contains all keystone elements, which are necessary 
for reinforcement of social information. At the core of the solaser we propose social network media, which may 
be modeled (with some approximation) by means of networks whose degree distribution follows power law. The 
DM agents, which we established as simple quantum TLS, occupy the nodes of this network (we consider the 
case where each agent occupies only one node). An echo chamber, which mimics an optical resonator known 
from physical laser device, represents a key feature of social media. In particular, echo chamber may provide 
enhancement of one privileged s-information mode. We have demonstrated a clear link between the solaser 
and Ising model. The Ising model is used in sociophysics that considers networks and characterizes a social 
impact. Unlike the Ising model, the solaser accounts elementary processes of s-photon absorption, spontaneous 
emission and (socially) stimulated emission, which are relevant to on-line information exchange between DM 
agents in the network. As a result, social lasing represents a coherent nonequilibrium process that implies the 
formation of macroscopic social polarization, (viral) information cascade creation in the presence of population 
imbalance (social bias).

In this work, we restrict ourselves by mean-field theory, which has a twofold meaning for a solaser system. 
In particular, we obtain a set of equations to describe the solaser in mean-field approximation, which deals with 
average values of relevant operators and neglect all quantum (Langevin) noises. We examine a network structure 
in the limit when fluctuations of node degree may be neglected. In this case, features of the socially oriented Ising 
model and solaser provide the existence of some critical average node degree, which defines the second order 
phase transition threshold for the network topology and nodes.

In this limit we have shown that a coherent information field represents the order parameter and provides a 
huge social impact in solaser network media.

An important difference between the solaser and currently actual models of echo chambers and related 
phenomena is the presence of a mass media pump, which plays a crucial role in solaser generic features. The 
mass media pump provides population inversion required for lasing occurrence in the presence of various decay 
mechanisms. In this work we establish a clear link between the SIS/SI epidemiological models and the solaser 
rate equation for an average number of s-photons, which may be simply recognized as an average total number of 
messages posted or tweeted in a social network. We have shown that the social laser field immediately generates 
information cascades occurring in social media. Remarkably, the mass media pump enables to reinforce and 
accelerate cascade growth in different ways. Notably, DM agents follow an adiabatically time dependent mass 
media pump, which acts in a social network community and contributes to the reproduction of various reliable 
scenarios for information cascade evolution in time. We have achieved an important result, which relates to 
seminal features of parameter g(k) that characterizes coupling strength of DM agent with solaser s-information 
modes; we have shown that g(k) is proportional to 

√
�k� for the network structure possessing average node degree 

〈k〉 . We have shown that the time of information spreading in a social network is inversely proportional to average 
node degree 〈k〉 , which may be large enough in solaser systems. As a result, we can obtain a huge information 
cascade and social impact at the “output” of the solaser, which is manipulated by the mass media pump.

Let us briefly discuss some important and open problems, which arise in the framework of the proposed 
solaser paradigm.

First, it is important to elucidate the role of quantum processes occurring with the solaser at microscopic level, 
i.e. beyond mean-field theory. In particular, from laser theory it is known that quantum effects are important 
in the vicinity of threshold point, cf.6–10. In the framework of social science, quantum-like effects may be also 
recognized as some interference phenomena appearing in the Internet communities and can be explored for 
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evaluation of indirect influence in social media, cf.109. In this sense, it is interesting to consider DM agents pos-
sessing three and more mental levels of decisions (or, emotions). Usual physical atoms interacting with e.m. fields 
in this case exhibit lasing phenomena due to constructive quantum interference of different quantum  levels78.

Second, we can account network peculiarities in quantum-like DM problem where agents behave within some 
network environment. In particular, such an environment may be relevant to network structuring reservoir which 
we can account as uncertainty factor for DM agents, cf.79. In this case our approach may be useful tool for the 
problem of two- (or more) traders market in the presence of information exchange within some network, cf.110.

Third, it is interesting to consider quantum (statistical) theory for network degree correlations. We speak 
here about accounting of a network assortativity parameter, which allows to examine some vital characteristics 
inherent to real life social networks, cf.70. In this sense the networks model with power-law distribution of degree-
degree distance seems to be more suitable for real-world networks  characterization73. We are confident that the 
current work opens a new avenue in such studies.
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