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VisRuler: Visual analytics for extracting
decision rules from bagged and boosted
decision trees

Angelos Chatzimparmpas1 , Rafael M. Martins1 and
Andreas Kerren1,2

Abstract
Bagging and boosting are two popular ensemble methods in machine learning (ML) that produce many indi-
vidual decision trees. Due to the inherent ensemble characteristic of these methods, they typically outper-
form single decision trees or other ML models in predictive performance. However, numerous decision paths
are generated for each decision tree, increasing the overall complexity of the model and hindering its use in
domains that require trustworthy and explainable decisions, such as finance, social care, and health care.
Thus, the interpretability of bagging and boosting algorithms—such as random forest and adaptive boosting—
reduces as the number of decisions rises. In this paper, we propose a visual analytics tool that aims to assist
users in extracting decisions from such ML models via a thorough visual inspection workflow that includes
selecting a set of robust and diverse models (originating from different ensemble learning algorithms),
choosing important features according to their global contribution, and deciding which decisions are essential
for global explanation (or locally, for specific cases). The outcome is a final decision based on the class
agreement of several models and the explored manual decisions exported by users. We evaluated the applic-
ability and effectiveness of VisRuler via a use case, a usage scenario, and a user study. The evaluation
revealed that most users managed to successfully use our system to explore decision rules visually, per-
forming the proposed tasks and answering the given questions in a satisfying way.
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Introduction

Ensemble learning (EL)1 is a well-established area of

machine learning (ML) that strives for better perfor-

mance by merging the predictions from various ML

models. Three prominent methods for building

ensembles are 2: bagging,3 boosting,4,5 and stacking.6

Bagging requires training many decision trees on sepa-

rate groups of instances and taking the average of their

predictions.3 Boosting attaches weak classifiers (e.g.

decision stumps or shallow decision trees) sequen-

tially, each improving the predictions made by the pre-

vious models.4,5 Stacking involves fitting many base

models from different algorithms on the same data set

and using a metamodel to combine their results.6 The

common ground between bagging and boosting meth-

ods is that they incorporate ML algorithms that pro-

duce numerous decision trees,7 such as random forest

(RF)8 and adaptive boosting/AdaBoost (AB),9 respec-

tively. The decision paths stemming from bagged or
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boosted decision trees are the target of the visual ana-

lytics (VA) approach proposed in this paper.

The popularity of RF and AB is confirmed by their

success in solving typical supervised classification

problems, which constitute the majority of problems

in the real world.10,11 An in-depth study12 that esti-

mates the performances of 179 algorithms of various

types13 concludes that bagged decision trees of RF are

better than other (types of) algorithms, such as deep

learning approaches. Despite their remarkable predic-

tive power, a crucial concern for algorithms that gen-

erate many decision trees is interpretability. Brieman,14

for instance, indicates that RF models, while superb

predictors, receive a low rating regarding their inter-

pretability. As ML models can provide incorrect pre-

dictions,15 ML experts have to check whether the

model functions properly.16 Also, domain experts in

critical fields need to understand how a specific pre-

diction has been reached in order to trust in ML.17

For example, in medicine, a physician might not rely

on a model without explanations of how and why it

forms a prediction, since patient lives are at risk.18–20

Or, in the financial domain, declined decisions for

loan applicants require additional transparency with

the precise justification of the outcome.21 Although

both algorithms follow the same concept of growing

decision trees, their objectives differ: AB focuses on

correcting misclassified training instances, while RF

mainly reduces variance to achieve better generaliz-

ability. However, this fundamental goal of the former

makes it susceptible to noisy cases,22 while the latter

arguably remains intact.23 Thus, one research ques-

tion that remains open is: (RQ1) Given the differences

between rules obtained from bagged decision trees

and those derived from boosted decision trees, how

does their combination lead to potential benefits,

regarding interpretability enhancement for decision

making?

The interpretation of ML models typically happens

either at a global or a local level.24 Global approaches

intend to explain the ML model as a whole,25 assisting

domain experts in exploring the general impact of each

decision and gaining confidence in the produced pre-

dictions. On the other hand, local approaches aim to

provide case-based reasoning,26,27 allowing domain

experts to review a prediction and trace its decision

path in order to conclude if the decision rule, and con-

sequently the prediction, is trustworthy.28 Nevertheless,

comparing numerous alternative decision paths without

the support of an intelligent system is a time-consuming

and resource-heavy procedure. For example, to scan

the list of test instances rapidly and investigate specific

instances of interest from multiple perspectives (e.g.

outliers and borderline cases) can be crucial.29 Thus,

the whole process can benefit from a fast approach for

automatic generation and semi-automatic exploration

of reliable decisions with ML experts’ involvement. It

should also result in robust decisions, since domain

experts are the most suitable for carefully examining

and then manually picking sensible decisions according

to their prior experience and understanding. One

research question that arises from this (possibly under-

researched) need for cooperation, starting from the

selection of models to the extraction of insightful deci-

sions, is: (RQ2) How can VA tools/systems support the

collaboration between ML experts and domain

experts?

In this paper, we present VisRuler, a VA tool that

addresses the research questions described above by

supporting the exploratory combination of decisions

from two closely-related ML algorithms (i.e. RF and

AB). VisRuler uses validation metrics for picking per-

formant and diverse models and combines the decision

paths from bagged and boosted trees to extract insight-

ful and interpretable rules. Our contributions consist

of the following:

� a visual analytic workflow for defining a methodi-

cal way of evaluating decisions (cf. Section System

Overview and Use Case);
� a prototype VA tool, called VisRuler, that applies

the suggested workflow with coordinated views

that support the joint effort between ML experts

and domain experts for extracting rules and mak-

ing decisions, respectively;
� a use case and a usage scenario, applying real-

world data, that validate the effectiveness of utiliz-

ing both bagged and boosted decision trees at the

same time; and
� a user study that showed promising results.

The rest of this paper is organized as follows. In

Section Related Work, we discuss relevant techniques

for visualizing bagging and boosting decision trees,

along with tree- and rule-based models and a bulk of

relevant works of visual analytics systems for multi-

model comparison. Section Random Forest versus

Adaptive Boosting explains the core differences

between bagging and boosting, and it further moti-

vates why mixing decisions stemming from both algo-

rithms could be beneficial for the users. In Section

Target Groups, Design Goals, and Analytical Tasks,

we describe the design goals and analytical tasks for

comparing alternative decision rules, and we present

the target groups (i.e. our stakeholders). Section

System Overview and Use Case focuses on the func-

tionalities of the tool and describes the first use case

with the goal of identifying which countries have a

higher happiness score index and why. Next, in

Section Usage Scenario, we demonstrate the
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applicability and usefulness of VisRuler with a usage

scenario comprising another real-world data set focus-

ing on loan applications, followed by Section User

Study where we assess the effectiveness of VisRuler by

reporting the results of a user study. Subsequently, in

Section Limitations and Future Work, we discuss sev-

eral limitations of our system and opportunities for

future work. Finally, Section Conclusions concludes

our paper.

Related work

According to a recent survey30 that has extensively

analyzed tree- and rule-based classification, several VA

systems have been developed for this topic in the

InfoVis and VA communities. However, most of these

tools do not employ algorithms and measures (except

for the accuracy metric) in order to compare model

quality.30 This section reviews prior work on the inter-

pretation of bagged and boosted decision trees and the

more general tools for tree- and rule-based visualiza-

tion, comparing them with VisRuler to highlight our

tool’s novelty.

Interpretation of bagged decision trees

As in VisRuler, relevant works that utilize bagging

methods use the RF algorithm to produce decision

trees.31–35 iForest31 provides users with tree-related

information and an overview of the involved decision

paths for case-based reasoning, with the goal of reveal-

ing the model’s working internals. However, iForest

can be used only for binary classification, while

VisRuler can be used with multi-class data sets, see

Section System Overview and Use Case. Also, the fea-

ture flow, a node-link diagram, suffers from scalability

issues (a challenge only partially overcome with aggre-

gation). Our tool employs dimensionality reduction

for clustering all decisions extracted by multiple mod-

els, thus enabling users to gain insights into the pat-

terns inside a large quantities of rules. Therefore,

VisRuler allows users to mine rules for both a

particular class outcome and in connection to a

specific case. ExMatrix32 is another VA tool for RF

interpretation that operates using a matrix-like visual

representation, facilitating the analysis of a model and

connecting rules to classification results. While the

scalability is good, it does not cover the task of finding

similarities between decisions from diverse models and

algorithms. In conclusion, none of the above works

have experimented with the fusion of bagged and

boosted decision trees, and in particular, with

visualizing both tree types in a joint decisions space to

observe their dissimilarity, which can result in unique

and undiscovered decisions. RfX33 supports the

comparison of several decision trees originating from a

RF model with a dissimilarity projection and icicle

plots, allowing electrical engineers to browse a single

decision tree by using a node-link diagram. In con-

trast, VisRuler does not concentrate on a specific

domain and gives attention to unique decision paths

instead of trees with more scalable visual representa-

tions. Colorful trees34 follows a botanical metaphor

and demonstrates many core parameters essential to

comprehend how a RF model operates. This method

allows customized mappings of RF components to

visual attributes, thus enabling users to determine the

performance, analyze the behavior of individual trees,

and understand how to tune the hyperparameters to

improve performance or efficiency. However, this work

is targeted toward hyperparameter tuning and does

not focus on concurrently extracting and analyzing the

decisions from each RF and AB model. Additionally,

it is impossible to accomplish case-based reasoning

with the proposed visual representation. Finally, Neto

and Paulovich35 describe the extraction and explana-

tion of patterns in high-dimensional data sets from

random decision trees, but model interpretation

through the exploration of alternative decisions

remains uncovered by this work (when compared to

VisRuler).

Interpretation of boosted decision trees

Special attention has been given to boosted decision

trees with VA tools for diagnosing the training process

of boosting methods36–38 and interpreting their deci-

sions.39 Closer to our work, GBMVis39 aims to reveal

the structure and properties of Gradient boosting,40

enabling users to examine the importance of features

and follow the data flow for different decisions. A

node-link diagram may limit its scalability to monitor

hundreds or thousands of decisions concurrently, as

opposed to VisRuler. Furthermore, our novel parallel

coordinates plot adaptation allows users to instantly

combine rules and observe their differences to identify

unique decisions. BOOSTVis36 employs views such as

a temporal confusion matrix visualization for verifying

the performance changes of the model, a t-SNE41 pro-

jection for inspecting the instances, and a node-link

diagram for examining the rules. Through

GBRTVis,37 users can explore Gradient boosting40

with a node-link diagram for the rules, the instances

distribution shown in a treemap, and continuously

monitoring the loss function. VISTB38 contains a

redesigned temporal confusion matrix to track the per-

instance prediction during the training process. It also

enables the comparison of the impact of individual

features over iterations. These VA systems focus on

the online training of boosting methods and aim to
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assist in feature selection and hyperparameter tuning.

While these problems are (partially) tackled by our

tool, we concentrate on interpreting the decisions from

bagged and boosted decision trees and comparing

them across models.

Tree- and rule-based model visualization

Existing work on single decision tree visualization has

experimented with different visualization techniques,

such as node-link diagrams,42–51 treemaps,52,53 icicle

plots,54,55 star coordinates,56,57 and 2D scatter plot

matrices.58 These techniques do not generalize well

when exploring multiple decision trees, which is

VisRuler’s primary design goal. Visualizing the surro-

gate models to approximate the behaviors of the origi-

nal models, either globally or locally, is another branch

of related works.59–66 Rule-based visualizations have

also been deployed for the interpretation of complex

neural networks.67–70 Nevertheless, these models dif-

fer due to the lack of inherent decisions that could be

extracted directly from the bagged and boosted deci-

sion trees. The core mechanism of bagging and boost-

ing methods is the generation of decisions based on

the training data, which then experts can interpret.

Finally, multiple static visualizations and a few

interactive VA tools have been developed for specific

domains of research, such as medicine,71–75 biol-

ogy,76,77 security,78 and social sciences.79 However,

VisRuler is a model-agnostic solution that could be

modified to work with various domains, depending on

the given data set and the domain expert.

Visual analytics for multi-model comparison

Several VA systems exist that enable the comparison

of ML models in classification problems, especially

with the evaluation of predictive performance and the

importance of features.80,81 EnsembleLens82 is a VA

system working with multiple models trained into dif-

ferent feature subsets. The end goal is to visualize the

correlation between ensemble models, algorithms,

hyperparameters, and features that achieve the highest

score for anomalous cases. On the contrary, VisRuler

is not limited to anomaly detection problems, instead

focusing on the interpretability of insightful rules

extracted from two ensemble algorithms that produce

tree-based decisions. Schneider et al.83 explored the

impact of comparing side-by-side the data and model

spaces. They used both bagging and boosting ensem-

bles and investigated these algorithms’ influence on

the data with the purpose of adding, deleting, or repla-

cing models from the model space. We also support

that this mixture of bagging and boosting models is

beneficial because each algorithm can bring different

information to the analysis of decision rules; for more

details, please check Section Random Forest versus

Adaptive Boosting. However, we abstract complex

models into individual decisions that are accountable

to and easily interpretable by users.14

EnsembleMatrix84 and Manifold85 are two VA tools

specifically designed for model comparison. The for-

mer uses a confusion matrix representation for con-

trasting models. The latter produces and compares

pairs of models across all data classes. We adopt a simi-

lar approach as with those tools, but instead of decid-

ing which model was ‘‘optimal,’’ we export all decisions

that work well with a specific test instance to be exam-

ined by domain experts. Squares86 is a visualization

approach that showcases the per-class performance of

a multi-class data set. It helps users prioritize their

efforts by calculating common validation metrics.

Similarly, Boxer87 is a system that faciliates the interac-

tive exploration of subsets of training and testing data

while comparing the performance of multiple models

on those instances. Another VA system, called

QUESTO,88 enables domain experts to control objec-

tive functions to set specific constraints and to search

for an ‘‘optimal’’ model for this purpose. Li et al.73

developed a VA system that allows multi-model com-

parison based on clinical data predictions with a spe-

cial attention to feature contribution. PipelineProfiler89

is a visualization tool for the exploration of several

AutoML90 pipelines comprising multiple models.

StackGenVis80 is a VA system for composing powerful

and diverse stacking ensembles6 from a pool of base

models. Finally, VisEvol81 is a VA tool that supports

the interactive intervention in the evolutionary hyper-

parameter optimization process while exploring five

alternative ML algorithms. On the one hand, we also

facilitate users to assess various models. On the other

hand, we focus on making the process of model-

learned decision rules more transparent and justifiable

with the involvement of a domain expert at specific

phases (see Figure 3 and Section System Overview and

Use Case).

There is also a body of literature devoted to regres-

sion problems.91–94 For instance, BEAMES94 contains

four ML algorithms and a model sampling method,

with the help of which the system generates an ordered

list of models that aids the user in selecting a perfor-

mant model. Although feature ranking is also covered

by this tool, ML experts working with VisRuler aim at

gathering several manual decisions extracted from two

directly comparable algorithms that the domain expert

should interpret. Finally, classification requires differ-

ent handling in terms of the available algorithms and
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validation metrics when compared to regression tasks,

making such solutions challenging to adapt to classifi-

cation problems and vice versa.

Random Forest versus Adaptive Boosting

In this section, we present a quick overview of the gen-

eral algorithmic steps of (and differences between) the

RF and AB algorithms, in order to familiarize potential

readers with the techniques involved and to highlight

the importance of our tool. For more details, please

refer to the extensive literature published on the two

algorithms since their seminal works.8,9

Suppose there are N instances in our training data

set. If we consider a binary classification problem,

then we will have: xi 2 R
n, yi 2 f�1, 1g, where n is the

number of features, x is the set of instances with

i =1, 2, . . . ,N, and y is the target variable which is

either �1 or 1, designating either class C1 or C2.

Random Forest

This algorithm works in two stages. The first stage

involves integrating numerous decision trees to con-

struct the RF, and the second stage involves making

predictions for each tree created in the first stage, fol-

lowed by a majority voting strategy.

The algorithm starts by looping for m= 1 to M,

where M is the number of trees/estimators hyperpara-

meter. Then, a bootstrap sample Z
� of size N is drawn

from the training data by sampling N times with

replacement. Afterward, a decision tree Tm is grown

with the bootstrapped data by recursively repeating

the following steps for each terminal node of the tree,

until specific conditions have been met (e.g. the maxi-

mum depth of a tree dmax is achieved). The first step is

to form individual decision trees: n features, their

number is limited by the maximum number of features

hyperparameter, and it is selected at random from the

N instances (defined in the previous paragraph).

Next, the best split point pv among the n is picked.

Finally, the node v is split into two child nodes.

The output is an ensemble of trees fTmgM
1 that can

be used to make predictions at a new test instance k,

as follows. Let Ĉm(k) be the class prediction of the m

th decision tree; the output will be calculated as:

majority votefĈm(k)
M
1 g. For a test instance, the deci-

sion path that predicts it is followed repeatedly for

every decision tree, and the test instance gets assigned

to the category that wins the majority votes.

For each v in a decision tree, the pv refers to a fea-

ture and different criteria (e.g. the minimum samples in

each leaf of a tree smin is reached) tunable through the

hyperparameter settings that are used to split this node

to children nodes. The Gini impurity95 measurement

is utilized in our case to pick this pv, formulated for

each v as follows: GI(v)=
PC

c= 1 Pvc � (1� Pvc),
Figure 1. where Pvc is the probability of a certain classi-

fication c (in our example C1 and C2). Given an input

test instance, each decision tree will fall into a root-

to-leaf decision path, which leads to its prediction.

Every decision path (or simply decision) is constructed

by defining a range of minimum and maximum values

for each feature extracted from RF and AB grown deci-

sion trees. Therefore, for n features, we will have n � 2
ranges, that is, dimensions for projecting the decisions

visible in Figure 1(c).

Adaptive Boosting

This algorithm fits successively many decision stumps

or even decision trees to the training data, using vari-

ous weights. The latter occurs only if the maximum

depth hyperparameter is set to . 1. It begins by fore-

casting the original data set and weighting each obser-

vation equally. If the first decision stump’s prediction

is inaccurate, the observation that was mistakenly

anticipated is given more weight. Because it is an itera-

tive process with a specific improvement step con-

trolled by the learning rate hyperparameter, it will

continue to add decision stumps until the number of

trees/estimators reaches a limit.

For each instance, AB calculates the weights. Each

training example is given a weight to determine its

importance in the training data set. When the given

weights are substantial, that set of training instances is

more likely to influence the training set and vice versa.

All training instances will start with the same weight,

defined as: wi = 1=N. The weighted samples always

add up to 1, and each individual weight’s value will be

between 0 and 1.

The algorithm starts by looping for m= 1 to M, fit-

ting a model Gm(x) to the training data using weights

wi. After that, AB uses the method to calculate the real

effect of this classifier in categorizing the training

instances: am = log ((1� errm)=errm), where errm is

the total number of misclassifications for that training

set divided by the training set size. Therefore, am rep-

resents how influential this stump will be in the final

categorization. When a decision stump performs well

or has no misclassifications, the error rate is 0 and the

a value is relatively significant and positive. The alpha

value will be 0 if the stump only classifies half correctly

and half erroneously. Finally, the a would have a big

negative number if the stump consistently produced

misclassified data.

After plugging in the actual values of total error for

each stump, the sample weights are updated. The
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following formula is used to accomplish that:

wi =wi�1 � ea. In detail, the new sample weight will be

equal to the old sample weight multiplied by Euler’s

number, raised to a. As explained in the previous

paragraph, the two cases for a are: (a) positive when

the predicted and the actual output agree or (b) nega-

tive when the predicted output does not agree with the

actual class (i.e. the sample is misclassified). In the

first case, the sample weight is decreased from what it

was before, since the algorithm already performs well.

In the second case, the sample weight gets increased

so that the same misclassification does not repeat in

the next stump. This procedure is followed so that the

stumps are dependent on their predecessors. Lastly,

the output for AB is the sum of all trees:

G(x)=6
PM

m= 1 amGm(x)
h i

.

Differences

There are two key distinctions between bagging and

boosting, which apply for the RF and AB algorithms.

First of all, boosting changes the distribution of the

training set adaptively based on the performance of

previously constructed classifiers, whereas bagging

changes the distribution of the training set stochasti-

cally. Second, boosting employs a function of a classi-

fier’s performance as a weight for voting, whereas

bagging uses equal weight voting. Boosting appears to

minimize both bias and variance, unlike bagging,

which is primarily for variance reduction. Following

the training of a decision stump, the weights of mis-

classified training examples are raised while the

weights of correctly classified training examples are

dropped in order to train the following decision

stump. Thus, efforts to overcome the bias of the most

recently generated weak model by concentrating

greater attention on the samples that it misclassified

gain traction. Because of its capacity to minimize bias,

boosting works particularly effectively with high-bias

but low-variance weak models. The fundamental issue

with boosting appears to be poor performance in the

presence of noise.22 This is to be expected, as noisy

cases are more likely to be misclassified, and their

weight will rise as a result.

To sum up, for data with little noise, boosting is

regarded as being stronger than bagging; nevertheless,

bagging algorithms are far more resilient than boosting

in noisy environments.23 To mitigate this problem,

using both algorithms to derive decisions is a novel

idea we adopt. In the future, we may expand our

approach to experiment with any decision-based algo-

rithm (as in prior works96,97), but in this paper, we

chose to combine two already widely-used algorithms

(i.e. RF and AB).

Target groups, design goals, and analytical
tasks

In this section, we specify the main design goals (G1–

G5) upon which VisRuler (or any other VA system)

should base its development regarding scenarios of

extracting decision rules from bagging and boosting

ensemble algorithms. Afterward, we report the corre-

sponding analytical tasks (T1–T5) that a user should

be capable of performing while he/she obtains assis-

tance and guidance from our proposed system. One

important aspect of the design of VisRuler is the need

for collaboration between different experts, which we

also motivate here.

Target groups

In the InfoVis/VA communities, most of the research

in explainable ML focuses on assisting ML experts and

developers in understanding, debugging, refining, and

comparing ML models.98,99 In this paper, we expand

our method to involve another target group: the vari-

ous domain experts affected by the ML progress in

fields such as finance, social care, and health care.

With the growing adoption of ML in different areas,

domain experts with little knowledge of ML algo-

rithms might still want (or be required) to use them to

assist in their decision-making. On the one hand, their

trust in such decisions could be low due to a lack of in-

depth knowledge on how models are learning from the

training data. On the other hand, ML experts often

have little prior knowledge about the data from partic-

ular domains. Thus, the primary goal of VisRuler is to

combine the best of both worlds, that is, to offer a

solution that combines the above-mentioned benefits

from both expert groups. More details about the colla-

boration between the ML and domain experts can be

found in Section System Overview and Use Case.

Design goals

Our design goals originate from the analysis of the

related work in Section Related Work, especially the

three design goals from Zhao et al.31 (G2 and G3) and

the four questions from Ming et al.68 (G1, G4, and

G5) targeted to experts in domains such as health care,

finance, security, and policymakers. Our methodology

is similar to Zhao et al.31, who reviewed 35 papers

from the ML, visualization, and human-computer

interaction (HCI) communities to come up with their

decision goals.

G1: Bring diverging models’ performance to the
spotlight. A VA system must first focus on what each

model has learned in general; as such, the assessment

120 Information Visualization 22(2)



of every model’s performance (to decide which should

remain under use) is a prerequisite. Models that fail to

perform according to user-defined standards should

not be part of the following procedure.

G2: Disclose connections between features and
predictions. VA systems should expose the features’

impacts on predictions and allow humans to delete

needless features based on that. During training, ML

models learn different mappings between input fea-

tures and resulting predictions based on the inherent

mathematical functions used and the setting of hyper-

parameters. These mappings describe model behavior

and help humans comprehend RF and AB models’

properties.

G3: Discover the core hidden operating processes. The

underlying functioning processes of RF and AB mod-

els must also be revealed to check whether the models

are working correctly and to understand why a given

prediction was made. Before making a decision,

humans should be able to audit the decision process of

a prediction and ensure that they agree. Many RF and

AB model interpretation problems can be resolved by

analyzing the individual decision paths.

G4: Reason about the relationship of certain features
and knowledge acquired. Unlike G2, this one concen-

trates on deviations in ranking features for justifying

the rule-based generated knowledge. VA systems can

support humans with this alignment of features and

knowledge extracted through the decision rules. Since

domain experts may have knowledge and ideas based

on years of research and study that current ML models

do not make use of, the facilitation of communication

between ML models and humans is a primary design

goal.

G5: Guide to unconfident and contradictory
predictions. This goal emerges when a model fails to

perform well on particular test instances. In the pro-

duction deployment of ML models, a rule that some

models are confident about may not be generalizable.

Although undesirable, it is relatively common for

models to produce contradictory predictions for cer-

tain difficult-to-classify test instances. As a result, VA

systems must advise users on which occasions each

model failed to predict correctly.

Analytical tasks

To fulfill our design goals, we have determined five

analytical tasks that should be supported by our VA

system (described in Section System Overview and

Use Case).

T1: Compare the performance and architecture of mod-
els for selecting the most effective ones. Users should

be able to compare different models with the support

from various measurements (G1), as follows: (1) illus-

trate the performance of each model based on multiple

validation metrics; (2) distil the number of false-

positive and false-negative instances from the confu-

sion matrix for every model; and (3) derive the

number of decision trees and decision paths per

model, to facilitate high-level comparison.

T2: Investigate the contribution of global features accord-
ing to different models and algorithms. Following the

preceding task, users should be guided through the

process of selecting important features (G2). Thus, it is

crucial to enable the comparison between per-algorithm

and per-model feature importances.

T3: Explore alternative clusters of decisions for global
explanation and case-based reasoning. The summari-

zation of the decisions in a single view that combines

the decisions of different algorithms and models

should be accomplished to allow users to assess the

influence of each decision (G3). For example, some

decisions could overfit, and others could contain a

mixture of instances falling in different classes. This

last phenomenon increases their impurity. Users

should be able to interact and explore this decisions

space.

T4: Compare decision rules based on local feature
ranking. The global features described in T2 might

not be similarly important for specific decisions, hence,

local feature ranking via contrastive analysis100 could

shed some light upon this task (G4). Moreover, the

interpretation of rules extracted from the space of solu-

tions (see T3) could be achieved if users are capable of

investigating the values of both training and testing

instances.

T5: Identify the different types of failure cases and con-
frontation via manual decisions. Failure to converge to

a certain result due to the disagreement of the ML

models should be highlighted to users (G5). For

instance, if there is no uniformity in the final decision

or the majority voted for the wrong result, it could be

that these instances are outliers, borderline cases, or

simply misclassified; being able to explore such cases

is essential.
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System overview and use case

Motivated by the above design goals and tasks, we have

developed VisRuler. Our VA tool is written in Python

and JavaScript. More technical details are available on

GitHub.101

The tool consists of five main interactive visualiza-

tion panels (Figure 1): (a) models overview (T1), (b)

global feature ranking (T2), (c) decisions space (T3), (d)

manual decisions (T4), and (e) decisions evaluation (T5).

Our proposed workflow is a two-party system with the

ML expert on the one side and the domain expert on

the other (see Figure 2). The above-mentioned panels

of our tool support the experts’ collaborative effort,

specifically: (i) the ML expert should select powerful

and diverse models from the two separate algorithms

based on their performance assessed by validation

metrics (Figure 1(a)); (ii) during this phase, the ML

expert should choose which features are important for

the active models compared to all models (see Figure

1(b)); (iii) in the next exploration phase, both experts

should examine which decisions explain the data set

globally and decide upon impactful decisions for a spe-

cific test instance (cf. Figure 1(c)); (iv) in this same

phase, the domain expert should interpret the manual

decisions selected in order to gain insights about the

models’ decisions—either globally or locally—for a

particular test instance (Figure 1(d)); and (v) in the

final phase, the domain expert can evaluate the agree-

ment and extract suitable manual decisions while the

Figure 1. Extracting decision rules for manual evaluation with VisRuler: (a) panel with visual metaphors for selecting
performant and diverse models, (b) box plot for feature selection according to per algorithmic importance, (c) visual
embedding of computed decisions that training instances fall in due to their values, (d) vertical parallel coordinates plot
that summarizes the rules with value ranges for each feature and highlights the current test instance, and (e) horizontal
stacked bar chart for revealing the class agreement of each model against the manual decisions, together with the
parallel coordinates plots for tuning hyperparameters and training new models.

Figure 2. The VisRuler workflow allows ML experts to
select performant and diverse models, choose important
features, and retrain models with new hyperparameters.
Domain experts can explore robust decisions, compare
them to global standards, identify local decisions for a
specific test instance, and extract them.
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ML expert should search for new models if the search

did not reach a satisfactory level according to the

domain expert (Figure 1(e)). Overall, this is an itera-

tive process with a final goal to receive insightful deci-

sions that should be interpretable for all counterparts.

Details about the different views within the panels can

be found below.

VisRuler incorporates a single workflow for the syn-

chronous co-located collaboration between the ML

expert and the domain expert, as depicted in Figure 3.

It is a VA system that comprises multiple coordinate

views arranged in a single webpage to manage the

entire process without any distractions occuring due to

the navigation to different tabs. The three phases and

five visualization panels are already described in the

previous paragraph. Both experts’ usual interactions

with the system can be aggregated into seven steps that

are followed in the use case explained in this section

and the usage scenario in Section Usage Scenario.

Most of the time, the active role (cf. orange color in

the diagram) is given to the ML expert who is respon-

sible for selecting models (step 1), selecting features

(step 2), exploring decisions (step 4), and finally, in

step 7, search for new models (ideally based on the

domain expert’s feedback). On the other hand, the

domain expert often has a more passive role (see teal

color in the diagram) since he/she should focus on

important features (step 3) and interpret the decision

rules (step 5) based on the prior step. But in step 6,

the domain expert becomes active because he/she has

to decide which manual decisions should be extracted,

for example, to be used as input to another tool, or as

evidence for his/her diagnosis. The meeting point

between both experts is step 4, the exploration of deci-

sions, where the ML expert can control the multiple

implemented filtering options (e.g. acceptable impur-

ity level) while the domain expert pinpoints specific

decision paths that could be interesting for a detailed

manual investigation. Without their continuous com-

munication while they operate the system and observe

each other’s actions, gaining deep insights would be

very difficult.

The workflow of VisRuler is model-agnostic, as

long as rules can be extracted from the ML algorithms.

Currently, the implementation uses two popular EL

methods: (1) RF and (2) AB (cf. green and blue colors

in Figure 2, respectively). This choice was intentional

since bagging methods work differently than boosting,

as explained in Section Random Forest versus

Adaptive Boosting. Furthermore, each data set is split

in a stratified fashion (i.e. keeping the class balance in

training/testing split) into 90% of training samples and

10% of testing samples. We also use cross-validation

with 3-folds on the training set, and we scan the hyper-

parameter space for 10 iterations using Random

search102 in each algorithm separately. The common

hyperparameters for both ML algorithms we experi-

mented with (and their intervals) are: number of trees/

estimators (2–20), maximum depth of a tree (10–25),

and minimum samples in each leaf of a tree (1–10).

An extra hyperparameter of RF is the maximum num-

ber of features to consider when looking for the best

split ((
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of features
p

)–(number of features� 1)).

AB has the learning rate (0.1–0.4). It is straightfor-

ward to adapt those values through the code.

In the following subsections, we explain VisRuler by

describing a use case with the World Happiness Report

2019103 data set obtained from the Kaggle repository.

This data set contains 156 countries (i.e. instances)

ranked according to an index representing how happy

the citizens of each country are. The six other variables

that could be considered as features are: (1) GDP per

capita, (2) social support, (3) healthy life expectancy, (4)

freedom to make life choices, (5) generosity, and (6) cor-

ruption perception. Because this data set does not con-

tain any categorical class labels, we follow the same

approach as in Neto and Paulovich35 to discretize the

happiness score in three different bins. Hence, we are

converting this regression problem into a multi-class

classification problem.104 Also in our case, the original

variable Score becomes the target variable that our ML

models should predict. In detail, the HS-Level-3 class

contains 42 countries with happiness scores (HS)

ranging from 6:13 to 7:76, the HS-Level-2 groups 79

countries from 4:49 to 6:13, and the HS-Level-1 class

encloses 35 countries from 2:85 to 4:49.

Models overview

The exploration starts with an overview of how 10 RF

and 10 AB models performed based on three valida-

tion metrics: accuracy, precision, and recall. The

Figure 3. The VisRuler cooperation diagram illustrates
how synchronous co-located collaboration typically
happens between the ML expert and the domain expert.
Three phases and five panels support their teamwork in a
single-page tool, with the ML expert being more active
(orange color) than the domain expert who receives and
analyzes information (teal color). The seven linear steps
taken by each user are also noted at the bottom.

Chatzimparmpas et al. 123



models are initially sorted according to the overall

score, which is the average sum of the three metrics.

This choice guides users to focus mostly on the right-

hand side of the line chart (as showcased in Section

Use Case). Green is used for the RF algorithm, while

blue is for AB. All visual representations share the

same x-axis: the identification (ID) number of each

model. The design decision to align views vertically

enables us to avoid repetition and follows the best

practices. The line chart in Figure 1(a) always presents

the worst to best models from left to right. The y-axis

denotes the score for each metric as a percentage, with

distinct symbols used for the different metrics. The

confusion plot inspired by Sankey diagrams in Figure

1(a) visually maps a confusion matrix of only false-

positive and false-negative values for each model into

nodes with different heights depending on the number

of confused training instances. Then, they are divided

into two groups reflecting the two algorithms. It also

presents the confusion of all individual classes for the

different instances when comparing two subsequent

models, as illustrated in both Figures 1(a) and 4(a).

The width of the band between two consecutive nodes

indicates the increase or decrease in confusion from

one model to the other sequentially, so the smaller the

height of a line, the better a model’s prediction com-

pared to its predecessor or successor. The same effect

applies to each node that absorbs the lines. With this

plot, users can focus on the misclassified training

instances that are more important for a given problem.

For example, a medical doctor is typically cautious

when dealing with false-negative instances since

human lives may be at risk. Users can also check how

many misclassified instances exist in each model and

propagate from one model to another for each label

class. Inspired by previous works,36,38 we utilize a dis-

tinct visual metaphor for this plot to convey—as con-

cisely as possible—the per class confusion for the

several under examination ML models. The bar charts

in Figure 1(a) showcase the two main architectural

components of the bagged and boosted decisions

trees, which are the number of trees/estimators hyper-

parameter and the number of decisions generated

from these trees for every model mapped in the y-axes,

respectively. These visualizations allow users to check

the related hyperparameters of the individual models

in a juxtaposed manner, since the number of decisions

is related to the number of trees and the maximum

allowed depth of each tree (i.e. max_depth hyperpara-

meter). Finally, the state shown in Figure 1(a) desig-

nates which models are currently active (green or blue,

respectively). In order to enable the comparison

between the currently active model against all models,

each icon for an active model contains a brown-

colored slider thumb (Figure 1(a), legend on the left).

Global feature ranking

The box plots which aggregate per-algorithm impor-

tance (see Figure 1(b)) provide a holistic view of the

performance of the models. Each pair of boxes is

related to a unique feature, summarizing the active

models’ normalized importance per feature (from 0 to

1, i.e. worst to best). The box plots are sorted accord-

ing to the average values of all active models, visible as

a number in teal. The difference to all models being

active is shown with arrows facing up for increase or

down for decrease in per-feature importance. For both

algorithms, we compute feature importance as the

mean and standard deviation of accumulation of the

impurity decrease within each tree. This is a measure-

ment that can be calculated directly from RF105 and

AB106 algorithms, cf. Section Random Forest versus

Adaptive Boosting.

Decisions space

The projection-based view in Figure 1(c) is produced

with the UMAP algorithm,107 selected due to its

popularity and the results of a recent quantitative sur-

vey108 that found this algorithm the best overall among

many others. In the visual embedding, decision paths

are clustered based on their similarity according to

their ranges for each feature, as described in Section

Random Forest versus Adaptive Boosting and in the

work of Zhao et al.31 Therefore, it enables an

algorithm-agnostic comparison between decisions

stemming from both RF and AB models. The green

color in the center of a point indicates that a decision

is from RF, while blue is for AB. The outline color

reflects the training instances’ class based on a deci-

sion’s prediction. The size maps the number of train-

ing instances that are classified by a specific decision,

and the opacity encodes the impurity of each decision.

Low impurity (with only a few training instances from

other classes) makes the points more opaque. The

positioning of the points can be used to observe if the

RF and AB models produced similar rules, offering a

comparison between algorithm decisions. The histo-

gram in Figure 1(c) shows the number of decisions

(y-axis) and the distribution of training instances in

these paths (x-axis), and can also be used to filter the

number of visible decisions in the projection-based

view to avoid overfitting rules containing only a few

instances (as shown in Figure 6(a)) or general rules

that might not apply in problematic cases.
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UMAP is initiated with variable n_neighbors and

min_dist fixed to 0:1. To determine the optimal num-

ber of clusters to be visualized, DBSCAN109 is used to

compute an estimated number of core clusters from

the derived decisions, which is then used to tune the

n_neighbors, with a minimum of 2 and a maximum of

100 neighbors (the aim is to have the same magnitude

in both). For the first experiment in Section Use Case,

n_neighbors was automatically set to 20. On the other

hand, in the usage scenario of Section Usage Scenario,

DBSCAN estimated 477 clusters, which tuned the

hyperparameter to the maximum value.

Multiple interactions are possible in this entire

panel. The rounding slider (set to 15) allows users to

round all decisions’ range values to the desired decimal

points. The comparison mode (active in Figure 1(c))

enables users to anchor groups of points and compare

the selection against any other cluster. The two alter-

native choices are to present either the overlap or dif-

ference between the handpicked groups (shown in

magenta color); the Detach button is for canceling this

mode. Density views assist users in observing the dis-

tribution of RF against AB decisions in the projection,

which is helpful if large amounts of decisions are visua-

lized, as illustrated in Figure 5(a), projection. The

Limit Decisions due to Test Instance checkbox alters the

layout and changes global decisions’ exploration to

local for a particular case. Finally, a limit can be set for

the acceptable impurity that is visible. If a decision is

more impure than the currently chosen value, then it

becomes almost transparent. As this view is tightly

connected with the visualization of the following view,

we proceed directly to Section Manual Decisions.

Manual decisions

The vertical PCP-like view in Figure 1(d) illustrates

the range values per feature for each selected decision

(comparison mode is active). The vertical polylines

represent the training instances and are color-encoded

based on the ground truth (GT) class. There are two

options: either select to filter instances and show those

that belong to the selected rules (see Figure 1(d)) or

present all training instances at once (see Figure 5(c)–

(e)). For example, in Figure 5(c), we see 12 identical

rules that classify the training instances in the HS-

Level-3 class (the red horizontal lines). The thick

black polyline is the currently explorable test instance;

users can compare it to the training instances of the

models. All ranges for the features are normalized

from 0.0 to 1.0. Scrolling is implemented when many

decisions must be shown or the number of features is

large. The order of the features is initially the global

one, as described in Section Global Feature Ranking.

When a group of points is selected using the lasso tool

in the decisions space (DS) view, a contrastive analy-

sis100 is used to rank the features and highlight unique

features that explain a cluster’s separation from the

rest. The computation works as follows: (1) break each

feature into two disjoint distributions: the values inside

the selected group vs. all the rest of the points; (2) dis-

cretize the two distributions of each feature into bins

based on the Local Feature Ranking - Bins value set by

the user (default is 10); (3) compute the cross-

entropy110 between the two distributions of each fea-

ture: higher values of cross-entropy suggest more

unique features (i.e. the within-selection distribution

is very different than the rest), while lower values sug-

gest more common, shared features; and (4) rank the

features based on step 3, with the more unique fea-

tures near the top. Either with the overlap or differ-

ence setting selected as discussed in Section Decisions

Space, the decision ranges bounding each feature are

visualized in the vertical PCP with a magenta color in

this comparison mode.

Decisions evaluation

The panel in Figure 1(e) contains interactive views

that help users find outliers, borderline cases, and mis-

classified cases in the test set. The first main view sup-

ports extracting the manual decisions (MD) from the

previous phase (see Section Manual Decisions). This

output is stored in a JSON format where the bound-

aries of values per-feature are observable for every

picked decision rule. This enables domain experts to

reuse the hand-picked decision rules for supporting

future actions, and also helps in concentrating on

cases where the majority of the RF and AB models dis-

agreed when compared to the GT, or for models that

did not vote unanimously. It is also possible to go

through all test instances one by one. The class agree-

ment between RF and AB models, MD, and the GT is

demonstrated via a horizontal stacked bar chart. The

colors encode the different classes, and the length of

each bar is the number of decisions for (1) MD, (2)

RF models, (3) AB models, and (4) the GT (the latter

always fills the entire bar). The second main view is

used to train new models based on the Ov. Score (%)

of each previously-trained model. The two separate

standard PCPs present the active RF models in green

and the active AB models in blue. The brown color is

used for the inactive models.

Use case

In our use case, we observe that models with ID num-

ber 8 and above slightly outperform the rest; notably,

recall in AB7 is much lower than AB8 and beyond (cf.

Figure 4(a), line chart). While RF models perform

consistently better than AB models, as shown in both
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the line chart and the confusion plot of Figure 4(a),

there is an improvement in the score of AB10.

Therefore, we decide to keep only this model.

Furthermore, since RF8 is more reliable in training

instances for the HS-Level-2 class due to false-

positives being lower than the equivalent for RF9 and

RF10 (Figure 4(a), confusion plot), we keep this

model and RF10, that is, the top-performing model of

the RF algorithm. In consequence, RF8, RF10, and

AB10 are active models after selecting the correspond-

ing states.

At this point, we want to investigate which features

of the training set impacted the predictions more (see

Figure 4). Interestingly, GDP per cap, H life exp, and

Social sup are the top three features in the general

ranking, as in Neto and Paulovich.35 A surprising out-

come is that, although two of the features mentioned

above are still the most important for the selected RF

models (all except Social sup), this is not true for the

AB model. As seen in Figure 4(b), Social sup, Perc of

cor, and GDP per cap are vital features for the AB algo-

rithm in general. This pattern supports our hypothesis

that different algorithms might take into account alter-

native features and should be combined to provide a

holistic view. On the contrary, Generosity is unimpor-

tant for all models, specifically for the active models,

since there is a �0:12 decrease in importance. Thus,

we choose to remove this feature and retrain without it

(cf. Figure 4(b)). For the RF algorithm (green), we

pick the most performant models based on the overall

score (Figure 4(c)), rightmost models). However, AB8

is better overall than the subsequent AB models due

to the stable and high recall value (Figure 4(c), line

chart). In a one-to-one comparison between RF9 and

AB9 with the bar charts, we recognize that while they

have the same number of estimators (i.e. 17 trees), the

two models produce 555 and 238 decisions, respec-

tively. In this case, bagged decision trees allow a higher

maximum depth than the equivalent boosted decision

trees. After the selection of the new models, the most

important features collectively are H life exp with 0:72

and GDP per cap with 0:49, as illustrated in Figure

4(d); the opposite was valid in Figure 4(b). The new

AB model considers the same features more important

as the RF models. After this phase is over, AB8, RF9,

and RF10 are the remaining three active models.

To investigate the global decisions based on the

AB8 model we set the impurity to 0, disable limiting

decisions based on the current test instance, hide the

RF models, and reveal the density view of the active

AB model (cf. Figure 5(a)). Most decisions are posi-

tioned in the right-hand side of the projection. Thus,

Figure 4. Exploration of ML models with VisRuler. View (a) presents the deactivation of all models except for RF8, RF10,
and AB10, after consideration of their performance based on multiple metrics displayed in the visualizations. In (b),
Generosity is the least important feature for the three active ML models and, particularly, its importance decreased while
we deactivated most of the available ML models (see brown color). View (c) indicates that, after retraining with 5 of 6
original features, the new AB8 is better than the subsequent models due to the decline in recall; AB8, RF9, and RF10
remain the only active models after this step. In the box plot (d), the feature H life exp becomes more important by far
than GDP per cap. Thus, these features swapped places compared to view (b).
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we continue with the exploration of identical pure

decisions from that region. After hiding back the

Density (AB) as shown in Figure 5(b), we notice from

the size of the decisions that if we analyze three core

clusters (C1–C3) we can get a better understanding of

global decisions. In Figure 5(c), all 140 training

instances (31+ 71+ 38 spread across the classes) are

observable together with the 7th test instance, which is

currently under investigation because the majority of

the RF and AB models disagree with the GT (not

shown due to space limits, but a similar case is visible

in Figure 1(e)). From Figure 5(c), we see that Social

sup and GDP per cap should be very high for test

instances to belong to this class. In contrast, for test

instances to be in the HS-Level-2 class, they need to

have a low-to-average Social sup, and average GDP per

cap and H life exp (Figure 5(d)). Low values in the fea-

tures (1) Freedom, (2) GDP per cap, and (3) H life exp

are common for the low score in happiness countries

(see Figure 5(e)), as also identified by Neto and

Paulovich.35 Regarding Saudi Arabia (the 7th test

instance), it does not appear to belong to any of those

Figure 5. Examining several pure global decisions from the active AB model. In (a), we activate the density view in order
to distinguish where most decisions are positioned. Note that this screenshot is composed of the decisions space (DS)
view and the settings for the same view plus the settings for the manual decisions (MD) view. In (b), we select step-by-
step 3 clusters of 12 identical decisions each. The decisions for C1 classify training instances only for HS-Level-3 class
(as depicted in (c)). Similarly, C2 contains decisions for HS-Level-2 (visible in (d)), while C3 for the remaining class, as
shown in (e). The 7th test instance, which is currently under investigation, cannot be classified by those prior decisions.
However, it most likely belongs in the medium- or the high-level class.

Chatzimparmpas et al. 127



decisions, but it is far away from the values reported

for the HS-Level-1 class. It has a very high GDP per

cap to belong in the average class, but the Social sup is

on the lower side. Despite that, GDP per cap is 1 out

of the 2 most important features according to the anal-

ysis in Section Global Feature Ranking. Our conclu-

sion matches the fact that it was ranked in 28th place

out of the 156 countries, thus, belonging to the list of

42 countries classified as HS-Level-3.

Using the tool’s mechanism to detect problematic

test instances, a borderline case that stands out is the

sixth test instance. in Figure 6(a), we first lower the

impurity threshold to focus only on completely pure

decisions. This example is for a specific case, thus,

Limit Decisions due to Test Instance is checked. C1 seems

to have a zero impurity, but when zooming in, we

recognize that it contains several decisions with very

high impurity values. Hence, we ignore this cluster,

and we move to C2 with a decision influencing only

two training instances. Since this number is undoubt-

edly low and could overfit these two instances, we

increase the lower limit of visible decisions through the

bar chart at the bottom. We exempt four decisions with

two or three influenced training instances spread

throughout the projection with this action. An interest-

ing insight is observable in C3: eight decisions pro-

duced by the RF models are divided, with decisions

suggesting that the test instance should be classified as

either HS-Level-1 or HS-Level-2. We anchor one of

the subclusters and select the other for comparison by

viewing the difference in the value ranges of the five

features (cf. Figure 6(b)). Twelve out of the 18 training

instances suggest that Guinea (i.e. the 6th instance) is

similar to low-happiness countries. If Perc of cor, H life

exp, and/or GDP per cap were slightly higher, then the

outcome would have been entirely different. According

to the GT ranking Guinea is in 118th place, remark-

ably close to the 122nd test instance which is the first

country classified as low happiness.

Checking the cases where the majority of the mod-

els disagree with the GT, we stop in the 15th test

instance. Figure 7(a) shows the decisions applicable

for this unusual case. We use the comparison mode to

select a pure cluster on the left to juxtapose it with

decisions classifying countries as HS-Level-3 on the

right. Anchoring these clusters of points shows us the

overlap of value ranges for the different features, as

depicted in Figure 7(b). Twenty-eight out of the 30

training instances are similar to this test instance and

belong to the HS-Level-2 class. The ranking of the

features indicates that Perc of cor and H life exp are two

unique features for the selected points, with low values

for the former and average values for the latter, as in

Neto and Paulovich.35 Furthermore, for the first four

Figure 6. The local exploration of the 6th test instance with specific decisions from all the active models that apply only
for this and similar test instances. (a) is a projection-based view that includes C1 with multiple impure decisions, visible
only after zooming in. C2 is a decision with only two influenced training instances falling in this path, hence, we interact
with the histogram below it to filter out overfitting cases with only two or three training instances. The comparison mode
is enabled for C3, resulting in anchoring two subclusters of different (in terms of class) prediction decisions. In (b), the
PCP highlights the differences between these previous subclusters for each feature in magenta color. This view is
dynamic since the features are constantly being re-sorted based on contrastive analysis of the selected cluster against
all points.
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features, the overlap is narrow between the two

selected clusters, indicating that this instance could be

considered an outlier. Indeed, Figure 7(c) presents

that 8 out of the 11 decisions consider this instance as

HS-Level-2. All active models are wrongly predicting

Trinidad and Tobago (i.e. the 15th test instance) as an

average HS country. Interestingly, the three MD of

the RF models classified this country as HS-Level-3.

From the analyses and the overall score of the RF

and AB models, we observe that the most performant

models for RF consider only two features when split-

ting the nodes (i.e. max_features hyperparameter). The

PCPs in Figure 7(d) enable us to scan the internal

regions of the hyperparameters’ solution space for RF.

As for AB, the learning_rate should be as low as possi-

ble for this specific data set, as seen in Figure 7(d).

Also, by searching for models with high values for

min_samples_leaf, AB models are created with complex

decision trees compared to simple decision stumps,

which seems to be an appropriate limitation of the

hyperparameter space that could lead to better mod-

els. After all these constraints, we move the Search for

New Models slider from 0 to 10 in Figure 7(d) to

request 10 additional models for each algorithm with

the hope of discovering more powerful ones. In sum-

mary, VisRuler supported the exploration of diverse

decision rules extracted from two different ML algo-

rithms and boosted the trustworthiness of the decision

making process (RQ1).

Usage scenario

In this section, we describe a hypothetical usage sce-

nario with a collaboration of a model developer (Amy,

the ML expert) and a bank manager (Joe, the domain

expert) who handles granting loans to customers. Joe

wants to use VisRuler to improve the evaluation pro-

cess of loan requests, so he asks Amy to use VisRuler

Figure 7. An outlier case exploration, the final prediction, and the training of another bunch of RF and AB models.
(a) presents the anchoring of a cluster of 8 HS-Level-2 decisions to compare the overlapping rules against 3 HS-Level-3
decisions. In (b), after checking the common regions of agreement for the two clusters, we conclude that Perc of cor and
H life exp are relatively low for the 15th test instance to belong in HS-Level-3 class. However, the other values for the
remaining features are arguably rather high. In (c), we observe that all models voted for the average class while only the
three selected manual decisions are supporting this case to be categorized as HS-Level-3 country. (d) showcases a
potential search for new models by setting constraints in the hyperparameters according to the knowledge acquired
from the initial training.
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to train ML models based on a data set collected over

years of accepting or rejecting loans in the bank. The

data set includes 1000 instances/customers and 9 fea-

tures/customer information, with 300 rejected (purple)

and 700 accepted (orange) applications. This data set

is, in reality, a pre-processed version31,32 of German

Credit Data from the UCI ML repository.13

Exploration and selection of algorithms and
models

Following the workflow in Section System Overview

and Use Case, Amy loads the data set and checks the

score of each model based on the three validation

metrics (Figure 1(a)). For the AB algorithm, in blue,

all models have a relatively low value for the recall

metric, except for AB8. Also, AB7 performs very well

for the Accepted class (orange), since the false-

negative (FN) line reduces in height compared to all

other models. Therefore, she decides to keep only AB7

and AB8. By looking at the confusion plot in Figure

4(a), Amy infers that RF5 is the model with low confu-

sion regarding the Rejected class (purple). She is deter-

mined to use RF5 because it carries over only 104

different false-positive (FP) instances compared to

RF4 with 114. The top RF models on the right-hand

side also caught her attention, with RF9 and RF10

being the best options. She thinks that either of them

could do the job, as they appear redundant due to sim-

ilar confusion and values in both the confusion plot

and the line chart (cf. Figure 1(a)). The bar charts

below—which highlight the difference in the architec-

tures of these RF models—help her to choose: with

only 7 decision trees and 589 decision paths (com-

pared to 18 and 1483), RF9 is simpler. She concludes

that RF9#s simplicity will make Joe’s exploration of

decisions more manageable later. Consequently, she

deactivates RF10 and continues the feature contribu-

tion analysis with RF5, RF9, AB7, and AB8 models.

Examining the global contribution of features

After this new selection of models, Amy observes in

Figure 1(b) that most features (except for the last two)

are more important now than in the initial state.

Ins_perc and Val_sa_st importances drop only by 0.01,

implying these features are stable. She suggests Joe to

keep all features for now and explore the differences

through the decision rules later on. Another interest-

ing insight is that A_bal is the most important feature

Figure 8. The exploration of clusters of decision paths from both ML algorithms. View (a) presents the selection of
three clusters of global decisions that classify multiple training instances, thus, avoiding unimportant paths that might
overfit. (b) provides an in-depth analysis of the decisions rules affected by C1 . In (c), Len_emp emerges as a unique
feature that characterizes C2 with values from approximately 0.4–1.0. Finally in (d), high values in P_st_cred and
Ins_perc turn over the prediction of the applicant to reject, visible via the exploration of C3.
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for the RF models, while the AB models prefer D_cred

(see Figure 1(b)). This could indicate that mixing

models’ decisions from different algorithms is

beneficial.

Explanations through global decision rules

Joe starts his exploration by examining the global deci-

sion rules that can help him make accurate decisions

for specific cases in the future. He focuses on the 12th

test instance, which is a customer application reviewed

by a colleague, Silvia (cf. usage scenario by Neto and

Paulovich32). First, he unchecks limiting the decisions

due to the test instance, as illustrated in Figure 8(a). At

this point, Amy identifies several decisions that classify

only fewer than 20 customers; she thinks: ‘‘these are

not so generic after all.’’ Indeed, the larger the number

of instances classified by one rule, the more generic

and important it is (if the impurity is low).

Consequently, they decide to increase the lower

boundary of decisions, filtering out 1928 decisions

(see Figure 8(a), bar chart). After the update, Joe

focuses on the UMAP108 projection. He observes mul-

tiple groups of points that could be worthy of further

investigation. He selects a couple of samples from dif-

ferent areas, for example, C1 with 3 RF and 18 AB

decisions. Another cluster with seven decisions is C2

that solely predicts accepted loan applications. On the

contrary, C3 contains two pure decisions (due to high

opacity) that produce rules which reject loans. Joe

increases the discretization of local feature ranking from

10 to 15 bins to raise the sensitivity of difference

between decision rule ranges, and he filters the instances

due to the decisions to observe clearer trends. From

Figure 8(b), Joe recognizes that C1 decisions are all

identical, having the same ranges for every feature.

Also, he understands that low credited amount

(Cred_am) and short duration of credit (D_cred) are

essential factors for accepting a loan application.

Account balance is also vital because all loans are

accepted when there is no account (A_bal being 0).

Figure 8(c) reveals another intriguing pattern, that is,

the length of current employment should be average to

extremely high (from approximately 0.4 or 0.6 and

above, shown in the red box) for applications to get

accepted. In contrast, Figure 8(d) presents that if pay-

ment status of previous credit (P_st_cred) and installment

per cent (Ins_perc) are relatively high, the applications

were rejected. The 12th customer has an account

without any balance, and the D_cred is relatively high,

which flips the prediction toward rejection. Luckily,

Silvia also provided an adequate justification to the

customer.32

Extracting manual decisions through local
investigations

At this point Joe knows and understands the main

decision rules, but a new customer arrives. Focusing

on the decisions for this case (i.e. 90th test instance),

he sets impurity to less than 0.3 (cf. Figure 1(c), sli-

der) to make impure decisions more transparent. Two

fairly pure decisions from RF5 (visible due to hover-

ing) and RF9 contradict each other. Joe uses the com-

parison mode, anchors 1 out of the 2 decisions, and

selects the other with the lasso tool. The comparison

in Figure 1(d) designates that eight similar customers’

applications were rejected while 12 were accepted.

The small overlap in Cred_am, D_cred, and Age suggest

that this is a borderline case. Cred_am seems a bit arbi-

trary for the training data since only a small amount of

applications in-between accepted applications were

rejected, see Figure 4(d), feature on top. However, a

clear insight is that if D_cred was lower, the application

should have been accepted, while the opposite effect is

true if the duration of credit increases. Unexpectedly,

RF models vote for accepting this loan application

while AB models reject (cf. Figure 1(e), top view).

Besides that, the manual decisions are also in-between

the two classes, which further enhances Joe’s assump-

tion that this is a borderline case. As AB models pro-

pose rejection and RF9 produces a decision for

rejecting this application, he follows these recommen-

dations. Nonetheless, Joe asks Amy to search and train

new performant ML models (see next paragraph).

Tuning the search for bagged and boosted
decision trees

Amy sees two possibilities of improvement for the RF

in Figure 1(e), bottom view. One is to limit the max_-

features to 7 because it produces the two best models

so far (visible by following the lines at the very top in

Ov. Score (%)). The second strategy is to pick 3 and 4

for the same hyperparameter to explore an entirely

new space of currently unexplored models since there

is no existing line. Basically, she believes it is better to

try both strategies in two separate runs. As for the AB,

she reasons that selecting 0.1 and 0.2 for the learnin-

g_rate is a wise choice. Although it may take more time

to retrain the AB models, they probably will be more

powerful than with the other setting due to historical

data. She performs the above actions, and finally,

another cycle of exploration is unfolded for both

experts. To summarize, our VA system not only helps

users to reason about concrete cases, but also is capa-

ble of assisting ML experts and domain experts in

enhancing their overall understanding due to their col-

laboration throughout the entire process (RQ2).
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User study

We conducted a user study to evaluate our tool’s effec-

tiveness in supporting decision-making. As in prior

works,32,68 we created five questions (Qs) that cover

VisRuler’s different views, focusing on appraising the

goals described in Section Target Groups, Design

Goals, and Analytical Tasks with the use case outlined

in Section System Overview and Use Case as the GT

(see Table 1). Note that this user study was based on a

slightly different arrangement of visualizations for the

models overview panel, but all the rest of the visual

representations and in-depth functionalities remained

the same. In particular during the study, the line chart

and the confusion plot were not aligned with the bar

charts below, and the legends of this panel were posi-

tioned at the very top instead of beside the visualiza-

tions (as in Figure 1(a)).

Demographics

Figure 9 contains general information about the atten-

dees of the user study. Seven male and five female

volunteers aged 23–49 (mean: ’33) participated in

our study, all with at least an MSc degree (and two

PhDs). None of them knew the data set used, and no

colorblindness issues were reported. Four of the parti-

cipants were highly knowledgeable in visualization and

seven in ML, while the rest had limited knowledge

regarding all aspects. Additionally, four of them had

never worked with any EL method. All participants

were researchers that have to frequently work with ML

and tune ML models for various data tasks, such as

image classification and natural language processing.

Methodology and instructions

Initially, participants watched an ’18-min video

tutorial about bagging and boosting concepts,

VisRuler’s goals, and how to work with our tool to

analyze decision paths, using the Iris data set.111 The

participants experimented for 5 min with Iris, which

concludes the required training for utilizing the cap-

abilities of our tool. Then, they proceeded to use the

data set described in Section System Overview and

Use Case. They were asked to answer five questions

(cf. Table 1 for a summary). The original document

containing the questions and instructions as shown by

the attendees is available in the supplemental material

accompanying this paper. Finally, the participants

were requested to provide qualitative feedback via the

ICE-T questionnaire.112

Question-related results

The completion time it took the users to respond to

each question and their answers to the multiple choice

questions are shown in Figure 10. After the initial set-

ting shown in Figure 4(a), all participants decided to

exclude Generosity in Q1 (Answer: d, Q1), which hap-

pened in 2.03 min on average. For Q2, nine partici-

pants followed our GT (Answer: a, Q2), as described

in Figure 4(c). The remaining attendees selected AB10

instead of AB8 (Answer: b, Q2). This action led to five

test instances in conflict (Answer: b, Q3) compared to

3 (Answer: d, Q3) in our analysis (Figure 7(c) presents

a single case). This result could be a strong indication

that our approach is essential for making such deci-

sions. To respond in Q2 and Q3, participants took

4.04 and 2.58 min on average, respectively. The most

time-consuming question was Q4 with an average

response time of 6.15 min (but with very accurate

results (Answer: d, Q4), see Figure 5(b)). The average

Table 1. User study: Shortened questions (Qs), goals (Gs), the ground truth, and results. There are five multiple choice
questions, each with four possible answers. The goals and the ground truth (GT) can be found in Section Target Groups,
Design Goals: goals and Section System Overview and Use Case, respectively. The results are computed as: number of
correct answers/total number of participants.

Question (1, 2, 3, 4, & 5) Goal GT Result

If you must remove a feature, which one will it be? G2 4(b) 12/12
Which models present stable and high performance based on all validation metrics? G1 4(c) 9/12
How many test instances are in conflict and require human intervention (that you can identify)? G5 7(c) 9/12
Which features play a vital role for the classification of instances in the HS-Level-3 class? G3 & G4 5(b) 12/12
Which feature’s value is low and not contributing to the 15th instance’s classification as
HS-Level-3?

G3 & G4 7(b) 11/12

Figure 9. General information on the participants of our
user study.
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time taken for Q5 was 6.07 min, with all correct

answers (Answer: c, Q5) except for one (Answer: a,

Q5). The participant that responded incorrectly chose

Freedom because it was at the bottom of the vertical

PCP (cf. Figure 7(b)).

Qualitative results

In Table 2, the mean scores of the ICE-T compo-

nents113 for each participant are displayed along with

the two-tailed 95% confidence interval (CIs) per com-

ponent (t�= 2:201, N = 12). Higher values in green

indicate good results, as opposed to red. VisRuler has

received a few 7.0 scores, and most are at least 6.0 and

above (the lowest score is 4.67). Essence, Insight, and

Time received large scores which means users found

our tool competent in portraying decisions, guiding

users to come up with fundamental questions, and

performing these discoveries quickly. Confidence was

lower, with a mean value of 5.87. However, this value

still makes VisRuler a reliable and trustworthy VA tool

according to Wall et al.112

Limitations and future work

In this section, we discuss several limitations of our VA

system that could be regarded as improvement ideas

for the future.

Generalization

Since VisRuler mainly focuses on the exploration of

decision paths, our approach is applicable to any tree-

based algorithm. If we follow the same methodology,

RF could be changed to extremely randomized

trees113 (known as extra trees) or other bagging algo-

rithms; while instead of AB, gradient boosting114,115

or any boosting algorithm can be employed. An exten-

sion of our approach could be to include new super-

vised ML methods such as rule-based algorithms, or

even association rule learning.116 However, such algo-

rithms consist of two parts: the antecedent (IF) and

the consequent (THEN), which are complicated

because there could be multiple if statements that bind

many times the values using the same features.

Therefore, a single decision path is non-trivial to be

extracted, as in our case. One potential enhancement

would be to support rule-based algorithms to encode

these reoccuring information, which implies an order

of consecutive events.

As shown in the paper, VisRuler works with both

binary and multi-class classification problems. Since

humans may have problems in perceiving more than

10 categorical colors117 at the same time, VisRuler uti-

lizes all of them as well as possible. Nonetheless, a lim-

itation is the extensive (but unavoidable) use of color

that might hinder our tool from operating with more

than a few classes. Therefore, applying the one-versus-

rest strategy is one possible idea to solve multi-class

classification problems with several classes. This strat-

egy translates to either designating one class as the

Figure 10. The question-related results of the user
experiment. The top row presents the completion time for
every question of the study separately, and the bottom row
comprises the histograms of the participants’ answers in
all questions.

Table 2. Analyzed results from the ICE-T feedback.113
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positive class and all others as the negative class or

choosing classes and gradually examining them.

At last, although VisRuler concentrates on the inter-

pretation of rules and extraction of manual decisions

driven by the experienced domain experts, it can also

be used by ML experts to tune the hyperparameters of

models and eventually debug RF and AB models. We

acknowledge that VisRuler takes premature steps

toward this direction, but this concept appears an

exciting research opportunity for the future.

Scalability

Similar to many VA tools/systems,118 a major chal-

lenge we considered when designing VisRuler is scal-

ability. In the models overview panel, the number of

trained models is limited to 20 RF and AB models in

total (or 10 for each algorithm). However, in the back-

end users can set different hyperparameters and per-

form hyperparameter search with various automatic

hyperparameter tuning approaches119,120 or VA tools

for this same goal.81,121 VisRuler utilizes Random

search for this purpose due to several benefits identi-

fied by Bergstra and Bengio.102 The end result is to

visualize several robust and diverse models in our tool,

which can be deemed an adequate number of models.

Also, the two PCPs for training new RF and AB mod-

els allow users to explore more models progressively,

especially since the provided hyperparameters’ ranges

are also easily modifiable through the code.

In the decisions space view, circles may overlap when

the number is large, as with any dimensionality reduc-

tion technique presented in a scatter plot. Although

VisRuler can visualize thousands of decision paths

(illustrated by the usage scenario in Section Usage

Scenario), the cluttering of the low-dimensional

embedding could be considered as an intrinsic diffi-

culty. To address this issue, we first adopt a filtering

approach to remove irrelevant or even overfitting deci-

sions (e.g. see Figure 6(a)), and second we enable

users to partially hide out impure decisions (cf. Figure

5(a)). Users may also utilize interactions like panning

and zooming to focus on certain regions of circles. A

potential future idea is to enhance the current scatter

plot with approaches designed to reduce

overlapping.122,123

In the manual decisions view while trying to get an

overview, the vertical PCP may be challenging to inter-

pret because it requires users to scroll through a list of

decisions that expands by the number of features.

Despite that, we have implemented multiple layout

treatments (e.g. filtering out decisions visible in Figure

6(b)) and interaction possibilities (e.g. the comparison

mode for juxtaposing groups of decisions shown in

Figure 7(b)) for users to partially overcome these

challenges. Furthermore, the most common scenario

is to explore regions of decisions paths and focus on

specific test instances which by default drastically lim-

its the number of decision rules. In summary, the ben-

efits of this tweaked visualization are many, since users

can directly compare a test case with training instances

for the various rules applicable and all features of a

data set. The vertical PCP can help domain experts to

externalize their domain knowledge because it serves

as a root for a discussion between experts and the gen-

eral public. One potential update is to try out alterna-

tive PCP designs that could boost the scalability of this

view, such as the proposal from Wu et al.124

Efficiency

The performance of VisRuler could pose problems if

numerous models are simultaneously active and pro-

duce too many decisions. Indeed, the excessive com-

putational time required for exploring thousands of

decisions paths along with the initial training of those

ML algorithms can be a root cause for further trou-

bles. Using distributed computation processes on per-

formant cloud servers can be one solution for scaling

VisRuler to enormous data sets. In the future, we

believe that the improvement in high-performance

hardware as well as progressive VA approaches125,126

will also benefit VisRuler.

The use case, usage scenario, and user study were

performed on a MacBook Pro 2019 with a 2.6 GHz

(6-Core) Intel Core i7 CPU, an AMD Radeon Pro

5300M 4 GB GPU, 16 GB of DDR4 RAM at

2667 Mhz, running macOS Monterey, and with

Chrome (version 99) as the browser. The system can

perform interactively after the model training stage is

over, which may take a few minutes for the data sets

used in the use case of Section System Overview and

Use Case and the usage scenario of Section Usage

Scenario. However, we cache the results to speed-up

drastically the future executions for the same data sets.

Complexity

Compared to several VA tools/systems,99 VisRuler is

no exception in terms of the high cognitive load that

could overwhelm users. Despite that, the proposed

workflow of VisRuler (see Figure 2 and read Section

System Overview and Use Case) is mainly linear.

Furthermore, the participants of our user study (cf.

Section User Study) correctly performed most of the

provided tasks after a specific training period, which is

indicative of the gradual learning curve of our tool.

However, in a future iteration of the tool, we plan to

implement a hiding functionality for the models over-

view panel after the initial phase, involving mainly an
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ML expert selecting powerful and diverse models, is

over. Another incremental improvement could be to

increase the size of the symbols for the three validation

metrics present in the line chart of Figure 1.

Evaluation

While we already conducted a task-based user study

with 12 participants that tested the applicability and

effectiveness of VisRuler, additional review sessions

with experts could help us to validate our tool further.

However, as illustrated in Figure 3, our VA system is

designed to be operated with a single workflow for two

experts that most of the time are set apart and work

independently. The prior knowledge and expertise of

each group of experts is useful in specific steps of the

collaboration schema, especially since they meet only

in step 4, related to the decisions space exploration. A

threat in this case is the overconfidence effect and

overinterpretation of the models’ capabilities by both

domain-specific and ML experts, especially in noisy

data scenarios. Despite that, we believe our first user

study was an appropriate choice of method to under-

stand preliminarily if VisRuler R is usable and effec-

tive. In the future, we could further evaluate the

particular designs of this multi-component system

with both ML and domain experts.

Conclusions

We presented VisRuler, a VA tool that allows users to

explore diverse rules extracted from bagged and

boosted decision trees to reach a consensus about a

final decision for each individual case. The multiple

coordinated views facilitate the selection of diverse

and performant models, the characterization of per-

feature contribution, the management of multiple

decisions, the analysis of global decisions, and support

case-based reasoning. A use case and a usage scenario

with real-world data sets emphasize the necessity for

combining similar, but yet, different algorithms and

the importance of transparency in critical domains.

We also validate the usability and efficacy of VisRuler

via a user study. Finally, we describe a series of limita-

tions of our VA system with an ultimate goal to extract

future directions for our work.
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