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Abstract
Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methyl-
mercury and have been identified from diverse environments, including freshwater 
and marine ecosystems, Arctic permafrost, forest and paddy soils, coal- ash amended 
sediments, chlor- alkali plants discharges and geothermal springs. Here we present the 
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1  |  INTRODUC TION

Environmental mercury (Hg) methylation is primarily a biotic pro-
cess carried out by microorganisms that transform inorganic Hg 
into the more toxic and bioaccumulative monomethylmercury 
(MeHg). The capacity to perform Hg methylation was historically 
associated with certain sulphate- reducing bacteria, iron- reducing 
bacteria and methanogenic archaea (Compeau & Bartha, 1985; 
Fleming et al., 2006; Hamelin et al., 2011; Kerin et al., 2006). Field 
observations revealed links between Hg methylation and sulphate- 
reduction, iron- reduction and methanogenesis in organic matter- rich 
anaerobic environments (Bravo & Cosio, 2020 for review), as well 
as subsequent studies that tested cultured representatives of these 
clades for Hg methylation capability (Fleming et al., 2006; Gilmour 
et al., 2011, 2013, 2018). The discovery of the hgc genes (Parks 
et al., 2013) has facilitated the detection of novel putative Hg meth-
ylating bacteria and archaea through cultivation- independent mo-
lecular methods (Gionfriddo et al., 2016; Podar et al., 2015). Recent 
studies analysing publicly available genomes and environmental 
metagenome- assembled genomes (MAGs) identified hgc- containing 
(hgc+) microorganisms from microbial lineages not formerly associ-
ated with Hg methylation, such as members of the PVC superphylum 
(Gionfriddo et al., 2019; Jones et al., 2019; Lin et al., 2021; McDaniel 
et al., 2020; Peterson et al., 2020). Identifying hgc genes in microbial 
genomes from meta- omic data sets greatly expanded our view of 
the phylogenetic diversity of putative Hg methylators (Figure 1), but 
we still do not fully understand which microorganisms are the main 
drivers of Hg methylation in diverse environments, particularly out-
side of anoxic sediments.

Significant knowledge gaps in the identification of microor-
ganisms capable of Hg methylation remain, largely because of 
the absence of hgc+ cultured representatives from novel clades 
(i.e., outside the Desulfobacterota, Firmicutes, Euryarchaeota) 

with experimentally validated Hg- methylating capability (Gilmour 
et al., 2018). One reason for this is the difficulty in selecting for hgc+ 
microorganisms during cultivation, and another is the lack of a suc-
cessful methodology for isolating all relevant microbes in controlled 
laboratory conditions. Microbes that have yet to be cultivated, and 
for which successful laboratory growth parameters need to be iden-
tified, are often referred to as the “unculturable” (Hug et al., 2016; 
Steen et al., 2019). High- throughput meta- omic and targeted ampl-
icon sequencing studies have become the main methods for identi-
fying putative Hg- methylating microorganisms of this unculturable 
fraction (Bravo et al., 2018; Gionfriddo et al., 2020; Xu et al., 2021). 
While directly testing for Hg methylation capacity may not be a via-
ble strategy, pairing these sequencing methods with biogeochemical 
measurements, Hg methylation assays, and other manipulation stud-
ies can connect a Hg- methylating microbiome to MeHg production 
and metabolic activity and help to elucidate the potential contribu-
tion of these novel clades to Hg methylation (Bouchet et al., 2018; 
Kronberg et al., 2016; Roth et al., 2021; Schaefer et al., 2020).

The detection of hgc+ MAGs provide the most precise informa-
tion about the taxonomic and metabolic characteristics of puta-
tive Hg methylators (Jones et al., 2019; Lin et al., 2021; Peterson 
et al., 2020; Vigneron et al., 2021). However, the microbial diversity 
in some environments is too high and/or Hg methylators are too 
rare to identify them effectively (Christensen et al., 2019; Podar 
et al., 2015). In these cases, read- based metagenomic analyses and 
hgc metabarcoding are easier and more economical. Accurately 
identifying Hg- methylating clades (and metabolic guilds) from hgc 
sequences alone therefore requires a universally used and updated 
hgcAB reference database, coupled to consistent and robust bioin-
formatic practices, in order to identify precisely the target genes in 
complex meta- omic data sets. Further, methods for quantifying hgc 
genes (and transcripts) from omics data are needed to predict the po-
tential for environmental MeHg formation (Christensen et al., 2019; 
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first attempt at a standardized protocol for the detection, identification and quanti-
fication of hgc genes from metagenomes. Our Hg- cycling microorganisms in aquatic 
and terrestrial ecosystems (Hg- MATE) database, a catalogue of hgc genes, provides 
the most accurate information to date on the taxonomic identity and functional/meta-
bolic attributes of microorganisms responsible for Hg methylation in the environment. 
Furthermore, we introduce “marky- coco”, a ready- to- use bioinformatic pipeline based 
on de novo single- metagenome assembly, for easy and accurate characterization of 
hgc genes from environmental samples. We compared the recovery of hgc genes from 
environmental metagenomes using the marky- coco pipeline with an approach based 
on coassembly of multiple metagenomes. Our data show similar efficiency in both ap-
proaches for most environments except those with high diversity (i.e., paddy soils) for 
which a coassembly approach was preferred. Finally, we discuss the definition of true 
hgc genes and methods to normalize hgc gene counts from metagenomes.

K E Y W O R D S
bioinformatics, hg methylation, hgcAB genes, hg- MATE, marky- coco, mercury, metagenomics
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Capo, Feng, et al., 2022). Estimating the relative abundance of hgc 
sequences in a meta- genome/transcriptome requires normalization 
strategies that account for differences in sequencing depth and cov-
erage to avoid over-  or under- representing hgc+ microorganisms and 
their functional importance.

In this work, we introduce the "Hg- cycling Microorganisms in 
Aquatic and Terrestrial Ecosystems" (Hg- MATE) database version 1 
(https://doi.org/10.25573/ serc.13105 370.v1), an up- to- date hgcAB 
catalogue compiled from isolated, single- cell and metagenome- 
reconstructed genomes. Additionally, we present "marky- coco" 
(https://github.com/ericc apo/marky - coco), a ready- to- use bioinfor-
matic pipeline to detect, identify and count hgc genes from metage-
nomes (Figure 2). We apply this pipeline to metagenomes collected 
from paddy soils, brackish and lake waters, as well as sediments 
from reservoirs and lakes, in which hgc genes have been previously 
detected (Capo et al., 2020; Jones et al., 2019; Liu et al., 2018; 
Millera Ferriz et al., 2021). Further, we specifically compared the 
reliability of (i) applying the marky- coco pipeline based on de novo 
single assembly approach from single metagenomes with (ii) coas-
sembling of multiple metagenomes (coassembly) prior to mapping 
and identification. Finally, we discuss appropriate definitions and 
cutoff criteria for hgc genes and also best practices to normalize 
data for an accurate count of hgc genes in metagenomes from envi-
ronmental samples.

2  |  MATERIAL S AND METHODS

2.1  |  Description of the Hg- MATE database v1

The Hg- MATE database version 1 was released on 14 January 2021 
(https://doi.org/10.25573/ serc.13105 370.v1), and contains an ex-
tensive hgcAB data set from a wide range of microorganisms and 

environments. The catalogue contains 1053 unique HgcA/B amino 
acid sequences (Table 1). We categorized the HgcAB amino acid se-
quences into four types depending on whether they were encoded 
in (i) pure culture/environmental microbial isolates (ISO) (ii) single- 
cell genome sequences (CEL) (iii) metagenome- assembled genomes 
(MAGs) (iv) or an environmental meta- omic contig (CON). Amino 
acid sequences of HgcA, HgcB, and concatenated HgcA and HgcB 
were included in the database. If hgcB was not colocalized with hgcA 
in the genome and/or could not be identified, then “na” was listed 
in the “HgcB” sequence column. Both genes need to be present 
and encode functional proteins for a microbe to methylate Hg (see 
Parks et al., 2013; Smith et al., 2015). One reason hgcB may not be 
identified in some genomes carrying hgcA is because HgcB is highly 
homologous to other 4Fe- 4S ferredoxins. Therefore, hgcB can be 
difficult to differentiate from other ferredoxin- encoding genes if not 
colocalized with hgcA on a contiguous sequence. In addition, hgcB 
may be missing from “MAGs”, “CEL” and “CON” sequences due to 
incomplete coverage of the genome or incomplete contig assembly, 
or failure to bin the contig carrying hgcB. Some hgc genes are pre-
dicted to encode a “fused HgcAB” protein which has previously been 
described (Podar et al., 2015), and is characterized by one gene that 
encodes for a 4Fe- 4S ferredoxin- like protein with shared homology 
to HgcA and HgcB. This fused HgcAB protein contains the corrinoid 
iron– sulphur and transmembrane domains characteristic of HgcA as 
well as the 4Fe- 4S ferredoxin motif of HgcB (e.g., Uniprot Q8U2U9, 
NCBI Refseq: WP_011011854.1, Pyrococcus furiosus DSM 3638). 
These sequences are provided in the “HgcA” column, and labelled 
fused HgcAB in the HgcB column. These fused HgcAB sequences 
should be treated with caution because, while they share significant 
sequence homology to HgcA and HgcB from confirmed Hg methyla-
tors, to date all organisms with a fused HgcAB that have been tested 
do not seem to produce MeHg in culture (Gilmour et al., 2018; Podar 
et al., 2015).

F I G U R E  1  Simplified unrooted 
phylogenetic tree of hgcA sequences 
from the Hg- MATE database. Taxonomy 
is based on GTDB classification Microbial 
groups with the highest diversity of hgc+ 
microorganisms are denoted by colours.
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The resources within the Hg- MATE database version 1 include 
a catalogue with the amino acid sequences and metadata of all mi-
croorganisms. Only sequences with genomic identifying information 
(i.e., “ISO”, “CEL”, “MAG”) were used to compile further resources. 
Resources include: (i) FASTA files containing Hgc amino acid se-
quences; (ii) Multiple sequence alignments (MSA) in FASTA format 
of Hgc amino acid sequences built with MUSCLE implemented in 
MEGAX (Kumar et al., 2018) with the cluster method UPGMA; and 

(iii) Hidden Markov models (HMM) of aligned Hgc amino acid se-
quences built from MSAs using the hmmbuild function from the 
hmmer software (version 3.2.1, Finn et al., 2011). Additionally, re-
sources include reference packages that can be used to identify and 
classify: (i) the corrinoid- binding domain of HgcA which corresponds 
to residues ~37– 156 of the HgcA sequence from Pseudodesulfovibrio 
mercurii ND132 and includes the characteristic cap helix domain 
(ii) full HgcA sequence and (iii) concatenated HgcA and HgcB. Each 

F I G U R E  2  (a) Workflow illustrating how the hgcAB gene catalogue hg- MATE database was built. (b) Simplified workflow of the marky- 
coco pipeline. (c) Illustration of the two assembly approaches compared in this work: Single assembly versus coassembly.
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reference package contains sequence alignments, an HMM model, 
a phylogenetic tree, and NCBI taxonomy. Reference packages were 
constructed using the program Taxtastic (https://github.com/fhcrc/ 
taxta stic) for HgcA(B) amino acid sequences from ISO, CEL and 
MAG. Phylogenetic trees were built from MSA files by RAxML using 
the GAMMA model of rate heterogeneity and LG amino acid sub-
stitution matrix (Le & Gascuel, 2008). Trees were rooted by HgcA 
paralogue sequences, carbon monoxide dehydrogenases (PF03599) 
from non- HgcA coding microorganisms Candidatus Omnitrophica 
bacterium CG1_02_41_171 and Thermosulfurimonas dismutans. 
These organisms were chosen because of their distant phyloge-
netic relationship to hgcA+ microorganisms. Confidence values on 
branches were calculated from 100 bootstraps. Using the HgcA ref-
erence tree, a simplified tree of “ISO”, “CEL”, “MAG” hgcA genes was 
built using iTOL (Letunic & Bork, 2019) and clades were collapsed by 
the dominant monophyletic group, when possible, for visualization 
ease.

2.2  |  Data collection

A total of 29 metagenomes from recent studies studying hgc genes 
in environments with known active Hg methylation were used 
for the bioinformatic analyses performed in this work (Table 1, 
Appendix S1). Metagenomes from brackish waters (BARM8s) were 
collected in 2014 in the Gotland Deep basin of the Central Baltic Sea. 
Out of 81 available metagenomes (Alneberg et al., 2018; BioProject 
ID PRJEB22997), eight metagenomes where hgc genes have been 
detected (Capo et al., 2020) were used in the present analysis. 
Water depths of these metagenomes ranged from 76 to 200 m with 
oxygen concentrations either low (hypoxic zone) or undetectable 
(anoxic zone), salinity ranging between 9.2– 12.1 psu and MeHg con-
centrations measuring up to 1640 fM (Soerensen et al., 2018). Lake 
sediments and water metagenomes (MANGA6s) were obtained in 
2013– 2014 from the sulfate- impacted Manganika lake in Northern 
Minnesota (Jones et al., 2019, BioProject ID PRJNA488162). This 
hypereutrophic lake is characterized by dissolved oxygen approach-
ing 16 mg/L (nearly 200% saturation) near the surface, pH exceeding 
8.7 and MeHg accumulating over 3 ng/L in bottom waters. Dissolved 
oxygen and pH decreased with depth, and anoxic conditions were 
encountered below 4 m. Sulphide concentrations up to 2 mM were 
observed in bottom waters and sediments. Water samples were 
collected at these anoxic depths. Five metagenomes (RES5) were 
obtained from reservoir sediments from the St. Maurice River near 
Wemotaci, Canada in 2017 and 2018 (Millera Ferriz et al., 2021, 

GOLD- JGI Ga0393614 Ga0393582, Ga0393617, Ga0393586, 
Ga0393589). The studied river section has been affected by the 
construction of two run- of- river power plant dams and its watershed 
has been disturbed by a forest fire, logging, and the construction 
of wetlands. MeHg concentrations in samples varied from <0.02 
to 19 ng/g. Metagenomes from paddy and upland soils (PADDY10s) 
were collected from two historical Hg mining sites, Fenghuang 
(FH) and Wanshan (WS), in Southwest China in August 2016 (Liu 
et al., 2018, BioProject ID PRJNA450451). The pH of paddy soils 
ranged from 6 to 7.5. Historical discharge from Hg mining opera-
tions and ongoing atmospheric deposition contribute to high con-
centrations of MeHg in the soils around these areas with values up 
to 7.9 ng/g in the collected samples.

2.3  |  Bioinformatics

The detection, taxonomic identification and counting of hgc genes 
was done with the marky- coco snakemake- implemented pipeline 
(https://github.com/ericc apo/marky - coco). A brief overview of this 
workflow is as follows: the metagenomes were trimmed and cleaned 
using fastp (Chen et al., 2018) with the following parameters: quality 
threshold of 30 (−q 30), length threshold of 25 (−l 25), and with trim-
ming of adapters and polyG tails enabled (−- detect_adapter_for_pe 
- - trim_poly_g - - trim_poly_x). A de novo single assembly approach, 
in which each metagenome was assembled individually, was applied 
using the assembler megahit 1.1.2 (Li et al., 2016) with default set-
tings. The annotation of the contigs for prokaryotic protein- coding 
gene prediction was done with the software Prodigal 2.6.3 (Hyatt 
et al., 2010). The DNA reads were mapped against the contigs with 
bowtie2 (Langmead & Salzberg, 2012), and the resulting .sam files 
were converted to .bam files using samtools 1.9 (Li et al., 2009). The  .
bam files and the prodigal output .gff file were used to estimate read 
counts by using featureCounts (Liao et al., 2014). In order to detect 
hgc homologues, HMM profiles derived from the Hg- MATE database 
version 1 were applied to the amino acid FASTA file generated with 
Prodigal from each assembly with the function hmmsearch from 
HMMER 3.2.1 (Finn et al., 2011). The reference package “hgcA” from 
Hg- MATE.db was used for phylogenetic analysis of the HgcA amino 
acid sequences. Briefly, the predicted amino acid sequences from 
gene identified as putative hgcA gene were (i) compiled in a FASTA 
file, (ii) aligned to the Stockholm formatted HgcA alignment from the 
reference package with the function hmmalign from HMMER 3.2.1 
(iii) placed onto the HgcA reference tree and classified using the 
functions pplacer, rppr and guppy_classify from the program pplacer 

Genome type
Total HgcA(B) 
sequences

Encodes both 
HgcA and HgcB

Encodes 
fused HgcAB

Only HgcA (or 
HgcB) present

ISO 204 173 10 21

CEL 29 4 18 7

MAG 787 696 17 74

CON 33 9 0 21(3)

TA B L E  1  Summary of HgcAB sequence 
types in version 1 of the hg- MATE 
database
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(Matsen et al., 2010). For more details, see the README.txt of the 
Hg- MATE database version 1 (https://doi.org/10.25573/ serc.13105 
370.v1). Additionally, to compare the efficiency of the marky- coco 
pipeline to detect hgc genes from metagenomes with a coassembly 
approach (multiple metagenomes used for assembly), we performed 
coassemblies on metagenomes within each environmental system 
(BARM8s, MANGA6s, RES5s, PADDY10s, Table 2). Post- assembly, 
all other steps of the analysis procedure were performed similarly 
to the marky- coco pipeline. Detection of dsrA genes were detected 
in metagenomes with the function hmmsearch and HMM profile 
from TIGRFAM (Selengut et al., 2007). The amount of sequencing 
required to cover the total diversity and the estimated diversity 
of each metagenome were evaluated using the Nonpareil method 
(Rodriguez- R & Konstantinidis, 2014).

2.4  |  Stringency cutoffs for the definition of true 
hgc genes

Based on knowledge from confirmed isolated Hg methylators, we 
propose several stringency cutoffs that could be used to distinguish 
between hgcA gene which appear to be functional for Hg methyla-
tion and an hgcA- like gene that encodes for a protein of unknown 
Hg methylation capability. (i) High stringency cutoff: amino acid 
sequence includes one of the cap- helix motifs with the conserved 
cysteine (Cys93 in P. mercurii ND132), NVWCAAGK, NVWCASGK, 
NVWCAGGK, NIWCAAGK, NIWCAGGK or NVWCSAGK. This cut-
off is based on previous findings that showed isolated microorgan-
isms carrying HgcA proteins with the cap helix domain are capable 
of Hg methylation (Cooper et al., 2020; Gilmour et al., 2018; Parks 
et al., 2013; Smith et al., 2015). Within the high stringency cutoff, 
there is a possible need to distinguish between the amino acid se-
quences from fused HgcAB- like proteins and those from true HgcA 
proteins, since isolates that encode fused HgcAB- like genes do not 
have the capacity to methylate Hg in culture (Gilmour et al., 2018; 
Podar et al., 2015). The fused HgcAB include the cap- helix and ferre-
doxin motifs of HgcA and HgcB. (ii) Moderate stringency cutoff: in 
addition to amino acid sequences that include the motifs described 
above, any sequence with a bitscore value obtained from the HMM 
analysis greater than or equal to 100 is included (iii) Low stringency 
cutoff: in addition to amino acid sequences that include the motifs 
described above, any sequence with a bitscore value greater than or 

equal to 60 is included. For hgcA- like genes detected with medium 
and low- stringency cutoffs, cap helix domains could still be identi-
fied but without the six motifs listed above and found in the amino 
acid sequences of HgcA proteins encoded by isolated organisms 
verified for their Hg methylation capacities (Gilmour et al., 2018). 
For hgcB gene homologues, we propose two cutoffs that could be 
used for their description as hgcB genes. (i) High stringency cut-
off: their amino acid sequences include one of the following motifs 
featuring the conserved Cys (Cys73 in P. mercurii ND132, Cooper 
et al., 2020), C(M/I)ECGA motifs and that the genes are found on the 
same contig as an hgcA genes. (ii) Moderate stringency cutoff: amino 
acid sequences include the C(M/I)ECGA motif, but the gene are not 
colocated on a contig with an hgcA gene.

2.5  |  Estimation of hgcA abundance in 
metagenomes

Coverage values of hgcA genes were calculated, for each gene and 
each sample, as the number of reads mapping to the gene divided 
by the length of the gene (read/bp). We compared the reliabil-
ity of four procedures for normalizing read counts of hgcA genes. 
Normalization metrics were (i) the total number of mapped reads 
(ii) the summed coverage values of rpoB genes, (iii) the median cov-
erage values of 257 marker genes (GTDB- Tk r89 release, Chaumeil 
et al., 2019), or (iv) the genome equivalents values calculated using 
the software MicrobeCensus (Nayfach & Pollard, 2015) which nor-
malizes the relative abundance by the metagenomic data set size 
and the community average genome size of the microbial commu-
nity. The coverage of each marker gene was calculated as the sum of 
the coverages of all the ORFs assigned to that gene (Appendix S1). 
The rpoB and the 256 other marker genes were detected using the 
function hmmsearch from hmmer software (v3.2.1, Finn et al., 2011) 
and applying the trusted cutoff provided in HMM files (GTDB- Tk r89 
release, Chaumeil et al., 2019).

2.6  |  Data analysis

A principal coordinate analysis (PCoA) was performed applying 
the function wcmdscale to a Bray– Curtis dissimilarity matrix built 
with the function vegdist from the hgcA gene coverage values table, 
clustered at the lowest level of NCBI taxonomic identification 
(txid), obtained with single assembly and coassembly approaches 
(Appendix S1). A Mantel test with a permutation procedure analysis 
(9999 permutations) and Spearman's method was performed using 
the function mantel from R basis to evaluate the level of concord-
ance of the outputs between both approaches. The functions rcorr 
from the R package Hmisc (Harrell & Harrell, 2013), corrplot from 
the R package corrplot (Taiyun et al., 2017) and plot3D from the R 
package rgkl (Adler & Murdoch, 2003) were used to investigate cor-
relations between normalization methods.

TA B L E  2  Metagenomes collected from previously published 
studies investigating the presence of hg methylators in the 
environment

No. metagenomes Data set ID References

8 BARM8s Capo et al. (2020)

6 MANGA6s Jones et al. (2019)

5 RES5s Millera Ferriz et al. (2021)

10 PADDY10s Liu et al. (2018)
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3  |  RESULTS

3.1  |  Data set outputs

A total of 29 single assemblies (one for each metagenome) and four 
coassemblies (reads from each of the BARM8s, MANGA6s, RES5S, 
and PADDY10s metagenome sets assembled together) were used to 
compare the efficiency of a single assembly using the marky- coco 
pipeline and a coassembly approach to detect, identify and count 
hgc genes from metagenomes (Figure 2). The number of mapped 
reads of the analysed metagenomes ranged between 10.2– 110.9 M 
reads (average, 29.4 ± 19.6) with single assembly and 16.6– 120.7 M 
reads (average, 36.0 ± 19.9) with coassembly, with the percentage of 
mapped reads ranging between 16%– 76% and 24%– 89%, respec-
tively (Appendix S1). Nonpareil diversity index values (Nd) of metage-
nomes were between 18.7 and 23.7 with the highest found in paddy 
soil metagenomes (Figure S1, Table 3). Nonpareil curves showed that 
paddy soil samples from this study required the highest sequenc-
ing effort for nearly complete coverage followed by reservoir sedi-
ments, and then lake sediment and lake waters and brackish waters 
(Figure S1). Estimated coverage of paddy soils metagenomes was 

relatively low (average, 0.30– 0.37) compared to other metagenomes 
(0.49– 0.83) showing that only a portion of the diversity of these en-
vironmental samples was recovered despite the relatively high se-
quencing depth (88.6 ± 5.6 M reads) (Table 3). Seven metagenomes 
(S02, S03, S19, S22, S26, S28, S29) that were used in coassemblies but 
with low hgcA coverage values (i.e., <0.40 obtained from coassem-
blies) were not used for further comparison analysis. The remaining 
22 metagenomes, labelled MG01– MG22, had hgcA (unnormalized) 
coverage values between 0.44 and 3.06 (1.22 ± 0.79) (Appendix S1). 
Only hgcA genes (and not hgcB) from these metagenomes were used 
for comparison of the two assembly approaches as hgcAB gene pairs 
were not 100% similar between the two approaches (Appendix S1). 
Additionally, hgcAB- like homologues that are predicted to encode for 
fused HgcAB proteins were excluded from further analysis.

3.2  |  Distribution of hgcA genes with different 
stringency cutoffs

By definition, all hgcA genes detected with the high stringency cut-
off are predicted to encode proteins that include the conserved 

TA B L E  3  For each metagenome, Nnonpareil diversity index values, estimated average coverage, number of mapped reads, number of 
hgcA genes and hgcA coverage values (reads/bp) for coassembly “c” and single assembly “s” approaches

Environments Metagenomes id

Nonpareil 
diversity 
index

Estimated 
average 
coverage

Number of mapped 
reads (millions reads)

Number of hgcA 
genes

hgcA coverage 
values

c s c s c s

Brackish water MG01 19.51 0.83 120.7 110.9 38 14 2.04 1.85

MG02 21.12 0.55 33.9 25.5 40 16 1.05 0.91

MG03 19.49 0.70 32.0 25.8 29 7 1.01 0.75

MG04 20.52 0.63 35.1 26.9 34 10 0.84 0.75

MG05 18.69 0.76 35.6 30.5 23 5 0.52 0.46

MG06 20.73 0.48 16.6 10.2 29 4 0.58 0.35

Reservoir 
sediment

MG07 22.46 0.59 28.6 21.8 147 69 3.06 2.36

MG08 21.99 0.64 33.6 29.4 103 53 2.19 1.98

MG09 21.82 0.68 47.2 43.5 74 35 1.98 1.78

MG10 22.10 0.63 36.1 32.7 102 68 2.32 3.00

MG11 22.15 0.63 36.7 29.8 122 62 2.69 2.43

Lake sediment MG12 20.55 0.62 22.7 26.7 23 10 0.83 0.78

MG13 20.75 0.57 27.2 22.5 26 9 0.41 0.32

Lake water MG14 21.57 0.49 29.6 24.8 31 13 1.19 1.05

MG15 20.24 0.66 38.5 34.6 31 8 0.62 0.50

MG16 19.51 0.67 30.5 29.2 19 10 0.47 0.50

Paddy soils MG17 23.48 0.34 31.1 20.4 77 21 0.69 0.45

MG18 23.31 0.33 30.8 18.5 60 13 0.59 0.33

MG19 23.67 0.27 27.1 14.3 85 20 0.76 0.43

MG20 23.14 0.37 37.5 28.8 61 15 0.58 0.32

MG21 23.49 0.30 30.5 18.7 57 25 0.60 0.51

MG22 23.64 0.30 30.6 20.5 84 33 1.12 0.89

Note: See Appendix S1 for extended description of the data set.

 17550998, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13687 by Statens B

eredning, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  197CAPO et al.

amino acid motifs characteristic of functional HgcA proteins, while 
this is not the case for those additionally detected when lowering 
the stringency cutoffs (i.e., moderate or low). We therefore con-
sidered that gene homologues to hgcA found with bitscore values 
below 100 and without conserved motifs cannot with confidence 
be defined as true hgcA genes. Nevertheless, we wanted here to 
highlight how “false” hgcA genes, detected without the conserved 
amino acid motifs characteristic of functional HgcA proteins, 
were taxonomically assigned using the pplacer approach applied 
to the Hg- MATE hgcA reference tree. The hgcA genes detected 
with a high stringency cutoff and those additionally detected with 
moderate stringency cutoffs were predominantly identified as 
Desulfobacterota, Chloroflexota and Euryarchaeota (Figure S2). In 
contrast, the hgcA genes additionally detected with low stringency 
cutoff were primarily identified as members of the PVC superphy-
lum but were unclassified at lower taxonomic levels. For further 
comparison, we used information only from hgcA genes detected 
with the high stringency.

3.3  |  Comparison between coassembly versus 
single assembly approaches

For all metagenomes, 1.50– 7.25 times more hgcA genes were de-
tected in coassemblies (19– 147 genes) compared to linked single 
assemblies (4– 69 genes) (Table 3). We investigated the differences 
in hgcA gene lengths, discriminating between genes (i) found at the 
extremity of contigs (potentially truncated) and (ii) in contigs ex-
pected to be complete. A higher number of “complete” hgcA gene se-
quences were detected with the coassembly (1– 17, average 6.8 ± 4.4 
genes) compared to the single assembly (0– 6, average 2.0 ± 2.7 
genes), for example, for metagenomes from brackish and lake wa-
ters (Appendix S1). No complete genes were identified in the single 
assemblies that were not also identified in the coassembly. Violin 
plots illustrated that, overall, a higher number of “complete” hgcA se-
quences (>950 bp) were found with the coassembly versus the single 
assembly (Figure S3).

In a comparison of HgcA amino acid sequences recovered from 
the two assembly approaches, no HgcA sequence from the single 
assembly had 100% sequence identity to sequences in the coas-
sembly (Appendix S1). The highest sequence similarity of HgcA se-
quences from different assemblies of the same data set was 99%. 
To compare, we investigated differences between assemblies for 
detecting dsrA gene, which encodes for dissimilatory sulphite re-
ductase subunit A, an essential enzyme in sulphate reduction and 
expected to be present in these data sets. Identical amino acid se-
quences of DsrA- encoding genes were found when comparing sin-
gle assemblies to the related coassembly with numbers ranging from 
1 to 33 depending on metagenomes (Appendix S1). Comparatively, 
dsrA genes were 3– 34× more abundant (in coverage) than hgcA 
genes. This higher abundance helps explain why more identical dsrA 
were found between coassembly and single assembly approaches 
than for hgcA genes.

Distribution plots showed unnormalized coverage values of hgcA 
genes clustered by environment types (Figure 3a) or for each metag-
enome (Figure S4). Importantly, unnormalized values were used 
here to compare single assembly versus coassembly results for each 
metagenome but not to compare difference between environments 
for which normalization would be required (Figure S4). Overall, 
higher hgcA coverage values were observed with the coassembly 
for all types of environments (Figure 3a) and for each metagenome 
with the exception of reservoir sediment MG10 (Figure S4, Table 3). 
For each metagenome, the PCoA analysis showed a high level of 
similarity in taxonomy- based hgcA inventories obtained from sin-
gle assembly versus coassembly (Figure 3b). This was confirmed by 
Mantel tests that showed significant correlations between the hgcA 
inventories obtained between both assembly approaches (r = .86, 
p ≤ .001). Looking at each data set independently, brackish waters 
and paddy soils showed significant correlations (r = .85, p = .001 and 
r = .73, p = .01) while lake waters and reservoir sediments had non-
significant correlations (p > .05; no statistics possible with only two 
metagenomes for lake sediments).

3.4  |  Comparison between normalization methods

In order to compare normalization methods to estimate the abun-
dance of hgcA genes, we calculated the (i) total number mapped 
prokaryotic reads, (ii) rpoB genes coverage values, (iii) median cover-
age value of 257 marker genes and (iv) genome equivalents values 
(calculated as the total bp sequenced divided by average genome 
size in bp) (Figure 4, Appendix S1). Overall, significant correlations 
were observed between the total number of reads, rpoB cover-
age values, and the median coverage values of 257 marker genes 
(Figure 4a), while no significant correlations were observed between 
these metrics and genome equivalent values. The 3D plot shows the 
relationships between the total number of reads, the median cov-
erage values of 257 marker genes and genome equivalent values 
(Figure 4b).

4  |  DISCUSSION

4.1  |  Identification of true hgc genes from 
environmental genomic data

The absence of cultured representatives of hgc+ microorganisms 
from novel clades (i.e., outside the Desulfobacterota, Firmicutes, 
Euryarchaeota) with experimentally validated Hg- methylating capa-
bility (Gilmour et al., 2013, 2018) hampers confirmation that newly 
discovered hgc genes from environmental samples truly code for Hg 
methylating enzymes. Indeed, the recent analysis of publicly avail-
able metagenomes revealed the high diversity of microbial lineages 
with hgc+ members, with the vast majority yet uncultured and there-
fore unstudied for Hg methylation activity (Gionfriddo et al., 2019; 
McDaniel et al., 2020). To date, all hgcA+ microorganisms that have 
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been experimentally tested have been found shown to produce 
MeHg (except for those with fused hgcAB- like sequences) (Gilmour 
et al., 2013, 2018), and protein modelling of novel hgcA sequences 
suggest they have comparable active sites to HgcA sequences in 
experimentally verified Hg methylators. Therefore, although re-
cent findings revealed relationships between microbial expression 
of hgc transcripts and MeHg formation in the environment (Capo, 
Feng, et al., 2022), and some putative hgcAB genes have been 

computationally modelled to possess functionality for methylation 
(Gionfriddo et al., 2016; Lin et al., 2021), we remain cautious about 
defining true hgc genes from environmental samples. As such, some 
studies have qualified hgc genes found in the environment as hgc- 
like genes (e.g., Bowman et al., 2020; Capo et al., 2020; Gionfriddo 
et al., 2016; Villar et al., 2020).

Here, we defined three stringency cutoffs to describe hgcA genes 
in environmental metagenomes. By definition, the HgcA- encoding 

F I G U R E  3  (a) Distribution of hgcA genes in the metagenomes obtained from five types of environments with the coassembly “c” and the 
single assembly “s” methods. For these barplots, unnormalized hgcA coverage values were used. (b) PCoA analysis showing the dissimilarities 
in the structure of hgcA inventories obtained with the coassembly “c” and the single assembly “s” approaches. The id of each metagenome 
is denoted as follows: Numbers corresponding to the metagenome id (e.g., MG01 is 01), “c” or “s” stands for analysis with the coassembly or 
the single assembly.

F I G U R E  4  Plots showing correlations between metrics used for normalization. Outputs presented here were calculated only from data 
obtained with the single assembly approach.
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genes detected with the high stringency cutoffs include the key 
amino acid residues (i.e., the cap helix motif N[V/I]WC[A/S][A/G/S]
GK, Parks et al., 2013) present in HgcA from known Hg methyla-
tors. In contrast, all other hits to the HMM, from moderate and low 
stringency cutoffs, have a cap- helix motif but lack these amino acid 
residues affecting potentially protein functionality. To date none of 
the isolates lacking these key amino acid residues has been found to 
methylate Hg, or no cultured isolate exists to test for Hg methyla-
tion capability (Gilmour et al., 2018). Substitution of some of these 
amino acids in the cap helix of HgcA may not result in loss of Hg 
methylation activity, as demonstrated by site- directed mutagenesis 
experiments with P. mercurii ND132 (Smith et al., 2015). However, 
in addition to the cap helix domain of HgcA, the transmembrane 
domain of HgcA may also be required for Hg methylation activity. 
Unfortunately, the transmembrane region of HgcA has no detect-
able sequence homology (Cooper et al., 2020).

Thus, we recommend using the high stringency cutoff defined 
in the present study for routine identification of hgcA from environ-
mental metagenomes. Lower stringency could reveal novel HgcA 
sequences that have lower similarity to HgcA from known Hg meth-
ylators, but if the lower stringency cutoff is used, we advise careful 
manual inspection of the sequences to ensure that they have im-
portant motifs and other HgcA features like the cap- helix region. If 
the amino acid sequence in the cap helix domain is highly divergent 
from known sequences, we recommend protein modelling efforts 
to determine if the active site is similar enough to known sequences 
to validate classification as HgcA. Additional verification of true 
HgcA sequences include prediction of transmembrane domain re-
gions (e.g., using TMHMM software, Krogh et al., 2001) and iden-
tification of other key conserved residues (Jones et al., 2019; Parks 
et al., 2013; Smith et al., 2015). A combination of several methods 
will certainly help to improve our description of hgcA genes in the 
coming years.

4.2  |  Effectiveness of the Hg- MATE database

The Hg- MATE database originates from the combination of two re-
cent studies (Gionfriddo et al., 2019; McDaniel et al., 2020). The pre-
sent work is a collaborative project of the Meta- Hg working group 
that aimed to provide a living database that will be periodically up-
dated. It provides several useful tools (HMM profiles and references 
phylogenetic trees) and a documented workflow that allows for the 
identification of hgc genes for easy comparison between studies. 
One major advantage of Hg- MATE is the assignment of NCBI tax-
onomy IDs (txid) to hgcA genes allowing for easy comparison with 
datasets from other studies that also use the Hg- MATE database 
(Appendix S1). In contrast, outputs from previous hgc- related stud-
ies are difficult to compare with each other because hgc taxonomic 
identification is usually done with different in- house databases and/
or phylogenetic tools, and is based on the manual inspection of phy-
logenetic trees increasing the level of uncertainties and subjectivity 
in taxonomic identification. While the used pplacer approach here 

is not perfect -  since phylogenetic relatedness of the gene does not 
necessarily mean the same organismal taxonomy because of poten-
tial horizontal gene transfer (McDaniel et al., 2020) –  it is a standard-
ized approach allowing for a robust and automated identification of 
hgc genes from metagenomes.

A side- by- side comparison of previous and present taxonomic 
identification of putative Hg methylators is presented in this sec-
tion. For water and sediment metagenomes from Lake Manganika 
our identification by hgcA phylogeny showed consistent results 
with previous identification from hgc+ MAGs (Jones et al., 2019), 
with Desulfobacterota, Acidobacteriota, Verrucomicrobiota and 
Spirochaetota being the predominant putative Hg methylators. In 
the case of Baltic Sea water metagenomes, the comparison of our 
Hg- MATE taxonomy identification with the previous identification 
using a set of hgc sequences from Podar et al. (2015) revealed consis-
tency in the predominant hgc+ groups detected (Desulfobacterota, 
Spirochaetota, Verrucomicrobiota) but noticeable differences for 
others, such as Planctomycetota (Appendix S1). Consistent with pre-
vious characterization, reservoir sediments were characterized by 
predominant hgc+ Euryarchaeota, Desulfobacterota, Bacteroidota 
and Chloroflexota. Finally, in paddy soils, Liu et al. (2018) identified 
mostly hgc+ Desulfobacterota, Firmicutes and Euryarchaeota while, 
in the present study, the two last microbial groups were found less 
predominant to the benefit of hgc+ Nitrospirota and Chloroflexota.

In addition to using phylogenetic placements of hgc genes in ref-
erence trees from the Hg- MATE database, a more precise approach 
to identification of putative Hg methylators is probably the identifi-
cation of hgc+ MAGs (i.e., Jones et al., 2019; Lin et al., 2021; Peterson 
et al., 2020). However, the recovery of MAGs from metagenomes 
is not always possible due to (i) the difficulty of obtaining MAGs 
from certain environments such as sediments and (ii) the low pre-
dominance of Hg methylators compared to other microorganisms in 
the environment, and therefore the lower probability of recovering 
hgc+ MAGs. A recent study revealed the good congruence between 
the identification of hgc+ MAGs and a hgc phylogeny based on Hg- 
MATE phylogeny (Capo, Feng, et al., 2022) highlighting that both ap-
proaches could be used to ensure the reliability in the identification 
of Hg methylators.

4.3  |  Assembly methods depend of the 
diversity of the metagenome

The increasing amount of publicly available environmental genomic 
data (Nayfach et al., 2021; Thompson et al., 2017) opens avenues 
to answer ecological questions related to the biogeography pat-
terns and dispersal barriers of Hg methylators in interconnected 
systems (such as the global ocean and coastal systems). Coassembly 
of multiple metagenomes has been shown to have many important 
benefits compared to single assemblies including improved binning 
and better recovery of low abundance environmental genomes from 
studies that use multiple low- coverage metagenomes. However, 
coassembly requires higher computational costs and potentially 
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masks microdiversity by collapsing the genomes of multiple related 
strains into a single MAG (Delgado & Andersson, 2022; Narasingarao 
et al., 2012; Paoli et al., 2022; Ramos- Barbero et al., 2019; Tamames 
et al., 2019; van der Walt et al., 2017). Here, we compared hgcA re-
covery from single assembled metagenomes versus coassemblies of 
multiple metagenomes from the same environment. Our analysis re-
vealed that no identical amino acid sequences were obtained when 
comparing outputs from single assembly and coassembly meth-
ods for each metagenome for hgcA genes but not for dsrA genes 
for which identical amino acid sequences were found. Our results 
highlight the differences that can be observed between both ap-
proaches in the composition of hgcA sequences in accordance with 
a recent work showing the aggregation of near identical genes (i.e., 
99% clustering cutoff) occurring during coassembly. In all cases ex-
cept one, coassembly significantly increased the recovery of hgcA 
genes (Figure S4). Additionally, we showed that when the diversity 
and composition of the hgcA+ community was compared across all 
the samples included in the analysis, single assemblies and coassem-
blies performed similarly in this regard, suggesting that also single 
metagenomes can provide adequate information (similar level of hgc 
coverage and detected diversity) on the hgc+ community.

Differences in the diversity of environments can have an ef-
fect on the recovery of hgc genes from metagenomes. Nonpareil 
diversity index values of the metagenomes ranged between 18.7 
and 23.7 with the highest being found in paddy soils metagenomes 
(Figure S1, Appendix S1). Here, for the paddy soils that exhibited 
higher Nonpareil diversity index values (Figure S1), consistently 
with Rodriguez- R and Konstantinidis (2014), the coassembly ap-
proach outperforms single sample assemblies in the recovery of 
hgc genes (Figure 3). Noticeably, although no identical HgcA amino 
acid sequences were detected between single assembly and coas-
sembly approach, identical DsrA amino acid sequences were ob-
served. We hypothesize that the low proportion of hgcA genes in 
metagenomes, compared to dsrA genes, explained such discrepan-
cies, although it did not strongly impact the overall hgcA coverage 
values recovery. In these situations, we recommend aiming for ei-
ther higher depth of coverage or sequencing of multiple adjacent or 
linked metagenomes or replicates from a single sample. In contrast, 
we recommend avoiding the coassembly of metagenomes from dif-
ferent environments that could produce more misassembles and 
chimerism (Mikheenko et al., 2016; Sczyrba et al., 2017; Tamames 
et al., 2019). For other environments such as brackish and lake wa-
ters, our work highlights that using the marky- coco pipeline based 
on a single assembly approach provide similar results to a coas-
sembly approach in detecting hgc genes. Long- read metagenomic 
sequencing could help reduce discrepancies between coassembly 
and single assembly approaches (Driscoll et al., 2017; Van Goethem 
et al., 2021). However, long- read approaches require high quality 
intact DNA and come with a trade- off in base- call accuracy and as-
sembly coverage. Also, genome assembly from long- read HTS may 
be best suited for dominant members of low diversity microbiomes 
and therefore less applicable to hgc+ organisms due to their relative 
rarity in microbiomes.

4.4  |  Robust normalization methods are needed for 
quantitative inferences

The normalization of gene counts from environmental metagen-
omes and metatranscriptomes is a key aspect of works aiming to 
study the prevalence of certain microorganisms in specific environ-
ments (Pereira et al., 2018; Pierella Karlusich et al., 2022; Salazar 
et al., 2019). In hgcAB omics studies, the number of mapped reads 
and the coverage values of marker genes or housekeeping genes is 
usually used to normalize the coverage values of hgc genes (Capo, 
Broman, et al., 2022; Capo, Feng, et al., 2022; Lin et al., 2021; Tada 
et al., 2020; Vigneron et al., 2021). Tests here revealed that a wide 
range of contrasting normalization methods all provided reasonable 
abundance estimates that were significantly correlated with one 
another with the exception of genome equivalent values (Figure 4). 
Nonsignificant correlations found between genome equivalent val-
ues (Nayfach & Pollard, 2015) and other metrics can be explained 
by the weaker relationships observed for the metrics in paddy soils 
and reservoir sediments metagenomes, while metrics from brackish 
waters, lake sediment and waters appear to have linear relationships. 
We hypothesize that this discrepancy between normalization met-
rics is due to the differential contribution of DNA sequences from 
nonprokaryotic organisms to calculate genome equivalent values in 
more diverse environments (paddy soils, reservoir sediments) com-
pared to others (brackish waters, lake waters and lake sediments). 
Therefore, we do not strongly recommend any single method over 
others. Instead, we suggest that it may be prudent to report data 
that employ multiple normalization methods to allow for easy com-
parisons to be carried out between studies. Such normalizations can 
without too much of an effort be included in the supporting informa-
tion for later usage. Suggested normalization methods include the 
total number of prokaryotic reads, coverage values of rpoB genes 
and the median coverage values of 257 marker genes (example in 
Appendix S1).

5  |  CONCLUSION

The study of the taxonomic diversity and metabolic capacities 
of microorganisms involved in Hg methylation will lead to a bet-
ter understanding of the environmental factors triggering mi-
crobial methylation of inorganic Hg. Although metagenomic and 
metatranscriptomic- based studies have provided better insights 
into the environmental role of those microorganisms, there is still a 
need to standardize methods to detect hgc genes from environmen-
tal omic data. Furthermore, since Hg methylators often constitute 
such a small proportion of the microbiome, methods outlined in this 
study provide best practices for improving their detection and re-
covery from metagenomes. We provide here an up- to- date hgc gene 
catalogue, Hg- MATE database v1, and the marky- coco bioinformatic 
pipeline to detect, identify and count hgc genes from metagenomes. 
We recommend using our high stringency cutoff to detect hgcA 
genes in metagenomes and applying our protocol in future prospects 
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of Hg methylation genes, especially for cross- comparison between 
studies. Finally, although a co- assembly approach should be chosen 
when analysing metagenomes from highly diverse environments 
(e.g., paddy soils), we recommend using marky- coco pipeline, based 
on a de novo assembly for recovering hgc genes in metagenomes 
from aquatic environments.
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