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 Abstract 

 Java  applications  consume  energy,  which  has  become  a  controversial  topic  since  it 
 limits  the  number  of  machines  and  increases  the  cost  of  data  centers.  This  paper 
 investigates  the  potential  relationship  between  energy  consumption  and  some 
 quality  attributes  for  Java  Collections  and  Sorting  algorithms  in  order  to  raise 
 awareness  about  using  energy-efficient  programs.  In  addition,  introduce  to  the 
 developers  the  most  and  least  efficient  Java  Collection  and  Sorting  algorithm  in 
 terms  of  energy  consumption,  memory,  and  CPU  usage.  This  was  achieved  by 
 conducting  a  controlled  experiment  to  measure  these  terms.  The  data  obtained  for 
 the  results  was  used  to  acquire  Statistical  and  Efficiency  Analysis  to  answer  the 
 research questions. 

 Keywords:  Java  Collections,  Sorting  algorithms,  Energy  consumption,  Quality 
 attributes. 
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 1  Introduction 
 Software  engineering  (SE)  is  concerned  with  designing,  developing,  testing,  and 
 maintaining  software.  Earlier,  non-object-oriented  programming  (procedural)  languages 
 were  used  in  software  development,  such  as  C,  but  after  that,  Object-Oriented 
 Programming  (OOP)  was  invented  in  the  software  engineering  field,  and  several 
 languages  were  created  that  support  OOP.  Java  is  one  of  the  most  famous  languages  and 
 is widely used in OOP [1]. 

 As  software  engineering  gains  popularity,  and  new  areas  like  mobile  devices  and 
 cloud  computing  experience  significant  growth,  the  need  to  minimize  software  energy 
 consumption  has  become  a  crucial  non-functional  requirement  for  modern  software 
 systems  [2].  Candy  Pang  highlights  that  rising  energy  costs  and  increased  expenses  for 
 cooling  data  centers  have  imposed  restrictions  on  the  number  of  machines  that  can  be 
 operated [2]. 

 This  research  paper  is  a  15  HEC  bachelor  thesis  in  Computer  Science  at  Linnaeus 
 University,  studying  the  estimated  energy  consumption  for  Java  Collections  and  Sorting 
 algorithms,  which  are  common  and  widely  used  by  Java  software  developers.  By 
 conducting  practical  experiments  to  measure  the  energy  consumption  of  these  programs 
 and  finding  relationships  between  the  energy  usage  and  some  dynamic  quality 
 attributes.  This  thesis  will  provide  a  knowledge  base  that  aims  to  be  a  unique  resource 
 for  discovering  the  best  Collections  and  Sortings  to  be  selected  based  on  energy 
 consumption, memory, and CPU usage. 

 1.1  Background 
 Although  energy  consumption  has  received  more  attention  in  software  development 
 recently,  there  is  still  insufficient  support  for  creating  energy-efficient  programs  due  to 
 multiple  reasons,  such  as  the  absence  of  abstractions  and  tools  that  allow  for  the 
 examination  of  relevant  properties  affecting  energy  usage  [3].  Moreover,  programmers 
 have  limited  software  energy  efficiency  awareness  and  lack  knowledge  about  reducing 
 the energy consumption of software [2]. 

 Java  applications  consume  energy  during  execution,  ranking  5  th  out  of  27 
 programming  languages  that  have  been  analyzed  in  terms  of  energy  consumption 
 efficiency  by  Pereira  et  al  in  2017  [4].  In  particular,  the  Java  Collections  framework 
 provides  a  wide  variety  of  data  structures  and  interfaces.  The  Collection  interface  is  the 
 parent  of  all  other  interfaces  within  the  Collections  framework,  and  Java  provides  an 
 implementation  for  its  sub-interfaces  such  as  List,  Queue,  Deque,  and  more,  which  are 
 widely  used  by  software  engineers  throughout  the  development  phase.  These 
 Collections  provide  the  same  functionalities,  such  as  Add,  Remove,  and  Contains  but 
 with  different  time  complexity  depending  on  the  specific  collection  [5].  Time 
 complexity  measures  the  amount  of  runtime  the  device  needs  for  an  algorithm.  It 
 represents  the  period  required,  which  increases  depending  on  the  data  input  size,  and 
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 uses  a  common  expression  known  as  big  O  notation  [6].  In  relation  to  Sorting 
 algorithms,  the  time  complexity  is  a  significant  factor  in  analyzing  the  performance  and 
 determining  the  efficiency  of  handling  an  extensive  amount  of  data.  Sorting  algorithms 
 are  widely  used  in  databases,  data  analysis,  and  search  algorithms.  It  provides  the  best 
 way to sort data in a certain order with a given list of elements [6]. 

 In  Java,  two  known  built-in  Sorting  algorithms  can  be  applied,  a  sort  method  of  the 
 Array  class  or  a  sort  method  of  the  Collections  class;  however,  Sorting  also  can  be  done 
 using  Java  loops  [7].  Merge  sort,  Heap  sort,  Selection  sort,  and  Quick  sort  are  among 
 the  most  commonly  used  Sorting  algorithms  in  Java.  They  are  often  referred  to  as 
 classic  Sorting  algorithms  due  to  their  popularity  and  historical  significance  in  computer 
 science [8]. 

 Sorting  algorithms,  in  addition  to  Java  Collections,  consume  energy.  This  energy 
 consumption  of  an  application  varies  depending  on  several  factors  such  as  CPU, 
 memory  usage,  and  more  dynamic  quality  attributes  [9].  Dynamic  attributes  are  the 
 attributes  that  reflect  the  behavior  of  the  program  during  its  execution,  such  as  memory 
 usage  [10].  However,  finding  an  accurate  relationship  between  energy  consumption  and 
 quality  aspects  of  algorithms  is  a  challenge,  and  achieving  the  most  precise  performance 
 depends on the application’s requirements. 

 1.2    Related work 
 This  section  provides  a  description  of  the  related  works  for  this  research  area,  which  is 
 focused  on  two  groups  of  work:  previous  studies  involving  energy  consumption  of 
 Collections  and  Sorting  algorithms  and  other  studies  focusing  on  how  to  analyze  energy 
 consumption. 

 As  recently  as  2016,  Hasan  et  al.  [11]  compared  the  energy  consumption  of 
 Collections  in  Java.  The  authors  analyzed  various  Collections  and  then  built  a  profile  of 
 energy  consumption  for  all  Collections,  which  were  analyzed  earlier.  The  purpose  of 
 their  work  is  to  find  which  implementation  of  each  collection  (Lists,  Sets,  and  Maps) 
 consumes  less  energy  and  to  use  the  outcome  to  manually  improve  the  efficiency  of  a 
 set  of  selected  applications.  Pinto  et  al.  [12]  examined  the  thread-safe  Java  Collections 
 on  two  distinctive  desktop  machines.  They  realized  that  the  energy  consumption  for  an 
 operation  shifts  broadly  among  different  implementations  of  the  same  collection.  For 
 instance,  using  a  newer  version  of  hash-table  can  save  17%  of  consumed  energy  in 
 real-world-benchmarks.  Another  study  done  by  Saborido  et  al.  [13]  compared  two 
 Android-specific  collection  implementations  of  Maps,  SparseArray,  and  ArrayMap.  The 
 research  found  out  that  HashMap  is  more  efficient  regarding  the  energy  efficiency  of 
 apps  than  ArrayMap,  while  SparseArray  is  preferable  over  HashMap  and  ArrayMap 
 when  keys  are  primitive.  Oliveira  et  al.  discovered  the  impact  of  software  construction 
 on  energy  consumption  and  offered  a  recommendation  tool  that  can  assist  developers  in 
 reducing energy usage [14]. 
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 Further  work  done  by  Alves  et  al.  [3]  discusses  the  lack  of  support  and  focus  for 
 creating  energy-efficient  software  programs,  and  performs  experiments  that  consist  of 
 gathering,  modeling,  and  analyzing  energy  data,  and  presenting  their  findings.  The 
 experiments  compare  the  energy  consumption  of  Java  implementations  of  specific 
 Sorting  algorithms  "Insertion  Sort,  Bubble  Sort,  and  Selection  Sort"  using  various  data 
 sets,  presenting  how  to  combine  energy  measurement  and  analysis  tools  for  this 
 purpose.  The  implementation  focused  on  sorting  values  stored  in  a  Vector,  ArrayList, 
 and  LinkedList.  As  a  result,  the  total  consumption  using  ArrayList  for  Bubble  and 
 Selection  Sortings  was  at  its  least  compared  to  the  other  data  structure,  nevertheless, 
 Selection  Sort  consumed  the  least  amount  of  energy  when  applying  the  three  structures. 
 However,  this  study  utilizes  only  the  classics  of  Sorting  algorithms  in  Java,  not 
 considering the dynamic quality attributes in relation to energy consumption. 

 1.3    Problem formulation 
 As  discussed  earlier,  several  research  studies  have  been  conducted  to  explore  the  energy 
 consumption  in  software  development  pertaining  to  Collections  and  Sorting  algorithms 
 [3][11][12][13][14].  However,  a  noticeable  research  gap  exists  in  terms  of  investigating 
 the  relationship  between  energy  consumption  and  dynamic  quality  attributes, 
 specifically  CPU  and  memory,  when  utilizing  Java  Collections  with  operations  such  as 
 Add,  Contains,  and  Remove,  as  well  as  Sorting  algorithms.  This  gap  indicates  that  Java 
 developers  often  rely  on  a  singular  performance  metric  without  considering  other 
 closely  associated  factors.  Thus,  this  thesis  aims  to  address  this  challenge  and  provide  a 
 coherent answer to the following research questions: 

 ●  RQ1  .  What  is  the  relationship  between  energy  consumption  and  quality  attributes 
 (CPU/Memory)  usage  in  Java  Collections  in  the  case  of  Add,  Contains,  and  Remove 
 operations? 
 The  purpose  of  RQ1  is  to  investigate  the  relationship  between  energy  consumption 
 and  CPU/Memory  usage  in  Java  Collections.  Specifically,  this  research  question 
 seeks  to  determine  whether  there  is  a  positive  or  inverse  correlation  between  energy 
 consumption and these dynamic quality attributes. 

 ●  RQ2.  What  is  the  relationship  between  energy  consumption  and  the  quality  attributes 
 (CPU / Memory) usage when implementing Sorting algorithms in Java? 
 This  question  aims  to  investigate  the  relationship  between  energy  consumption  and 
 CPU/Memory  usage  in  Java  Sorting  algorithms.  The  relationship  in  question  refers  to 
 various  factors,  such  as  the  algorithm  used  to  implement  the  Sorting  and  its  time 
 complexity.  This  research  question  seeks  to  determine  whether  there  is  a  positive  or 
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 inverse  correlation  between  energy  consumption  and  these  dynamic  quality 
 attributes. 

 ●  RQ3  . Regarding the results of RQ1 & RQ2, how strong  are these relationships? 
 The  purpose  of  this  question  is  to  determine  the  strength  of  the  relationship  if  it 
 exists. 

 ●  RQ4.  What  is  the  most  efficient  Java  Collection/s  among  the  three  operations  in 
 terms of energy consumption considering the performance? 
 This  question  aims  to  provide  insight  into  the  most  efficient  ways  to  use  Java 
 Collections in terms of the operations Add, Contains, and Remove. 

 ●  RQ5.  What  is  the  most  efficient  Java  Sorting  algorithm  in  terms  of  energy 
 consumption considering the performance? 
 This  question  aims  to  provide  insight  into  the  most  efficient  ways  to  use  Sorting 
 algorithms  in  Java.  The  result  can  be  valuable  for  developers,  as  it  can  help  optimize 
 the application's performance, making it more efficient and effective. 

 Through  the  systematic  exploration  of  the  aforementioned  research  questions, 
 complemented  by  the  execution  of  multiple  experiments  that  generate  quantitative  data, 
 and  subsequent  analysis  of  the  obtained  results,  this  study  endeavors  to  establish 
 accurate  and  generalized  findings  pertaining  to  Collections  and  Sorting  algorithms. 
 Additionally,  identifying  the  optimal  approaches  for  employing  Collection(s)  and 
 Sorting  algorithm(s)  in  terms  of  energy  consumption,  while  concurrently  considering 
 performance aspects. 

 1.4    Motivation 
 This  thesis  aims  to  advance  the  field  of  computer  science.  The  results  will  address  two 
 areas,  software  developments  using  Java  and  software  performance.  From  an  industrial 
 perspective,  the  results  will  assist  Java  software  engineers  to  develop  systems  that 
 consider  energy  consumption  as  a  part  of  that  system's  performance.  Thus,  building 
 systems  that  consume  less  energy.  Since  a  high-performance  application  with  low 
 energy  consumption,  memory,  and  CPU  usage  is  the  outcome  of  this  research,  lower 
 energy  costs  and  less  pollution  will  be  achieved,  which  is  a  societal  motivation. 
 Moreover,  providing  a  well-performed  application  attracts  more  users,  which  benefits 
 the company economically. 

 1.5    Results 
 As  the  purpose  of  this  project  is  to  experimentally  measure  the  overall  energy 
 consumption  of  Collections  and  Sorting  algorithms  used  in  Java  applications,  the 
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 specifics  of  what  makes  one  algorithm  perform  better  than  another  can  be  determined. 
 The  performance  is  evaluated  according  to  different  quality  attributes  and  their 
 consumption,  following  the  guidelines  by  previous  works  [3][11],  three  metrics  are 
 identified as essential for evaluating any examined method: 

 1.  Memory:  The total storage of an operation during the  execution in Megabytes. 
 2.  CPU:  The percentage of used processors during the  execution. 
 3.  Energy:  The capacity used during the execution in  Joule. 

 Energy  consumption  will  be  measured  using  the  tool  JoularJx.  While  the  chosen 
 dynamic  quality  attributes  (Memory  -  CPU)  will  be  measured  using  built-in  classes  in 
 Java.  Analyzing  these  data  statistically  using  R  to  investigate  the  relationship  between 
 variables  is  facilitated  with  the  help  of  the  RStudio  tool.  This  analysis  aims  to  identify 
 the  most  energy-efficient  Collections  and  Sorting  algorithms.  Moreover,  3D  scatter  plots 
 will  be  generated  using  R  for  energy  consumption,  CPU,  and  memory  usage.  The 
 objective  of  these  3D  scatter  plots  is  to  provide  a  better  vision  and  clearer  understanding 
 of which Collection/s and Sorting algorithm/s are more efficient. 

 1.6     Scope/Limitation 
 This  thesis  focuses  on  the  energy  consumption  efficiency  of  Java  Collections  and 
 Sorting  algorithms,  hence  the  energy  consumption  efficiency  for  other  algorithms  is  not 
 included.  Different  limitations  constrain  this  project.  One  of  these  limitations  is  the 
 number  of  elements  that  are  used  in  the  operations  of  the  algorithms'  implementations. 
 Each  operation  is  limited  to  400,000  elements  as  an  input,  and  the  number  of  elements 
 is  decided  as  a  reasonable  number  due  to  the  time  constraints  required  to  conduct  each 
 experiment.  In  addition,  the  number  of  experiments  is  limited  to  100  experiments  for 
 each  Sorting  algorithm,  Collections,  and  the  operations  of  collection:  Add,  Contains, 
 and Remove. Resulting in 3 700 experiments in total. 

 Generally,  a  broad  range  of  Sorting  algorithms  in  computer  science  exists,  yet,  the 
 study  is  focused  on  ten  known  algorithms,  and  the  operations  used  on  Collections  are 
 limited  to  three  operations.  Lastly,  resource  constraints  limit  the  ability  to  conduct  the 
 experiments on multiple PCs and across different operating systems. 

 1.7    Target group 
 This  paper  primarily  studies  the  energy  consumption  of  Java  Collections  and  Sorting 
 algorithms,  as  the  main  goal  is  to  increase  Java  software  performance  regarding  energy 
 consumption,  and  it  is  assumed  that  the  target  group  has  at  most  casual  knowledge  of 
 Java  applications.  Hoping  this  paper  provides  a  solid  analysis  to  be  used  by  professional 
 Java developers and architects. 
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 1.8    Outline 
 This  paper  has  been  divided  into  several  chapters.  Chapter  1  provides  the  background, 
 related  work,  scope/limitation,  motivation,  and  results.  Chapter  2  discusses  the 
 methodological  framework  and  research  methods  .  In  Chapter  3,  the  relevant  theoretical 
 background  concepts  are  described,  and  the  knowledge  gap  and  relevant  challenges  are 
 provided.  Chapter  4  discusses  the  implementation  details  of  the  conducted  experiments  and 
 other  activities  needed  to  realize  the  controlled  experiment.  Chapter  5  provides  the  results  of 
 those  experiments.  Chapter  6  provides  an  analysis  of  the  results.  Chapter  7  discusses  the 
 results  and  analysis  made  in  previous  chapters.  Additionally,  It  explores  this  study's 
 conclusion and provides several potential future works. 
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 2  Method 
 This  chapter  describes  the  research  methodology  approach  used  to  answer  the  research 
 questions  presented  in  the  previous  section.  The  implemented  method  is  discussed  in 
 detail,  highlighting  its  strengths,  limitations,  and  relevance  to  the  research  objectives. 
 Moreover,  the  section  addresses  the  tools  required  to  conduct  the  methodology,  as  well 
 as its reliability, validity, and ethical considerations. 

 2.1   Research Project 
 To  effectively  address  the  research  questions  RQ1  &  RQ2,  it  is  crucial  to  carefully 
 consider  the  appropriate  implementation  approach,  data  needed  to  be  collected,  and  the 
 type  of  analysis  to  be  conducted  which  enables  a  comprehensive  exploration  and 
 understanding  of  the  intended  relationship.  Thus,  after  conducting  a  thorough  review  of 
 available  methodological  approaches,  the  controlled  experiments  methodology  emerges 
 as  the  most  suitable  choice  for  achieving  the  purpose  of  these  two  research  questions. 
 Compared  to  alternative  methods,  controlled  experiments  offer  a  rigorous  and  controlled 
 environment  for  evaluating  the  interplay  between  variables  and  determining  the 
 potential  impact  of  a  specific  set  of  variables  on  a  targeted  outcome.  Moreover, 
 meticulous  attention  is  given  to  ensuring  the  reliability  and  validity  of  the  obtained 
 results,  minimizing  the  influence  of  random  factors,  and  promoting  a  robust  and 
 credible analysis [15]. 

 2.2 Research Methods 
 The  controlled  experiment  is  a  technique  used  in  scientific  research  to  minimize  the 
 effects  of  extraneous  variables.  It  also  strengthens  the  ability  of  the  independent  variable 
 to  change  the  dependent  variable  [15].  A  controlled  experiment  allows  us  to  eliminate 
 various  confounding  variables  or  uncertainty  in  the  project.  It  allows  us  to  control  the 
 specific  variables  that  may  influence  the  result.  In  addition,  it  provides  a  standard  to 
 which  the  result  is  compared,  and  it  allows  the  researcher  to  correct  errors  [16].  This 
 methodology  (controlled  experiments)  aims  to  determine  the  response  to  the  formulated 
 problem  by  testing  the  performance  of  Java  Collections  and  Sorting  algorithms  in  terms 
 of CPU and memory, as well as their energy efficiency, in a controlled environment. 
 The  process  comprises  a  series  of  steps  aimed  at  collecting  reliable  quantitative  data 
 about  the  performance  and  energy  consumption  efficiency  of  Java  Collections  and 
 Sorting algorithms using a scientific approach: 

 1.  Identify the device and work environment. 
 2.  Identify the Collections and their methods. 
 3.  Identify the Sorting algorithms. 
 4.  Determine which elements are used and how they are generated. 
 5.  Calculate the amount of energy consumed. 
 6.  Calculate the usage of CPU and memory. 
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 7.  Determine how many experiments should be conducted. 

 In  the  first  step,  the  device  on  which  all  experiments  will  be  conducted  and  the  utilized 
 software  tools  are  determined.  The  tools  that  have  been  utilized  are  IntelliJ  IDEA 
 Ultimate,  JoularJX,  and  Rstudio.  IntelliJ  IDEA  is  a  highly  advanced  and  customizable 
 integrated  development  environment  aimed  at  assisting  developers  in  writing  efficient 
 code  and  being  able  to  maintain  it.  Code  highlighting,  refactoring  tools,  debugging, 
 code  analysis,  profiling,  and  support  for  a  broad  range  of  programming  languages  and 
 frameworks  are  among  its  primary  features.  These  features  help  in  writing  efficient, 
 clean  code  and  easily  identify  and  fix  errors.  Therefore,  it  has  been  selected  to  be  used 
 for implementing the experiment [17]. 

 Investigating  different  tools  or  approaches  for  energy  measurement  is  not  reported, 
 since  it  is  not  the  objective  to  compare  different  tools  for  measuring  energy  or  propose  a 
 new  way.  Rather,  it  is  assumed  that  energy  consumption  will  be  collected  using  one  of 
 the  available  tools  and  concentrate  on  investigating  the  relationship  between  energy 
 consumption  and  some  quality  attributes.  Therefore,  the  second  tool,  JoularJX  is  an 
 advanced  Java-based  agent  for  monitoring  energy  consumption  at  the  source  code  level. 
 It  seamlessly  integrates  with  the  JVM  during  program  startup.  JoularJX  uses  a  custom 
 PowerMonitor  program  on  Windows  and  Intel  RAPL  (via  powercap)  on  GNU/Linux  to 
 obtain  accurate  energy  readings.  It  enables  real-time  monitoring  of  energy  consumption 
 for  individual  methods,  analysis  of  energy  trends,  and  tracking  of  energy  consumption 
 in  method-call  trees  and  branches.  JoularJX  requires  no  source  code  modification  and 
 provides  user-friendly  and  precise  energy  monitoring  for  optimizing  Java  program 
 energy  usage.  Utilizing  JoularJX  can  be  simply  done  by  integrating  it  with  the  Java 
 Virtual  Machine  by  adding  the  command  “  java  -javaagent:joularjx-$version.jar 
 JavaProgram”  when  lunching  a  Java  program  through  a  device  terminal.  Lastly, 
 JoularJX  provides  a  configuration  option  in  the  form  of  a  “  filter-method-names  ” 
 variable,  which  can  be  specified  in  the  config.properties  file.  This  feature  allows 
 developers  to  selectively  designate  the  names  of  specific  methods  for  energy 
 consumption  measurement.  By  separating  the  method  names  with  commas,  JoularJX 
 focuses  on  monitoring  and  quantifying  the  energy  consumption  of  each  method 
 individually.  On  the  other  hand,  in  the  absence  of  method  name  specifications,  JoularJX 
 considers  the  entire  program  as  a  unified  entity  when  measuring  energy  consumption. 
 This  flexible  configuration  capability  empowers  developers  to  conduct  fine-grained 
 analysis  of  energy  usage  by  isolating  and  monitoring  specific  methods  of  interest[18]. 
 The  third  tool  is  Rstudio,  which  is  an  IDE  for  R,  provides  better  functionality,  and 
 includes  a  source  code  editor,  build  automation  tools,  and  a  debugger.  R  is  a 
 programming  language  for  statistical  analysis  and  graphics.  It  is  widely  used  for  data 
 analysis among statisticians [19]. 

 After  determining  the  work  environment,  the  Java  Collections  and  Sorting 
 algorithms  on  which  all  experiments  are  conducted  are  determined.  As  a  part  of  the  Java 
 programming  language,  Collections  include  ArrayList,  LinkedList,  Vector,  Stack, 
 ArrayDeque,  PriorityQueue,  HashSet,  LinkedHashSet,  and  TreeSet  with  different  time 
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 complexity  for  each  one  of  them.  Java  Collections  are  used  to  store  data  -to  apply 
 specific  operations  on  the  data  such  as  search,  insertion,  and  deletion  which  is  widely 
 commonly  used  among  developers  [20].  Therefore,  Java  Collections  has  been  selected 
 to  conduct  the  experiments.  Notably,  Collections  are  implementations  of  various  data 
 structures,  their  primary  purpose  is  to  organize,  process,  retrieve,  and  store  data  [21]. 
 This  study  selects  inserting,  deleting,  and  searching  operations  as  these  operations  are 
 commonly  and  widely  used.  In  Java  Collections,  these  three  operations  are  represented 
 by  the  methods  Add,  Contain,  and  Remove.  Sorting  algorithms  in  Java,  on  the  other 
 hand,  provide  the  best  ways  to  sort  data  in  a  specific  order  with  a  given  list  of  elements, 
 and  the  number  of  available  algorithms  is  enormous[6].  As  a  result,  the  experiment  will 
 be  done  using  the  most  well-known  algorithms;  Insertion  sort,  Merge  sort,  Bubble  sort, 
 Selection  sort,  Quick  sort,  Counting  sort,  Heap  sort,  Bucket  sort,  Shell  sort,  and  Radix 
 sort,  while  taking  into  concern  the  time  complexity  of  each  algorithm.  The  Sorting 
 algorithms  are  implemented  using  external  resources  from  existing  implementations;  the 
 full  source  code  can  be  found  in  Appendix  1  .  This  decision  is  made  to  have  greater 
 control  over  the  implementations  and  align  them  with  the  specific  requirements  of  this 
 study.  Implementing  Sorting  algorithms  instead  of  using  the  Java  Library  for  built-in 
 Sorting  has  lots  of  advantages.  It  helps  to  have  a  deeper  understanding  of  the  algorithm's 
 nature,  allowing  the  researchers  to  tailor  it  specifically  for  the  measurement  and  analysis 
 of  energy  consumption.  This  approach  also  provides  the  opportunity  to  detect  and 
 address  any  potential  errors  while  experimenting,  which  enhances  the  reliability  and 
 validity of the study's findings. 

 As  a  part  of  this  process,  400,000  randomly  generated  integer  elements  are  to  be 
 created  using  the  Random  class  in  Java,  with  a  specific  seed  to  ensure  that  all  operations 
 for  all  identified  Collections  and  Sorting  algorithms  are  performed  using  the  same 
 elements  exactly.  To  clearly  examine  the  differences  between  the  performance  of  each 
 Collection  and  Sorting  algorithm  in  terms  of  CPU,  memory  usage,  and  energy 
 consumption,  it  is  necessary  to  select  that  number  of  random  distinct  integers.  In 
 addition,  if  the  number  of  elements  is  less  than  400,000,  JoularJX  may  not  be  capable  of 
 measuring  the  energy  consumption  for  all  methods.  Moreover,  that  number  of  elements 
 is  quite  enough  to  get  reasonably  distinguished  data  on  energy,  CPU,  and  memory 
 which are used later for statistical analysis to find such a relationship. 

 The  energy  consumption  for  Sorting  algorithms  as  well  as  inserting,  searching,  and 
 removing  all  elements  for  each  Collection,  is  calculated  using  the  JoularJX  tool  [18].  In 
 addition,  CPU  and  memory  consumption  will  be  measured  using  the 
 OperatingSystemMXBean  interface  and  Runtime  class,  respectively.  This  model  will  be 
 repeated  100  times  for  each  Sorting  algorithm  and  Collection,  including  the  operations 
 Add,  Contain,  and  Remove,  to  determine  the  energy  consumption,  CPU,  and  memory 
 usage  as  part  of  the  final  step  of  the  data  collection  process.  The  number  of  experiments 
 is  decided  to  be  100  to  increase  the  accuracy  of  the  measurements,  which  leads  to 
 increased  reliability.  Additionally,  that  number  of  experiments  is  feasible  to  be 
 conducted.  Once  the  data  has  been  gathered,  a  statistical  analysis  will  be  conducted 
 using  R  (  a  programming  language  for  statistical  analysis  and  statistical  graphs) 
 following  the  linear  regression  analysis,  to  determine  the  relationship  between  energy 
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 consumption  and  the  dynamic  quality  attributes  (CPU  and  memory)  —  if  it  exists  —  and 
 how  strong  it  is.  Moreover,  according  to  the  gathered  data,  the  best  Collection  and 
 Sorting  algorithm  will  be  found  based  on  energy  consumption  while  considering 
 performance in terms of memory and CPU usage. 

 As  one  of  the  most  commonly  used  statistical  models,  linear  regression  simulates  a 
 mathematical  relationship  between  two  variables,  either  independent  or  explanatory 
 variables,  or  dependent  variables,  providing  a  rational  basis  for  identifying  and 
 predicting  results  that  are  based  on  scientific  calculations  [22].  This  model  offers  an 
 easy-to-understand interpretation of the result and is relatively simple [23]. 

 2.3    Reliability and Validity 
 The  terms  reliability  and  validity  are  significant  when  conducting  a  research  paper,  as 
 they  contribute  to  the  credibility  of  the  study's  results.  Reliability  refers  to  the 
 repeatability  of  the  study  results  using  the  same  methodology  approach.  If  the  same 
 procedure  is  repeated  under  similar  conditions,  the  same  results  will  be  obtained. 
 Moreover,  validity  encompasses  the  entire  process  of  a  research,  it  can  refer  to  the 
 accuracy  of  the  method,  how  it  is  supported,  and  how  a  valid  conclusion  is  drawn  based 
 on  the  collected  data.  In  this  paper,  all  measurements  performed  in  the  controlled 
 experiment  are  done  programmatically  and  in  an  automated  fashion  to  increase 
 reliability.  A  significant  quantity  of  measurement  iterations  also  provides  further 
 reliability.  The  validity  issues  are  greatly  minimized  by  controlling  the  variable  (the 
 elements)  and  generating  identical  random  integer  elements  by  quantity  and  order,  to 
 perform  the  experiment  for  all  methods  and  all  Collections.  In  addition,  an  improved 
 measurement  technique  is  used,  which  increases  validity,  and  generating  random 
 elements  reduces  sample  bias.  Lastly,  the  related  work  should  align  with  this  research 
 results,  this  alignment  helps  to  strengthen  the  validity  of  the  study's  conclusions.  The 
 discussion  regarding  the  alignment  of  the  research  findings  with  the  related  work  will  be 
 presented in Section 7. 

 2.4    Ethical Considerations 
 The  measurement  of  estimated  energy  consumption,  CPU,  and  memory  usage  for  Java 
 Collections  and  Sorting  algorithms  provides  no  negative  ethical  effects  on  any  scale 
 abstractly.  However,  it  is  important  to  consider  ethical  considerations  in  the  research 
 design  and  execution  process.  For  instance,  it  is  essential  to  ensure  that  the 
 measurement  process  is  conducted  in  an  objective  and  transparent  manner  without  any 
 manipulation of data or results. 

 15 



 3  Theoretical Background 
 This  chapter  contains  information  about  important  theoretical  concepts  included  in  this 
 study,  such  as  time  and  space  complexity,  energy,  CPU,  and  memory  consumption. 
 Moreover,  this  chapter  provides  a  brief  explanation  of  the  Java  Collection  interface,  its 
 classes, and the Sorting algorithms used in the experiments. 

 3.1 Time and Space Complexity 
 Time  complexity  refers  to  the  duration  or  elapsed  time  required  for  the  execution  of  an 
 algorithm.  Simply,  the  time  complexity  is  a  metric  that  quantifies  the  number  of 
 operations  carried  out  by  an  algorithm  and  provides  an  estimation  of  the  time  needed  to 
 execute these operations [24]. 

 Typically,  when  it  comes  to  time  complexity,  it  is  referred  to  as  'Big  O  Notation', 
 whereas  Big  O  Notation  is  a  notation  that  is  used  to  describe  the  time  complexity  of  an 
 algorithm  or  a  piece  of  code  in  the  worst-case  scenario  [25].  Moreover,  the  "order  of 
 growth"  of  time  complexity  may  vary  from  algorithm  to  algorithm  based  on  the  running 
 time  when  the  input  size  increases  [25].  As  shown  in  the  table  below,  the  ‘order  of 
 growth’ is ordered from the best to the worst, where n is the input size [25]. 

 Time Complexity  Time  Description 

 O(1)  Constant  The computation time is constant. No 
 dependence on input size 

 O(log n)  Logarithmic  The computation time is proportional to log(n) 

 O(n)  Linear  The computation time is proportional to n 

 O(n log n)  n*log n  The computation time is proportional to n times 
 log n 

 O(n^2)  Quadratic  The computation time is proportional to n^2 

 O(n^3)  Cubic  The computation time is proportional to n^3 

 O(2^n)  Exponential  The computation time is proportional to 2^n 

 O(n!)  Factorial  The computation time is proportional to n! 
 Table 3.1 Time Complexity 

 On  the  other  hand,  space  complexity  refers  to  the  amount  of  memory  space  required  by 
 an  algorithm  or  program  during  its  entire  execution.  It  is  a  measure  of  how  many 
 variables are created to store the values, including the inputs as well as the outputs [24]. 
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 3.2 Consumption Metrics 
 ●  Energy consumption 

 The  energy  consumed  by  a  method  or  a  program  is  measured  in  a  Joules.  This  is  a 
 metric  that  can  be  used  to  evaluate  how  much  energy  is  required  to  run  a  particular 
 method or program. 

 ●  CPU and Memory consumption 
 CPU  consumption  refers  to  how  much  load  an  individual  processor  core  can  handle..  It 
 measures  the  percentage  of  time  when  the  CPU  is  processing  instructions  .  CPU 
 consumption  percentage  equals  TotalUsedCPUTime  divided  by  TotalAvailCPUTime 
 [26]  .  On  the  other  hand,  memory  consumption  in  this  study  refers  to  JVM  heap  memory 
 consumed  by  Java  Collections  operations  (Add,  Contains,  and  Remove)  as  well  as 
 Sorting  algorithms  [27].  Generally,  high  CPU  and  memory  usage  can  negatively  affect  a 
 device, resulting in low performance and efficiency. 

 3.3  Java Collection Interface 
 The  collection  interface  contains  three  subinterfaces:  List,  Set,  and  Queue,  where 
 several  classes  implement  each  subinterface  [28].  The  classes  HashSet  and 
 LinkedHashSet  implement  the  Set  interface,  while  the  class  TreeSet,  implements  the 
 SortedSet  interface,  which  extends  the  Set  interface.  The  classes  ArrayList,  Vector,  and 
 LinkedList  implement  the  List  interface,  while  the  Stack  class  extends  the  Vector  class. 
 Moreover,  the  class  PriorityQueue  implements  the  Queue  interface,  while  ArrayDeque 
 and  LinkedList  implement  the  Deque  interface,  which  extends  the  Queue  interface.  See 
 Figure 3.1. 

 These  classes  represent  Java  Collections  which  are  widely  used  by  software 
 engineers  throughout  the  development  phase.  Java  Collections  are  used  to  store  data  and 
 apply  specific  operations  to  it  later  such  as  searching  and  deletion  [20].  Moreover,  since 
 Collections  are  implementations  of  various  data  structures,  their  primary  purpose  is  to 
 organize, process, retrieve, and store data [21]. 
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 Figure 3.1  Collection interface hierarchy. 

 ●  Array  List:  It  is  a  sequential  collection  where  each  stored  element  has  a  position.  It  is 
 implemented  using  a  resizable  array,  which  grows  as  new  elements  are  added  and 
 shrinks as they are removed. Each element is retrieved by its index [29]. 

 ●  Linked  List:  It  is  a  sequential  collection  representing  a  sequence  of  linked  nodes 
 where  each  node  consists  of  a  value  and  a  reference  to  the  next  node.  Moreover,  a 
 Linked  list  provides  flexible  size,  and  adding  or  removing  elements  from  the 
 beginning  or  end  of  the  Linked  list  is  efficient.  Therefore,  it  is  useful  and 
 recommended  when  managing  dynamic  collections  of  data.  On  the  other  hand,  it  is 
 less  efficient  in  the  case  of  accessing  an  element  at  a  specific  index  compared  to  an 
 array [29]. 

 ●  Vector:  It  is  a  sequential  collection  very  similar  to  an  Array  list;  it  grows  and  shrinks 
 when  a  new  element  is  added  or  removed,  and  each  element  is  retrieved  by  its  index. 
 The  main  difference  between  a  Vector  and  an  Array  list  is  that  each  operation  is 
 synchronized,  which  means  that  if  a  thread  is  performing  an  operation  on  a  Vector, 
 no  other  threads  can  access  that  Vector.  Therefore,  Vector  is  recommended  over  the 
 Array list in case of multithreading [30]. 

 ●  Stack:  Stack  is  a  class  that  implements  the  Collection  interface  and  represents  a 
 last-in-first-out  (LIFO)  data  structure  [29].  It  is  a  subclass  of  Vector  and  provides  all 
 the  methods  of  Vector  in  addition  to  its  own  methods  for  pushing  and  popping 
 elements. 

 ●  ArrayDeque:  It  is  flexible  in  size  and  represents  a  double-ended  queue  (deque).  A 
 deque  is  a  data  structure  that  supports  element  insertion  and  removal  from  both  sides. 
 ArrayDeque  is  implemented  as  a  circular  array  and  provides  constant-time 
 performance  for  the  basic  operations  (Add,  Remove,  and  Get)  at  both  ends  of  the 
 deque.  Moreover,  It  is  not  recommended  in  the  case  of  multithreading  since  it  is  not 
 thre  ad-safe [31]. 
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 ●  PriorityQueue:  PriorityQueue  is  a  class  that  implements  the  Collection  interface  and 
 represents  a  first-in-first-out  (FIFO)  data  structure  (Queue).  The  Difference  between 
 PriorityQueue  and  normal  Queue  is  that  a  priority  queue  is  a  data  structure  that  stores 
 elements  in  a  particular  order  based  on  their  priority.  The  elements  with  the  highest 
 priority  are  placed  at  the  front  of  the  queue.  In  contrast,  elements  with  equal  priority 
 are  ordered  according  to  their  natural  order  or  based  on  other  criteria.  PriorityQueue 
 implements Queue interface [29]. 

 ●  HashSet:  It  is  a  class  that  implements  the  Set  interface.  It  is  an  unordered  collection 
 of  unique  elements,  meaning  no  element  is  duplicated.  HashSet  uses  a  hash  table  to 
 store  elements,  which  provides  fast  access  in  the  case  of  Add,  Remove,  and  Contains 
 operations.  The  hash  table  uses  a  hashing  function  to  determine  the  index  of  each 
 element  in  the  table.  Moreover,  HashSet  is  useful  in  case  the  user  needs  to  store 
 unique  and  ordered  data  and  perform  operations  such  as  Add,  Remove,  and  Contains 
 in  the  data  since  HashSet  has  no  guarantee  on  data  order  and  data  cannot  be 
 duplicated.  Lastly,  it  is  worth  mentioning  that  HashSet  is  implemented  using 
 HashMap [32]. 

 ●  LinkedHashSet:  is  a  class  that  implements  the  Set  interface.  It  is  very  similar  to 
 HashSet,  but  the  dif  ference  is  that  LinkedHashSet  implements  additionally  to 
 HashSet  a  LinkedList  as  well  just  to  keep  the  order  of  the  elements.  LinkedHashSet 
 is  useful  when  the  end-user  needs  to  maintain  the  order  of  the  unique  elements  that 
 were  inserted  into  the  set.  However,  keeping  the  order  of  the  elements  that  were 
 inserted  comes  at  a  cost.  Therefore,  LinkedHashSet  is  slightly  slower  than  Hashset  in 
 Add, Contains, and Remove operations [33]. 

 ●  TreeSet:  It  is  a  class  that  implements  the  SortedSet  interface.  It  uses  a  balanced 
 search  tree  to  implement  the  sorted  set,  where  the  elements  are  stored  and  sorted  in 
 an ascending order based on their natural ordering [29]. 

 3.4 Sortings Algorithms 
 The  process  of  arranging  a  list,  a  sequence  of  provided  elements,  or  data  collection  into 
 a  specific  order,  is  called  sorting.  In  other  words,  organizing  a  list  of  items  in  a 
 particular  order  or  way  [8].  Consider  arranging  a  messy  room  -  clothes  can  be 
 categorized  by  color,  size,  or  type  to  make  it  simpler  when  searching.  Similarly,  Sorting 
 algorithms  help  to  organize  and  simplify  complex  sets  of  data  so  that  they  can  be 
 searched,  analyzed,  or  displayed  more  effectively.  There  are  several  Sorting  algorithms 
 available,  varying  from  simple  algorithms  such  as  Bubble  sort  to  more  complex  ones 
 like  Quick  sort  or  Heap  sort.  The  algorithm  chosen  is  determined  by  several  factors, 
 including  the  size  of  the  data  set,  the  type  of  data  being  sorted,  and  the  desired 
 efficiency of the sorting process [6] [8]. 

 In  the  controlled  experiment,  ten  Sorting  algorithms  will  be  considered.  Starting 
 with  the  simplest  Sorting  algorithms.  Bubble  sort  compares  two  adjacent  elements  to 
 search  for  the  smallest;  if  the  first  index  is  larger  than  the  second,  it  will  be  swapped, 
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 and  the  process  is  repeated  from  the  beginning  to  the  end  of  the  list.  Even  though  it  is  a 
 popular  algorithm,  it  is  inefficient  [6].  While  in  the  Selection  sort  ,  finding  the  minimum 
 element  in  a  list  is  the  first  step,  which  is  then  swapped  to  the  beginning  of  the  list.  This 
 will  be  repeated  until  the  entire  list  is  sorted  [8].  In  Insertion  sort  ,  the  element  is 
 repeatedly  swapped  until  it  is  inserted  in  the  proper  index,  by  swapping  it  to  the  left  of 
 the  unsorted  list.  In  Insertion  sort  elements  are  moved  ahead  by  one  position  only,  so  the 
 average  time  complexity  needed  improvement;  therefore,  Shell  sort  existed.  Shell  sort 
 allows  the  swapping  and  movement  of  far-away  elements,  not  just  the  adjacent  ones. 
 This  can  be  achieved  by  determining  a  gap  number,  which  is  called  an  Interval.  The 
 Interval  is  reduced  after  each  process  of  sorting  until  it  reaches  1  and  then  switches  to 
 using  Insertion  sort  to  complete  the  sorting  process.  Once  the  Interval  number  is  chosen, 
 the  first  index  of  the  list  will  be  compared  to  the  index  of  the  Interval  number,  and  if  the 
 first  index  is  larger,  swapping  the  elements  will  happen.  This  is  also  done  for  the  second 
 index element with its Interval number, and so on [6] [8]. 

 Efficient  algorithms  are  also  considered  in  this  experiment.  Heap  sort,  as  an 
 example,  uses  comparisons  and  is  based  on  the  Binary  tree  structure  [6].  First,  it 
 discovers  the  minimum  or  maximum  element  and  then  places  it  as  the  root.  If  the 
 maximum  element  is  chosen  as  the  max  heap  (root),  it  means  the  parent  node  must  be 
 greater  than  its  children  nodes,  and  the  largest  element  is  at  the  root  position.  The 
 opposite  is  true  for  the  minimum  heap.  Heapify  is  an  important  method  to  understand 
 how  the  Heap  algorithm  sorts  the  elements.  Heapify  starts  from  the  parent  of  the  last 
 element  in  the  unsorted  list  and  recursively  moves  down  the  binary  tree,  it  compares 
 each  node  with  its  children  and  swaps  them  if  necessary.  This  process  is  repeated  for 
 each  parent  node  until  the  root  of  the  heap  is  reached,  which  results  in  a  complete  binary 
 tree  that  satisfies  the  heap  property  [6].  Merge  sort  is  also  an  efficient  algorithm,  it 
 works  by  recursively  dividing  the  unsorted  list  into  two  halves,  sorting  those  halves,  and 
 then  merging  them  back  together.  The  algorithm  divides  the  list  into  two  equal  halves, 
 then  sorts  each  half  recursively.  Finally,  merges  the  two  sorted  halves  into  a  single 
 sorted  list.  This  is  repeated  until  the  entire  list  is  sorted.  The  merging  process  compares 
 the  first  element  of  each  sublist  and  selects  the  smaller  element  to  insert  into  the  output 
 list,  and  this  will  continue  until  all  elements  have  been  merged  into  a  single  sorted  list. 
 On  the  other  hand,  the  Quick  sort  algorithm  works  by  selecting  a  pivot  element  from  the 
 unsorted  list.  Then  divide  the  remaining  elements  into  two  sub-lists  based  on  whether 
 they  are  greater  than  or  less  than  the  chosen  pivot.  Pivot  is  an  important  factor  in  the 
 performance  of  the  algorithm,  and  the  typical  scenario  for  choosing  a  pivot  element  is 
 usually  to  be  the  middle  element  of  the  list  [6].  The  Bucket  sort  algorithm  divides  the 
 elements  of  the  unsorted  list  into  several  groups  called  buckets,  and  each  bucket  holds 
 inside  it  a  certain  range  of  numbers.  After  distributing  the  elements  inside  their 
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 corresponding  bucket,  each  bucket  is  sorted  individually  using  any  Sorting  algorithm, 
 and  the  most  commonly  used  is  Insertion  Sort.  The  process  behind  Bucket  sorting  can 
 be  understood  as  a  “scatter-sort-gather”  approach.  Elements  are  first  scattered  into 
 buckets  then  the  elements  in  each  bucket  are  sorted  and  finally  the  elements  are 
 gathered  in  order.  Because  of  the  uniform  distribution  of  this  method,  the  number  of 
 comparisons  is  reduced,  and  it  is  asymptotically  fast  [6].  Moreover,  Counting  sort  does 
 not  perform  comparisons,  it  instead  counts  the  occurrences  of  each  element  in  the 
 unsorted  list  and  then  creates  a  list  of  counters,  with  one  counter  for  each  possible 
 element  in  the  input  range.  The  counters  are  initialized  to  zero,  and  each  input  element 
 is  counted  by  incrementing  the  corresponding  counter.  Next,  a  cumulative  sum  of  the 
 counters  is  computed.  Finally,  the  input  elements  are  placed  in  their  sorted  positions  by 
 iterating  through  the  original  list,  using  the  counters  and  cumulative  sum  to  determine 
 their  index  in  the  sorted  list.  However,  when  the  number  of  elements  stored  in  the  list  is 
 very  large,  this  algorithm  might  not  turn  out  to  be  as  efficient  as  it  should  be.  To  solve 
 this  issue,  Radix  sort  was  born.  The  Radix  sort  algorithm  implements  the  same  logic  as 
 the  Counting  sort  but,  uses  only  one  digit  of  the  element  as  the  index.  In  this  way,  it  can 
 guarantee that the occurrences list will at maximum consist of 10 slots [6]. 

 3.5 Statistical Terms 

 Relevant  terms  belonging  to  the  statistics  field  as  Linear  Regression  Model,  Correlation 
 Coefficient, Estimates, and P-Value are used. 

 ●  Linear  Regression  Model:  One  of  the  most  used  statistical  models,  available  to  simulate 
 a  mathematical  relationship  between  two  variables,  either  independent  or  explanatory 
 variables,  or  dependent  variables,  which  provides  a  rational  basis  for  identifying  and 
 predicting  results  that  are  based  on  scientific  calculations  [22].  This  model  offers  a 
 relatively  simple,  easy-to-understand  interpretation  of  the  result  [23].  This  model  is  used 
 in  the  statistical  analysis  of  the  raw  data,  to  find  the  relationship  between  the  quality 
 attributes(CPU, memory) and energy consumption. 

 ●  Correlation  Coefficient:  parameter  by  which  the  existence  and  the  strength  of  a  linear 
 relationship  between  two  variables  is  tested  and  its  value  ranges  from  1  to  -1  [34].  In 
 this  paper,  the  Correlation  Coefficient  is  used  to  find  out  the  strength  of  the 
 relationship between different variables. 

 ●  P-Value:  Probability  value  which  is  used  to  decide  whether  the  estimated  quantities 
 are  statistically  significant  [35].  The  P-Value  measures  the  reliability  of  the  obtained 
 results, as it will show if the relationship is statistically significant. 

 ●  Estimates:  Values  are  generated  through  the  ordinary  least  squares  method,  which 
 finds  the  line  that  fits  the  points  in  such  a  way  that  it  minimizes  the  distance  between 
 each  point  and  the  line  [36].  The  ‘Estimates’  value  shows  how  much  the  dependent 
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 variable’s  value  increases  or  decreases  when  the  independent  variable’s  value 
 increases by one unit. 

 ●  Standard  Deviation:  The  dispersion  or  variation  of  set  values.  In  other  words,  it  is  the 
 difference  between  these  values  and  the  mean  of  the  same  set  of  values  [36].  The 
 standard  deviation  is  not  used  directly  but  its  value  shows  the  variations  in  the 
 analyzed data. 
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 4  Research project – Implementation 
 This  study  relies  on  a  controlled  experiment  methodology  to  base  all  its  findings  and 
 results.  This  methodology  assists  in  showing  and  identifying  the  necessary  steps  for 
 implementation.  This  chapter  covers  the  implementation  approach  and  decisions  taken 
 throughout  the  process.  Introducing  and  explaining  the  experiment  and  providing  a 
 step-by-step  walkthrough  of  the  technique  for  each  experiment.  This  part  also  presents 
 the  tools  used,  the  steps  of  data  collection  and  summary,  and  how  they  are  further 
 handled. 

 4.1 Tools and Techniques 
 All  experiments  were  conducted  on  an  Asus  laptop  with  a  system  model  X411UA,  8GB 
 of  RAM,  an  Intel(R)  coreTM  i5-8250U  CPU,  and  Windows  10  Home  64/bit.  IntelliJ 
 IDEA-2022.3  and  Java  JDK-18.0.2.1  were  installed  to  implement  and  design  the  code. 
 JoularJX  1.1  was  also  installed  to  monitor  the  energy  consumption  of  each  method  [18]. 
 The  element  chosen  as  an  input  for  each  Collection  operation  and  Sorting  algorithm  is 
 random  integers.  Using  the  Random  class  in  Java,  400  000  random  integers  were 
 created and stored, with a specific seed value of 200. 

 Measuring  the  CPU  and  memory  usage  in  the  implementation  for  each  method  was 
 done  using  built-in  Java  classes.  The  CPU  usage  was  calculated  using  the  function 
 ‘calcCPU’  which  was  called  after  each  operation  for  each  Collection  and  Sorting 
 algorithm.  ‘calcCPU’  function  takes  three  parameters:  cpuStartTime,  elapsedStartTime, 
 and cpuCoun  t, as shown below. 

 Figure 4.1 Pseudocode of CPU function 

 cpuStartTime  was  obtained  using  the  method 
 “  ManagementFactory.getThreadMXBean()  .getCurrentThreadCpuTime()”,  this  method 
 calculates  and  returns  the  overall  CPU  time  consumed  by  the  current  thread,  measured 
 in  nanoseconds  [37].  On  the  other  hand,  “  elapsedStartTime”  was  calculated  using  the 
 method  “  System.nanoTime()”  which  returns  the  current  time  in  nanoseconds  [38]. 
 Lastly,  cpuCount  was  calculated  using  the  method 
 “  ManagementFactory.getOperatingSystemMXBean().getAvailableProcessors()”  which 
 returns  the  number  of  processors  available  to  the  Java  virtual  machine  [39].  This 
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 function  calculates  the  CPU  usage  percentage  by  dividing  the  totalUsedCPUTime  by 
 totalAvailCPUTime  .  The  totalAvailCPUTime  was  calculated  by  multiplying  cpuCoun  t 
 with  the  difference  between  end-time  and  elapsedStartTime  which  is  the  difference  in 
 time in nanoseconds before and after calling each operation of such a Collection or s 
 Sorting  algorithm.  While  totalUsedCPUTime  is  the  difference  between  the  current  total 
 CPU  time  for  the  current  thread  in  nanoseconds  after  calling  each  operation  and 
 cpuStartTime  before  calling  each  operation  of  such  a  Collection  or  Sorting  algorithm. 
 Memory  consumption  was  calculated  using  the  Runtime  class.  The  Runtime  class 
 allows  the  application  to  interface  with  the  environment  in  which  the  application  is 
 running  [40].  Computing  the  memory  usage  of  Collection  operations  and  Sorting 
 algorithms  involves  calculating  the  memory  consumption  before  and  after  running  the 
 implementation.  Memory  consumption  was  computed  by  subtracting  the  free  memory 
 from the total memory after calling these methods respectively. 

 Monitoring  and  measuring  the  energy  consumption  of  each  operation  or  algorithm 
 was  easily  done  by  modifying  the  filter  in  the  Joular  config  file,  starting  with  the 
 “  package.class.method  ”  name.  For  example,  to  measure  the  energy  of  a  specific  Sorting 
 algorithm,  the  filter  would  be  modified  to 
 “  filter-method-names=insertionsort.InsertionSortAlgorithm.sort  ”.  Finally,  executing  the 
 program  to  get  the  desired  results  was  done  using  a  bash  script  with  the  JoularJX  Java 
 agent  enabled.  An  example  of  a  script  used  is  “  $for  i  in  {1..20};  do  java 
 -javaagent:joularjx-1.1.jar  selectionsort/Main  400000;  done  ”.  This  command  runs  the 
 Java  program  20  times,  each  time  with  a  different  randomly  generated  array  of  400  000 
 integers, and measures the power consumption of the Java program using JoularJX. 

 Regarding  Java  Collections  it  is  worth  mentioning  that  each  collection’s  object 
 such  as  ArrayList,  LinkedList,  etc  was  instantiated  in  the  Main  method  using  the 
 Collection interface which is implemented by Collections’ classes. 

 4.2 Data Overview 
 As  a  result  of  the  experiments,  raw  data  was  generated.  Therefore,  this  section  provides 
 a comprehensive understanding of the data collection process and how it is analyzed. 

 4.2.1 Data Collection 

 Regarding  memory  and  CPU  usage,  data  was  gathered  and  stored  in  a  file  using  the 
 ‘writeTofile’  method.  This  method  takes  two  arguments,  the  name  of  the  file  and  the 
 result  of  the  experiment  to  be  written  to  the  file,  then  creates  three  separate  CSV  files 
 for  each  result.  Moreover,  the  energy  data  was  generated  automatically  using  JoularJX. 
 JoularJX  creates  a  CSV  file  for  each  experiment  independently.  Thus,  if  the 
 implementation  runs  100  times,  Joular  will  generate  100  CSV  files  containing  the 
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 energy  consumption  value.  Then,  the  energy  values  of  the  100  files  were  manually 
 gathered  into  one  CSV  file.  Finally,  all  generated  data  (Energy/Memory/CPU)  was 
 stored  in  one  Excel  file,  with  different  spreadsheets  for  each  Collection  and  Sortings,  to 
 apply the analysis later. 

 4.2.2 Data Analysis 

 In  order  to  conduct  the  analysis,  the  final  Excel  file  was  converted  to  a  CSV  format,  and 
 subsequently  imported  into  RStudio.  As  mentioned  earlier  in  the  Methodology  Section, 
 RStudio  is  a  software  that  reads  and  examines  the  data  before  applying  statistical 
 analysis  techniques  using  R  language  to  derive  insights  and  draw  conclusions  from  the 
 data.  RStudio  uses  commands,  as  an  example,  to  read  a  CSV  file,  this  command  is  used: 
 “  mydata=read.csv("fileName.csv",header  =  TRUE)  ”,  and  to  get  the  summary  of  the 
 data,  “summary(mydata)  ”  command  is  used,  which  generates  summary  statistics  for  the 
 data  frame.  The  summary  includes  different  statistically  related  values,  some  of  these 
 values are interesting, such as the minimum, maximum, and mean values. 

 To  find  the  correlation  coefficient  between  energy  and  memory,  for  instance,  simply 
 use  the  “cor(mydata$VariableX,  mydata$VariableY)  ”  command.  The  “cor()”  function 
 calculates  the  Pearson  correlation  coefficient  between  the  two  variables.  The  correlation 
 coefficient  ranges  from  -1  to  1,  which  indicates  how  weak  or  strong  the  relationship  is 
 between  two  variables.  This  process  was  repeated  for  all  other  variables.  Finally,  a 
 linear  regression  model  was  conducted  for  any  two  desired  variables  using  the 
 command  “  model  =  lm(mydata$VariableX~mydata$VariableY)  ”  command.  VariableX  is 
 the  dependent  variable,  while  VariableY  is  the  independent  variable.  This  command 
 helps  to  understand  the  relationship  between  these  variables  and  make  predictions  about 
 future values. 
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 5  Results 

 This  chapter  offers  an  overview  of  the  gathered  data  from  the  controlled  experiments 
 performed  on  the  Java  Collections  and  Sorting  algorithms.  It  provides  a  summary  of  the 
 values  for  each  Sorting  algorithm  and  Collections  operation,  which  helps  later  in 
 comparisons  to  be  made  between  different  variables  while  making  analysis  easier.  The 
 complete raw data can be found in  Appendix 1  . 

 The  following  tables  present  a  summary  of  the  data,  encompassing  the  minimum, 
 maximum,  and  mean  values  for  each  of  the  variables  Energy,  CPU,  and  Memory.  Also 
 the time complexity of each algorithm and operation. 

 Collections  Energy (Joule)  CPU 
 Usage 

 Memory (MB) 

 ArrayList 

 Add 
 O(1) 

 Min  0.000567  0.07  14.45995331 

 Mean  0.001974369  0.081  14.45996635 

 Max  0.006732762  0.1  14.45999908 

 Contains 
 O(n) 

 Min  466.6086355  0  9.086959839 

 Mean  491.9261308  0.1188  9.891752014 

 Max  515.679196  0.12  17.27084351 

 Remove 
 O(n) 

 Min  46.900643  0.12  7.399879456 

 Mean  62.00662112  0.12  7.516352921 

 Max  70.71309534  0.12  8.001930237 

 ArrayDeque 

 Add 
 O(1) 

 Min  0.000687  0.06  14.45995331 

 Mean  0.002953216  0.0739  14.4599704 

 Max  0.014700036  0.13  14.45999908 

 Contains 
 O(n) 

 Min  472.8739621  0.12  7.84828949 

 Mean  490.794287  0.12  8.734794006 
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 Max  504.286983  0.12  11.90093231 

 Remove 
 O(n) 

 Min  0.001116075  0.09  5.95791626 

 Mean  0.008450762  0.134  6.094021988 

 Max  0.042407282  0.24  6.35068512 

 LinkedList 

 Add 
 O(1) 

 Min  0.000488  0  15.45904541 

 Mean  0.001780715  0.0818  15.45996564 

 Max  0.008296656  0.13  15.46000671 

 Contains 
 O(n) 

 Min  1449.880256  0.07  2.3462677 

 Mean  1499.166092  0.1192  3.400434647 

 Max  1537.974074  0.12  6.588676453 

 Remove 
 O(n) 

 Min  0.002567978  0.09  5.824249268 

 Mean  0.013630518  0.1366  5.827473984 

 Max  0.050296586  0.24  6.001930237 

 Stack 

 Add 
 O(1) 

 Min  0.001580613  0.03  12.99993896 

 Mean  0.004702815  0.0974  12.9999517 

 Max  0.012583005  0.13  12.99998474 

 Contains 
 O(n) 

 Min  436.7424848  0.12  7.897949219 

 Mean  489.6172627  0.12  8.882812805 

 Max  518.8516553  0.12  14.23099518 

 Remove 
 O(n) 

 Min  34.87031117  0.11  7.399154663 

 Mean  57.72997228  0.1199  7.511531067 

 Max  66.05255707  0.12  8.001930237 
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 Vector 

 Add 
 O(1) 

 Min  0.001390911  0.03  12.99993896 

 Mean  0.004055882  0.0995  12.99995056 

 Max  0.013321473  0.13  12.99998474 

 Contains 
 O(n) 

 Min  418.9313185  0.12  7.729530334 

 Mean  482.597081  0.12  8.513253479 

 Max  507.1413135  0.12  15.41547394 

 Remove 
 O(n) 

 Min  38.18918344  0.12  7.398963928 

 Mean  58.44471894  0.12  7.487701416 

 Max  67.71201172  0.12  7.769287109 

 PriorityQueue 

 Add 
 O(log n) 

 Min  0.002186143  0.06  13.45995331 

 Mean  0.008133778  0.1072  13.45996658 

 Max  0.020972939  0.12  13.45999908 

 Contains 
 O(n) 

 Min  557.3652651  0  0.125434875 

 Mean  626.1236434  0.1176  2.450000763 

 Max  678.308702  0.12  9.447479248 

 Remove 
 O(n) 

 Min  352.7094224  0.12  4.065910339 

 Mean  403.8143728  0.12  5.802430878 

 Max  479.8554691  0.12  9.34853363 

 Add 
 O(1) 

 Min  0.025050086  0.09  29.99992371 

 Mean  0.049346392  0.1122  29.99994865 

 Max  0.081101626  0.12  29.99998474 

 Min  0.00432408  0.09  2.354904175 
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 HashSet 

 Contains 
 O(1) 

 Mean  0.018042638  0.1124  5.404334793 

 Max  0.04702791  0.16  6.001930237 

 Remove 
 O(1) 

 Min  0.00544792  0.08  2.2056427 

 Mean  0.020921409  0.1154  5.271509247 

 Max  0.065847316  0.17  5.761940002 

 Linked 
 HashSet 

 Add 
 O(1) 

 Min  0.042830875  0.07  30.41864777 

 Mean  0.070685211  0.0914  30.46009758 

 Max  0.160779235  0.12  30.48896027 

 Contains 
 O(1) 

 Min  0.007027301  0.04  1.270233154 

 Mean  0.015740149  0.1092  2.257113419 

 Max  0.03793517  0.15  2.419761658 

 Remove 
 O(1) 

 Min  0.00553079  0.08  1.164207458 

 Mean  0.019623584  0.1239  2.172135239 

 Max  0.046522515  0.17  2.229278564 

 TreeSet 

 Add 
 O(log n) 

 Min  0.089415472  0.09  18.89191437 

 Mean  0.141886684  0.1022  19.13297615 

 Max  0.309176967  0.11  19.19422913 

 Contains 
 O(log n) 

 Min  0.043751044  0.11  6.048225403 

 Mean  0.093472037  0.114  6.07582695 

 Max  0.197342535  0.13  6.243865967 

 Remove 
 O(log n) 

 Min  0.056256182  0.11  5.922714233 

 Mean  0.148259318  0.1169  5.995325775 
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 Max  0.429610314  0.13  6.221954346 

 Sorting Algorithms  Energy (Joule)  CPU Usage  Memory (MB) 

 Bubble Sort 
 O(n^2) 

 Min  1241  0.000  26.42 

 Mean  1553  0.114  27.85 

 Max  1621  0.120  31.40 

 Bucket Sort 
 O(n+k) 

 Min  1557  0.0100  66.63 

 Mean  1953  0.1117  80.23 

 Max  2038  0.1200  89.98 

 Counting Sort 
 O(n+k) 

 Min  0.3436  0.0700  10.00 

 Mean  1.4559  0.0994  10.01 

 Max  3.0048  0.1200  10.06 

 Heap Sort 
 O(nlogn) 

 Min  0.2293  0.0900  0 

 Mean  0.6555  0.1100  0 

 Max  2.2523  0.1200  0 

 Insertion Sort 
 O(n^2) 

 Min  261.1  0.0400  14.98 

 Mean  291.1  0.1192  15.03 

 Max  300.9  0.1200  15.92 

 Merge Sort 
 O(nlogn) 

 Min  0.3160  0.0700  22.14 

 Mean  0.8153  0.1003  22.33 

 Max  3.5041  0.1200  22.62 

 Min  0.2312  0.0600  0 
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 Quick Sort 
 O(nlogn) 

 Mean  0.7036  0.1043  0 

 Max  1.8024  0.1200  0 

 Radix Sort 
 O(nk) 

 Min  0.3307  0.0900  27.46 

 Mean  1.0818  0.1106  27.58 

 Max  2.5685  0.1200  27.98 

 Selection Sort 
 O(n^2) 

 Min  659.3  0.020  19.08 

 Mean  775.0  0.119  28.59 

 Max  830.8  0.120  30.20 

 Shell Sort 
 O(n(logn)^2) 

 Min  0.1851  0.0900  0 

 Mean  0.6374  0.1121  0 

 Max  1.6549  0.1200  0 
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 6  Analysis 
 The  following  chapter  analyzes  the  results  that  were  obtained  by  the  conducted 
 controlled  experiments.  The  goal  of  this  analysis  is  to  answer  the  research  questions  that 
 were  introduced  earlier  in  the  Problem  formulation  section.  All  possible  methods  for 
 analyzing  the  results  have  been  explored  to  provide  accurate  answers  to  the  research 
 questions.  Therefore,  two  analysis  sections  have  been  included,  one  applying  a  linear 
 regression model and the other a 3D scatter plot. 

 6.1 Statistical Analysis 
 In  this  section,  statistical  analysis  using  a  linear  regression  model  is  conducted  for 
 Sorting  algorithms  and  Collections  in  Java  to  investigate  the  relationship  between 
 variables.  This  analysis  will  answer  the  research  questions  RQ1,  RQ2,  and  RQ3  only 
 from Section 1.3, Problem Formulation. 

 In  order  to  present  a  linear  regression  model,  the  Correlation  Coefficient  is  computed  to 
 determine  whether  the  relationship  is  inverse  or  positive,  as  well  as  if  the  relationship  is 
 weak  or  strong.  Moreover,  the  P-Value  is  calculated  to  determine  if  the  relationship  is 
 statistically  significant.  Appendix  2  shows  the  values  of  the  correlation  coefficient  and 
 P-Value  for  each  Sorting  algorithm  and  Collection  including  their  three  operations, 
 which will be used in the analysis. 

 It  is  pertinent  to  note  that  in  order  to  comprehend  the  information  presented  in  the 
 below  Tables  6.1  &  6.2,  it  is  essential  to  know  that  energy  consumption  is  the  dependent 
 variable  while  memory  and  CPU  usage  are  the  independent  variables.  If  the  correlation 
 coefficient  value  is  negative,  it  indicates  an  inverse  relationship  between  the  two 
 variables,  and  if  the  value  is  positive,  it  indicates  a  positive  relationship.  Moreover, 
 when  the  absolute  value  of  the  correlation  coefficient  is  less  than  0.5,  the  relationship  is 
 considered  weak,  and  the  opposite  is  true  if  it  is  equal  to  or  greater  than  0.5.  The 
 estimated  value  presents  the  approximate  amount  of  energy  consumption  when  the 
 independent  variable  increases  by  1  unit.  Finally,  to  know  if  the  relationship  is 
 statistically  significant,  the  P-Value  must  be  less  than  or  equal  to  0.05.  In  the  below 
 tables,  a  correlation  written  in  Bold  indicates  a  statistically  significant  relationship  and 
 is to be discussed later in the conclusion section. 

 Worth  mentioning,  the  relationship  is  also  considered  strong  if  the  linear  regression 
 model  shows  that  the  relationship  is  statistically  significant  with  a  P-Values  less  than  or 
 equal  to  0.05,  even  though  the  correlation  coefficient  is  less  than  0.5  since  the  P-Value  is 
 more important. 
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 6.1.1 Collections’ Linear Regression Analysis 

 Table  6.1,  provides  an  analysis  of  the  raw  data  for  Collections  including  Add,  Contains, 
 and  Remove  operations,  as  an  outcome  of  applying  a  linear  regression  model  using  R. 
 Taking  into  concern  their  relationship  with  energy-memory  usage  and  energy  -  CPU 
 usage. 

 Energy - Memory usage  Energy - CPU usage 

 Collections  Operation  Relationship  Estimate  Relationship  Estimate 

 ArrrayList 

 Add  Weak Positive  6.002  Weak Inverse  -0.028008 

 Contains  Strong Positive  3.7321  Weak Inverse  -53.261 

 Remove  Weak Positive  0.4489  -  - 

 ArrayDeque 

 Add  Weak Inverse  -2.240  Strong Positive  0.092071 

 Contains  Weak Positive  0.4627  -  - 

 Remove  Strong Inverse  -0.014974  Strong Positive  0.057140 

 LinkedList 

 Add  Strong Positive  0.1859  Strong Positive  0.0199417 

 Contains  Weak Positive  2.057  Weak Inverse  -253.74 

 Remove  Weak Positive  0.01710  Strong Positive  0.082093 

 Stack 

 Add  Weak Inverse  -6.909  Weak Positive  0.0113430 

 Contains  Weak Inverse  -0.4485  -  - 

 Remove  Strong Inverse  -10.636  Strong Positive  2309.06 

 Vector 

 Add  Weak Positive  4.952  Weak Positive  0.011879 

 Contains  Weak Inverse  -1.764  -  - 

 Remove  Weak Positive  0.7895  -  - 

 PriorityQueue 

 Add  Weak Positive  13.65  Weak Inverse  -0.032627 

 Contains  Weak Inverse  -1.591  Weak Inverse  -195.43 

 Remove  Strong Positive  17.160  -  - 
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 Energy - Memory usage  Energy - CPU usage 

 HashSet 

 Add  Weak Inverse  -2.877  Weak Positive  0.02009 

 Contains  Strong Inverse  -0.0013681  Strong Positive  0.083060 

 Remove  Strong Inverse  -0.0041078  Weak Positive  0.002688 

 LinkedHashSet 

 Add  Weak Inverse  -0.2662  Weak Inverse  -0.01061 

 Contains  Weak Inverse  -0.006344  Strong Positive  0.042383 

 Remove  Weak Positive  0.006922  Strong Positive  0.080187 

 TreeSet 
 Add  Weak Inverse  -0.02231  Weak Positive  0.58851 

 Contains  Weak Inverse  -0.08832  Weak Positive  0.28658 

 Remove  Weak Inverse  -0.06375  Weak Positive  0.10425 
 Table 6.1 Collections’ Relationships Analysis 

 The  table  above  addresses  RQ1  by  demonstrating  the  relationship  between  energy 
 consumption  and  memory  usage  and  the  relationship  between  energy  consumption  and 
 CPU  usage.  Moreover,  it  also  addresses  RQ3  by  demonstrating  how  strong  these 
 relationships  are,  based  on  the  correlation  coefficient  and  P-Value,  values  as  explained 
 earlier.  For  example,  the  table  shows  that  in  the  case  of  HashSet  Collection  for  ‘Add’ 
 operations,  the  relationship  between  energy  consumption  and  memory  is  weak  and 
 inverse.  Therefore,  when  memory  usage  increases  by  one  megabyte,  energy  decreases  by 
 2.877 Joules, as the "Estimate" value shows. 

 Notably,  the  table  above  shows  no  significant  relationship  between  energy 
 consumption  and  CPU  usage  for  some  Collections.  The  reason  behind  this  result  is  that 
 the  standard  deviation  is  zero  since  the  CPU  usage  is  constant  and  fixed.  In  other  words, 
 based  on  the  collected  data,  it  is  noticed  that  CPU  usage  is  fixed  regardless  of  whether 
 energy consumption increases or decreases. 

 6.1.2 Sortings’ Linear Regression Analysis 

 Table  6.2,  provides  an  analysis  of  the  raw  data  for  Sorting  algorithms,  as  an  outcome  of 
 applying  a  linear  regression  model  using  R.  Taking  into  concern  their  relationship  with 
 energy-memory usage and energy - CPU usage. 

 Energy - Memory usage  Energy - CPU usage 

 Sorting Algorithms  Relationship  Estimate  Relationship  Estimate 
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 Bubble Sort  Weak inverse  -13.635  Weak inverse  -75.26 

 Bucket Sort  Weak positive  1.1014  Weak positive  193.80 

 Counting Sort  Weak inverse  -1.146  Weak inverse  -4.3836 

 Heap Sort  -  -  Strong positive  7.8139 

 Insertion Sort  Strong inverse  -26.386  Weak positive  137.313 

 Merge Sort  Weak inverse  -0.4435  Weak positive  0.9381 

 Quick Sort  -  -  Weak inverse  -0.5146 

 Radix Sort  Weak inverse  -0.2801  Weak positive  2.8106 

 Selection Sort  Strong positive  11.7746  Weak inverse  -117.32 

 Shell Sort  -  -  Strong inverse  -5.0116 

 Table 6.2 Sortings’ Relationships Analysis 

 The  table  analyzes  the  data  and  addresses  RQ2  by  first  answering  if  a  relationship 
 exists.  The  ones  with  defined  relationships  have  been  categorized  into  positive  or 
 inverse  relationships.  Taking  Selection  sort  as  an  example,  there  is  a  positive 
 relationship  between  energy  consumption  and  memory  usage,  and  this  means  when 
 memory  increases  by  one  megabyte,  energy  consumption  increases  by  11.7746  joules 
 (estimated  value).  However,  the  relationship  between  energy  consumption  and  CPU  is 
 inverse  for  the  same  Sorting  algorithm;  this  means  when  CPU  increases  by  one  unit, 
 energy  consumption  decreases  by  117.32  joules  (estimated  value).  On  the  other  hand, 
 RQ3  is  answered  by  showing  if  the  relationship  between  two  variables  is  weak  or 
 strong.  For  example,  in  the  Insertion  sort,  the  two  variables,  memory,  and  energy, 
 indicate  a  strong  relationship,  meaning  if  memory  (the  independent  variable)  increases, 
 energy  consumption  (the  dependent  variable)  decreases  significantly.  In  the  same 
 Sorting  algorithm,  the  two  variables,  CPU  and  energy,  indicate  a  weak  relationship, 
 meaning  if  CPU  (the  independent  variable)  increases,  energy  consumption  (the 
 dependent variable) increases slightly. 

 Table  6.2  exhibits  no  significant  correlation  between  energy  consumption  and 
 memory  usage  for  some  Sorting  algorithms.  This  lack  of  correlation  is  attributed  to 
 differences  in  the  implementation  of  these  algorithms.  For  instance,  the  Heap  sort 
 method  operates  directly  on  the  input  array  and  rearranges  the  elements  in  place, 
 without  creating  any  additional  arrays  or  data  structures  to  store  intermediate  results. 
 The  only  memory  usage  in  the  Heap  sort  method  is  the  storage  of  a  temporary  variable 
 ‘temp’  that  is  used  to  swap  the  values  of  two  elements.  However,  this  temporary 
 variable  is  a  constant-size  integer  and  does  not  depend  on  the  size  of  the  input  array,  so 
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 it  does  not  contribute  significantly  to  the  memory  usage  of  the  algorithm.  Similarly, 
 Quick  sort  implementation  does  not  use  any  additional  memory  also,  since  it  sorts  the 
 input  array  in  place,  meaning  that  it  modifies  the  input  array  rather  than  creating  a  new 
 array  to  hold  the  sorted  elements.  Furthermore,  Shell  sort  implementation  performs 
 in-place  comparison  sorting,  which  means  it  does  not  require  any  additional  memory  to 
 be  allocated  for  temporary  storage  during  the  sorting  process.  In  summary,  the  lack  of 
 significant  correlation  between  energy  consumption  and  memory  usage  in  these  Sorting 
 algorithms  is  attributed  to  their  respective  in-place  sorting  implementations,  where  they 
 do  not  require  additional  memory  allocation  or  data  structures  for  temporary  storage 
 during the sorting process. 

 6.2 Efficiency Analysis 
 This  section  provides  an  efficiency  analysis  for  Java  Collections  and  Sorting  algorithms. 
 It  presents  a  rigorous  evaluation  of  their  performance,  in  terms  of  energy  consumption 
 considering  quality  attributes  (Memory,  CPU)  based  on  appropriate  measurements  and 
 analyses. 
 The focus of this section is to answer the final two research questions: 

 RQ4.  What  is  the  most  efficient  Java  Collection/s  among  the  three  operations  in 
 terms of energy consumption considering the performance? 
 RQ5.  What  is  the  most  efficient  Java  Sorting  algorithm  in  terms  of  energy 
 consumption considering the performance? 

 A  proper  analysis  of  the  results  is  necessary  to  address  the  research  questions.  Each 
 Collection  and  Sorting  algorithm  was  evaluated  based  on  three  principal  objectives, 
 energy  consumption,  memory,  and  CPU  usage.  The  goal  is  to  present  these  objectives  in 
 an  understandable  graphical  form,  to  show,  and  determine  the  most  efficient  method 
 with  the  best  performance  in  terms  of  energy  consumption  considering  CPU  and 
 memory usage. 

 Therefore,  a  3D  scatter  plot  is  generated  using  R  Studio,  which  is  a  suitable 
 technique  to  assess  the  three  objectives  and  gives  the  reader  a  visualized  model  to 
 compare  the  data  points.  The  data  points  represent  the  mean  value  of  memory,  CPU, 
 and  energy  consumption  respectively  in  a  three-dimensional  coordinate  system,  with 
 one variable plotted on the x-axis and the other variable plotted on the y-axis and z-axis. 
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 6.2.1 Collections Experiment Analysis 

 The  efficiency  analysis  of  Java  Collections  involves  evaluating  each  Collection 
 individually  to  determine  the  most  efficient  Collection(s)  in  terms  of  energy 
 consumption,  CPU,  and  memory  usage.  If  it  is  not  possible  to  find  a  Collection  that 
 excels  in  all  three  aspects,  alternative  approaches  prioritize  two  aspects  to  identify  the 
 most efficient Collection(s). 

 The  efficiency  analysis  of  Java  Collections  does  not  rely  on  determining  the  most 
 efficient  Collection(s)  as  List,  Queue,  and  Set.  This  approach  is  not  aligned  with  the 
 research  objectives  and  methodology  of  the  study.  A  Collection  classified  as  a  List,  for 
 example,  might  be  the  most  efficient  among  other  collections  classified  as  a  List. 
 However,  this  does  not  necessarily  imply  that  it  is  the  most  efficient  of  all  Collections 
 classified  as  Queues  or  Sets.  Attempting  to  find  the  most  efficient  Collection(s)  based 
 on  their  classification  would  not  yield  the  desired  results.  It  would  undermine  the  study's 
 strength  and  coherence,  as  it  deviates  from  the  core  objective  of  this  study  and  does  not 
 align with other related works. 

 Instead,  the  efficiency  analysis  should  focus  on  evaluating  the  performance  of 
 individual  Collections  based  on  specific  criteria,  such  as  energy  consumption,  CPU 
 utilization,  and  memory  usage.  This  approach  ensures  a  comprehensive  and  accurate 
 assessment of each Collection's efficiency without being restricted by its classification. 

   

 Figure 6.1: Collections 3D scatter plot for Add 

 Figure  6.1  shows  a  3D  scatter  plot  of  all  Collections  in  the  case  of  the  Add  operation. 
 The  graph  shows  the  mean  value  of  memory,  CPU,  and  energy  consumption  for  each 
 Collection  on  the  x-axis,  y-axis,  and  z-axis  respectively.  From  the  plot,  the  most 
 efficient  Collections  in  terms  of  energy  consumption  can  be  derived,  taking  into  account 
 the  quality  attributes.  For  example,  it  is  clearly  shown  that  ArrayList  (A),  ArrayDeque 
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 (B),  and  LinkedList  (C)  are  the  best  choices  in  terms  of  the  three  values  of  memory, 
 CPU,  and  energy  consumption  combined.  LinkedList  is  the  best  choice  when  only 
 energy  consumption  is  considered  because  it  has  the  lowest  energy  consumption  (See 
 Appendix  1  ).  On  the  other  hand,  ArrayDeque  is  the  best  choice  when  considering  CPU 
 consumption,  as  it  has  the  lowest  CPU  consumption.  Vector,  on  the  other  hand,  is  the 
 best  solution  in  terms  of  memory  consumption.  When  it  comes  to  the  least  efficient 
 Collections  in  terms  of  memory,  CPU,  and  energy  consumption,  HashSet  (G), 
 LinkedHashSet  (H),  and  TreeSet  (I)  are  collectively  the  most  problematic.  TreeSet  is  the 
 worst  in  terms  of  energy  consumption.  On  the  other  hand,  HashSet  is  the  worst  in  terms 
 of CPU consumption and LinkedHashSet is the worst in terms of memory consumption. 

 Notably,  Based  on  the  gathered  data  and  the  conducted  efficiency  analysis,  the  time 
 complexity  of  Collections  does  not  reflect  their  efficiency  in  terms  of  energy 
 consumption,  CPU,  and  memory  usage  in  Add  operation.  TreeSet(I)  is  less  efficient  in 
 terms  of  energy  consumption  than  PriorityQueue(F),  even  though  both  have  time 
 complexity  O(log  n).  Additionally,  some  Collections  have  time  complexity  O(1)  but 
 they  are  less  efficient  than  PriorityQueue  in  terms  of  one  variable  or  two  variables  or  all 
 of  them.  For  instance,  LinkedHashSet  is  less  efficient  in  terms  of  energy  consumption 
 and  memory  usage  than  PriorityQueue.  Furthermore,  HashSet(G)  is  less  efficient  than 
 priorityQueue in terms of all aspects of energy consumption, CPU, and memory usage. 

 Figure 6.2: Collections 3D scatter plot for Contains 

 Figure  6.2  shows  the  memory,  CPU,  and  energy  consumptions  of  Collections  for 
 Contains  operations  on  the  x,  y,  and  z  axes  respectively.  Based  on  the  obtained  result, 
 the  scatter  plot  shows  that  LinkedHashSet(H)  is  the  absolute  most  efficient  Collection 
 among  the  others  in  terms  of  memory,  CPU,  and  energy  consumption  combined, 
 Therefore,  it  can  be  recommended  as  the  best  choice  for  Java  developers  who  are 
 interested  in  the  efficiency  in  terms  of  these  three  objectives  in  case  of  Contains 
 operation. 
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 Collection  HashSet(G)  has  the  second  lowest  CPU  usage  and  energy  consumption. 
 Additionally,  it  has  the  lowest  memory  usage  after  LinkedHashSet  (H)  and 
 PriorityQueue  (F)  respectively.  Collection  PriorityQueue  (F)  has  roughly  high  CPU 
 usage  and  energy  consumption.  On  the  other  hand,  the  collections  Stack  (D), 
 ArrayDeque(B),  and  Vectorn  (E)  are  the  least  efficient  Collections  in  terms  of  memory, 
 CPU,  and  energy  consumption  since  they  have  roughly  high  memory,  CPU  and  energy 
 consumption  even  though  LinkedList  (C)  has  the  highest  energy  consumption  among 
 other  Collections  but  it  has  less  memory  and  CPU  usage  than  the  Collections  D,  B,  and 
 E. 

 According  to  an  efficiency  analysis  of  Java  Collections,  the  time  complexity  of  a 
 collection  indicates  its  efficiency  in  terms  of  energy  consumption  and  CPU  usage.  It  has 
 been  found  that  LinkedHashSet  (H),  HashSet  (G),  and  TreeSet  (I)  are  the  most  efficient 
 in  terms  of  energy  consumption,  CPU  usage,  and  memory  usage,  respectively.  The 
 efficiencies  of  these  collections  align  with  their  respective  time  complexity.  These  are 
 the  fastest  among  all  collections  analyzed  for  the  'contains'  operation.  For  this  operation, 
 LinkedHashSet,  HashSet,  and  TreeSet  have  time  complexity  of  O(1),  O(1),  and  O(log 
 n),  respectively.  Conversely,  the  "Contains"  operation  for  other  collections  has  a  time 
 complexity  of  O(n),  making  it  less  efficient.  It  is  important  to  note  that  when  selecting  a 
 collection  for  a  given  task,  numerous  factors  should  be  taken  into  consideration.  These 
 factors  include  trade-offs  between  time  complexity,  energy  consumption,  and  other 
 relevant considerations such as CPU and memory usage. 

 Figure 6.3: Collections 3D scatter plot for Remove 

 Based  on  the  obtained  results  for  Remove  operation,  LinkedHashset  (H)  can  be 
 recommended  to  be  the  most  efficient  Collection  in  terms  of  three  variables,  memory, 
 CPU,  and  energy  consumptions  combined,  even  though  HashSet  (G)  has  less  CPU 
 consumption.  LinkedHashSet  consumes  6%  less  energy  than  HashSet,  at  the  same  time, 
 HashSet  consumes  7%  less  CPU  than  LinkedHashSet  but  HashSet  consumes  243% 
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 more  memory  than  LinkedHashSet,  therefore  LinkedHashSet  is  recommended  to  Java 
 developers  if  these  three  factors  (memory,  CPU,  and  energy)  are  considered  at  once.See 
 Appendix 1  . 

 Moreover,  if  a  developer  is  interested  in  Collections'  efficiency  in  terms  of  energy 
 consumption  only,  ArrayDeque  (B)  is  the  best  choice,  because  it  is  the  most  efficient 
 Collection  among  others  in  terms  of  energy  consumption.  In  addition,  if  a  developer  is 
 interested  in  CPU  consumption  efficiency,  HashSet  is  the  best  choice  since  it  has  the 
 lowest  CPU  consumption  among  other  Collections.  On  the  other  hand,  PriorityQueue 
 (F)  is  the  least  efficient  Collection  among  others  in  terms  of  memory,  CPU,  and  energy 
 consumption  combined,  since  it  has  a  very  high  energy  consumption  compared  with 
 other  Collections  in  the  case  of  Remove  operation.  Moreover,  it  has  roughly  high  CPU 
 and memory consumption. 

 According  to  an  efficiency  analysis  of  Java  Collections,  the  ArrayDeque  collection 
 exhibits  the  highest  level  of  efficiency  in  terms  of  energy  consumption.  Despite  its  time 
 complexity  being  O(n),  which  is  less  efficient  than  that  of  HashSet  and  LinkedHashSet, 
 both  of  which  have  a  time  complexity  of  O(1).  Among  other  Collections, 
 LinkedHashSet  and  HashSet  demonstrate  the  greatest  efficiency  in  terms  of  memory 
 usage  and  time  complexity.  In  contrast,  TreeSet  exhibits  inferior  memory  efficiency 
 compared  to  both  PriorityQueue  and  LinkedList,  despite  having  a  time  complexity  of 
 O(log  n),  which  is  better  than  PriorityQueue  and  LinkedList,  both  of  which  have  a  time 
 complexity  of  O(n).  Furthermore,  the  HashSet  collection  boasts  the  most  efficient  CPU 
 usage  with  a  time  complexity  of  O(1).  However,  LinkedHashSet's  time  complexity  is 
 O(1),  which  is  generally  regarded  as  superior  to  O(n).  However,  there  are  several 
 Collections  that  exhibit  better  CPU  efficiency  than  LinkedHashSet  in  terms  of  CPU 
 usage,  including  the  ArrayList,  Stack,  and  PriorityQueue,  which  have  a  time  complexity 
 of O(n). 
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 6.2.2 Sortings Experiments Analysis 

 Figure 6.4 Sortings 3D scatter plot 

 In  Figure  6.4,  each  axis  displays  one  of  the  measured  objectives  in  each  Sorting 
 algorithm.  Each  data  point  represents  one  of  the  Sorting  algorithms  based  on  the 
 gathered  data  from  the  experiment.  From  the  scatter  plot,  it  can  be  inferred  that  Quick 
 sort  (G),  Heap  sort  (D),  and  Shell  sort  (J)  are  the  most  efficient  choices  for  developers 
 who  prioritize  high  performance  in  both  memory  and  CPU  usage  while  maintaining  low 
 energy  consumption;  since  they  consume  no  additional  memory,  very  low  energy,  and  a 
 low  CPU.  However,  Figure  6.4  provides  a  variety  of  options  for  the  developer  to  select 
 and  consider.  For  instance,  if  the  aim  is  to  have  a  Sorting  algorithm  with  the  lowest 
 energy  consumption  and  the  highest  performance  in  CPU  usage,  regardless  of  memory 
 usage,  Counting  sort  (C)  and  Merge  sort  (F)  respectively  are  the  optimal  choices.  On  the 
 other  hand,  if  the  aim  is  to  achieve  the  lowest  energy  consumption  and  memory  usage, 
 regardless  of  CPU  usage,  then  Quick  sort  (G),  Heap  sort  (D),  and  Shell  sort  (J)  are  all 
 the  best  options  and  most  efficient.  These  three  algorithms  consume  no  additional 
 memory  and  the  lowest  energy  among  the  others.  Finally,  the  Bucket  sort  (B)  may  not 
 be  the  most  efficient  choice  due  to  its  high  energy  consumption  and  memory  usage,  as 
 well  as  its  relatively  high  CPU  usage  when  compared  to  other  Sorting  algorithms.  Based 
 on  the  efficiency  analyses  of  Sorting  algorithms,  it  can  be  inferred  whether  time 
 complexity is related to the algorithm's efficiency and performance or not. 

 The  Sorting  algorithms  winners  of  consuming  the  least  energy,  CPU,  and  memory, 
 have  the  time  complexity,  as  follows:  Quick  sort  O(nlogn),  Heap  sort  O(nlogn),  and 

 41 



 Shell  sort  O(n(logn)^2),  all  of  which  exhibit  faster  performance  compared  to  the  least 
 efficient  Sorting  algorithm,  Bucket  sort,  which  has  a  time  complexity  of  O(n+k), 
 particularly when processing large datasets. 

 42 



 7  Discussion and Conclusions 
 The  goal  of  this  study  is  to  determine  the  potential  relationship,  if  any,  between  energy 
 consumption  and  commonly  performed  operations  on  Java  Collections  -  including 
 addition,  search,  and  removal  of  elements,  as  well  as  widely  used  Sorting  algorithms  in 
 Java  programming.  Additionally,  the  study  aims  to  identify  the  most  efficient  Java 
 Collections  and  Sorting  algorithms  based  on  their  energy  consumption,  CPU,  and 
 memory  usage.  The  study  employs  controlled  experiments  that  involve  measuring  the 
 energy  consumption,  CPU,  and  memory  usage  of  each  Java  Collection  during  the 
 specified  operations  and  Sorting  algorithms.  The  conducted  analysis  for  the  outcomes  of 
 the  controlled  experiments  provides  direct  answers  to  the  research  questions.  These 
 answers  are  anticipated  to  offer  significant  insights  into  the  energy  efficiency  of  Java 
 Collections  and  Sorting  algorithms,  which  could  inform  future  software  development 
 strategies  and  contribute  to  the  reduction  of  energy  consumption  and  environmental 
 impact in software development. 

 The  present  research  project  is  similar  to  the  studies  conducted  by  Hasan  et  al  [11]  and 
 Pinto  et  al  [12]  in  that  both  studies  aim  at  scrutinizing  and  quantifying  the  energy 
 consumption  of  Java  Collections.  According  to  Hasan  et  al,  energy  consumption  for 
 Java  Lists,  Maps,  and  Sets  has  been  examined  with  regard  to  various  operations,  such  as 
 insertion,  iteration,  and  random  access,  highlighting  significant  variations  based  on  the 
 type  of  operation.  This  research  project  shares  similarities  and  differences  with  Hasan  et 
 al.  Both  studies  involve  examining  and  quantifying  the  energy  consumption  of  Java 
 Collections  and  investigating  the  energy  consumption  of  varied  operations.  However, 
 the  differences  between  the  two  studies  lie  in  the  fact  that  Hasan  et  al  explore  the  energy 
 consumption  of  diverse  operations  with  different  scenarios,  such  as  insertion  at  the 
 beginning,  middle,  and  end,  whereas  this  project  focuses  on  analyzing  the  energy 
 consumption,  CPU  usage,  and  memory  usage  of  various  operations,  specifically, 
 insertion,  searching,  and  deletion.  Additionally,  this  project  attempts  to  identify  a 
 statistical  correlation  between  each  Collection  and  quality  attributes,  such  as  CPU  and 
 memory  usage.  It  is  noteworthy  that  the  findings  of  Hasan  et  al  demonstrate  that 
 LinkedList  has  lower  energy  consumption  than  ArrayList  when  inserting  elements  at  the 
 start  of  a  list,  which  aligns  with  the  efficiency  analysis  results  of  the  current  research 
 project  in  terms  of  energy  consumption  for  the  insertion  operation.  This  concurrence 
 suggests  that  LinkedList  is  a  preferable  option  over  ArrayList  in  terms  of  energy 
 efficiency for inserting elements at the beginning of a list. 

 The  study  conducted  by  Pinto  et  al  investigates  the  energy  efficiency  of  16 
 commonly  used  Java  Collections,  categorized  into  lists,  sets,  and  mappings,  in  different 
 operations  such  as  insertion,  removal,  and  traversal  on  the  Tomcat  and  Xalan  systems. 
 The  study  reveals  that  newer  hash-table  implementations  can  yield  significant  energy 
 savings.  It  also  finds  that  non-thread-safe  implementations  of  data  collections  consume 
 less  energy  than  thread-safe  ones  and  that  energy  consumption  is  influenced  by  different 
 operations.  Additionally,  the  study  examines  the  impact  of  thread  counts,  initial 
 capacities,  and  load  factors  on  the  energy  consumption  of  map  implementations  in  Java. 
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 The  current  research  project  shares  similarities  with  Pinto  et  al's  study  in  terms  of 
 examining  energy  consumption  in  Java  collections.  In  contrast  to  the  investigation  by 
 Pinto  et  al,  this  study  scrutinizes  the  energy  consumption  of  Java  Collections  on  a 
 singular  device  and  concentrates  on  Collections  that  are  embedded  in  the  Java 
 Collection  framework,  intended  for  performing  insertion,  search,  and  removal 
 operations.  Moreover,  this  study  assesses  the  energy  consumption  associated  with 
 Collections  in  terms  of  their  quality  attributes  and  explores  the  statistical  relationship 
 between  these  attributes,  and  does  not  confine  its  focus  solely  to  Java  thread-safe 
 Collections  and  does  not  extend  its  experiments  to  multiple  systems,  which 
 distinguishes it from the study conducted by Pinto et al. 

 Additionally,  this  research  project  is  also  similar  to  the  study  conducted  by  Alves  et 
 al.  [3],  which  examined  and  analyzed  the  energy  consumption  of  some  Sorting 
 algorithms.  Alves's  main  investigation  revealed  that  the  Selection  sort  algorithm 
 consumes  the  least  energy,  while  the  Bubble  sort  algorithm  consumes  the  most  energy. 
 It  is  noteworthy  that  the  findings  of  this  research,  as  presented  in  Section  6.2.2,  align 
 with  the  observation  that  the  Selection  sort  algorithm  consumes  a  significant  amount  of 
 energy  when  compared  to  the  Bubble  sort.  However,  Alves’s  area  of  investigation 
 focuses  on  three  classic  Sorting  algorithms  only  and  does  not  take  into  account  any 
 quality  attributes  while  measuring  energy  consumption.  In  contrast,  this  study  analyzed 
 additional  Sorting  algorithms  and  their  energy  consumption  in  relation  to  some  quality 
 attributes,  such  as  memory  and  CPU  usage.  Consequently,  the  findings  suggest  that  the 
 Bucket sort algorithm is the least efficient and worst Sorting algorithm. 

 In  conclusion,  this  paper  has  provided  answers  to  the  research  questions  presented  in 
 Section  1.3  and  focuses  on  estimating  the  energy  consumption,  memory,  and  CPU  usage 
 of  several  Java  Collections  and  Sorting  algorithms.  The  study  conducted  controlled 
 experiments  and  employed  tools  such  as  JoularJX  to  measure  energy  consumption,  and 
 RStudio  to  implement  a  statistical  analysis  using  R  to  find  out  the  relationship  between 
 energy  consumption  and  quality  attributes.  Moreover,  an  efficiency  analysis  is 
 conducted,  and  its  findings  are  then  represented  using  a  3D  scatter  plot  to  compare  the 
 mean  values  of  energy  consumption,  CPU,  and  memory  usage  for  each  operation  and 
 algorithm. 

 Regarding  Java  Collections,  the  examination  reveals  a  complex  landscape  in  terms 
 of  efficiency  across  various  operations,  such  as  Add,  Contains,  and  Remove.  It  becomes 
 evident  that  singling  out  a  universally  superior  Collection(s)  is  an  unattainable  goal. 
 Notably,  LinkedList  stands  out  for  its  exceptional  energy  efficiency  during  Add 
 operations,  but  its  performance  falters  significantly  when  it  comes  to  Contains 
 operations.  Therefore,  a  comprehensive  evaluation  considering  the  specific 
 requirements  and  trade-offs  of  each  operation  is  essential  to  determine  the  most  suitable 
 Collection(s) for a given context. 

 Moreover,  in  addition  operation,  ArrayLists,  ArrayDeque,  and  LinkedLists  are 
 recommended  when  memory,  CPU,  and  energy  consumption  are  all  considered  together. 
 Notably,  LinkedList  is  the  optimal  choice  when  only  energy  consumption  is  considered 
 during  addition.  In  terms  of  memory,  CPU,  and  energy  consumption,  LinkedHashSet 

 44 



 has  the  highest  efficiency  level  when  used  for  searching  operations.  If  memory,  CPU, 
 and  energy  consumption  are  considered  as  a  single  unit,  LinkedHashSet  is  the  most 
 efficient  collection  when  used  for  removing.  ArrayDeque,  however,  is  the  most 
 energy-efficient  choice  for  Java  developers  when  it  comes  to  the  removal  of  data. 
 Concerning  Sorting  algorithms,  Quick  sort,  Heap  sort,  and  Shell  sort  were  identified  as 
 the  most  efficient  in  terms  of  energy  consumption,  CPU,  and  memory  usage.  Bucket 
 sort was found to be less efficient due to its higher consumption and usage in all terms. 

 This  study  has  been  conducted  as  the  outcome  of  all  those  experiments'  results  and 
 analyses  covering  effectively  the  research  gap  on  which  it  is  based.  Additionally,  the 
 study  highlights  the  need  for  developers  to  consider  multiple  factors  when  selecting  a 
 Collection  or  Sorting  algorithm,  emphasizing  that  there  may  be  a  lack  of  correlation 
 between  energy  consumption  and  quality  attributes  (CPU  and  memory  usage)  in  certain 
 algorithms  and  Collections.  The  study  also  points  out  that  time  complexity  does  not 
 always  reflect  efficiency  in  terms  of  energy  consumption,  CPU,  and  memory  usage. 
 Thus,  the  study  underscores  the  importance  of  optimizing  software  for  energy 
 consumption,  particularly  in  resource-constrained  environments,  and  recommends  using 
 controlled  experiments  and  appropriate  methodologies  to  guide  programmers  in 
 developing  energy-efficient  software  programs  which  leads  the  software  engineering 
 field to be improved. 

 Lastly,  based  on  the  findings  of  the  conducted  statistical  analysis,  it  appears  that 
 there  is  a  limited  possibility  of  generalizing  the  correlation  and  relationship  between 
 energy  consumption  and  CPU  and  memory  usage  across  various  Collection  and  Sorting 
 algorithms  in  most  cases.  Specifically,  the  observed  P-value  is  greater  than  0.05, 
 indicating  that  the  results  are  not  statistically  significant.  Therefore,  further  investigation 
 is warranted as a part of future research endeavors to better understand this relationship. 

 7.1 Future Work 
 This  section  provides  suggestions  for  future  research  to  advance  the  current  study.  Time 
 and  resources  are  factors  that  limit  this  bachelor's  project.  Hence,  some  aspects  of  this 
 study  may  benefit  from  additional  time  and  resources  to  be  executed  optimally.  This 
 section  outlines  what  was  discovered  during  the  project’s  work,  areas  that  can  be 
 improved, and recommendations for future work. 

 As  mentioned  earlier,  when  statistical  analysis  has  been  conducted,  it  has  been 
 determined  that  the  ability  to  generalize  the  correlation  and  relationship  between  energy 
 consumption,  CPU,  and  memory  usage  for  Collection  and  Sorting  algorithms  is  limited 
 in  most  cases.  It  is  assumed  and  suggested  that  further  examination  of  the  P-value  is 
 necessary.  It  could  be  investigated  by  increasing  the  input  size  and  the  number  of 
 experiments significantly, for each operation and algorithm. 

 Moreover,  future  work  considering  different  tools  for  measuring  energy 
 consumption  and  conducting  experiments  on  different  operating  systems  can  help 
 increase  the  generalizability  of  the  statistical  analysis  results.  Different  operating 
 systems  have  different  features  and  characteristics;  therefore,  experimenting  on  multiple 
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 operating  systems  can  help  evaluate  how  generalizable  the  findings  are  while  ensuring 
 that  the  findings  are  robust  and  not  specific  to  a  particular  operating  system.  Worth 
 mentioning  is  that  this  study  raised  the  hypothesis  that  there  might  not  be  significant 
 differences  in  the  results  when  comparing  the  implementation  of  Sorting  algorithms  to 
 Java  library  built-in  algorithms  in  terms  of  the  most  efficient  algorithm  regarding  energy 
 consumption;  however,  to  validate  this  hypothesis,  further  investigation  comparing  the 
 implementation results with the Java library results is recommended. 

 A  possible  approach  to  advance  this  research  could  be  done  using  machine 
 learning.  Using  machine  learning  can  help  in  developing  predictive  models  that  can 
 forecast  energy  consumption  based  on  different  quality  attribute  metrics.  Additionally, 
 assist  in  discovering  patterns  and  trends  in  the  data  that  may  be  difficult  to  detect  using 
 typical  statistical  methods.  Machine  learning  can  provide  powerful  tools  for 
 understanding  and  analyzing  the  relationships  between  energy  consumption  and  quality 
 attributes  for  Java  Collections  and  Sorting  algorithms.  Applying  these  tools  makes  it 
 possible  to  gain  deeper  insights  into  the  performance  characteristics  of  different 
 operations  and  algorithms  to  discover  the  most  optimal  energy  consumption  in  software 
 development. 
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 Appendix 1 
 https://github.com/MustafaAlsaid2022/EstimateEnergyConsumptionOfJavaPrograms 

 Appendix 2 

 Energy - Memory  Energy - CPU 

 Sorting 
 Algorithm 

 Correlation - 
 coefficient 

 P-Value  Correlation - 
 coefficient 

 P-Value 

 Bubble Sort  -0.1521349  0.131  -0.03776931  0.709 

 Bucket Sort  0.1879717  0.0611  0.09919184  0.326 

 Counting Sort  -0.06486479  0.521  -0.09513352  0.346 

 Heap Sort  -  -  0.3741691  0.000126 

 Insertion Sort  -0.4640469  1.157e-06  0.1799327  0.0732 

 Merge Sort  -0.1041293  0.303  0.0201857  0.842 

 Quick  Sort  -  -  -0.02678887  0.7913 

 Radix Sort  -0.1803464  0.0726  0.05118075  0.613 

 Selection Sort  0.9122504  2.2e-16  -0.02620743  0.7958 

 Shell Sort  -  -  -0.2078286  0.038 

 Energy - Memory  Energy - CPU 

 Collections  Correlation - 
 coefficient 

 P-Value  Correlation - 
 coefficient 

 P-Value 

 ArrayList 

 Add  0.1055173  0.296  -0.1214094  0.229 

 Contains  0.4525864  2.27e-06  -0.08360846  0.408 

 Remove  0.01856971  0.85450  -  - 

 Add  -0.02557409  0.801  0.4576277  1.69e-06 
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 ArrayDeque 
 Contains  0.06172995  0.542  -  - 

 Remove  -0.2785587  0.00501  0.3767748  0.000112 

 LinkedList 

 Add  0.01275436  0.9  0.2144147  0.0322 

 Contains  0.08315959  0.411  -0.07822042  0.439 

 Remove  0.03188009  0.753  0.4313321  7.46e-06 

 Stack 

 Add  -0.07347836  0.468  0.1342463  0.183 

 Contains  -0.04464102  0.659  -  - 

 Remove  -0.3809132  9.24e-05  0.5528358  2.46e-09 

 Vector 

 Add  0.04854247  0.632  0.120845  0.23105 

 Contains  -0.1306377  0.195  -  - 

 Remove  0.0253143  0.8026  -  - 

 PriorityQueue 

 Add  0.06130691  0.545  -0.09562125  0.34396 

 Contains  -0.1024608  0.31  -0.1601259  0.112 

 Remove  0.7191587  <2e-16  -  - 

 HashSet 

 Add  -0.004342602  0.966  0.01278713  0.89952 

 Contains  -0.24648  0.0134  0.2793574  0.00488 

 Remove  -0.5002826  1.16e-07  0.007478494  0.941 

 LinkedHashset 

 Add  -0.1484179  0.141  -0.005122781  0.959657 

 Contains  -0.1693141  0.09217  0.241253  0.0156 

 Remove  0.1476215  0.143  0.2810776  0.00461 

 TreeSet 

 Add  -0.05807084  0.566  0.09112543  0.367 

 Contains  -0.1108526  0.272  0.06880524  0.496 

 52 



 Remove  -0.1657397  0.0994  0.0134883  0.894 
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