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ABSTRACT WithinArtificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing
unprecedented performance in image and audio processing by supporting or even replacing humans in
defect and anomaly detection. The railway sector is expected to benefit from DL applications, especially in
predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct
from safety-critical functions. Such separation is crucial, as it allows for improving system dependability
with no impact on its safety certification. This is further supported by the development of DL in other
transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities
and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-
the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of
data generated by acoustic and visual sensors in railway maintenance applications that have been published
until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a
structured and systematic method, in order to highlight promising approaches and successful applications,
as well as to identify available datasets, current limitations, open issues, challenges, and recommendations
about future research directions.

INDEX TERMS Computer vision, machine learning, fault detection, inspection, CNN, smart railways.

I. INTRODUCTION
Railway components have a long operating life, often span-
ning over decades, with installations that may span over hun-
dreds of kilometres and need to withstand harsh environmen-
tal conditions. Therefore, maintaining a railway in efficient
working conditions is a task requiring a considerable amount
of resources. Automating inspection, condition monitoring
and eventually repairs to railway assets may lead to more
efficient use of human skills and time as well as reduce main-
tenance mistakes and costs. Artificial Intelligence (AI) can
help to analyse specific railway components through diverse
sensors [1], and some works investigate to what extent it is
possible to use non-intrusive data sources (e.g., LiDAR [2],
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X-Ray [3], light sensors [4], and fiber optic [5]) to improve
maintenance effectiveness and efficiency. Among all, audio-
and video-based inspection can provide effective means for
observing the status of railway assets and selectively iden-
tifying items that need further attention. Indeed, automated
and continuous audio-video inspection opens unprecedented
ways to cope with railway maintenance that currently is the
most investigated AI area in railways [6]. Several European
projects have tackled the challenge to investigate and exper-
iment with the adoption of AI techniques in the mainte-
nance and inspection of railway systems, for example, the
recent H2020 Shift2Rail (S2R) projects IN2SMART [7] and
IN2SMART2 [8].

It is a matter of fact that current railway maintenance has
been focusing on the use of special sensors, and many diag-
nostic tasks will continue to be addressed using those mature
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methods and technologies. However, those approaches might
be rather expensive in terms of infrastructures and data anal-
ysis. Moreover, inspection activities are often performed on
a fixed schedule, possibly resulting in late anomaly detec-
tion. The use of those sensors may also be problematic in
terms of intrusiveness due to the need for ‘‘instrumenting’’
components, pausing railway traffic, etc. In such a context,
audio and video sources seem to have a huge potential and
several advantages, as i) they do not need to be installed on the
object they have to monitor, thus limiting their intrusiveness
and any need for (re)certification of railway components, and
ii) they might be needed or already installed for other reasons
(e.g. safety/security surveillance [9]), thus enabling multiple
uses of technologies for higher cost-effectiveness. In particu-
lar, Deep Learning (DL) represents a paradigm that has shown
unprecedented performance in image and audio processing
by supporting humans in defect and anomaly detection [10].

Therefore, although other types of non-intrusive sensors
exist, this paper aims to provide a structured survey on
the DL approaches for railway maintenance that leverage
video (i.e., sequences of frames) and/or audio data. In doing
so, we borrowed and tailored to our scope some practices
from Systematic Literature Review (SLR) methodologies
[11], [12], such as the definition of research questions (RQ),
well-structured queries, and exclusion criteria. In particular,
in this study we aim at answering the following research
questions:
RQ1 Which are themain railway applications and objectives

addressed by current research on DL for audio and
video analysis applied to railway maintenance?

RQ2 Which specific DL approaches and datasets have been
used in existing audio-video analytics applications
for railway maintenance? Are those datasets publicly
accessible?

RQ3 What are the main open issues, challenges and oppor-
tunities in the field of DL applied to railway mainte-
nance and inspection with audio and video sensors?

Although different terms with similar meanings are used
in the literature to refer to maintenance activities supported
by technologies such as the Internet of Things (IoT), cloud
computing and data analytics, including predictive mainte-
nance, smart maintenance and computer-aided maintenance,
in this paper we will adopt those terms according to the
usage made by the authors of the surveyed paper. Otherwise,
we will simply use the word ‘‘maintenance’’. We emphasize
that this work has been developed within the RAILS1 H2020
research project [13], whose main objective is to provide
recommendations and research directions for a fast take-up
of AI in railways.

A structured literature review can be presented in several
ways, according to the points of view chosen to cluster
and discuss the findings. We have chosen to organize the
results according to reference railway areas and thus pro-
vide one section for each area, from Section IV to VII.

1Roadmaps for AI integration in the raiL Sector - https://rails-project.eu/

The internal organization of these sections is homogeneous,
hence it is possible to read the paper focusing on specific
areas of interest. Those sections summarize the findings of
the review, and they are preceded by the following sec-
tions: Section II presents existing review papers surveying
DL applications to maintenance; Section III provides back-
ground information, including a description of the reference
railway areas, and presents the organization of their related
sections. The presentation of the review findings is followed
by: Section VIII, which reports some overall statistics on
the findings; Section IX, which discusses the responses to
the research questions; and Section X, which summarizes
and discusses the main results, challenges, opportunities, and
research directions for effective utilization of AI techniques
in the railway domain. Finally, Section XI provides some
closing remarks.

II. RELATED WORK
The last few years have seen a growing interest in AI appli-
cations to railway systems. This trend is attested by industrial
research and innovation initiatives, as well as by the growing
number of scientific publications (Fig. 2), addressing the
application of AI techniques to the rail sector. Technologies
such as computer vision and audio processing, especially
fostered by Machine Learning (ML) and DL approaches,
will play an important role in providing effective methods
to solve various problems, including intelligent surveillance,
automatic train operation, timetable optimization and net-
work management. Different authors tried to organise these
works based on the task or application in the railway domain.

Rail track maintenance is among the most analysed
aspects, with works focusing on both corrective and predic-
tive studies. Focusing on the former, reference [14] reviews
papers using both shallow and deep neural networks to detect
structural defects, including those due to physical deteriora-
tion of the tracks, or geometrical irregularities (e.g., misalign-
ment). The review concludes that, although DL algorithms
have been widely adopted in recent years to identify struc-
tural defects, there are still shortcomings to address, such as
i) the lack of benchmarks, ii) the lack of labelled datasets, and
iii) the difficulty of finding defective observations. Moving
to the latter, reference [15] reports a detailed SLR focused
on data-driven methods (including ML and DL). The review
was published in October 2020 and analyses about 109 papers
covering the period from 2014 to 2019. Among the results of
the SLR, it has been concluded that the application of data-
driven models can help in avoiding the unnecessary replace-
ment of track components. Nevertheless, DL approaches
accounted for only 8% of the reviewed models. Two hot topics
have been highlighted : i) the need to develop an automatic
data labelling method (currently carried out manually in most
cases) and ii) the importance of interpretability of black-box
models.

Predictive maintenance has been also analysed in a
broader sense in [16], where the authors provided a wide-
spectrum SLR of suitable ML approaches. The analysis,

VOLUME 10, 2022 65377



L. D. Donato et al.: Survey on Audio-Video Based Defect Detection Through DL in Railway Maintenance

conducted on papers published from 2009 to 2018, highlights
that predictive maintenance attracted an increasing interest
from researchers starting from 2013. The work shows that
only a few papers propose solutions specifically tailored to
railway systems and suggests that appropriate sensors could
help to avoid unnecessary replacements and hence lead to
savings while ensuring safety, availability, and efficiency
of maintenance processes. It is worth noting that a similar
conclusion had been already stated in another work, dating
back to 2010 [17].

An SLR on Prognostic and Health Management (PHM)
has been presented in [18], where for each PHM sub-
field, i.e., Fault Detection, Fault Diagnosis, and Prognosis
(Remaining Useful Life estimation), papers have been clas-
sified according to i) the DL approach (including convo-
lutional/recurrent neural networks, autoencoders, etc.) and
ii) the type of dataset they rely on (vibrational, time-series,
imagery, and structured). The paper also emphasizes DL chal-
lenges concerning model complexity and its characterization,
the lack of labelled data, and the fact that most of the papers
were about datasets gathered from bench-scale experiments
that possibly lead to poor applicability in the real world. It is
also worth noting that no image-based approaches have been
identified for prognosis.

More recently, researchers are also focusing on the use of
computer vision supported by ML and DL. In [19], the
authors provided a review of obstacle detection based on AI
and DL for risk reduction at Level Crossings. The paper
analyses the combination of obstacle detection with intel-
ligent decision making as an opportunity to provide robust
interlocking decisions. Another recent work [20] focuses on
visual inspection based on image processing, including tradi-
tional andML-based techniques, without a clear focus on DL.

All the works mentioned above provide literature reviews
with different degrees of abstraction and focus. In some cases,
DL has been analysed as one of the possible solutions, while
in others the authors focused on different transport domains,
data sources, maintenance topics, or specific railway areas.
To the best of our knowledge, no literature review specif-
ically addresses DL for audio-video analytics in railway
maintenance.

III. BACKGROUND AND REVIEW STRUCTURE
In this section, we provide background about railway areas
and components that are relevant for maintenance, as well as
an overview of DL approaches and maintenance activities.

A. RAILWAY AREAS
Based on the results of our review, current research on rail-
way maintenance focuses on the following main areas and
components:
• Rail Track: the core element of the railway system
infrastructure. It includes rails, switch points, sleepers,
fasteners, and ballasts. It is also worth mentioning that
the rails are, in some points, joined with welds [21];

• Pantograph & Catenary: the Pantograph and Cate-
nary (PAC) system has a central role in electrical trains

FIGURE 1. Overview of railway components. The figure highlights the
main components addressed by the research works surveyed in this
paper.

since they provide them with the necessary power to
operate. The catenary is the fixed structure located near
and upon (overhead line) the rail track; the pantograph is
a component of the trains placed on the roof. Trains get
the power through the contact between the pantograph
slide plates and the catenary contact wire. Catenaries are
composed of a high number of elements (e.g., screws,
bolts, etc.). In section V, we divided this area into Pan-
tograph and Arcs, Catenary Support Device (CSD), and
Catenary Wires;

• Rolling Stock: within rolling stocks, Bogies are under-
carriages with four or six wheels pivoted beneath the end
of a vehicle that could also provide traction and braking,
while Electric Multiple Units (EMU) are multiple-unit
trains consisting of self-propelled carriages using elec-
tricity as the motive power. Such category also includes
a few other components of trains’ body and frame
(i.e., chassis);

• Tunnel & Bridge: encompassing all components of tun-
nels and bridges, including concrete structure and lining.

Fig. 1 provides an at-a-glance view of a railway system.

B. DEEP LEARNING
Deep Learning is a subfield ofMachine Learning encompass-
ing a multitude of algorithms and models, including Convo-
lutional Neural Networks (CNN), which specialise in image
processing by learning how to extract a suitable set of features
for a specific task [14]. Three are the main families of image
processing tasks:
• Classification (C), in which a sample has to be assigned
to a class within a fixed set of alternatives. This rep-
resents the earliest task CNNs have been used for,
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as classification is commonly used in computer vision.
Tens of models have been proposed, with some remark-
able examples such as AlexNet [22], VGG [23],
ResNet [24], DenseNet [25], etc. In this study we refer
to those as state-of-the-art (SOTA) networks;

• Object Detection (OD), where CNN features are used
to localise – using a bounding box – objects of inter-
est within a scene. Literature includes many SOTA
CNN-based models for OD, such as region-based
CNN (e.g., R-CNN [26], Faster R-CNN [27], Mask
R-CNN [28]) and those belonging to the You Only Look
Once (YOLO) family (e.g., YOLO [29], YOLOv2 [30],
YOLOv3 [31]);

• Semantic Segmentation (SS), which is the precise pixel-
wise assignment of portions of an image to a given class.
These architectures are often similar to autoencoders,
as their output is a segmentation map having the same
size as the input image. Very famous examples are the
SegNet [32] and U-Net [33] architectures.

Interestingly, CNN can also be used for the analysis of audio
signals. In this case, the idea is to analyse the frequency-phase
spectrum as if theywere images. This naive approach not only
proved to be effective, but also allowed for the re-use of CNN
architectures originally intended for images [34].

C. MAINTENANCE TASKS
Despite the railway domain encompasses several mainte-
nance tasks, all the works covered by this survey fall into two
main categories:
• Surface Defect Detection (SDD), focusing only on sur-
face defects (e.g., cracks in tunnels, rails’ heads, etc.);

• Defect Inspection (DI), including all models intended to
detect and analyse different types of faults (e.g., broken
objects, missing parts, anomalies in components, etc.).

It is worth noting that we also reviewed papers that, although
totally focused on the railway domain, are intended to support
a maintenance process and not to address it (e.g., detection
and/or classification of railway-related objects). We decided
to keep those papers (gathered under the name ‘‘Promising
works’’) in this survey, as they represent promising founda-
tions for future works on maintenance.

D. REVIEW METHODOLOGY
To evaluate the current status of the research and answer
the questions highlighted in Section I, we followed the SLR
methodology proposed in [12]. Therefore, we defined a
research query by combining keywords from four sets :
• Railway domain: ‘‘rail*’’, ‘‘metro’’, ‘‘subway’’;
• Maintenance and defect/fault detection: ‘‘smart main-
tenance’’, ‘‘predictive maintenance’’, ‘‘condition based
maintenance’’, ‘‘fault diagnosis’’, ‘‘fault detection’’,
‘‘fault forecast*’’, ‘‘fault prediction’’, ‘‘fault preven-
tion’’, ‘‘defect inspection’’, ‘‘defect detection’’, ‘‘health
monitoring’’, ‘‘health status’’, ‘‘remaining useful life’’,
‘‘condition monitoring’’;

• Deep Learning: ‘‘deep learning’’, ‘‘deep reinforce-
ment’’, ‘‘deep neural’’, ‘‘convolutional neural net-
work’’, ‘‘CNN*’’, ‘‘recurrent neural network’’, ‘‘LSTM’’,
‘‘autoencoder*’’, ‘‘generative adversarial’’, ‘‘GAN’’;

• Image/ audio processing: ‘‘computer vision’’, ‘‘vision’’,
‘‘image*’’, ‘‘video*’’, ‘‘sound’’, ‘‘acoustic’’, ‘‘audio’’.

The final search query is given by the OR among key-
words of each set, combined with the AND of all sets. These
keywords were selected by performing empirical trials in
order to cover as many studies as possible when submitting
the query to the considered scientific literature databases:
IEEE Xplore Digital Library,2 Scopus,3 and ACM Digi-
tal Library.4 Notably, given the limited number of wild-
cards (i.e., asterisks), we opted for some generic keywords
(e.g., ‘‘deep neural’’) and not for specific ones (e.g. ‘‘deep
neural network’’) to include possible keyword variations
(e.g., ‘‘network’’, ‘‘networks’’, ‘‘architecture’’, ‘‘architec-
tures’’) that might not be encompassed otherwise. Lastly, the
query was submitted to search within the title, abstract, and
keywords data fields. Then, to filter the results, we applied the
following exclusion criteria:
E1 works that are not written in English;
E2 works not related to maintenance and DL;
E3 works not focusing on the rail sector;
E4 works that present results leveraging data coming from

sensors different from cameras or audio devices;
E5 works that are non-experimental;
E6 literature reviews.
The query was submitted to cover all years until

August 31st, 2021. However, no relevant paper was found
before 2014. Also, we removed all duplicated papers found
in different libraries. After the application of all exclusion
criteria, we got 95 relevant papers. Fig. 2 reports the publica-
tion trend per year; please note that the 13 papers published
in 2021 are not included in the figure because the partial
coverage of the year (until August 31st) would have led to
a misleading trend. Fig. 3 shows the distribution of papers in
the reference areas.

E. REVIEW ORGANIZATION
The survey is structured into four sections, one for each
relevant railway area: Rail Track (section IV), Pantograph &
Catenary (section V), Rolling Stock (section VI), Tunnel &
Bridge (section VII). For each section, we provide two tables:
the first to gather the papers under the three groups identi-
fied in Section III-C (SDD, DI and Promising works), the
second to summarise the maintenance task, DL approach,
data acquisition system, dataset and obtained performance.
The reported data is taken by preserving as much as possible
the original format from the corresponding paper. Although
this causes some inconsistencies (e.g., using different perfor-
mance metrics in the same column) this ensures a fair and

2https://ieeexplore.ieee.org
3https://www.scopus.com
4https://dl.acm.org
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FIGURE 2. Publication trend of relevant papers from 2014 to 2020.

FIGURE 3. Overall distribution of papers. Notably, the count exceeds the
number of papers as [35] addresses problems in both the railway areas of
‘‘Rail Track’’ and ‘‘Rolling Stock’’; while [36] addresses problems in both
the railway areas of ‘‘Rail Track’’ and ‘‘Tunnel & Bridge’’. Works addressing
‘‘Rail Track’’ and ‘‘Pantograph & Catenary’’ represent almost the 75% of
the total.

transparent analysis. Nonetheless, for the sake of correctness,
we omitted misleading results when possible. For example,
we did not report the accuracy for semantic segmentation or
for object detection tasks when other, fairer metrics, such as
the IoU (Intersection over Union) or the mAP (mean Average
Precision) were available. Those tables can be used to have
all the important information at a glance, while some fine-
grained details (where available) will be provided within the
subsections.

IV. RAIL TRACK
We found 39 research papers, reported in Tables 1 and 2,
facing track-related issues introducing innovative methods to
monitor and/or analyse various Rail Track components. It is
worth noting that a given task (e.g., Defect Inspection), on a
specific subject (e.g., fasteners) can be performed through
object detection, semantic segmentation, classification, or a
combination of them. For example, Surface Defect Detec-
tion can be performed by classifying the images in accor-
dance with the labels or by detecting the defect within the
image. Thus, the same reference may appear under different
columns.

A. RAILS’ HEADS
Rails’ heads surface defect detection is addressed by several
papers. To classify cavities or small hills on the surface of
rails’ heads, in [41] a CNN-based classifier is trained on pho-
tometric stereo images while in [42] the authors used 3D laser
camera data. Reference [63] proposes a CNN-based approach

TABLE 1. Maintenance tasks for rail track, by components.

to classify rails’ health status based on CNN and Acoustic
Emission recognition. The tests have been obtained by stress-
ing a rail test specimen until it broke, recording and labelling
the audio events. Reference [54] proposes an architecture
based on CNNs to identify surface rail defects at switch
points. The proposed network leverages transfer learning on
a dataset collected through a monitoring system previously
developed by the same authors [75]–[77]. Reference [43]
introduces a three-stage pipeline: the first stage detects and
removes blurring from the images based on an Inertial Mea-
surement Unit and on the Attitude and Heading Reference
Systems algorithm; in the second stage, a CNN built from
scratch was trained to detect surface defects (healthy or faulty
image); in the third stage, the CNNwas tested on new images.
Experiments show that the whole process could be performed
up to 40 frames per second whichmeans a real-time operating
speed of around 72Km/h. Reference [44]makes use of images
collected by a robot running on the rail line. Local image
processing and classification are performed onboard (on-the-
fly) firstly. Once the onboard CNN architecture detected a
defective image, the location is saved and the image is post-
processed in the cloud. Reference [49] proposes an approach
based on YOLOv3 architecture to improve the detection
speed (about 0.15s), preserving a recognition rate of 97%.
Training and test have been performed on images captured by
a camera installed perpendicular to the rail. Reference [45]
introduces a new network intended to operate (also) under
poor lighting conditions. The model combines YOLOv3 for
regression, multi-scale prediction and the loss computation
method, with a feature extractor based on MobileNetV2 [86].
The resulting system operates up to 60 FPS. References [50]
and [52] evaluate Faster R-CNN models against the use of
other architectures as feature extractors. To eliminate the
manual inspection, reference [64] proposes an IoT-based
multi-robot able to detect rail tacks’ defects in real-time.
Multiple robots were involved in collecting data about defects
through ultrasonic sensors and cameras. For surface cracks,
a CNN is compared against SVM, ANN, and Random Forest
trained with data obtained through the Speed Up Robust
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TABLE 2. Dataset details for rail track.
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TABLE 2. (Continued.) Dataset details for rail track.

Features (SURF) algorithm, with the CNN showing the best
performance. When a defect is detected, an alert SMS is sent
to an operator, while the GPS data and the image are sent to
an IoT web server to be remotely available.

References [46], [47], and [51] focus on Semantic Seg-
mentation. The first proposes a new network to face the
high false alarm rate of the traditional commercial-of-the-
shelf visual-based track inspection system, implementing a
multi-stage approach: in the first stage, a U-Net is used to
extract rail tracks and locate the Regions of Interest (ROI);
then, the ROIs are cropped ; finally, the resulting patches
are fed to a CNN which classifies them into True or False
alarms. The authors highlighted three limitations: (i) only
one type of defect was considered; (ii) the labelling of ROIs
introduced unnatural noise; (iii) the network was tested only
on vertically aligned rail tracks. In [47], the authors pro-
posed a SegNet variant to cope with images of different
surface defects, collected through CCD industrial cameras on
a testing vehicle arranged near the rail, through a histogram

5https://github.com/Charmve/Surface-Defect-
Detection/blob/master/README.md (Dataset 11 - RSDDs: Rail Surface
Defect Datasets)

6https://github.com/kriiyer/Dataset.git
7https://github.com/ilhanaydintr/RailDefectDetection

matching method. Similarly, reference [51] proposes a com-
bined approach of saliency cues [87] of the damaged areawith
a U-Net Network implementing a defect detection through
segmentation.

Lastly, reference [53] presents two deep learning
approaches for scenarios with a reduced number of samples
available. The former relies on a CNN with a Long short-
term memory and an attention module to select significant
information; the latter removes the attention module and
leverages a TD-LSTM [88].

B. RAILS
Reference [37] presents a systematic procedure to configure
a CNN-based classifier to evaluate the rails in the quality
assessment step. Images were collected by four cameras able
to capture the whole rail surface. Despite the images were
manually labelled into six defect classes, the paper focuses on
a binary classification by grouping the samples into defective
and non-defective images. RNN has been used in [38], where
the inspection was performed using an ultrasonic flaw detec-
tion vehicle collecting B-scan data of ten different types of
defects. The idea was to turn the problem into identification
and classification of ‘‘sequence languages’’.
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C. FASTENERS/FASTENING SYSTEMS
Some of the reviewed works address fasteners type recogni-
tion and fasteners defect detection. Reference [72] focuses on
the recognition of the rail fastening systems and proposes an
intelligent information processing architecture able to auto-
matically recognize the fasteners’ type between six fasten-
ing systems (e.g., DO2, KB, etc.). Images were acquired
through a rail detector car equipped with four cameras, and
an automated workstation to pre-process the video stream.
References [65] and [69] propose architectures to evaluate
the faulty or normal status of the fastening system. Images
were collected through a camera installed on an inspection
vehicle equipped with a GPS module to mark the location of
damaged fasteners. Reference [66] relies on images captured
by an Unmanned Aerial Vehicle (UAV) flying at 30m on
one side of the railway line. Authors tried different architec-
tures for the defect detection, with a YOLOv3-based detector
resulting to be the fastest with a detection time of 0.01s.
Reference [67] compares three different approaches: the first
is based on Dense Scale Invariant Feature Transform [89],
bag-of-visual-word model [90], Spatial Pyramid Decompo-
sition [91], and SVM ; the second is based on VGG16 con-
volutional layers; the last one is based on Faster R-CNN.
The latter configuration results in better performances and
in a faster comprehensive speed (0.23s for both detection
and classification). Reference [48] focuses on both rails’
heads and fasteners defect detection by relying on an archi-
tecture based on YOLOv3 with scale reduction and further
feature connections between layers to achieve lower com-
plexity and faster detection. In [68], the authors developed
a 3D Laser Railway Detection System for automated rail-
way fasteners detection on ballastless tracks. The system
collects ‘‘depth images’’ to be used as input to a CNN-based
classifier.

D. WELDED JOINTS AND SLEEPERS
Two papers deal with thermite welded joints detection and
concrete and sleeper crackswidth estimation. Reference [21]
proposes a YOLOv3-based object detector for the welded
joints detection task, trained and tested on images collected
in laboratory thermite welded specimen. Reference [36] pro-
poses three Semantic Segmentation models, based on the
SegNet model, to predict the width of cracks in concrete and
sleepers. The authors made use of rectangular convolutional
kernels to make the model more compliant with the shape of
the cracks.

E. FINDINGS ON RAIL TRACK
In most cases, researchers presented a single-target solution,
i.e., focused on a specific component or a class of com-
ponents (e.g., rails’ heads), proposing new architectures or
carrying out interesting comparative studies (e.g., [66], [67]).
Nevertheless, we also found a comparative study presenting
an interesting multi-target architecture able to cope with both
defective fasteners and rails’ heads defects [48].

Regarding rails’ heads surface defect detection, the anal-
ysed papers mostly implement custom architectures from
scratch. Instead, in Fasteners Defect Inspection most of the
studies presented approaches based on SOTA object detectors
(e.g., YOLOv3 and Faster R-CNN). Moreover:
• in two cases, the authors ‘‘simply’’ focused on items
classification or detection, without looking at defects.
In particular, [72] focused on fasteners type classifica-
tion, while, [21] focused on welded joints detection;

• in two cases, tests were performed only on data coming
from laboratory experiments (cf. [21], [63]);

• some studies use geolocation to detect the location
of faulty components on the rail tracks (e.g., [44],
[69], [65]).

A further finding regards the implementation of
approaches based on Audio Processing for maintenance
tasks: besides the results obtained by [63] on audio events
generated in the laboratory, the authors in [35] leveraged
audio data related to the wheel-rail interaction, while those
in [54] leveraged Acoustic Emission data collected on the
field pre-training their model on data coming from the well-
known AudioSet dataset [34], [92].

F. DATASETS
In most cases, data have been collected using custom sys-
tems, hand-labelled, and not made available. Some excep-
tions leverage third parties data, such as [46] using ImageNet
[93] or [44], [51] and [53] using the Type-I [73] or the
Type-II [74] datasets. Reference [36] leveraged the dataset
proposed by [94], despite the fact that this includes cracks
related to generic concrete structures. Lastly, in [54], the
authors leveraged the AudioSet dataset [92]. Only in one
case [64] the authors presented a new dataset, available on
Github,8 for rails’ cracks and rust.

V. PANTOGRAPH & CATENARY
In the following, we refer to three main components:
• Catenary Support Device (CSD), supporting wires
above the rail and consisting of many sub- components
(e.g., insulators, brace sleeves, steady arm, etc.);

• Pantograph and Arcs: including pantograph defect
inspection and detection of arcs, i.e., abnormal sparkling
events occurring between the pantograph slide plate and
the contact wire;

• Catenary Wires: including all papers dealing with wires
(e.g., droppers, contact wire, message wire, etc.) and
related defect detection.

Tables 3 and 4, whose structure and aim are described in
Section III-E, summarise the papers we found within this
Railway Area.

A. CATENARY SUPPORT DEVICE (CSD)
Different DL-based solutions perform defect inspection on
CSD components. In [134], the authors applied a DL-based

8https://github.com/kriiyer/Dataset.git
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TABLE 3. Maintenance tasks for pantograph & catenary, by components.

approach to detect the insulators before performing the
defect detection through Contour Features and Gray similar-
ity matching. Reference [114] uses both a classical approach
(based on SURF) and an AlexNet-based method to detect
insulators and bolts in images of CSD in metro power sup-
ply systems. Reference [113] proposes a method based on
the Markov Random Field (MRF) and on Faster R-CNN
models to perform loose strands diagnosis in isoelectric
lines. Differently, a three-stage DL-based model, combining
SSD, YOLO, and CNN operating at >60 FPS, is proposed
in [99] to detect fastener defects on the catenary support
device. Reference [95] proposes a two-stage method to detect
surface defects in catenary insulators leveraging a Faster
R-CNN (based on VGG16), a deep denoising autoencoder
(DDAE), and a deep material classifier (DMC, a segmenta-
tion approach inspired to [135] and [136]) trained through a
multi-task learning approach, sharing the first convolutional
layers. A two-stage approach is also described in [98] to
perform defect detection in contact wire clamps and split pins
by using a custom catenary components segmentation net-
work (CCSN) inspired to theMask R-CNN architecture.With
the same aim, reference [100] presents a three-stage method
adopting an improved YOLOv3 network and DeepLabV3+,
achieving the best performance with respect to the state of
the art. Reference [103] proposes a new two-stage approach
to detect defects of catenary insulators. Composed of a Basic
Localization Network and of an Oriented Region Proposal
Network, it uses a post-refinement method based on Genera-
tive Adversarial Network (GAN) to detect defects within the
images, associating a defect score to each faulty image. Tests
showed that, despite being effective, it operates at <0.3 FPS.
Reference [101] proposes a solution consisting of a Spatial
TransformerNetwork [137], to learn invariant representations
of the original image, and two parallel networks to extract
features on which classification is performed. Different cou-
ples were tested, with VGG16+VGG19 obtaining the best
accuracy. Reference [102] presents a pyramid fusion archi-
tecture focused on bird preventing, relying on ResNet-101 as
backbone network.

Some works also address CSD component detection.
In [112], the authors proposed a comparative study between
four frameworks to perform catenary support components
detection. Despite the b est results were obtained by an
R-CNN with ResNet-101, none of the tested architectures

achieved good precision on small components, underlining
the difficulties of such frameworks in extracting the features
of small-scale targets. Reference [111] presents an approach
based on the Faster R-CNN to detect brace sleeve screws.
Faster R-CNN has been improved by discrimination fea-
ture maps and Proposal feature maps. Then, VGG16 and
ResNet-101 have been tested as feature extractors, with the
former resulting slightly better both in terms of mAP and AP,
even if a little bit slower than the latter. Finally, in [115], the
authors proposed to detect rod insulators within images cap-
tured through two drones. Analyses were conducted consider-
ing two types of drones, custom and off-the-shelf, evaluating
different pre-processing strategies to obtain optimal images.

B. PANTOGRAPH & ARCS
The constant contact between the pantograph sliding plate
and the catenary contact wire can cause erosion on one or
both the components, resulting in a sparkling event called
Arc. Reference [119] proposes an Arc detection system based
on CNNs to analyse frames captured by a camera located on
the top of the train pointing to the catenary-pantograph con-
tact point. In reference [120], the authors proposed a Faster
R-CNN based architecture able to detect both pantograph
and arcs within high-speed train lines. The proposed sys-
tem involved the computing of the height of the pantograph
(to detect a bow drop) and a SIFT-based approach to geolocate
the fault on the railway line. The authors of reference [122]
proposed a detection method for systems with double contact
lines. The authors also introduce a new dataset, called PAC-
TPL2020, collected using a high-resolution system installed
on the roof of the train. The authors of reference [121] pro-
posed a two-stage object detection to detect pantograph horns
as well as faults such as pantograph loss and deviation. Lastly,
reference [117] proposes an approach to estimate the wear of
pantograph sliding plate on metro line images collected with
a handhold DSLR camera. They also presented a procedure
to estimate the thickness of the pantograph sliding plate.

C. CATENARY WIRES
With respect to Catenary Wires, the droppers have caught the
attention of researchers as their failure (e.g., bending, break,
deformations, etc.) can lead to unpleasant consequences such
as the burnout of the contact wire [125]. Reference [125]
proposes a complex system for droppers defect inspection
subdivided into (evident) faults and (tiny) defects. If a dropper
is identified as faulty, a first system produces that output,
otherwise, it is analysed by a second system to identify
tiny defects (e.g., little foreign objects, broken strands). The
same task is addressed in [126], with the authors proposing
a two-stage detection system based on a light version of
YOLOv3, a Faster R-CNN based network, and on traditional
image processing (OTSU, digital morphological operation
and self-define linear difference detection) to detect non-
stress defects. Differently, in reference [127], the authors
mostly focused on droppers detection as they can be easily
obscured by other catenary components. With the same aim,
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TABLE 4. Datasets details for pantograph & catenary.
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the authors of reference [129] implemented an approach for
high-speed railways based on the Faster R-CNN architecture.
The model was tested on images from the high-speed rail 2C
system, showing to be able to operate only up to ∼8 FPS.

D. FINDINGS ON PANTOGRAPH & CATENARY
What most characterises the Pantograph & Catenary area
compared to that of the Rail Track is the presence of very
small components. This represents, especially with regard to
CSDs, one of the greatest challenges to be faced as applying
a defect detection approach directly to the entire image will
result in poor accuracy. Therefore, in many cases, multi-stage
approaches have been presented to identify the component
under examination as a first step and then apply a defect
identificationmechanism,whether based on traditional image
processing techniques (e.g., [134]), semantic segmentation
(e.g., [98], [100]), classification networks (e.g., [99]), or other
approaches such as deep denoising autoencoders (DDAE)
and deep material classifier (DMC) as in [95]. The archi-
tectures mostly used as the first stage were those belonging
to the YOLO family, given their detection speed, and the
Faster R-CNN, given their accuracy. Clearly, these frame-
works have been modified to suit the case under examination.
In this respect, a mention goes to the work described in
reference [103] as it proposes an innovative methodology to
better identify insulators and applied GAN to identify defects.

Interestingly, while in some cases other DL or image
processing approaches have been implemented downstream
of these identifiers to detect anomalies, in other cases
the presented approach is limited to target detection. For
instance, [115] focuses on insulators detection, [111] focuses
on brace sleeve screws identification, while [127] and [129]
propose architectures for dropper detection. It is worth noting
that ‘‘simple’’ object detection applications can also directly
involve defect detection, such as the identification of Arcs
(i.e., an object), which indicates possible deterioration for
pantographs or contact wires (e.g., [119], [120]). Finally,
to the best of our effort, we did not find any paper making
use of audio data for this task.

E. DATASETS
Researchers mostly built datasets from scratch or relied on
data that are not publicly available. Only in a few cases, the
authors used existing datasets or made available those created
by them. In [129], the authors tested their model on two well
known datasets (VOC2012 [130] andMS-COCO 2014 [133])
to compare its performances with those achieved by other
SOTA architectures. Differently, in [120], the authors used the
ImageNet dataset [93] and VOC2007 [131] to pre-train their
architectures, so transferring knowledge from big datasets
and then adapting it to their purposes. Reference [111] used
the Catenary-5000 [132] to test the proposed model for the
detection of brace sleeve screws, however, it is not clear
whether the dataset is available. The same issue applies to
the PAC-TPL2020 dataset used in [122].

TABLE 5. Maintenance tasks for rolling stock, by components.

VI. ROLLING STOCK
In this study, we found a few papers mostly related to
small objects (in relation with the whole train) detection,
and their defect identification, within bogies and train’s body
and frame. Tables 5 and 6, whose structure is defined in
Section III-E, report their characteristics.

A. BOGIE & FRAME
Reference [139] proposes a defect detection architecture to
deal with low image quality and complex background, sliding
a set of anchors over multi-level convolutional feature maps.
The model was tested on four datasets related to 1) Cut-
out cock handle, 2) Dust collector, 3) Fastening bolts, and
4) Bogie block key. The same authors improved the approach
in [140] to make it suited for real-time fault detection by
introducing a novel multilevel feature fusion strategy. They
also proposed an image acquisition system composed of a
device placed in the middle of the rails and two devices on the
rails’ sides composed of CCD cameras and an auxiliary light
device. When a train passes through, images were acquired
and sent to a server system for the analysis. A multi-defect
(i.e., lost pin, lost bolt, lost rivet, broken chain, broken wire,
and foreign object) detection system was proposed in [141].
The authors built a three-stage model based on ResNet-101
trained on data collected through 12 high-speed cameras
placed on the tracks. Reference [144] proposes a DL-based
two-stage component defect detection architecture to recog-
nize anomalies in train bogies. In the first stage, a hierar-
chical object detection scheme is implemented to detect and
localize small and large objects, while the second pipeline
is tailored to detect smaller components. Reference [142]
focuses on bolt defect detection. The authors proposed a
system for bolt-loosening detection in key bogie compo-
nents (Axle Box, Traction Motor and Gear Box) acquiring
data in an online fashion, i.e. while trains were running.
First, a CNN-based system detects regions of interest, then
another CNN extracts bolts edges; lastly, to detect single
or multiple bolt loosening, a 3D reconstruction method was
used to calculate the distance between the bolt cap and the
mounting surface. Results show optimal performances with
a relative error smaller than 1.42%, moreover, the processing
time to complete the fault detection considering a train with
8 cars was about 4.6 minutes, 1.1s per image (within China’s
requirement of 5 minutes). Lastly, in reference [143], the
authors implemented a two-stage approach to determine the
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TABLE 6. (Continued.) Datasets details for rolling stock.

status (Normal/Abnormal) of Axle Box Cover bolts. Images
were collected through an acquisition system called ‘‘metro
inspection shed’’ equipped with different line-scan digital
cameras with high precision. In the first stage, a Faster
R-CNN architecture was implemented in order to identify
bolts within the component under examination. A one-class
convolutional architecture (OC-CNN) was used to discern
normal samples against defective ones, to deal with the lack of
negative examples. Results show that the whole architecture
requires 265ms to process a single image.

B. EMU TRAIN KEY COMPONENTS
With the term EMU Train key components, the authors
of [149] and [150] referred to brake disk, brake caliper,
tractor, side suspension, under suspension, and plate bolt.
The authors proposed a system able to cope with EMU
components defect detection inspired by the Faster R-CNN
architecture with a feature extractor based on ResNet-101
(instead of VGG16). Extracted regions were cropped and
processed in order to obtain ‘‘super-resolution images’’ lever-
aging, among the others, a Generative Adversarial Network
(SRGAN) [155].

C. OTHER COMPONENTS
Reference [151] proposes a faulty rail-valve detection
through a two-step segmentation approach leveraging U-Net.
Images were collected through a VTIS system which allowed
an image collection always from the same distance. The first
network performed the segmentation on the whole image,
detecting the segmented mask which highlights the valve.
These were then processed by the second network that per-
formed a high-resolution segmentation. The mask in output
was then processed by an image processing algorithm to
detect the fault. Despite the good performances, the system
is able to work only with train-valve binary classification

9Northeastern University (NEU) dataset: http://faculty.neu.edu.cn/
yunhyan/NEU_surface_defect_database.html

and only if there is a single valve per image oriented in a
specific way.

D. FINDINGS ON ROLLING STOCK
From the above analysis, it is clear that the bogies have been
the most investigated components. As for the Pantograph
& Catenary area, the bogies are composed of multiple
small elements that are very hard to identify given the
complex background. Therefore, in most cases, multi-stage
approaches based on Object Detection frameworks (mainly
Faster R-CNN) were proposed to cope with Bogie and
EMU train components defect inspection. Regarding Audio
Processing, only the authors in [35] leveraged audio data
to estimate the adhesion conditions between wheels and
rails. Lastly, transfer learning approaches have been applied,
as mentioned in the following subsection.

E. DATASETS
Regarding the used datasets, references [139] and [140] lever-
age those introduced in [152] to train and test their models.
In [139], the authors also used the ImageNet dataset [93]
to pre-train the model implementing, de facto, a transfer
learning approach. Likely, in [142], the authors relied on the
BSD500 dataset [154] to pre-train their bolt edge detection
model. In two cases, the models proposed for bogie or EMU
train components defect detection were also tested on other
kinds of data to evaluate their generalization performances.
Indeed, in [141], the model, trained to identify defects such
as lost pin, lost rivet, broken chain, etc. was also tested fine-
tuning it to cope with defects such as oil leaks and scratches;
nevertheless, it is not clear if these datasets are available
to the researchers’ community. Differently, reference [149]
proposes a model to address EMU Train Key Compo-
nents defect detection, which was also tested on the North-
eastern University (NEU)10 [156] surface defect dataset.

10http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
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TABLE 7. Maintenance tasks for tunnel & bridge, by components.

Lastly, reference [151] mentioned the Singapore Mass Rapid
Transit (SMRT) dataset, however, also in this case, the dataset
seems not to be accessible.

VII. TUNNEL & BRIDGE
Focusing on the Tunnel&Bridge area, a few papers have been
found. Tables 7 and 8, whose structure and aim have been
described in Section III-E, report their characteristics. Finally,
it is worth noting that we reported in this section also a paper
(i.e., [36]) already analysed in section IV, as it addresses
concrete crack analyses by using a setting compatible with
the estimation of cracks in tunnels’ lining.

A. TUNNEL
As from Table 7, all but one work target tunnels’ lining
defects, performing such analysis at different levels. In [157],
the authors used a Kinect to estimate cracks’ defect inten-
sity, leveraging a DL-based approach (a CNN classifier) to
classify the faulting lines in vertical, horizontal, upward tilt
or downward slope. Reference [161] uses Mask R-CNN to
perform tunnel inspection and crack detection. Data were
collected by a smart vision measurement system composed
of different cameras, each capturing a segment of the tunnel.
Segments were arranged in a circular array to obtain the
tunnel cross-section. The authors considered both 2D and 3D
information: the former were used to train a Mask R-CNN,
with ResNet-50 as backbone, in order to obtain crack seg-
mentation and detection; the latter were used to build a 3D
model of the tunnel using a self-developed robust B-spline
algorithm.

Reference [158] proposes a two-stage Semantic Segmen-
tation approach using two Fully Connected architectures,
based on VGG16, to detect (possibly overlapping) cracks and
leakages. Images for training and testing were acquired by
a Moving Tunnel Inspection (MTI-200a) system, developed
by the authors, which captured the tunnel’s surface images
through 6 cameras while moving on the rails. Similarly,
reference [159] uses a two-stages approach (inspired by the
R-FCN architecture) to detect leakages, cracks, and scratches.
Images were collected through the Movable Tunnel Inspec-
tion (MTI-100) system and two datasets were built. The
first dataset was used to pre-train the Fully Convolutional
Network (based on GoogLeNet and VGG16) composing the
first stage of the model. This network has been considered as
a traditional classifier (with a last fully connected layer) and
has been trained to classify images according to five classes:

leakage, crack, segment joint, pipeline and lining. Once the
proposed network was trained, the last FC layers have been
dropped and replaced to obtain the last feature map used as
input for the next stage performing object classification and
localization. Tests showed that, although the detection accu-
racy was almost the same, the location accuracy increased
with smaller images.

Finally, reference [160] proposes a Semantic Segmentation
based approach to detect cracks in tunnels’ lining referring to
the DeepLab-v3 architecture. The authors built two datasets
starting from the images captured by a proprietary image
acquisition system equipped with eight industrial linear array
CCD cameras: the first contains only cracks (tunnel crack
dataset); the second contains cracks, structural seams, water
stains, and scratches (augmented tunnel crack dataset).

B. BRIDGE
In [163], the authors used a YOLOv3 network, pre-trained
on the VOC2007 dataset [131], to detect cracks on bridges’
beams. Since YOLO is not so good with small-scale objects,
images acquired by a CCD camera were first cropped in
64 smaller images. To improve generality, images’ brightness
and contrast were modified to simulate different lighting and
weather conditions. It is worth highlighting that, despite the
authors indicated that the accuracy was greater than 95%, the
recall rate was less than 10%.

C. FINDINGS ON TUNNEL & BRIDGE
In the Tunnel & Bridge area, tunnels are subject to some
complex situations such as uneven illumination, image
noise, etc. In order to address those problems, most of the
reviewed papers leveraged existing state-of-the-art architec-
tures. In almost all cases, the Surface Defect Detection task
has been addressed as an Object Detection or Semantic
Segmentation problem. Beyond reference [36], which also
focused on width estimation, and [157], which implemented
Image Processing approaches, the reviewed papers have not
implemented an ‘‘estimation’’ mechanism of the cracks or
defect intensity through DL, instead, they mostly focused
on detecting, classifying and locating these defects in the
concrete structures. Most of them focused on cracks, except
reference [159], where the authors also included leakages and
scratches, and reference [158] where the authors proposed
an architecture composed of two FCNs to detect cracks and
leakages.

D. DATASETS
Concerning datasets, as for the previous areas, the authors
used some existing datasets to build transfer learning
approaches: reference [163] used the VOC2007 dataset [131]
to pre-train the proposed architecture, while in reference [36],
the model has been trained on the [94] dataset, although in
our understanding this is related to generic concrete structures
cracks. On the other hand, [158] built a dataset from scratch
related to defects on tunnels’ lining from a proprietary acqui-
sition system.
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TABLE 8. Dataset details for tunnel & bridge.

FIGURE 4. Distribution of reviewed papers by data type (Image/Video or
Audio). For audio, the figure also reports the used DL approaches.

VIII. STATISTICAL ANALYSIS
In this survey, we reviewed 95 papers distributed as shown in
Fig. 3; interestingly, only 5 leverage audio data (Fig. 4).
Fig. 2 describes the temporal progress of papers published

during the last years and reviewed in this paper, with the
first work found on the subject published in 2014. The trend
shows an almost exponential growth, which demonstrates an
increasing interest of researchers in this field (year 2021 was
not included in the graph due to partial coverage showing a
misleading trend).

Fig. 5 summarizes the different DL approaches that have
been adopted by researchers to solve specific maintenance

tasks in reference Railway Areas. Notably, some architec-
tures have been leveraged to deal with different problems
in different areas and have been also exploited for different
DL tasks (i.e., Classification, Object Detection, and Semantic
Segmentation). However, some pairs are missing:
• Rolling Stock - Surface Defect Detection: the studies
were oriented to detect defective parts of relevant com-
ponents (e.g., broken or missing bolts) and not to the
identification of surface defects such as scratches on the
train body;

• Tunnel & Bridge - Defect Inspection: as expected, the
studies were oriented to identifying only surface defects
on tunnel/bridge linings;

• Rolling Stock, Tunnel & Bridge - Object Identification:
in all papers, the authors proposed a methodology aimed
at the detection of defects, while no study addressing
object identification was found.

It is worth mentioning that we also found a single
paper [164] focusing on track-side equipment anomaly detec-
tion. Besides it is not related to any of the four main relevant
railway areas, a mention is deserved, as it uses a DL approach
(MDNet [165], [166]) trained on 600 images (2048×1011 px
each) to identify defective objects in trackside components.
The approach achieves a True Positive Rate of 98.9%.
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FIGURE 5. DL Architectures. The chart shows the cumulative number of
times that the specific network or architecture has been used to address
a Classification, Object Detection, or Semantic Segmentation task in the
reference railway areas for Surface Defect Detection (SDD), Defect
Inspection (DI) or Object Identification (OI). OI refers to the papers we
have identified as ‘‘Promising Works’’, which only perform object
detection (no defects) or classification. Notably: i) the Faster R-CNN is an
architecture involving a backbone network to extract features, with
networks belonging to the ResNet series being the most adopted to this
aim; ii) YOLOv3 was the most exploited YOLO architecture; iii) with
‘‘Custom Net’’ we indicate approaches that were not (explicitly) based on
SOTA networks.

IX. RESPONSES TO RESEARCH QUESTIONS
In Sections from IV to VII, we reviewed DL approaches
that have been adopted in the context of Rail Tracks,
Catenary & Pantograph, Rolling Stock, and Tunnel & Bridge,
to address defect detection and inspection. Specifically,
Tables 2, 4, 6, and 8 summarise the main characteristics of
these approaches, while Tables 1, 3, 5, and 7 report the main-
tenance tasks per railway component (e.g., CSD, fastening
systems, etc.). From these analyses, we derived the following
answers to the three RQs we have previously identified.

A. RESPONSE TO RQ1
We reviewed 95 papers distributed as shown in Fig. 3. The
‘‘Rail Track’’ and ‘‘Pantograph & Catenary’’ are the most

FIGURE 6. Distribution of papers by sub-components. The histogram
shows the number of studies found for each sub-component of the
Railway Areas. The total number of items in each area may be greater
than that indicated in Fig. 3 as some papers deal with multiple
sub-components.

FIGURE 7. Trends of the papers by Railway Areas. For each Railway Area,
the chart shows the trend of studies over the years. Interestingly, the Rail
Track, Pantograph & Catenary, and the Rolling Stock areas show more or
less the same increasing trend, even though studies in the Rolling Stock
area ‘started’ one year later. On the other hand, the ‘few’ studies in the
Tunnel & Bridge area show a fairly flat trend starting from 2016.

investigated areas. To better understand trends and research
directions, Figs. 6 and 7 report the papers grouped by com-
ponents within each area. The most investigated components
are ‘‘Rails’ Heads’’ and ‘‘Catenary Support Device’’, dis-
cussed in Sections IV-A and V-A respectively, with papers
providing suitable and effective approaches. Differently, for
other sub-components, the outcome was not expected, espe-
cially for cracks in tunnels and bridges (which account for
only 8 papers out of 95), since such defects have already
been analysed in other domains. Evidence for this are:
i) a study related to the road sector [167]; ii) the datasets
it uses (CRACK500 [168], [169], GAPs384 [170], and
CFD [171]), which are related to different types of cracks;
iii) two approaches based on transfer learning we reviewed
in this SLR, i.e., reference [36], using a general crack
dataset [94], and reference [163], using the VOC2007
dataset [131]. Fig. 7 also highlights interesting aspects of
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publication trends per area. In particular, papers focusing on
both ‘‘Rail Track’’, ‘‘Pantograph & Catenary’’ and ‘‘Rolling
Stock’’ show a growing trend (with the latter mostly pushed
by papers on Bogies, suggesting this to be a hot topic in the
future), while those focusing on ‘‘Tunnel & Bridge’’ appears
almost steady.

B. RESPONSE TO RQ2
Several object detection approaches have been implemented
for Rail Tracks, Bogies and, especially, Catenaries. Indeed,
the latter are composed of very different parts (even very
small), often causing ineffective defect detection on the
acquired images. To deal with this, different multi-stage
approaches have been proposed, with the first stage providing
the detection of the area of the component under inspection
(e.g., [99], [100]). Among the various object detection meth-
ods, the most used approaches are those belonging to the
YOLO (mostly Yolov3) family, as they seem to be among
the fastest architectures, and those belonging to the region-
based CNN (mostly Faster R-CNN) family, which have been
shown to be (generally) more precise even if less fast than the
previous [172]. Such models have been used both as defect
detectors (e.g., [118], [125]), evaluating defects starting from
the original images, and as a first-stage approach in the multi-
stage solutions, to detect the portion of the image related to
the components of interest (e.g., [95], [105]). This aspect can
be easily derived from Fig. 5.
As for the datasets, unfortunately, most of the studies lever-

aged ad-hoc datasets built from scratch; additionally, data
have been collected through different methods and sensors.
However, as from Tables 2, 4, 6, and 8, some works also make
use of (new or already existing) datasets that are narrowed
to specific railway components (e.g., Type-I and Type-II
[73], [74], Catenary-5000 [132] and BSD500 [154], etc.).
Additionally, only a few works made available online the
datasets they built (e.g., [62], [64]). The heterogeneity
of datasets represents an obstacle to identifying the best
approach among those proposed in the relevant literature.

C. RESPONSE TO RQ3
We have identified the following main research directions
based on the issues highlighted by the works examined and
their proposed solutions:

1) DEFECTS IN CONCRETE INFRASTRUCTURES
Considering the analysis conducted on concrete infrastruc-
tures in section VII, we can state that only a few studies have
been carried out in this direction. As alreadymentioned, these
studies are scattered over time, and it seems that no partic-
ular emphasis has been placed on this topic in the railway
sector. Therefore, starting from existing studies (including
those not directly related to the rail sector [173]) and datasets,
further analyses could be carried out on the detection of
surface defects in concrete infrastructures, especially con-
sidering that, as expressed in some of the reviewed studies,
delineating defects inside tunnels is not straightforward given

some unfavourable environmental conditions (e.g., uneven
illumination).

2) SMALL-SCALE OBJECT DETECTION
The small-scale object detection introduces difficulties in
tasks such as defect inspection of CSD and bogies compo-
nents, leading some researchers to focus only on component
detection (e.g., [111], [115], [129]). Building multi-stage
approaches as discussed in the response to RQ2 could be
a suitable solution to deal with this issue. Additionally, the
ground laid by some of the reviewed studies could lead to
further improved methods for detecting small-scale objects,
and thus further improve maintenance tasks. In this respect,
the authors in reference [103] presented a quite innovative
approach to improve insulator detection by leveraging rotated
anchors instead of horizontal or vertical ones.

3) MULTI-TARGET SYSTEMS
Most of the reviewed papers focused on a single target or a
class of targets such as rails’ heads, fasteners, and insulators
(or a few of the CSD components). Future research should
aim at implementing multi-target systems focusing on more
than one component. That can be done by combining and
improving some of the proposed methods in order to detect
defects of multiple components by leveraging the same video
and audio data. Some steps have already been taken in this
direction by evaluating rails’ heads and fasteners’ defects at
the same time [48]. The same approach could be applied to
CSD, pantographs, and arcs.

4) HARMONISED DATASETS AND BENCHMARKS
The availability and quality of data have always been one of
the major challenges when it comes to properly characterise
ML and DLmodels. Additionally, most of the studies built an
ad-hoc dataset from scratch to conduct their experiments, also
to solve the same task on the same rail component (e.g., rails’
heads). This means that: i) it is not possible to immediately
identify the best approach to solve a given problem; ii) it
is not said that if a model works well on a given dataset,
it will be able to perform properly on another dataset, pos-
sibly collected in a different way. Hence, besides DL-related
concepts such as the ‘‘generalization’’ of the model, it would
be advisable to define some guidelines for data collection
and dataset construction. These guidelines should allow the
creation of harmonised datasets, i.e., datasets that share sim-
ilar characteristics, including data format, data quality, and
data variety (e.g., under different weather or illumination
conditions). Notably, data quality should not only address the
resolution of the image, but it should also take into account
the number of collected samples and how relevant they are to
solve the task. Harmonised datasets, in our view, would facil-
itate performance evaluation and enable comparison among
different models. Reference datasets, possibly managed by
reputable railway stakeholders, would enable reliable bench-
marks to assess the performance of DL solutions and effec-
tively support future research activities.
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5) LEVERAGING AUDIO DATA
Our results showed a strong deficiency in the use of audio-
based techniques to support maintenance activities in rail-
ways (Fig. 4). Indeed, in only a few of the reviewed papers,
mainly related to the Rail Track area, the authors leveraged
audio data: reference [35] proposed a model to identify the
wheel-rails adhesion conditions; reference [39] proposed an
approach to identify rail crack status and, similarly, refer-
ence [40] aimed at detecting rail cracks; in reference [63],
laboratory experiments are described to detect rails head
defects, while, to address the same task, in reference [54],
the authors used acoustic emissions recorded on the field and
implemented a more complex approach. Therefore, based on
our analysis and due to its known potential of warning main-
tenance operators about defects, the exploitation of audio data
through DL is an aspect worthy of further investigation and
extensive evaluation.

6) COMBINING AUDIO AND VIDEO DATA
No study has attempted to combine data from both audio
and video sources. However, in the field of data-driven
approaches and DL, there is plenty of feature fusion tech-
niques that may be exploited to merge data from multiple
sources, therefore, such a combination has a huge potential.
In fact, by focusing on the same target, the models built on the
two different data sources could be synergistic and complete
each other to reduce their shortcomings and ultimately lead
to more accurate defect detection.

X. DISCUSSION
The common idea shared by a number of the reviewed works
(e.g., [48], [140], and [143]) has been to move towards
data-driven methods implementing mechanisms to improve
traditional inspection and maintenance activities, which are
often time-consuming and limited by the experience of the
operators. It is worth noting that, although our scope was to
review works addressing DL approaches to perform or facil-
itate maintenance and inspection activities by Audio-Video
Analytics in railways, search results also included several
approaches based on traditional Image Processing techniques
for image pre-processing (e.g., image enhancing, noise reduc-
tion), feature extraction and image segmentation (e.g., [67],
[134], [114]), and defects evaluation (e.g., [46], [113], [125],
[126], [151]). Although some of those works are very recent
and interesting, they tend to show limited performance when
compared against DL, especially in unfavourable conditions,
such as in tunnels (e.g., uneven illumination, image noise,
etc.). On the other hand, DL approaches often require more
data and computational power to be trained, as well as hard-
ware acceleration (e.g., GPU, Graphics Processing Unit) even
for the inference phase. This latter point is particularly critical
for an embedded application designed to operate in near
real-time and/or at very high frame rates, often by using
batteries (e.g., on track monitoring, without direct access to
the power grid) or to a suitable cooling system. Despite this,

the achievements made by deep neural networks in recent
years are strongly pushing the research towards new proce-
dures, techniques and devices able to cope with the aforemen-
tioned points, making DL more and more appealing even for
inspection and maintenance applications in many domains,
including railway transport. In particular, the growing interest
in DL in the railway domain is demonstrated by the studies
we have reported in Tables 2, 4, 6, and 8, although our work
focuses onworks leveragingDL for audio and video analyses,
motivated by the necessity to analyse the current state-of-the-
art on the usage of non-intrusive, possibly cheap and available
sensors.

In Section I, we already discussed why non-intrusive and
cost-effective sensors, such as cameras and microphones,
could be more appealing and advantageous than ‘‘special sen-
sors’’ (e.g., laser, ultrasonic, etc.) that might be expensive in
terms of infrastructures and data analysis. Thus, cameras and
microphones enable a transition from scheduled inspection
activities using expensive inspection vehicles to continuous
monitoring of railway assets. Furthermore, modern smart-
cameras used for railway monitoring and surveillance fea-
ture high definition, on-board computation capabilities, and
are often equipped with quality microphones or microphone
inputs, thus it is be possible to collect multiple types of data
with a single device. Therefore, independent DL models,
which elaborate diverse data can be built to increment detec-
tion performance, as discussed in Section IX-C6. As for the
small-scale object detection issue (Section IX-C2), it depends
mainly on the data acquisition system; by collecting track
images through UAVs (e.g., [66]), it is clear that the fasteners
will occupy only a small portion of the image. Hence, this
issue is shared among almost all areas and their correspond-
ing components; the same holds for the multi-target prob-
lem (Section IX-C3). Components such as CSD, bogies, and
tracks are typically composed of a large number of ‘‘sub-
components’’; by evaluating the status of only one or few
of them, it would not be sufficient to ensure an adequate
safety level for the whole component. Image analysis has the
potential to capture characteristics related to multiple sub-
components at once; therefore, it would be possible to build
systems capable of detecting multiple defects to improve
maintenance and inspection activities.

However, there might be some limitations related to the
usage of audio and video sensors. For example, captured
images might be blurred [43] given the train speed or vibra-
tion, objects of interest may be occluded by other objects [99],
and – as already mentioned above – there might be a
foreground-background imbalance [60] as railways compo-
nents usually occupy only a part of the image. Similarly, audio
might be distorted due to other noise and microphones might
need a specific orientation [35]. On the other hand, from the
data perspective, collected samples may be altered by natural
phenomena (e.g., weather conditions, light reflection – espe-
cially when considering rails’ heads [60]), or, given the rarity
and different shapes/classes of the various possible defects,
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datasets built from scratch may result to be unbalanced11

[56], [71]. Part of these issues (e.g., blurring, noises) represent
technological challenges which are related to the choice of
the sensor(s). The remaining issues, instead, are related to
methodological aspects encompassing both data acquisition
and the choice of the DL model. Part of these challenges may
be overcome by means of harmonised datasets and collection
guidelines (Section IX-C4), and indicating the adequate set
of sensors for the given task. Notably, using harmonised
datasets, intended as a balanced collection of samples gath-
ered under different weather and light conditions, may bring
two positive side effects: they can be used as benchmarks
to compare different approaches or as reference datasets for
transfer learning.

As a final consideration, it is interesting to note that,
despite some works use IoT for data acquisition, during our
analysis, we did not find anywork relying on edge computing,
i.e., the use of embedded (possibly custom) hardware to run
AI applications where needed. This is partly expected as
almost all the approaches rely on powerful and energivorous
GPUs, however recent development of embedded GPU and
architectures is more and more opening for massive use of
AI at the edge, which is sometimes referred to as edge intelli-
gence [174]. Thus, despite not yet being exploited, we believe
this will probably be a very promising research direction in
the near future.

XI. CONCLUSION
Within AI, artificial vision and audio signal recognition are
two extremely relevant research areas with many promising
applications in several domains [175]. Those areas are among
the ones that are expected to benefit more from modern deep
learning paradigms. Among the many domains and appli-
cations where audio-video analytics based on deep learning
could succeed, railway maintenance has been explored by
researchers and practitioners with the aim of making it more:
effective, i.e., capable of detecting more faults and defects
before they can cause failures and harmful consequences,
and being less error-prone compared to human inspection;
and efficient, i.e., requiring less time, resources and efforts
through remote monitoring and cost-effective automation.
Those recent and planned advances in railway maintenance
are sometimes referred to as smart maintenance, including
predictive analytics, usage of IoT sensors, intelligent cameras
and microphones, autonomous drones (see e.g. [176]), etc.
However, one of the main issues limiting the development of
effective AI solutions in the railway domain is the lack of
harmonised, well-described, open-source or public available
datasets and benchmarks for the broad set of applications
experts have to cope with. In this paper, we have summa-
rized the state-of-the-art in this field by adopting a review
approach whose results are reproducible and the risk of miss-
ing relevant results is minimum. We have provided a thor-
ough classification, representation and extensive discussion

11High ratio between different classes in terms of the number of samples.

of the review results throughout the paper, by highlighting
current challenges and some pointers to promising research
directions and future developments. It is our expectation that
this work can effectively support research and development
connected with the usage of smart audio and video sensors
to significantly aid railway maintenance by leveraging novel
deep learning technologies.
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