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Abstract

Background
Disease progression in retinal neurodegeneration is strongly correlated to immune cell acti-

vation, which may have either a neuroprotective or neurotoxic effect. Increased knowledge

about the immune response profile and retinal neurodegeneration may lead to candidate

targets for treatments. Therefore, we have used the explanted retina as a model to explore

the immune response and expression of the immune modulator galectin-3 (Gal-3), induced

by the cultivation per se and after additional immune stimulation with lipopolysaccharide

(LPS), and how this correlates with retinal neurotoxicity.

Methods
Post-natal mouse retinas were cultured in a defined medium. One group was stimulated

with LPS (100 ng/ml, 24 h). Retinal architecture, apoptotic cell death, and micro- and macro-

glial activity were studied at the time of cultivation (0 days in vitro (DIV)) and at 3, 4 and 7

DIV using morphological staining, biochemical- and immunohistochemical techniques.

Results
Our results show that sustained activation of macro- and microglia, characterized by no

detectable cytokine release and limited expression of Gal-3, is not further inducing apo-

ptosis additional to the axotomy-induced apoptosis in innermost nuclear layer. An ele-

vated immune response was detected after LPS stimulation, as demonstrated primarily by

release of immune mediators (i.e. interleukin 2 (IL-2), IL-6, KC/GRO (also known as

CLCX1) and tumour necrosis factor-α (TNF-α)), increased numbers of microglia display-

ing morphologiesof late activation stages as well as Gal-3 expression. This was accom-

panied with increased apoptosis in the two additional nuclear layers, and damage to

retinal gross architecture.
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Conclusion
We demonstrate that an immune response characterized by sustained and increased

release of cytokines, along with an increase in Gal-3 expression, is accompanied by signifi-

cant increased neurotoxicity in the explanted retina. Further investigations using the current

setting may lead to increased understanding on the mechanisms involved in neuronal loss

in retinal neurodegenerations.

Introduction
The retina constitutes a remote extension of the brain, located at the back of the eye, and is a
light-sensitive neural structure enabling vision. Retinal neurodegenerative diseases, such as
glaucoma, diabetic retinopathy and age-related macular degeneration (AMD), lead to loss of
neurons, resulting in progressive loss of visual function.
Neuroinflammation is an important regulator of the disease progression in several brain

neurodegenerative diseases [1–3]. The immune response of the retina is similar to other brain
regions, involving activation of microglial cells, macroglial cells, i.e. astrocytes and Müller cells,
vascular pericytes as well as infiltration of blood-bornemacrophages [4–6]. Microglial cells are
the resident macrophages of the retina; when activated by disease, injury or pathogens, micro-
glia release a large array of immune mediators [7–9], proliferate, migrate toward damaged sites
and transform into amoeboid phagocytic cells. Uncontrolled microglia activation is widely
reported to contribute to disease progression in Alzheimer’s disease, Parkinson’s disease (PD)
and multiple sclerosis [1–3]. In parallel, increasing reports suggest that microglial cells are a
crucial component in the acute and chronic disease phases of retinal degeneration [10–16]. For
example, changed communication between retinal neurons and microglia, astrocytes or oligo-
dendrocyte is seen in many brain conditions and was recently described as an early pathologi-
cal sign in experimental glaucoma studies [5, 17].
Lately, we, along with others, have demonstrated the role of one meditator of microglia acti-

vation, galactin-3 (Gal-3), in a range of neurodegenerations, including PD, brain ischemia, dia-
betic retinopathy and light-induced retinal degeneration [18–21]. Gal-3 is a member of the β-
galactoside-binding lectin family defined by their typical carbohydrate recognition domains
(CRDs) [22, 23]. Gal-3 plays a role in different biological activities, including cell adhesion,
proliferation, clearance, apoptosis, cell activation, cell migration, phagocytosis and inflamma-
tory regulation [24–29]. Recently, Gal-3 upregulation in glial cells was associated with the axo-
nal degenerative process in a glaucomamodel in vivo, and was described to have a detrimental
role in hypoperfusion-induced retinal degeneration [30, 31]. However, retinal neuroinflamma-
tion is a rather new research field, and its relevance for disease progression is still largely
unexplored.
A model extensively used in the investigation of mechanisms of retinal disease pathology is

the organotypic cultured retina [32, 33]. Retinal cultures from different ages, species as well as
from diseasemodels have been characterized and used in studies ranging from basic develop-
mental studies to testing response to different therapies [34–37]. The cultivation process per se
leads to a progressive degeneration of the retinal ganglion cells (RGC) caused by axotomy of
the optic nerve [38, 39]; but also loss of neurons in the more outer layers of the retina [32, 40].
Using immunohistochemistry, Engelsberg et al described the microglial activation and apopto-
tic neurodegeneration after explantation of the post-natal rat retina, beginning in the inner ret-
ina and advancing through the other retinal layers over time [40]. Additionally, transient
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microglia activation and sustainedmacroglia activation, including a transient release of low
levels of common cytokine, i.e. tumour necrosis factor-α (TNF-α) and interleukin- 6 (IL-6),
were reported using a similar culture protocol [33].
Manipulation of microglial activation in retinal culture has been describedby several labora-

tories [33, 41] through stimulation with lipopolysaccaride (LPS) [42, 43] or pharmacological
inhibition of microglial activation with e.g. minocycline [44]. LPS, is a bacterial component,
commonly used to elevate microglial activation with a subsequent often reported neurotoxic
effect, presumably mediated by microglia [45].
Our laboratory has established and extensively used a protocol for the diseased and normal

post-natal mouse retina, where a specified serum-freemedia allows the culture of well-pre-
served retinas up to 4 weeks [46, 47]. This culture protocol gives the opportunity to assess treat-
ment effects without the interference of unknown serum factors. We believe that this model
can be utilized to further elucidate hallmarks and mechanisms of retinal neuroinflammation,
and its relation to retinal function and health. Therefore, we wanted to explore the immune
response profile including Gal-3 expression (known to contribute to the full activation of the
LPS receptor toll-like receptor 4 (TLR4) [19]) induced by the cultivation process per se and
after additional stimulation with LPS and its correlation with retinal neurotoxicity using our
retina culture protocol.

Material andMethods

Animals
Animals were kept under conditions with standard white 12 h cycling lightning, free access to
food and water, and used irrespectively of gender. In-house bred C3H/HeA wild-type (wt)
mice [48] were used in the study. Mouse retinal tissue was taken at post-natal day 7 (PN7).
Animal handling was performed in accordance with approved guidelines of the Ethical Com-
mittee of Lund University, the Institute for Laboratory Animal Research (Guide for the Care
and Use of Laboratory Animals, Malmö-Lund Ethical Committee in Sweden), and the ARVO
regulations for the use of animals in ophthalmic and vision research.

Retinal explant culture
Animals were sacrificedby an overdose of CO₂. Eyes were enucleated; and the anterior seg-
ment, the vitreous body and the sclera removed. The neural retina with pigmented epithelium
was explanted onto a Millicell-PCF 0.4 μm culture plate inserts (Millipore, Merck, Solna, Swe-
den) with the vitreal side oriented upwards. Retinal explants where cultured in R16 culture
medium (Invitrogen Life Technologies, Paisley, UK; 07490743A). Explants were allowed to
adjust to culture conditions for two days, before receiving fresh R16 medium and to selected
groups addition of LPS (100 ng/ml) for 24 h. Conditionedmedia was collected from LPS-
exposed retinas and corresponding controls at 2, 3, 4 and 7 DIV days.

Tissue processing
For histological staining the retinas were fixed for 2 h in 4% paraformaldehyde and then embed-
ded in a Yazulla medium (30% egg albumin and 3% gelatin in distilledwater). Cryosectionsof
12–16 μm were cut, mounted onto chrome-alum coated glass slides, and stored at -20°C.

Hematoxylin-eosin staining and gross morphologicalanalysis
For gross morphological analysis, specimens was stained with Hematoxylin-eosin (Htx-Eosin),
dehydrated, and cover slipped using Pertex mounting media (HistoLab, Sweden). Gross as well
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as detailedmorphological analysis was performed using light microscopy (Nikon, Tokyo,
Japan). Eight-ten sections per specimen representing the entire retina were included (n = 4–6
retinas/group). Evaluation of gross morphologywas made with a ranking system divided into
five different categories:

• Layering (0 = normal layering, 0.5 = minor deformation, 1 = major deformation)

• Fold formation (0 = no folds, 0.5 = few folds, 1 = many folds)

• Rosette formation (0 = no rosettes, 0.5 few rosettes, 1 = many rosettes)

• Nuclear layer tissue architecture (0 = normal, 0.5 = small and few disseminated regions,
1 = large and many disseminated regions)

• Pyknotic nuclei (0 =<10, 0.5 = 10–50, 1 =>50)

TUNEL assay and quantificationof TUNEL-positive cells
Apoptotic cells were labeled using the in situ dUTP nick end labeling assay (TUNEL; Roche,
Mannheim, Germany). Retinal sections were stained according to manufacturer’s instructions,
and cover slipped using 406-diamidino-2-phenylindole(DAPI)-containing Vectashield mount-
ing medium (Vector Laboratories, Burlingame, CA, USA).
Quantification of TUNEL-positive cells, DAPI-positive cells and area measurement was

performed using ImageJ (National Institutes of Health, Washington, D.C.). After LPS exposure
and in corresponding controls TUNEL-positive cells were counted in all neuronal nuclear lay-
ers, i.e. the GCL, INL and ONL, respectively. Eight sections per specimen from four separate
slides representing the entire retina were included (n = 3–6 retinas/group).

Fluorescent immunostaining- Iba1, ED1, Gal-3, Ki67 and GFAP and
quantifications
Sectionswere rinsed and pre-incubated in PBS-T (PBS, 0.25% Triton X-100, 1% bovine serum
albumin (BSA)) for 1 h at room temperature (RT). Sectionswere then incubated with primary
antibodies, rabbit anti-glial fibrillary acidic protein (GFAP, 1:2000, DAKO Cytomation,
Glostrup, Denmark), rabbit anti-Iba1 (1:200, WAKO, Tokyo, Japan), rat anti-mouse ED1
(CD68, 1:1000, Nordic Biosite, Täby, Sweden), rat anti-mouse Gal-3 (1:500WAKO, Tokyo,
Japan), mouse anti-NeuN (1:100, Chemicon International, Temecula, CA, USA) or anti-goat
Ki67 (1:100, Millipore, Temecula, CA, USA) at 4°C overnight, before subsequent rinsing and
incubation in secondary antibodies for 2 h. Secondary antibodies used were Texas Red-conju-
gated donkey anti-rabbit antibody (1:200; Abcam, Cambridge, UK), Alexa Fluor 488 goat anti-
rabbit IgG (Molecular Probes, Inc. Eugene, OR, USA) and Alexa Fluor 564 goat anti-rat
(Molecular Probes, Inc. Eugene, OR, USA). Both primary and secondary antibodies were
diluted in PBS-T. For counterstaining of nuclei, the sections were cover-slipped using Vecta-
shield mounting media containing DAPI (Vector Laboratories, Inc. Burlingame. CA, USA).
Macroglial response was analyzed by qualitative gross- as well as detailed analysis, in eight

sections per specimen (n = 4–6 retinas/group) from four separate slides representing the entire
retina for macroglial cell activation (astrocytes and Müller cells) using GFAP staining and fluo-
rescencemicroscopy (Nikon Eclipse E800, Tokyo, Japan).
Total numbers of microglial cells were quantified, using the marker Iba1 in six sections per

specimen from 3 separate slides representing the entire retina. The level of microglia activation
was assessed by morphological changes as well as expression of two different markers of activa-
tion, i.e. ED1 and Gal-3. The followingmorphological classification for activation stage was used;
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Ramified (round cell body, long branched processes) = resting stage
Round (round cell body, no processes) = active stage
Amoeboid (irregular/ellipsoid cell body, no process) only found in GCL layer = active stage
The numbers of ED1- and Gal-3-positive cells, respectively, of total number of Iba1 was

quantified, 6–8 sections per specimen (n = 3–6 retinas/group) from 3–4 separate slides repre-
senting the entire retina. The ED1- and Gal-3-positive cells, respectively, were also morpholog-
ically classified as described above.

ELISA
Conditionedmedia was collected at 2, 3, 4 and 7 DIV (n = 3 samples/group). A Electrochemo-
luminiscence ELISA was performed using the V-PLEX Plus Proinflammatory Panel 1 (mouse)
kit (Mesoscale discoveries, Rockville,Maryland USA). The following immune mediators were
analysed, Interferon gamma, Interleukin-1 beta, Interleukin-2, Interleukin-4, Interleukin-5,
Interleukin-6, Interleukin-10, Interleukin-12p70, KC/GRO and tumor necrosis factor alpha. A
pre-coated plate was used with capture antibodies on independent and well-defined spots in a
10-spot MULTI-SPOT1 plate. All CV-values (coefficient of variation) above 35 were closer
investigated and the values beneath detection level or/and out of calibration range were
removed.

Statistical analysis
Statistical analysis was performed using SPSS 22 (IBM, NY, USA) software. For ANOVA anal-
ysis, 2- and 3 way ANOVA tests were used. A chi-test was used to analyze the ranking results
in the gross morphological analysis. Correlation analysis was also performed and all results are
presented as mean±standard deviation (StDev), and p<0.05 were considered significant.

Results and Discussion

Experimental design
We use post-natal mouse retina from day 7 in our study, as at this time-point all retinal layers
are developed [49]. As we wanted to do a detailed histological study, we utilized an organotypic
culture model extensively used in our laboratory, which provides well-preserved laminar reti-
nal architecture over a long period of time in culture. The model comprises whole mount reti-
nal culture in defined serum-freemedia [50]. Importantly, post-natal rodent retinas possess a
microglial population that has spread throughout the entire retina (from the central part to the
ora serrata) resembling that of an adult and formed quiescent, ramifiedmorphology at about
the age used here [32, 33].
We explored how the cultivation process as well as LPS administration influences retinal

cells viability and macro- and microglia behavior. Only retinas that had attached well to the
culture membrane within 48 h were included in the analysis. At 2 DIV, selected retina cultures
were exposed to LPS (100 ng/ml) for 24 h, as this LPS protocol has previously been reported to
elevate microglia activation [33].

LPS treatment caused retinal gross morphologicalchanges
Distortion of the well-lineated retinal structure as well as presence of pyknotic cells are clear
signs of decreased retinal viability. Pyknotic nuclei, having condensed chromatin, are often
found in cells undergoing necrosis or apoptosis [51]. In our previous studies we have success-
fully used a ranking protocol to assess gross morphological changes in the retinas as a tool to
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evaluate cytotoxic effects; i.e. after nanoparticle exposure to the culturedmouse retina [52] and
post-seizures rat [53].
First we evaluated the retinal response to the culture process at a gross morphological level

up to 7 DIV, using Htx-eosin histological staining. Retinas immediately fixed after seeding at
the culture membranes served as a baseline control, and displayed normal in vivo-resembling
lamination with three distinct nuclear layers and two synaptic layers with no folds, no rosettes,
no tissue changes within the nuclear layers or presence of cells with pyknotic nuclei (Fig 1A).
No significant alterations in gross morphologywere found up to 7 DIV. However, occasional
pyknotic cells were seen from 1 DIV up to 7 DIV (Fig 1A, 1B, 1D and 1F).
We then explored whether LPS administration had any effect on the retinal gross morphol-

ogy. Immediately after the removal of LPS (acute response) we observed a larger fraction of
pyknotic nuclei, especially in the inner nuclear layer (INL) and outer plexiform layer (OPL).
When compared to control for these layers, we found a strong difference (19% vs 80% affected,
n = 4-6/group, p = 0.067) (Fig 1C). In addition to pyknotic nuclei, at 4 and 7 DIV, disseminated
nuclear layers, characterized by frequent cell-free areas, mainly in INL were identified in the
LPS group (Fig 1E and 1G). However, only at 2 days post LPS-treatment was a significant dif-
ference observed in nuclear layer structure, with 60% of LPS-treated retinas affected compared
to no observable difference in control retinas (n = 5/group, p = 0.038). At 5 DIV we observed a
non-significant effect on gross morphology between control and corresponding LPS-group.
This may be explained by the trend toward changes in gross morphology in the control group
over time in culture. Both the control- and treatment group showed the same, relatively low
amount of rosette and folding formations at all time-points, indicating these as common phe-
nomena while culturing retinas in vitro.
Notably, tissue damage at the gross morphological level is often related to the chronic phase

of neuroinflammation [54, 55]. The rather acute tissue distortion seen here may be explained
by the retina beingmore vulnerable when removed from its natural environment.

LPS increased numbers of apoptotic cells
We next investigated apoptotic cell death dynamics using TUNEL labeling. In control retinas,
TUNEL-positive cells were found at all time-points and in all nuclear layers, but to different
degrees (Fig 2).
At 0 DIV, resembling in vivo PN7 retinas, abundant numbers of apoptotic cells were found

in the INL, but only occasionally detected in the GCL and ONL (Fig 3). This can be explained
by the apoptosis-dependent remodeling reported to occur at PN7 [49], especially in the INL.
Apoptosis has been reported to cease in vivo between PN10-14 [49], we observe a similar trend
in cultured retinas, with only a limited number of apoptotic cells identified over time in the
INL (Fig 3). Moreover, in line with Engelsberg et al (2004), we also found a slight increase in
TUNEL-labeled cells in the ONL at 7 DIV [40].
In the GCL, and in line with previous reports [40], an acute and massive loss of RGCs

caused by axotomy, was found in the control retinas. Quantification using the marker NeuN
for neurons in the GCL, i.e. RGC and amacrine cells, revealed a loss of 50% at 2 DIV (data not
shown). Thereafter, quantification shows an equal number of TUNEL-labeled cells in the GCL
at all time-points studied (Fig 3). In addition, our results are in parallel with previous studies
demonstrating no further loss of the remaining GCL neurons up to 14 DIV, the latest time-
point analyzed here (data not shown and [56]).
LPS-treated retinas at 3 DIV showed an increase in TUNEL-labeled cells in all nuclear layers

(Fig 3). Although nearly twice the numbers of apoptotic cells were found in the GCL and INL, a
significant increase was only observed in the ONL (Fig 3). In the GCL and INL this increase was
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Fig 1. Retinal grossmorphology shown by Htx-eosinstaining.At the time of explantation, i.e. 0 DIV, normal
retinal lamination, including three distinct nuclear layers and two synaptic layers with no folds, no rosettes and
absence of pyknotic cells were found (A). Cultivation per se did not induce any architectural changes until at 7
DIV (cf. A, B, D with F). LPS exposed retinas displayed gross morphological changes at all time-points, with
signs of cytotoxicity, i.e. pyknotic nuclei mainly in the INL and (see arrows in C) disseminated tissue especially

Inflamed In VitroRetina: Cytotoxic Neuroinflammation and Galectin-3Expression

PLOS ONE | DOI:10.1371/journal.pone.0161723 September 9, 2016 7 / 20



transient and disappeared at later time-points. In contrast, in the ONL the number of TUNEL-
positive cells remained significantly higher than in the control at later time-points (Fig 3).
In selected specimens from all groups we studied whether the microglia cells die from LPS

treatment by using double-staining with ED1 and TUNEL. However, no apoptotic ED1-ex-
pressing microglial cells could be found (data not shown). Hence, we believe that most likely
the TUNEL-positive cells in the nuclear layer are of a neuronal origin.
In summary, our cultivation protocol induces massive cell death in the GCL, causedmainly

by axotomy and a low rate of apoptosis in the INL and ONL. Secondly, LPS treatment triggered
increased apoptotic cell loss, transient in the GCL and INL, but sustained in the ONL. This might
indicate that photoreceptors are more vulnerable to inflammation caused by LPS [32, 33, 57].

LPS elevated macroglial cell activation
Macroglial cells of the retina are found within the nerve fiber layer (NFL) (astrocytes), while
Müller cell bodies are localized in the INL with their fibers spanning the entire retina, from

in the INL (see arrows in E and G). GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear
layer, OPL = outer plexiform layer, ONL = outer nuclear layer, OLM = outer limiting membrane. Scale bar:
200 μm.

doi:10.1371/journal.pone.0161723.g001

Fig 2. Apoptotic cell death detected with TUNEL staining.At 0 DIV, apoptotic cells (TUNEL-positive (red))were primarily found in the INL (A, B). Nuclei
were labelled with DAPI (blue). Over time in culture, moderate number of TUNEL-positive cells was seen in the non-treated group, in all nuclear layers, the
GCL, INL and ONL (D, H, and L). In the corresponding age-matchedLPS exposed groups, larger numbers of TUNEL-positive cells were found, especially at
3 DIV (F, arrows). Abundant numbers of TUNEL-labelled cells were also found at 4 and 7 DIV (J and N, respectively). GCL = ganglion cell layer, IPL = inner
plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer, OLM = outer limiting membrane. Scale bar: 200 μm.

doi:10.1371/journal.pone.0161723.g002
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inner limiting membrane (ILM) to the outer limiting membrane (OLM). In normal conditions
in the mammalian retina, GFAP is only expressed by the astrocytes in the inner retina. Up-reg-
ulation of GFAP in astrocytes and especially in Müller cells is a well-describedhallmark of a
damaged/stressed retina [58], [59].
We utilizedGFAP staining to analyze macroglial activation in the retina. Control retinas, at

0 DIV, displayed a very in vivo-like expression pattern of GFAP, i.e. confined to the inner-most
retina (Fig 4A). In agreement with numerous reports using the organotypic retinal cultures, we
observed increasedGFAP expression over time in culture [52]. At 3 DIV, GFAP up-regulation
was indeed seen in Müller cell processes spanning the entire retina (Fig 4B). At 4 and 7 DIV its
expression was further increased, as judged by labeling of thicker processes compared to 3 DIV
(Fig 4D and 4F). At 7 DIV GFAP processes often displayed irregular shapes, compared to ear-
lier time-points (cf. Fig 4F to 4D and 4B). However, quantitative staining intensity measure-
ments did not show a significant difference between time-points in the control retinas.
Analysis of GFAP expression after LPS-treatment, showed a similar staining pattern at 3 DIV
to that observed in the control group at 4 DIV (Fig 4C), indicating that the LPS treatment
induces earlier GFAP expression by Müller cells. Quantitative intensity measurements showed
a significant difference between the LPS-treated group and corresponding control only at 3
DIV (4.5±0.7 vs 7.0±0.7 (n = 3/group), p = 0,013). In addition, the GFAP-stained filament pat-
tern showed Müller cell processes continuing throughout the entire retina, i.e. from inner to
outer part, compared to corresponding control retinas. The changed GFAP staining pattern in
the LPS groups at 4 and 7 DIV correlated well with the significant changes in gross morphology
found within this time period (Fig 1).
Together, changes in filament GFAP staining pattern and expression level was clear in both

groups at 3 DIV with the cultivation process itself as well as after additional LPS treatment as
stress factor. Our results also show a transient and significant increasedmacroglial cell
response after LPS [60].

Microglia activation increased after LPS treatment
The hallmarks of activated microglia are altered morphology, migration, proliferation, phago-
cytosis and release immune mediators [10, 12–14].

Microglia activation by cultivation process per se. First we examined the microglia
response induced by the cultivation process. Distribution of microglia was studied using Iba1--
labeling. At 0 DIV, similar to the in vivo situation at PN7, microglia were locatedmainly in the
two synaptic layers, i.e. the inner- and outer plexiform layer but also occasionally in the GCL
(Fig 5A–5C), as previously reported [52]. A transient presence of microglia was found in the
INL at 3 and 4 DIV (Fig 5D–5F).

Fig 3. Quantification of apoptotic cells.The graphs show numbers of TUNEL-positive cells in the GCL, INL and ONL, in controls- and LPS-treated
groups. ANOVA analysis was performed for comparison between the LPS treated group and the control groups. Data are given as mean±StDev (n = 4-6/
group), **p<0.01.

doi:10.1371/journal.pone.0161723.g003
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Morphological alterations were then studied and microglia classified based on profiles typi-
cal of different activation stages; i.e. ramified (resting stage), round or amoeboid (activated
stages) were quantified [33]. At 0 DIV, the majority displayed a ramified cell profile and about
35% demonstrated round or amoeboidmorphologies (Fig 6). At 3, 4 and 7 DIV the majority
displayed round or amoeboidmorphologies, and the ramified cells decreased over time in cul-
ture (Fig 6). At all time-points amoeboidmicroglia were only found within the GCL. Round
microglia was found in the IPL, INL and OPL. At 7 DIV and only very occasionally, microglial
processes were found to extend into the ONL.

Fig 4. Macroglial activity detected by GFAP- staining.GFAP-immunohistochemistrywas used to label the macroglial cells of the retina, i.e. astrocytes and
Müller cells. At 0 DIV, GFAP-staining was primarilydetected in the NFL (A). An increase in GFAP-staining was detected at 3, 4, and 7 DIV (B, D and F); with
Müller cell up-regulation of GFAP, seen by labeled process. The LPS-treated retinas showed a similar GFAP-staining patternwith thin and thick GFAP-
positive Müller cell processes spanning the retina from the inner to the outer part (C, arrows). GCL = ganglion cell layer, INL = inner nuclear layer, IPL = inner
plexiform layer, ONL = outer nuclear layer, NFL = nerve fibre layer, OLM = outer limiting membrane. Scale bar: 200 μm.

doi:10.1371/journal.pone.0161723.g004
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Total number of microglia in controls was examined by quantifying numbers of Iba1-posi-
tive cells, and showed significant larger numbers of microglia at all time-points after seeding
(Fig 7). In accordance, microglia proliferation has been reported elsewhere to occurwithin the
first days of retinal organotypic cultures [61]. Here, at 7 DIV the number of Iba1-positive cells
was smaller than at 3 and 4 DIV, but yet the double compared to at 0 DIV.
Level of microglia activation was further assessed using double immunohistochemistrywith

Iba1 and the markers ED1 and Gal-3, respectively [34] (Figs 5 and 8). ED1 is known to be
expressed in microglia cells in a phagocytic stage [62]. At 0 DIV, about 50% of the microglial
cells expressed ED1 and were primarily found in the GCL and INL (Fig 5). Then, significant

Fig 5. Iba1/ED1- fluorescent immunohistochemistry. Microglial cells were detected using the Iba1 (green) marker, expressed in all microglial stages and
ED1 (red) for detecting activated cells. Cells were counterstained with the nuclei marker DAPI (blue). A-C. At 0 DIV, microglial cells were mainly found in the
GCL, IPL and OPL, with a small fraction located in the GCL expressing ED1. At 3 and 4 DIV microglial cells were also found in the INL in both LPS-treated
retinas and controls (D-F, G-I). At 3, 4 and 7 DIV the majority of the microglia expressed ED1 in both groups. At 7 DIV microglial cells were only found in the
INL in the LPS-treated retinas (S-U cf. to P-R). Primarily three morphologies were found and used in the classification of activation stage, i.e. ramified (see
cell #1 in E), round (see cell #2 in E) and amoeboid (see cell #3 in E). GCL = ganglion cell layer, INL = inner nuclear layer, IPL = inner plexiform layer,
ONL = outer nuclear layer, NFL = nerve fibre layer, OLM = outer limiting membrane. Scale bar: 200 μm.

doi:10.1371/journal.pone.0161723.g005
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larger numbers Iba1/ED1-positive cells as well as increasing with time were found (Fig 9). Gal-
3 is a member of a carbohydrate-binding protein family involved in cell activation and inflam-
mation [18], and reported by us to contribute to the full activation of the LPS receptor toll-like
receptor 4 (TLR4)) [19]. At 0 DIV no Iba1/Gal-3 labeled cells were found (Figs 8A, 8B and 9).
However, at 3, 4 and 7 DIV, equal and large fractions of Iba1-labeled cells co-expressedGal-3,
with the vast majority of these cells located in the GCL (Fig 8C, 8D, 8G, 8H, 8K and 8L). The
literature is very sparse on Gal-3 expression in the normal retina, with only one report describ-
ing a low level of Gal-3 expression localized to Müller cells at post-natal day 2 in the porcine
retina [63]. Here, the vast majority of the Gal-3-expressing cell bodies and processes co-local-
ized with the Iba-1 staining (Fig 8).
Gal-3 levels are increased in several conditions including encephalomyelitis, traumatic brain

injury, experimental allergic encephalitis (EAE) and ischemic brain injury [2, 25], and in the
retina after ischemia [30]. Gal-3 is found both intra- (in cytoplasm and nucleus) and extracellu-
larly in different cell types and is suggested to play both pro-inflammatory and anti-inflamma-
tory roles which depend on the cell type and insult provided. The pro-inflammatory
mechanism was recently described by us, with Gal-3 acting as a ligand by binding to the LPS

Fig 6. Quantification ofmicrogliamorphologies. Iba1-positive microglia was classified into three groups depending on morphology, including
ramified, round and amoeboid. ANOVA analysis was performed for comparison between the LPS-treated groups and the control groups. Data are
given as mean±StDev (n = 3-6/group), **p<0.01, compared to control at the corresponding time points.

doi:10.1371/journal.pone.0161723.g006

Fig 7. Total numbers ofmicroglia cells.The graph shows quantification of total numbers of Iba1/
ED1-positive cells. ANOVA analysis was performed for comparison between the LPS-treated group and the
control groups. Data are given as mean ±StDev (n = 3-6/group).

doi:10.1371/journal.pone.0161723.g007
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receptor TLR4, via its CRD domain, and thereby propagating inflammation [19]. In the present
study no Gal-3 expression could be detected using immunohistochemistry at 0 DIV, i.e. PN
day7.

Fig 8. Gal-3 expression inmicroglia cells. Immunohistochemical staining of Gal-3 (red) expressing
microglia. All microglia were detected using the microglia marker Iba1 (green). At 0 DIV no Gal-3-expressing
cells were found (A, B). In controls, at 3, 4 and 7 DIV Iba1/Gal-3 co-expressing cells were found and only in
the GCL (C, D, G, H, K, and L). LPS-treated retinas displayed larger numbers of Iba1/Gal-3 co-expressing
cells that were located in the GCL, INL and OPL at 3, 4 and 7 DIV. Scale bar: 200 μm.

doi:10.1371/journal.pone.0161723.g008
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Release of immune mediator production is a well-describedcriterion for microglia activa-
tion; hence, we also biochemically examined the release of a battery of pro-inflammatorymedi-
ators. Only at 7 DIV very low concentrations of TNF-α, IL-2, IL-6 and KC/GRO were found in
the controls (Fig 10). In vivo and in some in vitro studies IL-1β is typically released early

Fig 9. Quantification of ED1 andGal-3-positivemicroglial cells.Quantification of fractions of cells
expressing ED1 and Gal-3, respectively, of the total number of Iba1-stainedcells. ANOVA analysis was
performed for comparison between the LPS-treated group and the control groups. Data are expressed as
mean±StDev (n = 3/group) *p<0.05, ***p<0.001.

doi:10.1371/journal.pone.0161723.g009

Fig 10. Cytokine release profiles. In collected conditioned media at 3, 4 and 7 DIV, the immune mediator release profile was analyzed using a
biochemical assay. Ten well-described cytokines were included; interferon gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-4 (IL-4),
interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12p70 (IL-12p70), KC/GRO and tumour necrosis factor alpha (TNF-α). No
detectable levels of release of any of the mediators analyzed were found in controls at any of the time-points included. However, after LPS stimulation at 3
DIV, a significant increase of four of the mediatorswas found, i.e. IL-2, IL-6, KC/GRO and TNF-α. Note that the content of these factors further increased
over time in culture to higher levels compared to at 3 DIV. Filled bar = control group, Stripedbar = LPS group. ANOVA analysis was performed for
comparison between the LPS treated group and the control groups. Data are expressed as mean±StDev (n = 3/group), *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0161723.g010
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following injury or during inflammation [64, 65]. Here, we cannot exclude the early release of
IL-1β since the earliest time-point studied was 2 DIV. In addition, IL-1β is released from astro-
glia, reported by IL-1β co-localizationwith GFAP-staining, but not with CD11b, a microglia/
macrophage marker, suggesting that astrocytes are a source of IL-1β release under these condi-
tions [66].
Last we made correlation analysis of microglia behavior and level of apoptosis over time,

and found a significant correlation between total numbers of microglia (i.e. Iba1-positive) and
total numbers of TUNEL-positive cells (0,976, p<0.05). In addition, apoptotic cell numbers in
the GCL correlated with numbers of amoeboid cells, which were only found in the GCL (0.996,
p<0.01).
Altogether, the cultivation per se stimulates microglia to an increased activation level com-

pared to at 0 DIV, demonstrated by: transient migration, increase in microglial cell number,
morphological changes and increased expression of the markers ED1 and Gal-3.We judge the
increase in cell numbers as an evidence of cell proliferation of the resident microglia popula-
tion, since no macrophages in the here used in vitromodel could be recruited from the blood
circulation.
Notably, a smaller fraction of the microglia expressed Gal-3 than ED1 at 3, 4 and 7 DIV,

suggesting different regulation of different fractions of microglia in our model. Furthermore,
Gal-3 was not expressed at 0 DIV, which may indicate that this modulator is not involved in
the normal microglia regulation, stimulated by the remodeling in the developing retina. Gal-3
is most likely induced in response to the acute massive apoptosis in the GCL caused by the
axotomy of the ON. Indeed, it was also in the innermost retina that Iba1/Gal-3 labelled cells
were found. The migration of microglia into the INL, from 0 to 3 DIV, may have been stimu-
lated by the normal occurring apoptosis in this layer at 0 DIV.

Elevatedmicroglia activation after LPS-treatment. Distribution analysis in LPS-treated
retinas revealed Iba1/ED1-positive cells in the GCL, IPL, INL and OPL (Figs 5 and 9). In LPS-
treated retinas also cluster formation of microglia was detected, which has been described as a
feature of activation in studies using the explanted retina [67]. We believe that the soluble fac-
tors releasedmost likely were produced in the microglial cells since these were activated rapidly
after LPS stimulation, whereas the macroglial cell activation was not as prominent. In addition,
the fraction of round microgliamorphologies was larger at all time-points compared to corre-
sponding controls, with an accompanied decrease in fraction of amoeboid cells (Fig 6).
LPS-treatment immediately increasedmicroglial activation. At 3 DIV, a significant increase

in the production of TNF-α, IL-2, IL-6 and KC/GRO was found, and a substantial further
increase in expression levels over time in culture (Fig 10). In agreement, others have reported
release of high levels of the factors TNF-α [32, 33] and IL-6 [33] after LPS stimulation of cul-
tured retina or microglial cell cultures. However, in contrast to our findings,Mertsch et al.
reported that TNF-α, and IL-6 release activities were reversed to controls levels 3 days after
LPS removal in cultured retina [33]. IL-6 increase has been reported to be involved in retina
regeneration, and especially RGC regeneration [68]. Here, thus, the absence of increase apopto-
sis in the GCLmay be explained by local and high levels of IL-6 [33]. IL-2 was reported up-reg-
ulated in diabetic retinopathy models [59]. KC/GRO, also known as CXCL1, is expressed by
Müller cells, microglia and retinal pigment epithelium cells, and has been found expressed in a
model of light induced photoreceptor degeneration [69].
Total cell numbers in LPS-treated retinas maintained similar or the same compared to con-

trols all time-points (Fig 7). Similar to corresponding controls, no Ki67 immune-positive cells
could be detected (data not shown).
Further analysis of microglia activation level by examination of the markers ED1 and Gal-3,

revealed large numbers of phagocytic cell in the INL at 4 DIV, that may correlate with the peak
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in apoptosis seen in this layer at 3 DIV, in the LPS-treated group (cf Figs 3, 5 and 9). Likewise,
more frequent than in corresponding controls, Iba1/ED1-labeledmicroglia in the OPL were
seen extending long processes into the ONL and occasionally the microglial cell had migrated
into the ONL, correlating with the increased apoptosis in the ONL at 4 and 7 DIV in the LPS
group. Migration of microglia into damaged tissue areas, has been recently reported [70].
Roundmicroglia are known to be the most mobile [71], explaining the distribution of more
cells into additional retinal layers compared to controls. In addition, the Gal-3 was always
expressed in these round cells, and has indeed been reported to have a potential role in the cell
motility [72]. Furthermore, Gal-3 was expressed in a higher number of microglia at both 3 and
4 DIV after LPS administration, but returned to the same level as the control at 7 DIV (Fig 9).
We always found Gal-3 labeling co-localizedwith the Iba1-staining. The vast majority of the
Gal-3 expression co-localizedwith the Iba1-staining and was found in microglia located in the
GCL, INL and OPL, and typically in large cells or clusters of cells (Fig 8E, 8F, 8I and 8J).
Correlation analysis in LPS-treated retinas on microglia activation and level of apoptosis

revealed a strong correlation in overall level of apoptosis and total numbers of microglia (R2 =
0,998, p<0.01). Moreover, the level of apoptosis in the GCL as well as in the INL correlated
with decreased fraction of ramifiedmicroglia (R2 = 0.965, p<0.05), while the level of apoptosis
correlated with fraction of round morphologies in the ONL (R2 = 0.999, p<0.001). Lastly, we
found that the levels of the cytokines IL-2 and IL-6 correlated with the fraction of microglia
with an amoeboid profile (R2 = 0,989 (p<0.05) and R2 = 0.952 (p<0.05), respectively).

Conclusions
In this study we have demonstrated a cytotoxic in vivo-resembling retinal neuroinflammation
by challenging organotypic cultured retinas with LPS. In parallel with previous findings we
demonstrate that the current cultivationmodel can elicit activation of an immune competent
system in the retina, especiallymicroglia activation. Exposure to LPS was needed to establish a
more in vivo-like immune response including typical immune mediator release [32, 33].
For the first time, we show a broad cytokine profile release profile within an organotypic ret-

ina system with TNF-α, and IL-6 release as previously seen in other studies in vivo and in vitro.
Our model is further characterized by IL-2 and KC/GRO (CXCL1) up-regulation, but no
increase of IL-1β, IL-4, IL-5, IL-10, and IL-12. In addition, we show the up-regulation of Gal-3
in a subpopulation of the microglia upon further stimulation. Last we show a strong correlation
of the level of microglia activation with level of apoptosis, especially in the LPS challenged
retinas.
The concept of neuroinflammation is today a generally accepted idea in retina research,

however the mechanisms by which this occurs and consequences of inflammation are still
under debate. Lately, it was proposed that changes in cytokine signalingmay occur before neu-
ronal cell death, and such findings could open the door for potential therapies that focus on
restoring and maintaining function rather than intervening directly with the causes of retinal
degeneration. Ultimately, detection of microglial activation level using a biomarker such as
Gal-3 may have value in early disease diagnosis, where modulation of microglial responses
may alter disease progression.
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