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a b s t r a c t

In softwood species, annual ring width correlates with various timber characteristics, including the den-
sity and modulus of elasticity along with bending and tensile strengths. Knowledge of annual ring profiles
may contribute to more accurate machine strength grading of sawn timber. This paper proposes a fast
and accurate method for automatic estimation of ring profiles along timber boards on the basis of optical
scanning. The method utilizes two 1D convolutional neural networks to determine the pith location and
detect the surface annual rings at multiple cross-sections along the scanned board. The automatically
extracted rings and pith information can then be used to estimate the annual ring profile at each
cross-section. The proposed method was validated on a large number of board cross-sections for which
the pith locations and radial ring width profiles had been determined manually. The paper also investi-
gates the potential of using the automatically estimated average ring width as an indicating property in
machine strength grading of sawn timber. The results indicated that combining the automatically esti-
mated ring width with other prediction variables can improve the accuracy of bending and tensile
strength predictions, especially when the grading is based only on information extracted from optical
and laser scanning data.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nondestructive evaluation of timber properties such as strength
and stiffness is vital for the sawmilling industry. Accurate strength
grading of timber boards leads to more effective utilization of
material. The strength grading process is carried out either by
visual inspection (i.e., visual strength grading) or using certified
machines (i.e., machine strength grading) in order to classify
boards into certain strength classes. The grading machines are used
to determine certain indicating properties (IPs) that are strongly
correlated with one or more of the three grade determining prop-
erties, namely bending or tensile strength, modulus of elasticity
(MoE), and density [1].

In softwood species such as Norway spruce, there is in general a
negative correlation between the annual ring width and both den-
sity and stiffness of clear wood (i.e. knot-free wood) [2]. Therefore,
the European standards for visual strength grading of softwood,
such as the British standard BS 4978 [3], the Nordic standard INSTA
142 [4], and the German standard DIN 4074–1 [5] impose certain
upper limits on the average annual ring width. For example, the
German standard classifies timber into three grading classes: S7,
S10, and S13, arranged from lowest to highest. The standard states
that the maximum allowed average ring width is 4 mm for timber
in class S13 and 6 mm for class S7 and S10 [5].

Multiple studies investigated the correlation between the aver-
age ring width and various wood characteristics, including the
density and MoE along with bending, tensile, and compressive
strengths [6,7]. Regarding the correlation with density, previous
studies conducted on Norway spruce timber [8–10] reported vari-
ous coefficients of determination R2 ranging from 0.18 to 0.38.
Slightly stronger correlations have been reported between the
annual ring width and bending strength [8,10–12] with R2 between
0.21 and 0.44. The coefficients of determination reported concern-
ing the tensile strength are approximately on the same level (0.33
in [13] and 0.36 in [8]).

Currently, the annual ring width does not appear to be used as
an IP (or involved in the definition of any IP) in the machine
strength grading industry. Instead, the current grading machines
rely on IPs based on properties that are easier to measure and have
stronger correlations with the grade determining properties. The
most commonly used IP for predicting the edgewise bending
strength of timber is the longitudinal dynamic MoE. This IP can
be determined quickly and inexpensively based on the timber
board’s density (determined as mass divided by volume or using
X-ray) and length along with its first axial resonance frequency
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determined by vibration testing. However, the R2 between the lon-
gitudinal dynamic MoE and Norway spruce’s bending and tensile
strength is only about 0.5 [14]. The reason is that the bending
strength in timber is highly dependent on local weakening related
to the presence of knots and related fiber directions, which cannot
be captured very well by a global IP such as axial dynamic MoE [1].
Therefore, the axial dynamic MoE is often used in conjunction with
high-resolution scanners that provide additional information
regarding the local variations of material parameters. The most
accurate grading machines currently in use combine axial dynamic
testing with X-ray scanning [15]. However, an even more accurate
method and procedure have been developed and verified, and
approved settings for grading of timber in C-classes (EN
338:2016 [16]) are available [14]. This method is based on data
of local fiber orientation obtained from laser scanning of board sur-
faces and it provides insights into how stiffness and strength vary
along a board. In combination with knowledge of dynamic MoE, an
IP was defined, which gives R2 in both bending and tensile strength
as high as 0.69 and 0.66 (0.70 using non-linear regression), respec-
tively, for large samples of Norway spruce timber [14,17].

Researchers have observed that combining the average ring
width with other prediction variables results in a significantly
more accurate strength prediction than when the average ring
width is used on its own. Previous studies have shown that the
R2 can be increased from 0.21 to 0.37 [8], 0.27 to 0.42 [11], and
0.20 to 0.39 [10] when the average ring width is combined with
knot measurements in the prediction of bending strength of Nor-
way spruce. Similar improvements were also achieved with
regards to tensile strength (0.36 to 0.49 [8]). This shows that the
annual ring width can be useful, in combination with other predic-
tor variables, in definitions of IPs for machine strength grading.

Nonetheless, it remains a challenge to automatically and accu-
rately detect the annual rings and measure the ring widths of tim-
ber under the conditions and speed of sawmill production. Most of
the currently available methods for estimating the radial ring
width profiles of timber boards and logs rely on computed tomog-
raphy (CT) scanning [18–22]. Such methods involve applying
Hough transform (HT) to detect the annual rings in cross-
sectional CT images assuming that the rings are circular and con-
centric around the pith. The accuracy of these methods is very
good; however, the high cost of operating a CT scanner is a signif-
icant issue when it comes to real applications. Thus, it would be of
practical value if the less expensive optical scanners could be used
to automatically detect the annual rings and estimate the rings
widths.

In a recent study, Habite et al. [23] developed a method for
locating the pith and estimate the radial profile of Norway spruce
boards on the basis of surface scans obtained by a commercial opti-
cal scanner. The method applies a continuous wavelet transform
(CWT) on the scanned surface images to estimate the distances
between the surface annual rings on the four sides of a board. Sim-
plex optimization was then used to obtain a radial profile that opti-
mally fits the surface annual ring patterns estimated by the CWT.
The method was verified over 104 Norway spruce boards, and
the median error in the estimated pith location was around 5 mm.

However, the method proposed by Habite et al. [23] has three
limitations. First, to reduce the parameters of the optimization
problem, the method assumes a constant distance between con-
secutive rings (i.e., all rings have the same width), which is clearly
unrealistic. Second, the simplex optimization requires around
180 ms on average to determine the radial profile of a single
cross-section only, which is too slow considering the typical
industry speed requirements (i.e., less than one second per
board). Third, the ultimate purpose of that method was to locate
the pith, and therefore the verification was limited to checking
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the pith detection accuracy without verifying the detected rings
or ring widths.

To address these limitations, the aim of the work presented in
this paper is to utilize deep learning (DL) to develop a fast and
accurate method for detecting annual rings and estimating the
radial ring profiles along timber boards on the basis of optical sur-
face scanning. The paper also includes an extensive evaluation of
the potential of including information of annual ring widths, auto-
matically extracted using the proposed method, in the definition of
an IP for machine strength grading. The detailed objectives of this
work are the following:

1. Train a DL model to detect surface rings on timber board sur-
faces scanned using an optical scanner.

2. Develop a method to estimate radial ring width profiles in clear
wood based on the automatically detected pith locations and
annual ring patterns detected on board surface.

3. Validate the proposed method on a large number of board cross
sections for which pith locations and radial ring width profiles
are determined manually.

4. Investigate the correlation between the automatically esti-
mated average ring width and density.

5. Investigate the correlation between average ring width (when
used as an IP in itself or in combination with other prediction
variables) and tensile strength of a large sample of destructively
tested Norway spruce boards.

6. Conduct the corresponding statistical analysis regarding the
correlations with bending strength for another large sample of
destructively tested Norway spruce boards.

2. Material, collected data and definitions of properties

2.1. Material and data from scanners

Altogether, four sets of boards were investigated in this
research, two for comparison between automatically and manually
estimated average ring width over cross sections, and two for
investigation of correlations between average ring width and other
board properties. All boards included were of Norway spruce,
planned on four sides and approximately of dimension
45 � 147 mm2.

2.1.1. Board set one – Five boards scanned with CT scanner and optical
scanner

Board set one consists of five boards of length 3.6 m, originating
from southern Sweden. These boards were scanned using an X-ray
CT scanner [22]. The resolution obtained data was 0.3 mm per pixel
in the three directions. From this data, 20 images of board cross
sections were extracted from each board (approximately 18 cm
between extracted sections). Fig. 2a shows an image of a board
cross section obtained from X-ray CT scanning.

The five boards were also scanned using an industry optical
laser scanner such that red, green, and blue (RGB) images as well
in-plane fiber direction, the latter obtained using laser and the tra-
cheid effect [24–26], were obtained for each of the four longitudi-
nal board surfaces with resolution of about 0.8 � 0.07 mm2 and 4.
4 � 1.0 mm2 (lengthwise � crosswise board direction), respec-
tively. Fig. 1c–d show an RGB image and an image of in-plane fiber
direction, respectively, for a part of a longitudinal board surface.

2.1.2. Board set two – 76 boards scanned with two different optical
scanners

Board set two consists of 76 boards of length 5.100 mm, origi-
nating from the area around Notnäs in South-mid Sweden. For
these boards, both end cross sections were scanned using a com-
mon optical flatbed scanner to obtain images as the one shown



Fig. 1. Images obtained from scanning; (a) image of a board cross section obtained from X-ray CT scanning, (b) image of an end cross section obtained using a flatbed scanner,
(c) RGB image of a longitudinal board surfaces and (d) in-plane fiber orientation of a longitudinal board surface. (c and d obtained using an industry optical laser scanner.).

Fig. 2. Overview of the proposed method for automatic estimation of annual ring profiles: (a) Grayscale images of the four sides of the board are obtained, and N locations
along the board are considered. (b) At each cross-section, the 1D-CNN identifies the pith location. (c) At each cross-section, the 1D-UNet detects the surface rings on the two
wide faces. (d) The estimated pith location and surface rings are used to estimate the annual ring profiles at the N cross-sections.
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in Fig. 1b. The boards were also scanned using the same industry
optical laser scanner as used for board set one, to obtain images
of lateral surfaces as those shown in Fig. 1c–d.
2.1.3. Board set three – 383 boards scanned and destructively tested in
tension

Board set three consists of 383 boards of various lengths
obtained from six different sawmills located in different parts of
Sweden and Finland. The boards in set three are a subsample of a
larger sample of more than 900 boards used for a comprehensive
investigation on the performance of the above-mentioned machine
strength grading method (utilizing local fiber direction in combina-
tion with dynamic MoE) [17] for prediction of tensile strength and
grading of boards into T-classes. The current board set three con-
sists of the boards of dimension 45 � 145 mm2 of the sample of
boards presented in [17]. Relevant collected data for the boards
comprise the following: RGB images and data of in-plane fiber ori-
entation on four sides of the boards obtained from the industry
optical scanner, dimensions, weight, longitudinal resonance fre-
quency, clear wood density, moisture content, and stiffness and
strength properties obtained from tensile tests, as developed in
the subsequent Section 2.1.4.
3

2.1.4. Board set four – 409 boards scanned and destructively tested in
bending

Board set four consists of 409 boards of various lengths
obtained from seven different sawmills in different parts of Swe-
den, Norway and Finland. In [14], an investigation comprising
more than 900 boards of various dimensions was performed to
evaluate the same machine strength grading method as in [17]
but for prediction of bending strength, rather than tensile strength.
The boards in the current set four consists of the boards of dimen-
sion 45 � 145 mm2 of the investigation reported in [14]. Relevant
collected data is the same as for board set three, except that stiff-
ness and strength properties were obtained from four point bend-
ing tests, as developed in the subsequent Section 2.1.4, rather than
from tensile tests. Board set two (see Section 2.1.2) was actually a
subset of board set four.
2.2. Definitions of predictor variables and grade determining
properties

The data collected for board sets three and four (boards tested
destructively in bending and tension, respectively) give basis for
calculation of a number of prediction variables and grade deter-
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mining properties (GDPs). The prediction variables constitute, or
give basis for, IPs for prediction of GDPs, in particular bending
and tensile strength.

For boards of set 3–4, the board mass m, length L, depth h and
thickness t, and the board moisture content us, were determined
manually. A scale was used for weighing, and a pin-type moisture
meter was used to determine the moisture content. The lowest
longitudinal resonance frequency of the boards, f1, were deter-
mined manually in laboratory using impact hammer, an
accelerometer and a vibration analyzer utilizing fast Fourier trans-
form (FFT). In the investigations presented in [14] and [17], dimen-
sions, mass/density and resonance frequency were also
determined using strength grading machines, but the data utilized
herein is from manual measurements.

Board density adjusted to 12 % moisture content was calculated
as.

qboard;12% ¼ m
L � h � t 1� us � 12

200

� �
ð1Þ

After destructive tests, clear wood specimens were cut from the
boards and the clear wood density adjusted to 12 % moisture con-
tent,qcw;12%, were determined according to instructions EN
408:2010 [27]. (qcw;12% is identical to the grade determining den-
sity, q, defined in EN 384:2016 [28].).

The axial dynamic MoE, adjusted to 12 % moisture content, was
calculated as.

Edyn;12% ¼ 4
m

L � h � t f
2
1L

2 1þ us � 12
100

� �
ð2Þ

where the moisture content adjustment factor
ð1þ ðus � 12Þ=100Þ is derived from EN 384 [28]. A prediction vari-
able, similar to Edyn,12%, although not based on knowledge of den-
sity, was defined as.

Ddyn;12% ¼ f 21L
2 1þ us � 12

100

� �
ð3Þ

Another prediction variable evaluated herein is based on
knowledge of local fiber orientation (see Fig. 1d) of all four longitu-
dinal sides of a board. By assuming values representative for Nor-
way spruce wood for modulus of elasticity in fiber direction and
perpendicular directions, shear moduli and poisson’s ratios, local
MoE in the board’s longitudinal direction was calculated. Then,
by integrating this local MoE over cross sections along the board,
a bending stiffness profile along was established (moving average
of calculated bending stiffness over 90 mm along the board
applied) and the minimum value along the profile, denoted Eb,90,
nom, was considered a prediction variable to strength. For a thor-
ough description and definition of this indicating property, and
how it in previous works has been utilized in definitions of IPs to
bending and tensile strength, see [1] and [17], respectively.

Four point bending tests and tensile tests were performed
according to EN 408 [27] for board sets three and four, respectively.
Based on these tests bending strength, f m, and tensile strength,
f t ¼ f t;0 were determined for boards of set three and four, respec-
tively. Characteristic values of these strengths are GDPs, see
EN 384 [28].

3. Method

Fig. 2 presents an overview of the proposed method. The
method utilizes the four RGB images obtained by scanning the four
surfaces of a board using an industrial optical scanner. The red and
blue channels of the images are discarded, and the green channel is
used to obtain grayscale images. The first step is to identify the pith
locations at N cross-sections along the board using a pith detection
4

technique recently developed by the authors [29], which utilizes
one-dimensional convolutional neural networks (1D-CNNs). Then,
at each evaluated cross-section, a 1D-UNet is used to detect the
surface rings on the two wide surfaces. After that, a simple algo-
rithm is applied to identify the annual ring profile at the N cross-
sections based on the automatically estimated pith location and
surface rings.

This section describes each step of the proposed method,
including a summary of the pith detection technique presented
in [29], a detailed description of the training and application of
the 1D-UNet used for detecting surface rings, and finally the ring
profile estimation algorithm. A brief background on 1D-CNNs and
1D-UNets is provided in the next subsection since these DL models
are central to this work.

3.1. 1D-CNNs

CNNs are DL models suitable for computer vision tasks such as
image classification and object detection. 1D-CNNs are a special
case of CNNs designed to operate over 1D signals instead of 2D
images. They have been successfully used in challenging signal
classification and regression tasks such as detection of anomalies
in electrocardiogram (ECG) signals [30] and damage identification
in machines and structures [31,32].

As shown in Fig. 3, a typical 1D CNN begins with alternating 1D
convolution and pooling layers for extracting features from the
input signals, followed by multilayer perceptron (MLP) layers used
to compute the final output as a nonlinear function of the extracted
features. For a 1D convolution layer, l, having Nf kernels, M input
channels and S samples in each channel, the jth output feature vec-
tor of this layer is [33]:

yj;l ¼ yj;li
h i

¼ f bj;l þ xj;l
� �

ð4Þ

where.

xj;l ¼ xj;li
h i

¼ Yl�1 �Wj;l ð5Þ

xj;li ¼
XK

r¼1

XM

c¼1
yl�1

iþr�1;c½ �w
j;l

r;c½ � ð6Þ

where the operator �ð Þ denotes a standard 1D convolution oper-
ation with a single stride and no zero padding, K is the filter size,

Yl�1 is a matrix of size S�M that contains the output feature vec-

tors of the previous layer, l� 1, Wj;l is the jth filter (a matrix of size

K �MÞ of the current convolution layer, l,bl
j is a scalar bias, and f :ð Þ

is an activation function. The index i (1 � i � S� K þ 1) denotes a
sample in the vectors yj;l and xj;l.

Each 1D convolution layer is usually followed by a 1D pooling
layer that downsamples the feature vectors yj;l. Through consecu-
tive convolution and pooling operations, 1D CNNs extract high-
level features from the input signals, which are then combined into
a single vector (i.e., flattened) and fed into the MLP layers. For a
MLP layer, l, with N neurons and P inputs, the output yl (vector
of size N) can be written as:

yl ¼ g bl þWlyl�1
� �

ð7Þ

where bl is a bias vector of size N, Wl is a weighting matrix of
size N � P, yl�1 is the output of the previous layer l� 1 (a vector
of size P) and g :ð Þ is an activation function.

3.1.1. 1D-UNet
The UNet is a CNN architecture commonly used in semantic

segmentation [34] and image-to-image translation [35]. Unlike
the conventional CNN architecture described above, which is usu-
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ally used to produce a very limited number of outputs, UNets are
capable of generating high-resolution outputs, typically having
the same resolution as the input image.
Fig. 3. The architecture of the 1D CNN used to locate the pith [29]. The rectified linear uni
MLP layer which has linear activation. The quantities between the square brackets corr
convolution and pooling layer.

Fig. 4. The architecture of the 1D UNet used to detect surface rings. The rectified linear
quantities between the square brackets correspond to the number of samples � the num

5

The 1D-UNet is a one-dimensional version of the UNet architec-
ture suitable for signal denoising [36] and signal-to-signal transla-
tion [37]. It consists of a contracting part (i.e., the encoder)
followed by an expansive part (i.e., the decoder). As illustrated in
t (Relu) activation function is used for all convolution and MLP layers except the last
espond to the number of samples � the number of output feature vectors of each

unit (Relu) activation function is used for all convolution deconvolution layers. The
ber of output feature vectors of each convolution and pooling layer.
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Fig. 4, the encoder is built up of alternating 1D convolutional and
downsampling layers, while the decoder consists of consecutive
1D deconvolution and upsampling layers. The convolution and
pooling layers of the encoder extract low-resolution features from
the input signals. These features are then processed and gradually
upsampled through the decoder’s layers until a full-resolution out-
put signal emerges from the last layer.

The 1D convolution operations that take place in the encoder
are described by Eq. 4–7. Regarding the decoder, the output

xj;l ¼ xj;li
h i

of a standard 1D deconvolution operation (i.e., deconvo-

lution with a single stride and no zero padding) between the out-

put features of the previous layer Yl�1 and the jth filter of the

current deconvolution layer Wj;l can be written as:

xj;li ¼
Xmin K;ið Þ

r¼max 1;i�Sþ1ð Þ

XM

c¼1
yl�1

i�rþ1;c½ �w
j;l

r;c½ � ð8Þ

The jth output feature vector of a 1D deconvolution layer, l, with

Nf kernels after adding the bias bj;l and applying the activation
function is given as:

yj;l ¼ yj;li
h i

¼ f bj;l þ xj;l
� �

ð9Þ

where the index i (1 � i � Sþ K � 1) denotes a sample in the
vectors yj;l and xj;l.

3.1.2. Training of 1D-CNNs
Both conventional 1D CNNs and 1D-UNets are supervised neu-

ral networks, which means they should be trained over a dataset
consisting of a large number of input signals along with the corre-
sponding desired targets. The training of a 1D-CNN starts by ran-
domly initializing its parameters (i.e., the weighting filters of the
convolution and deconvolution layers and the weights of the
MLP layers). An iterative optimization process is then carried out
to optimize these parameters. This process involves two opera-
tions, forward- and back-propagation. In forward-propagation, an
input signal is propagated from the first layer up until the last
one according to Eqs. (1)–(5) above. The output that emerges from
the output layer is compared to the desired target corresponding to
that input signal using a certain loss function such as mean
squared error (MSE) and mean absolute error (MAE). The calcu-
lated error is then back-propagated through the CNN starting from
the last MLP layer up until the first convolution layer. During the
back-propagation process, the sensitivity of each parameter in
the 1D-CNN to the error is computed. The sensitivities are then
used to iteratively update the 1D CNN parameters until a certain
stop criterion is met. Gradient-descent (GD) algorithms, such as
Adaptive Moment Estimation (Adam) [38], can be used in the
training process.

3.2. Estimation of pith locations

As mentioned earlier, the first step in the proposed radial profile
estimation method is to predict the pith location at N cross-
sections along a board using the pith detection technique pre-
sented in [29]. This technique is based on a well-trained 1D-CNN
that estimates the x- and y- coordinates of the pith location at each
evaluated cross-section given the light intensity variations across
the four sides of the board. Four light intensity signals are obtained
at each cross-section by taking a single pixel line (represented in
Fig. 1 by dashed blue lines) from the four grayscale images. The
four signals are normalized between 0 and 1, resampled to 1024
samples, and then fed into the 1D-CNN to estimate the pith loca-
tion at the cross-section. The 1D-CNN has the standard architec-
ture shown in Fig. 3, which consists of five convolution/pooling
blocks followed by three MLP layers.
6

3.2.1. Training of the pith estimator
To train the pith estimator, it is necessary to have a large train-

ing dataset consisting of thousands of light intensity signals (i.e.,
inputs) together with the corresponding actual pith locations
(i.e., targets). Obtaining this kind of dataset for real boards would
require scanning of hundreds of boards, dissecting them at several
locations, and then estimating the pith location of each cross-
section manually. In order to avoid this laborious and time-
consuming exercise, a virtual board generator, recently developed
by the authors [29], was used to generate the training dataset. The
board generator consists of two components: a stochastic log
model and a conditional generative adversarial neural network
(cGAN). The stochastic log model is used to generate a random
3D log (knots not included) with realistic annual rings. Binary
board surfaces are then obtained by cutting a board at a random
location within the 3D log. The binary images (where the zeros
represent annual rings and the ones represent the background)
are then processed by the cGAN, which transforms them into pho-
torealistic images of Norway spruce surfaces. The overall process is
illustrated in Fig. 5. The interested reader is referred to [29] for
more details on the stochastic log model as well as the cGAN.

The virtual board generator was used to generate 3000
145 � 45 � 205-mm3 boards with photorealistic surfaces and
known pith locations and radial profiles. A total of 120,000
input-target training samples were collected by obtaining the light
intensity signals and the corresponding pith locations at 40 loca-
tions along each board. 80 % of the training samples were used
for training while the remaining 20 % were kept for validation. Fur-
ther details about the training of the pith detector can be found in
[29].

3.3. Detection of surface rings

Fig. 6 shows examples of light intensity signals obtained from
images of Norway spruce timber surfaces obtained from scanning.
It is clear that the local minima of a light intensity signal coincide
with the latewood part of the annual rings at that location. How-
ever, it can also be noticed that these signals are contaminated
by noise and other artifacts, making it difficult for conventional
peak-finding algorithms to differentiate between the local minima
that correspond to the rings and those arising from the noise.
Therefor a 1D-UNet was trained to denoise the light intensity sig-
nals so that the surface rings can be easily identified. The idea is to
train the 1D-UNET to translate the input light intensity signal into
a corresponding output signal with triangular spikes (Fig. 4). The
tips of the spikes represent the actual locations of the surface rings
at the location where the light intensity signal was taken. All spikes
have the same amplitude of 1.0. The slope of each spike is inversely
proportional to the distance to the neighboring rings. In other
words, closely spaced rings are represented by triangular spikes
with large slopes while sparsely spaced rings are represented by
spikes with small slopes.

The architecture of the encoder and decoder of the 1D-UNet is
given in Fig. 4. The encoder takes a single light intensity signal with
a resolution of 1024 samples and applies successive convolution
and subsampling operations to extract 128 low resolution features
(17 samples). The decoder applies consecutive deconvolution and
upsampling operations on the extracted features until a single out-
put signal with the same resolution as the input (1024 samples)
emerges from the last layer.

The 3000 photorealistic virtual boards described in Section 3.2.1
were also utilized to train the 1D-UNet. From each board, the light
intensity signals on the two wide sides were collected at 40 evenly
spaced locations. The surface ring locations on the two wide sides
were acquired at the same locations. The ring information
extracted from the boards were used to generate target signals



Fig. 5. Summary of the training data generation process. (a) The stochastic log model is used to generate a random log. (b) Binary board surfaces are obtained by cutting a
board at a random location within the 3D log. (c) A cGAN model is used to translate the binary images into photorealistic images of Norway spruce surfaces. (d) The
photorealistic boards are used to generate input-target pairs required for training the pith detector.

Fig. 6. Examples of noisy light intensity signals from Norway spruce surfaces.
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with triangular spikes that represent the surface rings. This process
resulted in a total of 240,000 input-target pairs (i.e., 3000
boards � 2 wide sides � 40 locations).

Out of the 240,000 training samples, 80 % were used for training
and 20 % for validation. MAE was used as a loss function in the
training process. The training was carried out in Tensorflow 2.0
[39] using Adam optimizer with a learning rate of 0.001 and a
batch size of 128. During the training, 1D-CNN’s performance over
the validation set was monitored in terms of the MAE. The training
process was terminated after 29 epochs when the performance
over the validation set stopped improving in order to prevent
overfitting.

3.3.1. Post-processing of 1D-UNet outputs
After training the 1D-UNet, it was preliminarily tested over a

few light intensity signals extracted from real Norway spruce sur-
faces. We noticed that the UNet was generally successful in denois-
ing the input light intensity signals and producing an output signal
with distinctive peaks. However, the tests also revealed that fur-
ther post-processing of the output signals is required for extracting
the ring locations.

As an example, Fig. 7b shows a noisy light intensity signal taken
from a real Norway spruce surface (Fig. 7a). Ideally, the UNet
would produce a corresponding output signal like the one in
Fig. 7c, where the ring locations could be directly identified as
the tips of the spikes (i.e., the ‘‘ones” in the signal). Nonetheless,
the preliminary tests showed that the actual 1D-UNet output is
similar to the signal in Fig. 7d, where the tips of the spikes do
not necessarily go all the way up to 1.0, and the parts of the signal
between the spikes do not always go all the way down to 0.0. This
means that the rings cannot simply be found in a filtered light
7

intensity signal by picking data points at a certain constant value.
Fortunately, this issue can be easily addressed by the following
post-processing steps:

1. Set all data points with values less than or equal to 0.5 to zero.
2. Set all data points above 0.5 to one.
3. The rings can be then identified as the centroids of the ‘‘ones”

regions in the resulting binary signal (see Fig. 7e and f).

3.4. Automatic estimation of radial profiles

The next step, after identifying the pith location at a particular
cross-section and detecting the surface rings on both wide sur-
faces, is to identify the radial profile of the cross-section (i.e., the
radii of the annual rings). Consider a board cross-section having
a width of W in the x-direction and a depth T in the y-direction
with an estimated pith location of px; py

� �
and surface rings

detected on both wide sides. As shown in Fig. 8, the near side is
defined as the wide side closer to the estimated pith location in
the y-direction, while the opposite side is called the far side. If
the x-coordinate of the estimated pith location is within the width
of the board 0 < px < Wð Þ, then both the far and near sides can be
divided into short and long segments. The surface rings detected
on both sides can then be divided into four groups (arranged from
the most important to the least important):

1. G1: Detections on the long segment of the far side.
2. G2: Detections on the short segment of the far side.
3. G3: Detections on the long segment of the near side.
4. G4: Detections on the short segment of the near side.



Fig. 7. Post-processing of 1D-UNet outputs. (a) Norway spruce surface image. (b) Original light intensity signal (i.e., the input). (c) Ideal filtered signal. (d) Actual filtered
signal obtained by processing the input signal using the 1D-UNet. (e) Binary signal after obtained by setting all values greater than 0.5 to 1.0, and all values � 0.5 to 0.0. (f) The
surface rings are identified as the centroids of the ‘‘ones” regions.

Fig. 8. Description of the algorithm used to estimate annual ring profiles on the
basis of the detected pith and surface rings. The solid green ring is an example of a
ring that intersects with both the near and far sides and with both short and long
segments. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The detections on the far side are prioritized over the ones on
the near side since we noticed that the surface rings are clearer
and more distinctive on the face further away from the pith. The
annual rings obviously intersect more with the long segments,
and therefore the detections on the long segments are prioritized
over the ones on the short segments.

The estimated radii of the annual rings ri;j corresponding to the

detections in the ith group can be calculated as:
ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px � xi;j
� �2 þ py � yi;j

� �2q
ð10Þ

where xi;j and yi;j are the coordinates of the jth detection in the ith

group.
8

It is very likely that an annual ring intersects with both the far
and near sides and/or with both the long and short segments (see
Fig. 8). Hence, the radii identified in the four groups are not unique.
In other words, the same ring can simultaneously appear in two or
more groups. The estimated radii corresponding to the same ring
are most probably not equal since the annual surface rings are
not perfectly circular, which makes it challenging to determine
whether two similar radii belong to the same ring or to different
rings.

In order to combine the radii from the four groups into a single
radial profile with unique annual rings, we adopted the following
approach:

1. The radii of the four groups are sorted in ascending order.
2. All radii in G1 are assumed to belong to unique rings. The set

of unique rings is initially set to U ¼ r1;1; r1;2; � � � ; r1;N1

	 

, where N1

is the number of detections in G1.
3. The radial distances between consecutive rings (i.e. ring

widths) in G1 is calculated as:

d1;j ¼ r1;jþ1 � r1;j ð11Þ
4. A threshold h is defined as a parameter a multiplied by the

mean ring width in G1, d1

�
:

h ¼ a d1

�
ð12Þ

As will be clarified in the next steps, this threshold is used when
comparing the radii in the remaining three groups to the unique
radii in the set U in order to decide whether to add them to U or
discard them.

5. Each radius r2;j in G2 is compared to all unique radii in U. If the
minimum difference between r2;j and the radii in U exceeds the
threshold h, the radius r2;j is added to the set U. Otherwise, the
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radius is considered to be too similar to the current radii in U, and
therefore discarded.

6. The process is repeated over all radii in G3 and then G4. The
radii that are sufficiently unique, as measured by the threshold h,
are added to the set U.

The threshold h adapts to the ring density of the analyzed cross-
section. In cross-sections with closely spaced rings, the mean ring

width in G1, d1

�
, will be small, resulting in a small h. On the other

hand, boards with low ring density will have a large d1

�
and there-

fore a large h. This means that in cross-sections with sparsely
spaced rings, a new ring is added to U only if its radius is signifi-
cantly different from the radii of the rings in U. In boards with high
ring density, a new ring can be admitted to U even if it is very close
to one of the rings in U.

In addition to the ring density, the value of h depends on the
parameter a. A systematic analysis of the effect of a on the accu-
racy of the proposed radial estimation approach will be presented
in Section 4. An appropriate a value will be selected and adopted
thereafter.

3.5. Manual estimation of radial profiles

To obtain the data required for validating the proposed method,
the radial profiles were manually estimated at 20 locations along
each of five CT-scanned boards as well as at the two end cross-
sections of 76 Norway spruce boards. The manual labeling was
done in a graphical user interface (GUI) developed specifically for
this purpose. The labelers were instructed to start by carefully
labeling at least three ‘‘main rings”. The labeling of a main ring is
done by clicking several points on the ring. The interface then cal-
culates the radius of the circle that best fits the clicked points in a
least square sense. After labeling a sufficient number of main rings,
the pith location is calculated as the mean of the rings’ centers. The
labeler then proceeds to label the rest of the rings. Given the pith
location estimated from the main rings, it is sufficient to click a sin-
gle point on each of the remaining rings to calculate their radii. The
process, which is illustrated in Fig. 9, can be performed on images
of board cross sections obtained either from CT scanning or from
optical scanning.

4. Results and discussion

A total of 252 Norway spruce cross-sections (board set 1–2)
were used to validate the proposed method. The potential of using
Fig. 9. Manual estimation of annual ring profiles using the GUI: 1- The labeler starts by cl
of the circles that best fit the clicked points are calculated (solid black circles). The pith
(dashed green circles) are then labeled by clicking a single point per ring (given the es
legend, the reader is referred to the web version of this article.)
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the annual rings information in machine strength grading of Nor-
way spruce was evaluated over a large sample consisting of 792
boards (board set 3–4). The results are reported and discussed in
the following subsections.
4.1. Validation over CT-scanned boards

The method was initially validated over 100 cross-sections
obtained from the five Norway spruce boards of board set one,
scanned both by an optical and a CT scanner as described in Sec-
tion 2.1.1. The radial profiles of the 100 cross-sections were man-
ually identified as explained in Section 3.5.

The automatic radial profile estimation method was then car-
ried out based on images of the four longitudinal sides of each
board obtained from optical scanning. First, light intensity signals
were obtained at every 20 pixels along each evaluated board (ap-
proximately 300 locations per board). Second, all signals were nor-
malized between 0 and 1, resampled to 1024 samples, and then fed
to the 1D-CNN in order to estimate the pith location at each loca-
tion. Fig. 10a shows estimated pith locations along a board, repre-
sented by red lines drawn on top of images of wide and narrow
side, respectively, along the board. Although the estimated pith
locations look reasonable at knot-free regions, one can notice sig-
nificant disturbances at the knotty areas. The reason is that the
1D-CNN was trained exclusively on clear wood surfaces and there-
fore did not learn how to handle knots. To reduce the significant
disturbances related to knots, a moving mean filter was applied
on the x- and y-coordinates of the estimated pith locations. The
resulting, filtered pith location is shown in Fig. 10b.

Third, the 1D-UNet was used to denoise the light intensity sig-
nals of the two wide surfaces. The output signals were post-
processed as described in Section 3.3.2 to identify the surface rings
on the wide sides at the 300 locations. Fig. 11 shows examples of
the performance of the surface ring detector. Similar to the pith
estimator, the annual ring detector works very well on clear wood
areas, but it does not provide reliable detection in areas with knots.
This is due to the fact that the 1D-UNet was train only on knot-free
virtual wood surfaces.

Fourth, the algorithm presented in Section 3.4 was applied to
estimate the corresponding radial profiles given the filtered pith
locations and the detected surface rings. Finally, the automatically
estimated ring profiles were compared to their manually estimated
counterparts at the 20 evenly spaced cross-sections along each
board in terms of both the number of detected rings and the aver-
icking multiple points (red dots) on at least three ‘‘main rings”. The radii and centers
location is estimated as the average of the main rings’ centers. The remaining rings
timated pith location). (For interpretation of the references to colour in this figure



Fig. 10. Pith locations on the wide and narrow sides of a Norway spruce board identified by the 1D-CNN: (a) before applying the moving average filter, and (b) after applying
the moving average filter with a window size of 10 data points (approximately 10 cm).

Fig. 11. Performance of the surface ring detection method. (a) Examples from clear wood surfaces. (b) Examples of successful detection on knotty surfaces. (c) Examples of
inaccurate detection on knotty surfaces.
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age ring width per cross-section. The evaluated CT cross-sections
included both clear wood and knotty sections.

In the manually estimated profiles, the number of detected
rings was obtained by counting the detectable annual rings (i.e.,
the rings that intersect with at least one wide surface as shown
10
in Fig. 12). The ring widths were calculated as the difference in
radius between each two consecutive rings. In the automatic esti-
mation, the number of detected rings and the average ring widths
were calculated at the 300 locations. A moving average filter was
then applied on both estimates along the board to reduce the dis-



Fig. 12. Detectable (dashed blue) vs undetectable (solid red) annual rings. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Statistical analysis of the absolute error between the automatically and manually
estimated average ring widths in 100 CT-scanned cross-sections.

Quantity a ¼ 0:25 a ¼ 0:50 a ¼ 0:75 a ¼ 1:00

Mean 0.87 0.26 0.42 0.50
Median 0.86 0.25 0.40 0.53
Std. 0.34 0.17 0.28 0.32
85th percentile 1.19 0.44 0.75 0.87
90th percentile 1.27 0.49 0.82 0.94
95th percentile 1.44 0.58 0.88 1.02
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turbances around the knots. After that, the number of rings and
average ring width at the locations of the 20 manually estimated
cross-sections were picked from the filtered estimates.

Four levels of a, see Eq. (7), namely (0.25, 0.50, 0.75, and 1.00)
were attempted in an effort to obtain an appropriate value for this
parameter. The mean, median, standard deviations, and percentiles
of the error between the automatically and manually estimated
number of rings and average ring width under the four a levels
are shown in Table 1 and Table 2. The errors are also displayed
as box plots in Fig. 13. The results revealed that when a is too small
(0.25), the method overestimates the number of rings and underes-
timates the average ring width. The reason is that a small a value
results in a small threshold h, allowing the same annual ring to be
included more than once in the set of unique rings U. Conversely,
when a is too large (a = 1.00), the algorithm underestimates the
number of rings and overestimates the rings widths. A good agree-
ment between the automatic and manual radial profiles was
obtained with intermediate a values (a = 0.50 or a = 0.75). The
minimum error in terms of both the number and widths of
detected rings was achieved with a ¼ 0:50. Accordingly, and based
on extensive visual inspection of the automatically estimated
radial profiles, a ¼ 0:50 was adopted.

The performance of the proposed method, with a ¼ 0:50, is
demonstrated in Fig. 14. The agreement between the automatic
and manual radial profiles is generally very good at clear wood
areas (Fig. 14a). Inconsistent performance can be observed at the
knotty areas, ranging from very good (Fig. 14b) to inaccurate
(Fig. 14c). Again, this is attributed to the fact that both the 1D-
CNN and 1D-UNet were trained using artificially generated knot-
free surfaces.

4.2. Validation using cross-sections taken at board ends

After a suitable value for a was found based on the analysis of
five CT-scanned boards, the proposed method was validated over
the larger and more diverse board set two consisting of 76 boards
and hence 152 end cross-sections. Images of all the end cross-
sections were labeled using the GUI to obtain a manual estimate
of their annual ring profiles. The distribution of the average ring
widths, corresponding to the 152 manually estimated ring profiles,
is shown in Fig. 15. The manually estimated cross-sectional aver-
Table 1
Statistical analysis of the absolute error between the numbers of automatically and
manually detected rings in 100 CT-scanned cross-sections.

Quantity a ¼ 0:25 a ¼ 0:50 a ¼ 0:75 a ¼ 1:00

Mean 15.79 2.65 2.94 3.60
Median 16 3 2 3
Std. 4.68 1.55 2.49 2.58
85th percentile 20 4 6 7
90th percentile 22 4 7 8
95th percentile 25 5 8 8
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age ring widths range from 0.7 to 5 mm with a mean of 2.7 mm
and a standard deviation of 0.96 mm.

The automatic procedure described in Section 4.1 to estimate
ring profiles at every 20 pixels along the board (approximately
300 cross-sections per board) was also applied on the 76 boards
of board set two. The average ring width was computed for each
cross-section, and a moving mean filter was then applied over
the calculated cross-sectional averages to smooth out the fluctua-
tions near the knots. The automatically estimated average ring
widths at the two ends were picked from the filtered ring width
estimates.

The results showed a good agreement between the automatic
and manual average ring widths with a mean absolute error of
0.322 mm and an R2 of 0.84. A statistical analysis of the error is
given in Table 3. The radial profiles of the vast majority of the
cross-sections were accurately estimated. Fig. 16 shows a few
examples of automatically estimated cross-sections vs the actual
ones.

To identify the limitations of the proposed method, we closely
examined the cross-sections with relatively large errors between
the automatic and manual estimations. Examples of these cross-
sections are shown in Fig. 17. Most of the large errors were found
at knotty cross-sections (e.g. Fig. 17a). As discussed earlier, knots
affect the performance of both the pith estimator and the surface
ring detector resulting in an inaccurate radial profile estimate.
Cross-sections with highly irregular annual rings (e.g. Fig. 17b
and c) were also problematic since the radial profile estimation
algorithm assumes perfectly circular rings. Additionally, the accu-
racy of the method is limited by various irregularities on boards’
surfaces such as surface roughness (Fig. 17d).

In some applications, such as strength grading, the global ring
width average over the entire length of a board could be more
interesting than individual cross-sectional averages. An automatic
estimate of the global ring width average was obtained for each of
the 76 boards by calculating the mean of the 300 automatically
estimated ring widths. A rough manual estimate of the global ring
width average was also calculated for each board by averaging the
two ring width means, manually estimated at the two end cross-
sections. Table 3 presents a statistical analysis of the error between
the automatically and manually estimated global average ring
widths. The results indicate that the method was even more suc-
cessful in estimating the global average ring width per board than
in calculating individual averages per cross-section. This is because
the local effects of knots and other irregularities are likely to be
averaged out when calculating the global average ring width.
4.3. Automatic average ring width as an IP for tensile strength

The automatic ring width estimation method was applied on
the 383 Norway spruce boards destructively tested in tension.
The cross-sectional average ring widths were estimated at 300
locations per board on average. A moving mean filter was used
over the estimated averages to minimize the effects of knots. The
automatic global average ring width (AGRW) for each board was
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Fig. 13. Box plots of the error between automatically and manually estimated annual ring profiles. The error is calculated as the difference between the automatic and
manual estimations in terms of: (a) cross-sectional average ring widths, and (b) number of detected rings.

Fig. 14. Automatically estimated ring profiles vs actual CT-scanned cross-sections.
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Fig. 15. Distribution of the 152 manually estimated cross-sectional average ring
widths.

Table 3
Statistical analysis of the absolute error (in millimeter, except for R2) between the
automatically and manually estimated average ring widths in 76 Norway spruce
boards (152 end cross-sections).

Quantity Per cross-section Per board

Sample size 152 76

R2 0.84 0.90

Mean 0.32 0.29
Median 0.23 0.21
Std. 0.32 0.24
85th percentile 0.63 0.55
90th percentile 0.72 0.65
95th percentile 0.89 0.79
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then calculated as the mean of the filtered cross-sectional
averages.

Fig. 18 displays a scatter plot between qcw;12% and AGRW along

with the R2 and the line of regression. The plot indicates a weak
negative correlation between the two variables (R2 ¼ 0:17). These
results are in line with the previous studies that investigated the
correlation between the density and manually estimated ring
width in Norway spruce [9]. Scatter plots between the tensile
strength f t and individual IPs (qboard;12%, Edyn; 12%, Ddyn; 12%, Eb;90;nom,
and AGRW) are presented in Fig. 19. It can be noticed that AGRW
correlates better with f t (R2 ¼ 0:30) than with qcw;12%. This level
of correlation is consistent with results reported in [8,13] regarding
the correlation between f t and manually calculated average ring
width.

As explained in Section 2.1.3, the sample of 383 boards origi-
nated from seven different sawmills and five different sub-
regions in Sweden and Finland. In Table 4 R2 between qcw;12% and
AGRW are presented individually for the different regions and it
can be noted that when considering one region at a time the rela-
tionship is considerably stronger than what it is for the total sam-
ple of 383 boards. This indicates that there is a significant
relationship between annual ring width and clear wood density
but also that there are differences in density between different
sub-regions that does not correspond to annual ring width.

Next, different combinations of qboard;12%, Edyn; 12%, Ddyn; 12%,
Eb;90;nom, and AGRW were used to formulate nine IPs by means of
multiple linear regression. The objective of this investigation was
13
to evaluate the benefits of incorporating AGRW into the IPs cur-
rently used in machine strength grading. The nine IPs investigated
are defined as follows:

IPt;1 Eb;90;nom;AGRW
� � ¼ kt;0 þ kt;1 � Eb;90;nom þ kt;2 � AGRW ð13Þ

IPt;2 Edyn; 12%;AGRW
� � ¼ kt;3 þ kt;4 � Edyn; 12% þ kt;5 � AGRW

ð14Þ

IPt;3 Ddyn; 12%;AGRW
� � ¼ kt;6 þ kt;7 � Ddyn; 12% þ kt;8 � AGRW ð15Þ

IPt;4 Edyn; 12%; Eb;90;nom
� � ¼ kt;9 þ kt;10 � Edyn; 12% þ kt;11 � Eb;90;nom

ð16Þ

IPt;5 Edyn; 12%; Eb;90;nom;AGRW
� � ¼ kt;12 þ kt;13 � Edyn; 12% þ kt;14

� Eb;90;nom þ kt;15 � AGRW ð17Þ

IPt;6 Ddyn; 12%; Eb;90;nom
� � ¼ kt;16 þ kt;17 � Ddyn; 12% þ kt;18 � Eb;90;nom

ð18Þ

IPt;7 Ddyn; 12%; Eb;90;nom;AGRW
� �

¼ kt;19 þ kt;20 � Ddyn; 12% þ kt;21 � Eb;90;nom þ kt;22 � AGRW ð19Þ

IPt;8 qboard;12%; Eb;90;nom

� �
¼ kt;23 þ kt;24 � qboard12% þ kt;25 � Eb;90;nom

ð20Þ

IPt;9 qboard;12%; Eb;90;nom;AGRW
� �

¼ kt;26 þ kt;27 � qboard;12% þ kt;28 � Eb;90;nom þ kt;29 � AGRW ð21Þ
where kt;0 to kt;29 are the coefficients of the multiple linear

regression, and the subscript t indicates that the IPs above are used
for predicting the tensile strength. The results are summarized in
Table 5, which provides the R2 and SEE values between f t and
the IP combinations.

The R2 between f t and Eb;90;nom was 0.41. After adding AGRW

(i.e., IPt;1), the R2 increased considerably to 0.52 and the SEE

decreased by 0.80 MPa. Interestingly, the R2 obtained with IPt;1 is

significantly higher than the R2 corresponding to the correlation
between f t and Edyn; 12%. This indicates that calculating AGRW
enables commercial laser/optical scanners to predict the tensile
strength more accurately than what can be achieved by dynamic
excitation alone.

The R2 obtained when Edyn; 12% was used alone to predict f t was
0.44. A significant improvement was achieved when adding AGRW
to formulate IPt;2 (R2 ¼ 0:53). This indicates that it could be bene-
ficial to use AGRW in addition to Edyn; 12% when the scanner avail-
able does not have laser scanning capability. In case a laser
scanner is available, using Eb;90;nom together with Edyn; 12% (i.e.,
IPt;4Þ yields better tensile strength predictions. This IP, which is
one of the most accurate IPs available today in terms of tensile
strength prediction, resulted in a strong correlation (R2 ¼ 0:65).
Adding AGRW to this combination (i.e., IPt;5) increased the R2

slightly to 0.68 and decreased the SEE slightly by 0.30 MPa. IPt;8,

which combines Eb;90;nom with qboard; 12%, resulted in an R2 of 0.61
and SEE ¼ 6:0MPa. The correlation was slightly improved after
adding AGRW to this combination in IPt;9 (R2 ¼ 0:63; SEE ¼
5:8MPa).

As mentioned earlier, Ddyn; 12% can replace Edyn; 12% in the predic-

tion of f t when it is not possible to determine the density. The R2

between f t and Ddyn; 12% is 0.38, which is lower than the R2 between



Fig. 16. Automatically estimated ring profiles vs actual photographs of clear wood cross-sections.

O. Abdeljaber, T. Habite and A. Olsson Computers and Structures 275 (2023) 106912
f t and Edyn; 12% (0.44). However, combining Ddyn; 12% with AGRW

(i.e., IPt;3) increased the R2 considerably to 0.53, which is equal to

the R2 obtained by combining Edyn; 12% with AGRW. Moreover, add-
14
ing AGRW to Ddyn; 12% and Eb;90;nom in IPt;7 significantly improved the

R2 compared to when Ddyn; 12% and Eb;90;nom were used alone in IPt;6

(0.62 compared to 0.54).



Fig. 17. Automatically estimated ring profiles vs actual photographs of knotty and irregular cross-sections.

Fig. 18. Scatter plot between the qcw;12% and AGRW for the 383 boards tested in
tension.
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In summary, it can be concluded that calculating AGRW on the
basis of optical scanning can be useful in the following situations:

1. When it is not possible to determine the resonance frequency f 1
or the density qboard;12%, and the only available information are
the surface images and fiber orientations obtained by optical
and laser scanning.

2. When f 1 is available but determining qboard;12% is not possible.
15
3. When both f 1 and qboard;12% are available but determining
Eb;90;nom is not possible (i.e., when the scanner available does
not have laser scanning capability).

In Table 6, correlations between the five different individual IPs
are presented to provide further explanation and insight regarding
the relationships presented above.

4.4. Automatic average ring width as an IP for bending strength

The corresponding investigation as described in Section 4.3 was
conducted on the 409 Norway spruce boards destructively tested
in bending. The proposed method was used to calculate AGRW
for each board. Again, a weak correlation was observed between
qcw;12% and AGRW as shown in Fig. 20 (R2 ¼ 0:21) for the whole
sample, and considerably higher correlations were observed when
considering one sub-region at a time, as shown by the results pre-
sented in Table 7.

Fig. 21 shows scatter plots between the bending strength f m and
individual IPs (qboard;12%, Edyn; 12%, Ddyn; 12%, Eb;90;nom, and AGRW). A
slightly stronger correlation was obtained between f m and AGRW
with an R2 of 0.28. These results are in agreement with the findings
reported in [2,8–12] concerning the correlations between f m,
qboard;12%, and manually estimated average ring width.

Nine IP combinations were then investigated in order to evalu-
ate the benefits of calculating AGRW in different situations. These
IPs can be written as:

IPb;1 Eb;90;nom;AGRW
� � ¼ kb;0 þ kb;1 � Eb;90;nom þ kb;2 � AGRW ð22Þ
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Fig. 19. Scatter plots between f t and individual IPs.

Table 4
Coefficients of determination between qcw;12% and AGRW for sub-sets of boards from
different origins and for the total set of 383 boards.

Origin of boards Number of boards R2

south-east Sweden 110 0.25
south-west Sweden 48 0.46
mid Sweden 60 0.23
north Sweden 79 0.22
south-east Finland 86 0.32
whole sample 383 0.17
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IPb;2 Edyn; 12%;AGRW
� � ¼ kb;3 þ kb;4 � Edyn; 12% þ kb;5 � AGRW ð23Þ

IPb;3 Ddyn; 12%;AGRW
� � ¼ kb;6 þ kb;7 � Ddyn; 12% þ kb;8 � AGRW ð24Þ
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IPb;4 Edyn; 12%; Eb;90;nom
� � ¼ kb;9 þ kb;10 � Edyn; 12% þ kb;11 � Eb;90;nom

ð25Þ

IPb;5 Edyn; 12%; Eb;90;nom;AGRW
� � ¼ kb;12 þ kb;13 � Edyn; 12%

þ kb;14 � Eb;90;nom þ kb;15 � AGRW ð26Þ

IPb;6 Ddyn; 12%; Eb;90;nom
� � ¼ kb;16 þ kb;17 � Ddyn; 12% þ kb;18 � Eb;90;nom

ð27Þ

IPb;7 Ddyn; 12%; Eb;90;nom;AGRW
� �

¼ kb;19 þ kb;20 � Ddyn; 12% þ kb;21 � Eb;90;nom þ kb;22 � AGRW ð28Þ



Table 5
Correlation between f t and individual and combined IPs. Note that the regression
coefficients given in the table correspond to the units shown in Fig. 19.

IP Correlation
with f t

R2 SEE

qboard;12% 0.22 8.5
Edyn; 12% 0.44 7.2
Ddyn; 12% 0.38 7.6
Eb;90;nom 0.41 7.4
AGRW 0.30 8.0
IPt;1 ¼ �6:7þ 5:74Eb;90;nom � 4:16AGRW 0.52 6.6
IPt;2 ¼ 11:4þ 2:34Edyn; 12% � 3:84AGRW 0.53 6.6
IPt;3 ¼ �0:573þ 6:39Ddyn; 12% � 4:69AGRW 0.53 6.6
IPt;4 ¼ �43:2þ 2:30Edyn; 12% þ 5:48Eb;90;nom 0.65 5.7
IPt;5 ¼ �28:5þ 1:99Edyn; 12% þ 4:83Eb;90;nom � 2:37AGRW 0.68 5.4
IPt;6 ¼ �48:2þ 5:33Ddyn; 12% þ 5:22Eb;90;nom 0.54 6.5
IPt;7 ¼ �26:6þ 4:72Ddyn; 12% þ 4:12Eb;90;nom � 3:55AGRW 0.62 5.9
IPt;8 ¼ �75:3þ 0:103qboard; 12% þ 7:12Eb;90;nom 0.61 6.0
IPt;9 ¼ �55:6þ 0:0855qboard;12% þ 6:32Eb;90;nom � 2:18AGRW 0.63 5.8

Table 6
Correlation between the different prediction variables (individual IPs) for the 383
boards of board set 3.

R2 qboard;12% Edyn; 12% Ddyn; 12% Eb;90;nom AGRW

qboard;12% 1.0 0.64 0.15 0.00 0.17
Edyn; 12% 0.64 1.0 0.72 0.09 0.17
Ddyn; 12% 0.15 0.72 1.0 0.19 0.08
Eb;90;nom 0.00 0.09 0.19 1.0 0.14
AGRW 0.17 0.17 0.08 0.14 1.0

Fig. 20. Scatter plot between the qcw12% and AGRW for the 408 boards tested in
bending.
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IPb;8 qboard;12%; Eb;90;nom

� �
¼ kb;23 þ kb;24 � qboard12% þ kb;25 � Eb;90;nom

ð29Þ

IPb;9 qboard;12%; Eb;90;nom;AGRW
� �

¼ kb;26 þ kb;27 � qboard;12% þ kb;28 � Eb;90;nom þ kb;29 � AGRW ð30Þ
where kb;0 to kb;29 are the coefficients of the multiple linear

regression, and the subscript b indicates that the IPs above are used
for predicting the bending strength.
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Table 8 shows the performance of the nine IPs combinations for
prediction of bending strength and Table 9 shows correlations
between the five different individual IPs. On an overall level, the
potential of using AGRW as an additional predictor variable in def-
initions of IPs for prediction of bending strength (board set 4) was
similar to the potential of using it for prediction of tensile strength
(board set 3). However, some interesting differences and similari-
ties of results can be pointed out. First, for board set 4 ;R2 between
Edyn; 12% and f m was 0.50 (for board set 3 R2 between Edyn; 12% and f t
was only 0.41) and adding AGRW only increased it to 0.53 (i.e., to
the same level as for board sample 3). However, R2 between
Ddyn; 12% and f m was only 0.49 and adding AGRW increased it to
0.55. This means that results from both board set 3 (tension) and
board set 4 (bending) indicate that Ddyn; 12% in combination with
AGRW give just as good prediction of strengths as what Edyn; 12%

in combination with AGRW does. On the other hand, combining
Edyn; 12% and Eb;90;nom gave better prediction of strength, both for

board set 3 and board set 4 (R2 of 0.65 and 0.69, respectively), than
what the combination Ddyn; 12%, Eb;90;nom and AGRW did (R2 of 0.62
and 0.62, respectively, for board set 3 and 4). This may seem con-
tradictory, but can be explained by the following facts. There is no
correlation between qboard;12% (which is involved in the definition of
Edyn; 12%) and Eb;90;nom but there is a significant correlation between
AGRW and the other predictor variables. Therefore, it is particu-
larly effective to combine Edyn; 12% and Eb;90;nom. When this is done,
adding AGRW does not contribute much further. The correlation
between AGRW and Ddyn;12% is, however, relatively low and there-
fore combining Ddyn; 12% and AGRW gives a considerable improve-
ment compared to using Ddyn; 12% alone. In conclusion,
information of AGRW can in some cases fully compensate for lack
of information of density (qboard;12%Þ but combined information of
density, resonance frequency and fiber orientation is better than
combined information of AGRW, resonance frequency and fiber
orientation.

Solely based on results from board set 4 and prediction of bend-
ing strength, it can be concluded that AGRW could be useful in the
following practical situations:

1. When it is not possible to determine f 1 or qboard;12%, and the only
available information are the surface images and fiber orienta-
tions obtained by optical and laser scanning.

2. When f 1 is available but determining qboard;12% is not
possible.

4.5. Computational speed

The method was implemented in Python using a PC with Intel
Xeon W � 11955 M CPU at 2.60 GHz (64 GB memory) and an
NVIDIA RTX A5000 Laptop GPU. The computational speed of the
proposed method was evaluated over the 792 boards tested in
tension and bending. The analysis showed that the method
requires 383 ms, on average, to determine the pith locations
and detect the surface annual rings at around 300 cross-sections
per board (1.3 ms per cross-section). The average time required
to estimate the corresponding 300 annual ring profiles using the
algorithm described in Section 3.4 was 110 ms (0.37 ms per
cross-section). The average total time needed to calculate AGRW
per board was 493 ms (about 1.7 ms per cross-section). This
speed is well above the typical industry requirement of about
one second per board, and more than 100 times faster than the
method proposed in [23], which required 180 ms per cross-
section.



Table 7
Coefficients of determination between qcw;12% and AGRW for sub-sets of boards from different origins and for the total
set of 409 boards.

Origin of boards Number of boards R2

south Sweden 32 0.03
south-mid Sweden 78 0.44
mid-north Sweden 60 0.31
north-east Sweden 56 0.41
south Finland 60 0.39
south Norway 63 0.30
south-east Norway 60 0.43
whole sample 409 0.21

)b()a(

(e)

(d)(c)

Fig. 21. Scatter plots between f m and individual IPs.
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Table 9
Correlation between the different prediction variables (individual IPs) for the 409
boards of board set 4.

R2 qboard;12% Edyn; 12% Ddyn; 12% Eb;90;nom AGRW

qboard;12% 1.0 0.52 0.03 0.00 0.16
Edyn; 12% 0.52 1.0 0.63 0.13 0.29
Ddyn; 12% 0.03 0.63 1.0 0.29 0.18
Eb;90;nom 0.00 0.13 0.29 1.0 0.23
AGRW 0.16 0.29 0.18 0.23 1.0

Table 8
Correlation between f m and individual and combined IPs. Note that the regression
coefficients given in the table correspond to the units given in Fig. 21.

IP Correlation
with f m

R2 SEE

qboard;12% 0.14 10.1
Edyn; 12% 0.50 7.7
Ddyn; 12% 0.49 7.8
Eb;90;nom 0.43 8.2
AGRW 0.28 9.2
IPb;1 ¼ �5:1þ 7:10Eb;90;nom � 3:59AGRW 0.50 7.6
IPb;2 ¼ 7:18þ 3:34Edyn; 12% � 2:70AGRW 0.53 7.4
IPb;3 ¼ �8:19þ 8:68Ddyn; 12% � 3:68AGRW 0.55 7.3
IPb;4 ¼ �43:7þ 3:01Edyn; 12% þ 6:22Eb;90;nom 0.69 6.1
IPb;5 ¼ �41:5þ 2:96Edyn; 12% þ 6:11Eb;90;nom � 0:317AGRW 0.69 6.1
IPb;6 ¼ �48:8þ 7:25Ddyn; 12% þ 5:36Eb;90;nom 0.60 6.9
IPb;7 ¼ �32:8þ 6:62Ddyn; 12% þ 4:53Eb;90;nom � 2:32AGRW 0.62 6.7
IPb;8 ¼ �70:0þ 0:105qboard; 12% þ 8:47Eb;90;nom 0.58 7.1
IPb;9 ¼ �59:6þ 0:0958qboard;12% þ 7:98Eb;90;nom � 1:107AGRW 0.58 7.0
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5. Conclusion

This paper proposed a deep learning-based method for estimat-
ing annual ring profiles along Norway spruce boards on the basis of
optical scanning. The method utilizes a 1D-UNet for detecting sur-
face rings along with a standard 1D convolutional neural network
(1D-CNN) to determine the pith location. A radial profile estima-
tion algorithm was developed to determine the radii of the annual
rings according to the detected surface rings and the estimated
pith location. Both neural networks were trained on a large dataset
obtained from thousands of virtual knot-free boards generated by a
stochastic log and board generator.

The method was validated on 256 cross-sections obtained from
actual Norway spruce boards. The results indicated that all three
components of the method (i.e. the pith estimator, the surface ring
detector, and the radial profile estimation algorithm) perform very
well in clear wood sections. On the other hand, the performance
was inconsistent in knotty sections since the two neural networks
were trained exclusively on knot-free virtual boards. Both pith
location and average ring width estimates exhibited significant
disturbances around knots. These disturbances could be mitigated
by calculating the pith locations and average ring widths every few
millimeters along the board and then applying a moving average
filter on both estimates. The coefficient of determination R2

between the automatically estimated global average ring widths
and their manually determined counterparts was 0.895, indicating
a very good accuracy. Excluding the knotty sections when calculat-
ing the global ring width average may further improve the accu-
racy. However, this may require adding a fourth component to
the method for detecting knots.

The computational speed of the proposed method was more
than 100 times faster than the method presented in [23]. Further-
more, the method in [23] only estimates the pith and cross-
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sectional average ring width, whereas the proposed method can
also identify individual annual rings.

The potential of using the global average ring width AGRW,
automatically estimated by the proposed method, as an indicating
property in machine strength grading was also evaluated. Two
large samples consisting of 383 boards destructively tested in ten-
sion and 409 boards destructively tested in bending were used in
this investigation. The correlation between AGRW alone and the
tensile and bending strengths was not strong. However, combining
AGRW with other prediction variables, by means of multiple linear
regression, resulted in IPs that could be useful in certain situations.
For example, the results demonstrated that AGRW can be used to
partially compensate for absence of density and/or axial resonance
frequency measurements when predicting the tensile and bending
strengths.

In future work, the stochastic board generator can be extended
to generate virtual boards with realistic knots. This will allow for
training the 1D-CNN and 1D-UNet to better handle knotty areas
when estimating the pith location and detecting surface rings
without the need for additional filtering or postprocessing.
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