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Abstract

Husqvarna AB is one of the leading producers of outdoor products such as au-
tonomous lawn mowers. One important feature of these products is the ability to
quickly respond to environmental factors such as slippy areas. A reliable slip detec-
tor is needed for this mission and many different technologies exists for detecting
slip events. A common technique is to check the wheel motor current, which clearly
deviates when the lawn mower is subjected to slipping. The on-board sensors opens
up for an alternative solution which utilizes the loop sensors as the main slip detec-
tor. This thesis covers the construction of a slip detection prototype which is based
on the loop sensors. In the end, Husqvarna AB was provided with a new alternative
solution, which was successfully compared to the exiting solution. It proved to be
a reliable slip detector for manually induced slipping indoors, outdoor performance
were not investigated. Ultimately, the implemented prototype outperformed the ex-
isting solution in the intended environment of indoor testing.
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1 Introduction

Robotic lawn mowers are one of the steps towards outdoor home automation. Lawn
mowing is an essential activity which can be repetitive and time consuming, perfect for
automation. It is important to have reliable and robust autonomous robots for this task.
It is even a fundamental assumption made from the consumers of these products, any
deviation from the expected performance means waste of time, money and decreasing
prospects of the involved technology. Assurance that a robotic lawn mower can handle the
problems it faces, such as knowing when it slips, is of vital importance to the development
of related technologies within the outdoor home automation domain. The work is also
very relevant for the involved company Husqvarna AB, which is looking to find a new
alternative to the slip detection problem on their robotic lawn mowers.

1.1 Background

Husqvarna AB was founded in 1689 and was at first a rifle factory. Later, they also
started producing sewing machines, kitchen equipment, bicycles, motorcycles, garden
equipment and lawn mowers that later became robotic [1]. Husqvarna AB are the leaders
in sustainable, user-centered solutions and their passion for innovation is what defines
them [2].

Automatic mowers have on-board electromagnetic loop sensors which senses the elec-
tromagnetic field that emanates from a wired loop in the ground. The wired loop which
is called the boundary wire, encloses the cutting area and the loop sensors senses if the
magnetic field is positive or negative. Inside the perimeter, loop signals are positive, while
they are negative on the outside. The sensor interval is in the range of ± 15000. According
to the curled right-hand rule, the moving charges generates a magnetic field that moves in
the direction in which the fingers encircle the wire [3].

The focus is on one autonomous lawn mower called Husqvarna Automower 405X,
which has four electromagnetic field sensors in total, three in the front and one in the
back. Together, these sensors forms the basis of a new alternative slip detection module.
When a robotic lawn mower detects a problematic area that causes slipping, this triggers
a slip event that stems from the slip detection module and the next course of action is a
small maneuver to move around it. The particular problem to solve is thus slip detection
in autonomous lawn mowers using loop signals. The current solution that is being used
to detect slip is checking the wheel motor current.

1.2 Related work

There are not so many publications specifically on robotic lawn mowers and especially
slip detection, that is related to the problem. In the master thesis [4] the author Edward
Joseph Kreinar describes a filter-based slip detection using an Extended Kalman Filter.
The author defines slip as where the measured wheel velocity does not equal to the true
wheel velocity. The author also describes different alternatives to wheel-slip detection.

In the article [5] the authors A.S. Belyaev, O.A. Brylev and E.A. Ivanov does a re-
search of dependencies between motor current across different types of surfaces, such as
dirt, snow, sand and grass, as well as the difficulties surrounding slip-detection. The au-
thors explain that the algorithms used in different types of slip-detection, often starts to
gain errors which leads to negative effects.
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The data analysis in the research shows that a correlation between the motor currents
and the type of surface is very clear, and provides information about the type of the un-
derlying surface. However, in the experiments that were carried out, they discovered that
placing the robots wheels on different types of surfaces, the mutual influence affected the
data. The conclusion drawn from this was that the difference between wheels’ currents
are too small on highly differing surfaces. In their research the used robot has a ArUco
marker on its top side, for determination of the robots position using computer vision
algorithms.

1.3 Problem formulation

The problem is to find out if loop changes in software based on sensor input can be used to
detect slip-events and compare this potential solution to already existing solutions, which
heavily uses the wheel motor current. This includes creating a new slip event module
that adheres to the design principles and standards at the company. A solution that eval-
uates the slip detector using different performance metrics also needs to be implemented.
There is currently no existing solution that uses these loop changes or a way to compare
alternative modules. The problem will be limited to only one automatic lawn mower, the
Husqvarna Automower 405X, and the results that are expected is a prototype implemen-
tation fulfilling the criteria of detecting slip. The module must be implemented according
to the software standards of Husqvarna AB. The reliability of detecting slip using the
wheel motor current (during controlled testing inside) may be affected by different types
of surfaces, which is discussed in [5]. The reliability of indoor testing may increase when
using loop signals instead. The current main methods of detecting slip which is covered
in the mentioned papers [4, 5] may become challenged by using an alternative method.

1.4 Motivation

Slip detection in autonomous lawn mowers most likely expands into other areas, such as
smart vacuum cleaners, robotic snow-mowers and basically everything that is autonomous
and runs on wheels. If there is no viable slip detection then these robots run the risk of
getting stuck and running out of battery. How these robots handles the detected slip
varies, but the common denominator is that a reliable slip detection is vital to the overall
functionality and service provided.

1.5 Milestones

M1 Finish Introduction
M2 Visualize loop sensor output
M3 Upload simple program to lawn mower
M4 Analyze slip scenarios
M5 Minimal viable slip detection module
M6 Final implementation
M7 Test implementation
M8 Create test method for module
M9 Compare new implementation against existing one
M10 Finish Report
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1.6 Scope/Limitation

This project will be limited to only one autonomous lawn mower, the Husqvarna Auto-
mower 405X illustrated in Figure 1.1, which has four loop-sensors, three in the front and
one in the back. The controlled experiments will be performed on only one type of lawn,
that is located indoors. The size of the lawn is approximately 35 square meters. The
implementation will be compared to only one of the existing solutions, the wheel motor
current. The slip detection module must be built in the C programming language and only
use the internal libraries provided by the company. In addition to this, a Non-disclosure
Agreement (NDA) limits the information that can be shared in this thesis. Sensitive details
can be rewritten in the best case or in the worst case, get discarded entirely.

Figure 1.1: Illustrates the Husqvarna Automower 405X [6].

1.7 Target group

This project targets Husqvarna AB and other companies that develop autonomous robots
that use a boundary wire. The project might also interest software engineers similar to
those working in the software department at the company. Basically embedded software
programmers that constructs the logical behaviour of autonomous robots within the out-
door domain.

1.8 Outline

The outline of the report is as follows. Chapter 2 covers the theory needed to understand
the work. Chapter 3 covers the methods and how they are applied. Chapter 4 covers the
implementation of the prototype. Chapter 5 covers the experimental setup, the results,
and the analysis. Chapter 6 contains a thorough discussion, and finally Chapter 7 is a
concluding section.
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2 Theory

This section includes information about theoretical areas and important concepts that are
related to the problem and solution.

2.1 The Physics Behind Slipping

The force of static friction is the force between two surfaces that stops them from sliding
or slipping over each other. Kinetic friction occurs when two surfaces are sliding past
each other and it opposes the sliding motion and effectively reduces the speed. When
there is relative motion between two surfaces and they slide with respect to each other,
slipping is occurring. This also means that the relative motion has overcome the resisting
frictional force between the two surfaces [7].

2.2 Automatic Mower Boundary Wire

Most robotic lawn mowers uses a perimeter wire. In the paper [8] which covers different
brands, Husqvarna automatic mower is covered along with some general technical details
regarding the boundary wire. The boundary wire is implanted at the border of the lawn
and it is also laid out around trees and surfaces which will not be cut. The boundary
loop wire foremost holds the lawn mower to the enclosed lawn and a search loop ensures
that it can return to the docking station for battery recharging. The perimeter loop wire
defines the robotic mower’s cutting area while the guide loop wire directs the mower
to the charging station. When the wire is electrified, it generates a magnetic field that
emanates in all directions. This magnetic field creates a dynamic input for the on-board
loop sensors, as the robotic lawn mower is moving around. The resulting signal is called
the loop signal and it is especially important for autonomous movement.

2.3 Finite State Machine

To understand where the slip detection module comes in, it is important to cover the fact
that a robotic lawn mower is functionally built according to a Finite State Machine (FSM)
where different states are triggered from real-time events.

The concept of Finite State Machines can be described as a collection of states, input
events, output events and transitions. A state describes what the status of a system is,
input events may be arrival of data to the Finite State Machine. Output events occur after
an input event has arrived and is triggered by a transition, when the Finite State Machine
is changing state [9, 10].

In the article [11], important features and advantages of using Finite State Machines
were presented. The advantages are simplification, model verification, derivation and
testing. By dividing a complex problem into different states, and include the actions of
changing states - the transactions, one can achieve clarity and precise specifications. It is
also possible to define various rules for the Finite State Machine model.

According to the article, defining rules and verifying the model against those rules
can help uncover errors and omissions. The Finite State Machine model can also be used
to make the transition from requirements to design easier, help with implementation, and
also simplify the verification process by using the model to generate various test case
scenarios.
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Figure 2.1: An example of a graphical Finite State Machine.

2.4 Electromagnetic Sensor

An electromagnetic sensor detects the presence and magnitude of a magnetic field. The
three most common sensors used to measure a magnetic field is search coils, fluxgate mag-
netometers and Hall-effect devices [12, 13]. These sensors adheres to the laws of physics
and are susceptible to interference. Electromagnetic interference is a disruption caused by
other magnetic fields generated by another electronic device. Anything that runs on elec-
tricity, give off electromagnetic interference. The interference can travel through different
types of material, such as air, water and other solid materials [14].

In the context of the automatic lawn mower model, each individual loop sensor is
essentially an electromagnetic sensor, which is usually in numerous quantities integrated
in a Printed Circuit Board Assembly (PCBA). At the software level, the magnitude of the
magnetic field measured by the sensor is translated into a number in the range of ± 15000.
Whenever the lawn mower passes the boundary wire, the resulting signal is negative,
while it is positive inside the perimeter.

2.5 Variability

This section covers the measures of variability that was used in this thesis. In the field
of statistics, variability denote the width of the distribution, meaning how spread out the
values are in a dataset.

2.5.1 Variance

The variance of a data set reveals how spread-out the data points are. Mathematically, the
variance is the average of the square of observations deviated from the mean. The closer
the variance is to zero, the more closely the data points are clustered together. When
working with partial datasets where only a smaller sample of the data is available, the
sample variance formula seen in Equation 1 is used [15].
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s2 =

∑
(xi − x)

n− 1
(1)

s2 = Variance
xi = Term in data set
x = Sample mean∑
= Sum

n = Sample size

2.5.2 Range

The range is a simple measure of variability and it is calculated by taking the difference
between the largest and smallest value in a given data set. A broader range means more
variability, whereas a smaller range means the opposite, lower variability. In the context
of the implementation, the largest value is the local maxima and the smallest value is
the local minima. The range is given by calculating the delta between these two extreme
values [16]. The capital letter delta (∆) is used to symbolize change. Calculating the delta
between two numbers represent the difference between them, and can be accomplished
by subtracting the smaller number from the larger one [17].

2.6 Local Maxima and Minima

The local maxima and minima of a function are the maxima and minima in a particular
interval. A value of a function is considered to be a maxima if all nearby values are
smaller, whereas a minima has all nearby values to be larger. There can be multiple local
maxima and minima across the entire domain of a function.

The highest and lowest points across the entire domain are known as the global max-
ima and minima. There can only be one global maxima and minima in a function. The
global maxima or minima is the greatest or smallest value a function can achieve [18].

2.7 Evaluation Metrics

This section contains the evaluation metrics used to evaluate the slip detector. The metrics
are classification accuracy, precision, recall, F2 score and average precision. Together,
these metrics makes it possible to measure the performance of the slip detector.

2.7.1 Classification Accuracy

The metric that encapsulates the performance of a classification model as the number
of correct predictions divided by the total number of predictions is called classification
accuracy. It is intuitive to understand and easy to calculate, making it the most common
metric used for evaluating models [19].

Accuracy =
Number of correct predictions
Total number of predictions

For binary classification problems, accuracy can also be expressed in terms of positives
and negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
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2.7.2 Precision and Recall

When a data set has a class-imbalanced problem, it is better to use another evaluation met-
ric. Class imbalance means that the class ratio is skewed towards one class, the number
of labels are not equal. In such cases, it is better to use precision and recall for evaluation.
Precision shows the proportion of correct positive identifications, whereas recall shows
the proportion of actual positives that was identified correctly. If a model has a precision
of 0.5, it predicts correctly 50% of the time and if model has a recall of 0.10, it correctly
predicts 10% of all positives. True positive (TP) and true negative (TN) means that the
features was classified correctly. False positive (FP) and false negative (FN) means that
the prediction was wrong [20, p. 92–93].

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Since both precision and recall is equally important, there is a precision-recall curve that
displays the trade-off between the precision and recall values for different thresholds.
This curve helps to select the best threshold to maximize both metrics. The graph can be
used to graphically decide the best point, meaning where both the precision and recall are
high. However, if the graph is complex this can be difficult, so instead a metric called the
F1 score can be used. The F1 score measures the balance between precision and recall.
When the value of F1 is high, this means that both the precision and recall are also high.
A lower F1 score means a greater imbalance between precision and recall [20, p. 93–96].

F1 = 2× precision× recall
precision + recall

The average precision (AP) is a method of summarizing the precision-recall curve into a
single value which represents the average of all precisions.

AP =
k=n−1∑
k=0

[Recalls(k)− Recalls(k+1)]× Precisions(k)

2.8 Clustering and Dimensionality Reduction

Clustering is an unsupervised machine learning task. The aim of a cluster analysis is to
discover natural grouping in the data, meaning that the members of a group have similar
but not identical values. In order to visualize the data in a comprehensible format, the
dimension must be three or lower. This is where dimensionality reduction comes in. One
of the main approaches of reducing dimensionality is projection. Principal Component
Analysis (PCA) is a popular dimensionality reduction algorithm and it works by project-
ing data onto identified hyperplanes that lie closest to the data [20].
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3 Method

This chapter is divided into four different subsections. Section 3.1 briefly describes which
methods are going to be used to solve each problem. Section 3.2 will describe the methods
thoroughly and how they will be applied to the problem. Section 3.3 contains a discussion
about the reliability and validity of the thesis. Section 3.4 covers the ethical considerations
in the thesis.

3.1 Research Project

The first method to be used to handle the initial phase of the problem is a literature review
to gather the necessary information. The information gathering process includes related
work, domain specific technical areas, and parts related to the final implementation. This
is then followed by the second method, which is a controlled experiment where the slip
detector is systematically tested in a controlled environment and measured quantitatively
to assess its viability. The implementation of the testing methods is also a part of this
stage.

3.2 Method

The method used in this thesis is presented here. Section 3.2.1 describes how the literature
review was performed. Section 3.2.2 describes the controlled experiments performed in
this thesis.

3.2.1 Literature Review

A literature review is performed to give an overview in a field of study and to gather
necessary information regarding the problem. The literature review in this thesis was per-
formed using the online tools Google Scholar, OneSearch, and Science Direct. To check
for relevance, the abstract part of the articles were read before reading the remaining part
of the article and at last the conclusion. Some keywords used to find relevant articles
were: loop signals, autonomous mower slip detection, finite state machines, electromag-
netic sensors in autonomous mowers. The Table 3.1 below displays the keywords as well
as the search engines used and the number of results. No extended filtering was used
beyond the default search parameters.

.
Keyword Search Engine Results

Autonomous mower slip detection Google Scholar 29
Autonomous mower slip detection OneSearch 18

Autonomous mower slip detection using electromagnetic sensors Google Scholar 8
Autonomous mower slip detection using electromagnetic sensors Science Direct 2

Electromagnetic sensors in autonomous mowers Science Direct 24
Electromagnetic sensors in autonomous mowers OneSearch 38

Table 3.1: Table containing results of the literature review.

To summarize the findings in the literature review, there are not many publications
about the problem that this thesis aims to solve. The final solution can be seen more as
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the creation of an innovative artifact that did not exist before. While there is previous
knowledge about domain specific technical areas, designing a slip detector based on loop
sensor signals requires new thinking and knowledge.

3.2.2 Controlled Experiment

A controlled experiment is a controlled test where a hypothesis can be evaluated and
what the effects on a performance indicator could be when manipulating the test object.
According to [21], clear and consistent task instructions in conjunction with the record-
ing equipment functioning accurately, devotes that the experiment is robust. The article
also mentions that the focus in controlled experiments is quantitative data and that it is
necessary to investigate the phenomenon in more than one way by performing designed
changes.

In the context of the thesis, the controlled experiment is the simulation of a slip-event.
The slip-event can be manually generated in three different ways. The first approach is
to slightly lift the rear part of the lawn mower so that there is still friction but no forward
movement. The driving wheels will spin in an attempt to move but due to the manually
applied backwards force, it will stay put. This physically simulates a standard slipping
scenario.

The second approach is to lift the rear end entirely from the ground so that there is no
friction. This simulates an extreme lack of friction, like a wet area. The third approach
is to again slightly lift the rear part of the lawn mower so that there is still friction but
instead of restricting movement, it is manually simulated by moving the lawn mower
sideways. This effectively simulates the scenario where a lawn mower is slipping and
changing position as a result, maybe due to a slope or initial speed.

The internal developer tools at the company allows data retrieval from the loop-sensors
in real-time. The lawn mower pairs with the monitoring device via Bluetooth by using a
specifically designed testing application. In the internal application, specific commands
can be sent to the lawn mower and one can retrieve the data from the loop sensors, the
current speed and the status of the lawn mower, and much more.

In the controlled experiments that were executed for the thesis, the data from the four
different loop sensors were collected every 100ms in real-time. The collected data is
presented in a graph and each corresponding point is stored into a CSV file.

The raw data in the CSV file had to be reformatted in order to be able to apply different
algorithms such as dimensionality reduction and clustering for visualisation purposes.
This included the removal of extra white space rows, the removal of the original time
stamps column and finally the addition of labels and an adjustment of column titles. The
Figure 3.2 below displays a sample of the reformatted data. The label of 0 in the slip-
column means a non-slipping point, whereas the label of 1 means slipping.

.

Time Front Right Front Center Front Left Rear Center Slip

1200 12 898 13 049 13 241 14 384 1
1300 12 942 13 103 13 225 14 026 1
1400 14 620 14 558 14 386 17 242 0
1500 14 502 14 349 14 102 16 428 0
1600 −14 165 −15 501 −15 619 16 701 0

Table 3.2: Table containing a sample of the reformatted data.
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3.3 Reliability and Validity

This section covers the reliability and validity of this thesis.

3.3.1 Reliability

The data collection part relies heavily on controlled experiments indoors with many chang-
ing variables such as the size of the lawn, the surface, the surrounding interference and so
on. The exact same data points that were collected by recording the loop sensor values in
real-time would be hard to replicate due to the factor of randomness.

The data collection consisted of two types, slipping and normal operation. The slip-
ping was simulated by manually lifting the driving wheels to the point where the lawn
mower had less to no friction. While this procedure was done in a controlled manner to
some extent, it is humanely hard to replicate the exact same movement. Changing factors
such as pressure, movement and orientation will affect the collected data.

During normal operation the lawn mower is also moving around in a random pattern,
so there is no predictable or repeatable pattern for generating loop sensor data in this case.
However, since the main goal of the data collection is to differentiate between slipping
and non-slipping, some level of noise is acceptable and even desired to simulate a real
environment.

The human factor is a source of potential errors during data collection as slip is man-
ually induced and the slip duration is also manually entered into the CSV file. This can
either manifest itself in a delay for when the slip starts or ends, consequently effecting the
final evaluation of the prototype.

As there were a lack of related works and no previous work for the general problem,
there were no conventional technique of simulating a slipping event externally. The most
optimal approach was chosen in accordance to what could be achieved with the given
resources.

3.3.2 Validity

There are no direct validity threats, as any drawn conclusions would be backed by many
test cases and direct field-analysis. As there are minimum requirements for a slip de-
tector, any deviation from the expected outcome would be highly noticeable. For the
external validity aspects, the evaluated performance of the slip detector prototype cannot
be generalized beyond the scope/limitations of the solution.

3.4 Ethical considerations

The main method consists of a controlled experiment, so there are no direct ethical con-
siderations. The collected data does not say anything about the position relative to the
outer perimeter, so sharing of this data still complies to the NDA rules at the company.
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4 Implementation

This chapter covers details regarding the implementation. Section 4.1 contains a general
description and a schematic of the final implementation. Section 4.2, 4.3 and 4.4 describes
the fundamental parts of the slip detector to solve.

4.1 Overview

The implemented software consisted of a stand-alone slip module which were integrated
into the existing environment. Existing slip detection modules are easily switchable in the
architecture, which is not shown here due to confidentiality reasons.

The overall structure of a general slip detection module is foremost an outer main
function that returns a Boolean value of either true or false. Inside there is an evaluation
function, where the most functional code resides. If a certain implementation evaluates to
true, the slip module returns this value and the automatic mower responds to a slip-event.
In the beginning of the module, all dependencies are imported, along with the necessary
firmware interfaces that will be used in the implementation.

The implemented prototype uses the loop sensor values along with the wheel speed
in order to differentiate between slipping and non-slipping. There were four loop sensors
in total in the chosen automatic mower this thesis was limited to. Three in the front,
positioned left, right and center and one in the back positioned at the center. The final
implementation only uses three of these, discarding the rear center one.

Data analysis showed that the variability of a subset of samples over time were the
best candidate for the utilization of the loop sensors as slip detection. The slip detection
evaluation function essentially implements a sample variability algorithm in embedded C,
along with other basic necessities such as conditional logic.
Figure 4.1 represents a flowchart of a general slip detection implementation. The first
step is to check whether the automatic mower is moving or non-moving. Therefore, if
the mower is moving, the values of the three loop sensors are retrieved until N number of
samples exists. Otherwise, nothing will happen.

When N samples have been retrieved, the next step is to check if the autonomous
mower is slipping X times in a row. If this condition is evaluated to true, the function
returns true, which means slip, otherwise, it will return false, non-slip. The final im-
plementation implements a slipping criteria based on the loop sensor values, which will
determine the decision Is slipping?, represented in the flowchart. Retrieving N samples,
X positive times introduces a delay D, as seen in Figure 4.2.
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Figure 4.1: Flowchart of the implementation.

Figure 4.2: The delay between the slip detector and actual slipping.
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4.2 Movement

According to Section 2.1 a check for relative motion is needed as a part of the physi-
cal slipping criteria. The first step is thus to check if the wheel speed is non-zero, this
is achieved by using the wheel speed value inside a conditional statement. The motiva-
tion behind this is that during a typical slipping scenario, the wheels will spin but to no
avail, as the actual mower is standing still. The non-zero speed check also covers driving
backwards, as it is a negative value.

4.3 Sliding

The last physical slipping criteria according to Section 2.1 is to check if two surfaces are
sliding, which occurs when there is relative motion but no general movement. The next
step is thus to check if the mower actually is non-moving. This is achieved by measuring
the variability in the loop sensor values over time. When the automatic mower is moving
around normally, each individual loop sensor will have a greater variability compared to
standing still, as witnessed in Figure 5.4.

4.4 Timing

The final step is to keep track of the time aspect, as a positive slipping event needs to
occur continuously over a certain amount of time in order to become valid. Physical
testing showed that the optimal duration was around 1.5 seconds, which corresponds to
15 positive variability calculations, as seen in Algorithm 1. The evaluation function is
called every 100ms.

In order to prevent the mower from getting stuck in an infinity-loop of a slip event
evaluating to true, a reset is needed. Inside this reset function, flag variables and counters
are set to zero. This creates a cool-down corresponding to predefined duration value. A
cool-down counter of 30 corresponds to 3 seconds, which is enough for the mower to
initiate a responding maneuver to the slip.
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5 Experimental Setup, Results, and Analysis

This chapter covers the experimental setup, the controlled experiments and their respec-
tive results and analysis. As there were several experiments conducted, the results of each
individual experiment is directly analysed.

5.1 Setup

All data were collected in real-time when the lawn mower was operating autonomously
inside the testing area and also when subjected to manually induced slipping. The data
type of each column is numerical. The datasets which has the format of Table 3.2 contains
all the required information to apply different algorithms. The processing of these algo-
rithms were conducted using Python due to the simplicity and powerful libraries such as
Matplotlib and Scikit-learn. All plots where plotted using Python expect for Figure 5.1,
which was plotted using the internal developer application at the company.

5.2 Original plot

Figure 5.1 displays a linear graph of the real-time values of the four different loop sensors.
Whenever the loop sensor value is negative, the lawn mower has passed the boundary
wire. If only a subset of the loop sensor values are negative, it means that the remaining
positive loop sensors never passed the boundary wire. This graph is always generated
alongside the CSV file and foremost gives a direct visualization of the desired sensor
output. It serves as a fundamental base which all other graphs are built from. In the early
stages, the general behaviour of the loop sensor values where directly derived from the
graph, such as variability changes and negative values. However, further processing and
data extraction is required for a more detailed analysis. The x-axis represents the time
with a 100 ms step, whereas the y-axis represent the loop sensor value. The values were
collected in real-time using the internal application, which is covered in Section 3.2.2.

Figure 5.1: A linear plot of the loop sensor values in real-time.

14



5.3 Scatter Plot

Figure 5.2 shows a 3D scatter plot of the original data. A scatter plot was the first method
of visualisation beyond what could be directly derived from the original graph. The goal is
to differentiate between slipping and non-slipping, so it would be very desirable to achieve
this directly on the basis of the formed clusters. A natural grouping of the members with
a clear distinction would be visible in the visualized scatter plot. Since there were four
loop sensors, dimensionality reduction was used to be able to visualize the data in 3D.
PCA was the dimensionality reduction algorithm that was utilized, which is explained in
Section 2.8.

Figure 5.2: Scatter plot of slipping and non-slipping values.

In order to know if the loop sensor values were unique over a slipping period, the
slipping values were plotted along with the non slipping values in a scatter plot. The
data was labeled, so each class got its corresponding color. The results of the scatter plot
in Figure 5.2 shows that the slipping cannot be differentiated from normal operation as
the values were heavily overlapping. This means that the direct values cannot be used,
leaving change over time as the only viable method of differentiation between slipping
and non-slipping.
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5.4 Sample Variance

Figure 5.3 displays a plot showing a sample variance of the front right loop sensor over
time which is calculated using the formula explained in Section 2.5.1, where each point
is the sample variance of 10 samples. Variance is the first measure of variability that was
used in this thesis.

The aim of this graph is to visualize the difference between slipping and non-slipping
on the basis of variance. A clear and consistent difference in the variance between slipping
and non-slipping is desirable and would open up for a direct algorithmic implementation.
The x-axis represents the time with a 5000 ms step, whereas the y-axis represents the
variance. The blue circles represents slipping sample variance values whereas the red
triangles represent the non-slipping sample variance values.

Figure 5.3: Sample variance over time, where each sample is of size 10.

While Figure 5.3 looks promising in a way that the sample variance over time un-
doubtedly deviates between slipping and non-slipping, it cannot be generalized due to the
fact that the scale of the vertical axis is subjected to change. Loop signals can be of a
different order of magnitude depending on the position of the lawn mower, which con-
sequently translates into a higher value of the variance. The variance threshold would
have to be dynamically updated according to the mowers physical position on the garden,
which involves complex computations and many unknowns. Instead, range was used as
the measure of variability as it is more simplistic and straightforward to implement. It
also has the great benefit of having a static threshold.

16



5.5 Range

Figures 5.4, 5.5, 5.6 and 5.7 displays linear plots of the original loop sensor values. These
graphs are not so different compared to the original plot as seen in Figure 5.1, the only
difference is that each loop sensor is isolated and plotted individually. This gives a more
distinct picture of how each loop sensor differs or if similar patterns are exhibited.

Range, which was the second measure of variability that was used in this thesis, can
be directly applied and visually estimated for each individual loop sensor. The red regular
line represents mowing values while the blue dotted line represents slipping values. The
x-axis represents the time with a 5000 ms step, whereas the y-axis represents the loop
sensor values.

Figure 5.4: A linear plot of the loop sensor values of the front left sensor.
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Figure 5.5: A linear plot of the loop sensor values of the front center sensor.

Figure 5.6: A linear plot of the loop sensor values of the front right sensor.
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Figure 5.7: A linear plot of the loop sensor values of the rear center sensor.

The flatness of the slipping portion in Figures 5.4, 5.5 and 5.6, evidently stands out
compared to the portions where the mower moves around normally. It is easy to visualize
the delta of the loop signal, a flatter graph means a low and stable delta. However, the
slipping portion in Figure 5.7 is less steady compared to slipping portion of the other
figures. This is the reasoning why the rear center loop sensor was discarded from the final
implementation. In addition to this, Table 5.2 shows that the rear sensor is a source of
false predictions. The delta on the rear sensor is higher than the general threshold of 50,
so to avoid having a unique threshold for the rear center loop sensor, it was removed from
the prototype. The final motivation for this decision is that the absence of the rear center
loop sensor showed no difference in the model accuracy, as seen in Table 5.3.
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5.6 Calculating Threshold

Table 5.1 displays the average delta between the local minima and maxima for 10 con-
tinuous samples across the entire domain of each dataset. The first column in the table
represents the numbers corresponding to the physical position on the garden, see Figure
5.8, where the data was collected. The other columns represent the average delta of each
loop sensor, calculated on the respective dataset corresponding to each position. The size
of each dataset contains at least 100 rows, which translates into at least 10 seconds of
real-time data at each location. The mower was in a static position during all data collec-
tion. Using this table, a threshold for the variability can be statistically calculated. The
threshold, which denotes the required range to differentiate between slip and non-slip, is
used as a constant variable in the implementation.

Position Front Left Front Center Front Right

0 54.78 50.1 46.97
1 50.97 44.2 56.0
2 40.8 43.47 40.76
3 34.24 33.53 32.6
4 35.53 37.26 38.88
5 45.65 54.1 58.55

Table 5.1: Table containing the average delta when the mower is non-moving at different
positions.

The garden that was used to perform the controlled experiments is displayed in the Figure
5.8 below. The green outer line is the boundary wire, the yellow dotted line in the middle
is the guide wire, and the black square on the bottom line is the charging station. The
numbers represents the physical positions on the testing area. These are each corner and
the middle, along with the middle up against the boundary wire.

Figure 5.8: A digital visualization of the garden used in the experiments.

Table 5.1 shows that on average, the baseline delta of slipping or non-moving, is
around 50. The average does not need to be below 50, as there are enough continuous
samples that are well below the threshold. Outliers caused by interference covered in
Section 2.4 explains why the total average climbs above the chosen threshold for some
positions and loop sensors.
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The threshold was statistically discovered by taking the average of the sample delta
across the entire dataset where the loop sensor values corresponds to non-moving. This
was repeated for different positions on the garden. Manual testing also showed that the
delta reached below the set threshold for enough continuous samples that were needed to
activate the slipping module.

In the digital visualization of the garden used in the experiments, see Figure 5.8, the
positions for collecting data in real-time are numerically represented. The positions were
foremost chosen to maximize the positional variability. In addition to this, some positions
close to the boundary wire are also experiencing a greater interference due to the close
proximity to the boundary wire. It is important to note that the orientation of the mower
directly affects the electromagnetic sensor readings to some extent, as the individual sen-
sors are placed at different positions on the mower. If the right side of the mower is facing
the boundary loop, the right loop sensor will experience a higher magnetic magnitude and
more interference compared to the left sensor. The position in the middle of the lawn
(4) is inherently more stable, as seen in Table 5.1. This is explained by the simple fact
that each loop sensor is far away from the boundary loop. This concludes the motivation
behind choosing respective positions.

5.7 Evaluation Results

Table 5.2 displays a sample of the evaluation data where all four loop sensors are included,
as well as the speed. The simulated model follows the same algorithmic implementation
explained in Algorithm 1 and the computing environment is Python. In the final imple-
mentation, the rear center loop sensor is discarded. A model which contains the discarded
loop sensor along with the same general variability threshold, would perform badly as
seen in the contrast between the slip label and the predicted label by the model.

Negative speed represents the mower driving backwards and positive speed represents
the mower driving forward. The first four columns represent the different values for each
loop sensor, the column Slip represents if the mower is slipping and the column Prediction
represents the predicted value, either slip (1) or non-slip (0).
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Front Left Front Center Front Right Rear Center Speed Slip Prediction

34 38 39 392 −250 1 0
30 38 39 401 −250 1 0
30 48 39 558 −250 1 0
30 48 39 558 −250 1 0
30 48 39 558 −250 1 0
30 48 32 558 −250 1 0
31 53 32 558 −250 1 0
31 53 40 558 −250 1 0
31 47 40 368 −250 1 0
31 47 30 368 −250 1 0
25 31 30 331 −250 1 0
25 31 30 337 −250 1 0
37 31 30 337 −250 1 0
37 31 30 238 −250 1 0
37 31 23 238 −250 1 0
37 31 23 256 −250 1 0
18 36 19 256 250 1 0
18 44 14 256 250 1 0

Table 5.2: Table containing a sample of the evaluation data where all loop sensors are
included. The faulty predictions are intentionally showcased.

Table 5.3 below displays the accuracy score explained in Section 2.7.1 for three different
datasets, where each dataset consist of normal operation and slipping. The first two tests
only had a binary split between the slip and non-slip portion, whereas the third test had
two slipping portions in-between normal operation. The average accuracy score is 0.930,
which can be derived from the table below.

Test Total Samples Correct Predictions Accuracy Score

1 368 353 0.959
2 176 166 0.943
3 293 268 0.890

Table 5.3: Table containing the accuracy for three different datasets.
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Table 5.4 below displays the TP, FP, TN, FN, the calculated precision and recall, explained
in Section 2.7.2, but also F1 Score and average precision for three different datasets. The
same datasets as in Table 5.3 where used for respective test.

Test TP FP TN FN Precision Recall F1 AP

1 16 15 337 0 0.516 1.0 0.680 0.50
2 8 9 158 1 0.470 0.89 0.615 0.47
3 13 32 248 0 0.289 1.0 0.448 0.40

Table 5.4: Table containing the precision and recall for three different datasets.

Figure 5.9 below shows the precision-recall curve for the dataset with test number 1.

Figure 5.9: Precision-Recall Curve.
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The evaluation of the slip detector using classification accuracy as the metric showed
that the average accuracy score was 0.930, as seen in Table 5.3. An accuracy above
90% means that at least 9/10 slip identifications are correct, the slip detector is doing a
great job at first glance. However, this metric alone is misleading if the dataset is class-
imbalanced, meaning there is a significant disparity between the number of positive and
negative labels. Another slip module that always detects slip would achieve the exact
same accuracy if the class ratio of slip was equal to the accuracy, which means that the
slip detector is no better than one that has zero predictive ability to distinguish non-slip
from slip. A closer analysis using the improved metric explained in Section 2.7.2 reveals
that the highest precision in the conducted tests are 0.516 and the recall is 1.0 for two
datasets and 0.89 for another one, as seen in Table 5.4. The skewed scores for some tests
can be explained by the factors covered in Section 3.3.1.

5.8 Algorithmic Implementation

The final algorithmic implementation can be seen in Algorithm 1. Ultimately, the results
in Section 5.5 showed that the delta between the local minima and maxima in a subset of
samples over time were the best candidate for the utilization of the loop sensors as slip
detection. The final implementation thus implements a conditional sample range check
which forms the basis of the slipping criteria, as seen in Figure 4.1.

In order to find the sample range or the delta between the local minima and maxima
over time, N samples must first be retrieved. The the next step is to replace the oldest
loop signal sample with a new one and calculate the local minima and maxima of the N
latest samples. Using the local minima and maxima, the delta is calculated and checked
if it is below the specified threshold, which could be derived from Table 5.1. If the delta
has been below the threshold X times in a row, the function will return true, which means
slip, otherwise, it will return false, non-slip.

Together with the threshold, there are some other constant variables defined before
the slip evaluation procedure. These include the cool-down counter and the number of
slip, along with the number of samples. The first two constants are explained in Section
4.4, whereas the motivation behind the number of slip is briefly covered in Section 5.6.
The procedure contains all the necessary logic required for the general implementation,
as shown in Figure 4.1, while rows 17-24 encapsulates the slipping criteria based on the
loop sensor values, in pseudocode.
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Algorithm 1 Evaluate Slip
1: NumberOfSamples← 10
2: NumberOfSlips← 15
3: Threshold← 50
4: CoolDown← 30
5: procedure EVALUATESLIP()
6: if CooldownCounter < CoolDown then
7: CooldownCounder ← CooldownCounter + 1
8: end if
9: if CooldownCounter >= CoolDown then

10: Slip← False
11: if Speed ̸= 0 then
12: Loopsignals← RetrieveLoopSignals
13: ArrayIndexCounter ← ArrayIndexCounter + 1
14: if ArrayIndexCounter >= NumberOfSamples then
15: Shift all values to the left of the array and add a new value at index N-1
16: end if
17: Maxima← Find maxima in array
18: Minima← Find minima in array
19: Delta←Maxima−Minima
20: if Delta <= Threshold then
21: Slipcounter ← Slipcounter + 1
22: else
23: Slipcounter ← 0
24: end if
25: if Slipcounter >= NumberOfSlips then
26: Slip← True
27: Slipcounter ← 0
28: CooldownCounter ← 0
29: else
30: Slip← False
31: end if
32: end if
33: end if
34: return Slip
35: end procedure
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6 Discussion

In comparison to the wheel motor current, the final implemented slip detector based on
the loop signals could reliably detect slip indoors when slip was manually simulated.
The already existing slip detector that was based on the wheel motor current could not
be triggered manually in a reliable manner. This means that the implemented prototype
outperforms the existing solution in the intended environment of indoor testing.

In the article [5] the authors A.S. Belyaev, O.A. Brylev and E.A. Ivanov concluded
that even when the robots wheels were placed on highly differing surfaces, the difference
between the wheels’ currents were small. Using a slip detector based on the loop signal
values, the underlying surface does not matter, which makes the solution more general in
terms of surfaces.

During the development of the slip module and the analysis of the collected data,
several different variability algorithms were tested. The derivative of each loop sensor
value was plotted in a linear graph with different colors corresponding to slip and non-
slip. The results was that there was no clear distinction. Others methods that succumbed
to the same fate as the derivative were the difference between the previous and current
loop sensor value, along with the delta between each combination of loop sensor pairs.
Please refer to Appendix A for the graphs of these discarded measurements.

The lawn used in order to carry out the controlled experiments had several adjacent
lawns, that had their own boundary wire. As explained in Section 2.4, the bordering lawns
also generated their own magnetic field. As a result, this may have affected the values of
the four loop sensors and thus the data collection. But the greatest source of errors of type
I (false positives) and II (false negatives) where rooted in the human factor during data
collection, as mentioned in Section 3.3.1.

The analysis of the results shows that accuracy score is on the higher end of the scale,
which is desirable. Further inspection of the other metrics reveals that the model achieved
a perfect recall score of 1.0 for two datasets and a lower precision score of 0.289 for the
third dataset. This means that the model is good at classifying if the mower is actually
non-moving. On the contrary, the score of precision was underwhelming, as having a
precision below 0.5 means that slip is only predicted correct less than 50% of the time,
which is not ideal. But less weight should be put on the precision as slip labels are not
placed without fault. The delay mentioned in Figure 4.2 also adds further false labeling
during the data processing phase. Finally, the F1 scores of 0.608 and 0.615 for the first
two datasets means that both the precision and recall are above average. The last dataset
is more unstable as there are two shorter slip portions among normal operation, instead
of one clear and longer slip. The scores involved for the last dataset should thus be
considered as more imprecise.

While these metrics gives a direct insight into the model performance of detecting
slip and non-slip on paper, the general behaviour of a slip detection module does not
fully resemble a classic binary classifier. The reason behind this is that only one initial
slip needs to be detected, and after that any further classifications does not matter within
the cool-down period. In addition to this, the delay showcased in Figure 4.2 means that
the slip detector will always lag behind the actual slipping. This non-direct feedback is
not compensated for during the data collection, further reinforcing the reason to not just
analyze the numbers.

In other words, the evaluation scores cannot be directly translated into a fair model
measurement, even if the sources of errors are minimized to the maximum. In the end, it
is the physical testing that stands for the true evaluation.
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7 Conclusion

The purpose of this thesis was to investigate if it is possible to implement a slip detector
mainly based on electromagnetic sensors and compare the solution to an already existing
solution.

This project has shown that it is possible to build a reliable slip detector that is mainly
based on the loop signals. The results are definitely relevant for the company Husqvarna
AB, as they wanted to investigate an alternative to their already existing solution, the
wheel motor current. The generality of the solution is however limited to a specific lawn
size indoors. No outdoor testing or testing on larger areas were conducted. As this thesis
was constrained to a specific time window, there was not enough time to look into a
broader use-case.

Other autonomous robots that runs on wheels and uses a boundary loop for navigation
can greatly benefit from a slip detector based on the loop sensor signals. Even when
the performance on larger areas remains uncharted, the development of slip response
maneuvers can be easily tested physically on a robotic lawn mower, instead of having
to rely on commands. This is an added benefit to the new slip detection alternative of loop
based slip detection, which certainly challenges the existing solutions.

Some things could have been done differently to possibly get better results. One thing
is to automate the data collection and remove the process of manual insertion of slip
duration in the CSV files. This would reduce the errors in the data collection caused by
the human factor and increase the reliability. Another thing that could have been done
differently from the beginning, is to use a larger lawn for the data collection and the
experiments from the start. This would help make the solution more general in terms of
the size of the lawn, and also give insight into how the loop sensor values respond to a
dynamically changing lawn size.

The validity can also be further improved by creating a simulation environment that
more closely resembles the real world. The existing simulation tools at the company were
at most only used as a check for code validity. The simulated loop sensor input were too
perfect for the model, resulting in zero variability. An improved simulation environment
would allow automated test cases and would rapidly build a large foundation for statistical
analysis.

A method of comparison between different slip detector modules were devised. The
method consisted of controlled tests indoors where slip was manually generated and the
effects quantitatively measured. The automatic mower was allowed to operate freely and
at fixed locations shown in Figure 5.8, the mower was subjected to slipping. The imme-
diate results of the slip trigger was visualized using the internal developer application, as
seen in the last figure at Appendix A.

7.1 Future work

A promising continuation of this project would have been to investigate all other avail-
able sensor options along with extended hardware monitoring except for the wheel motor
current. The most optimal solution could then be investigated and extensive testing could
make sure that it outperforms the presented prototype and the current solutions at the
company.

This thesis only focused on finding a solution based on the loop sensors along with
the wheel speed. Further additions of several sensors in conjunction with the main loop
sensors may grant a more favorable end-result, or by replacing them entirely and ending
the prospects of a solution mainly based on the loop sensors.
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It would also be interesting to investigate the generality of the solution, by testing
on larger lawns outdoors and emulate a real slipping situation instead of manually lifting
the automatic mower. Another promising possibility is to reduce the number of required
loop sensors in the loop based slip detection module. The rear center loop sensor could
be removed without side effects and the remaining loop sensors showed a remarkable
similarity.

This potentially means that only two loop sensors positioned symmetrically or just
one loop sensor positioned in a central position, could be enough to satisfy the logical
conditions in the implementation. If such an approach reduces the performance or not
remains to be seen.
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A Appendix 1

Figure A.1: Result of plotting the derivative for the front right loop sensor.

Figure A.2: The result of plotting the delta between the current and previous value in the
front right loop sensor. A predecessor to the final implementation.
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Figure A.3: The result of plotting the delta between the front right and front center loop
sensor. There were six pairs in total, only one combination is shown here.

Figure A.4: Internal developer application graph of the triggered slip while using the loop
sensor based slip detection module.
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