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A B S T R A C T

The present paper concerns the mechanical response of semi-crystalline polymers during cyclic
loading, and it includes both modelling and experimental testing. The model is Eulerian in the
sense that it is independent of measures of total deformation and plastic/inelastic deformations.
It is able to account for such essential phenomena as strain-rate dependence, work hardening,
and damage. The model was applied to uniaxial tension tests performed on high-density
polyethylene (HDPE), which is a semi-crystalline polymer widely used in the industry. Two
types of tests were conducted: monotonic tests, and loading–unloading tests. The model was
able to reproduce the experimental results very well. The proposed model was also implemented
as a UMAT in Abaqus, including an analytic tangent. The UMAT was used for simulating two
3D geometries. The implementation seems to be robust, and no convergence problems were
observed.

. Introduction

Semi-crystalline polymers constitute an important group of engineering materials. These materials exhibit a complicated and
trongly rate-dependent mechanical behaviour (e.g. El-Qoubaa & Othman, 2016; Rae et al., 2007; Serban et al., 2013). If these
aterials are exposed to large deformations, the microstructure may undergo complicated rearrangements, which has been
ocumented in many studies (e.g. Addiego et al., 2006; Argon et al., 2005; Bartczak et al., 1994; Galeski et al., 1992; Katti &
chultz, 1982; Li et al., 2003; Lin & Argon, 1994). Atypical response of these materials during cyclic loading is shown in Fig. 1,
here the response for Delrin is shown (Shojaei & Volgers, 2018). Delrin is a highly crystalline engineering thermoplastic acetal
omo-polymer.

The material in Fig. 1 is exposed to four load cycles, and in each load cycle, a higher maximum stress is reached. The stiffness of
he material seems to decrease with each cycle, both for loading and unloading. The width of the hysteresis also increases with each
oad cycle. The apparent weakening of the material during cyclic loading is not necessarily related to actual damage in the material,
ut can be due to complex rearrangements of the polymer chains and associated residual stresses at the microlevel. However, at a
acroscopic, phenomenological level, these phenomena can be modelled by use of damage models.

HDPE has been tested in a number of studies before. O’Connor and Findley (1962) studied the creep properties of HDPE in both
ension and compression. Clausen et al. (2011) and Pawlak and Galeski (2005) studied the response of HDPE in both tension and
ompression. Drozdov and Christiansen (2008) investigated the response of HDPE at different strain rates and also the relaxation
ehaviour. In uniaxial tension, HDPE and other semi-crystalline polymers may undergo necking and stable growth of the neck. Hong
t al. (2004) study the stress–strain response of a number of semi-crystalline polymers well beyond necking. Zeng et al. (2010)
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Fig. 1. Stress–strain response of Delrin during cyclic loading (Shojaei & Volgers, 2018).

measured the response of HDPE in both uniaxial tension and also in biaxial tension. Also, the influence of hydrostatic pressure on
the viscoelastic properties of HDPE was investigated by Spitzig and Richmond (1979). The tensile properties of HDPE were also
investigated under different conditions by Nikolov et al. (2006). HDPE can be manufactured with different degrees of crystallinity,
and in general, the yield stress increases with the crystallinity (Peacock & Mandelkern, 1990; Popli & Mandelkern, 1987). HDPE
also has the ability to undergo crazing, which was illustrated by Michler and Godehardt (2000).

At small strains, semi-crystalline polymers may be modelled as composites, (e.g. Hong et al., 2004; Janzen, 1992; Kardos &
Raisoni, 1975; Wang, 1973). If a theory for finite strains is adopted, the multiplicative decomposition of the deformation gradient
into elastic and inelastic parts (Boyce et al., 1989; E., 1960; Lee, 1968) may be employed. For instance, Parks and Ahzi (1990), Lee
et al. (1993), van Dommelen et al. (2003), and Nikolov et al. (2006) proposed micromechanically motivated constitutive models
for semi-crystalline polymers, where the contributions from the crystalline and amorphous phases were represented using mixture
theory. Other attempts include the works by Duan et al. (2001), Bedoui et al. (2006), Ayoub et al. (2010), Zeng et al. (2010),
Polanco-Loria et al. (2010), Balieu et al. (2013), Krairi and Doghri (2014), Abdul-Hameed et al. (2014), and Garcia-Gonzalez et al.
(2017). Most models assume isothermal conditions, but a few models account for temperature changes as well (e.g. Bergström et al.,
2003; Felder et al., 2020; Garcia-Gonzalez et al., 2017; Hao et al., 2022; Maurel-Pantel et al., 2015).

The models listed above can all be said to be Lagrangian in the sense that they depend on measures of total and inelastic
deformation. In the present work, an Eulerian framework for the isotropic elasticity and inelasticity of semi-crystalline polymers is
applied to new experimental results. All state variables in the model are defined in the current state of the material (cf. Onat, 1968),
and the evolution of elastic deformations is prescribed directly. The model builds on previous work (e.g. Eckart, 1948; Kroon et al.,
2021; Kroon & Rubin, 2019, 2020; Leonov, 1976; Rubin, 1994; Rubin & Attia, 1996; Rubin & Papes, 2011). One attractive aspect of
this Eulerian framework is that all state variables are, in principle, measurable in the current state of the material. Another advantage
is that it is relatively straight-forward to implement numerically, as will be demonstrated in a subsequent section. A slightly different
version of the present model was published in Kroon and Rubin (2023), where the model was applied to POM (polyoxymethylene).
In the present work, the model is applied to experiments performed on HDPE. Two types of tests were carried out: monotonic loading
at a low strain-rate, and loading–unloading tests at two higher strain-rates. The proposed model was calibrated by use of these tests.
The hardening behaviour of HDPE is quite different from that of POM, and the present work therefore contains a new formulation
of the hardening behaviour. Also, a 3D implicit numerical implementation, including an analytical tangent, is proposed.

The paper is organized as follows: Section 2 describes the experimental setup. The Eulerian constitutive model is presented in
Section 3. Some of the main features of the proposed model are described in Section 4. In this section, the model is also compared
to the experimental results. A detailed description of the numerical implementation of the model is provided in Section 5. Two
numerical examples with more complicated 3D geometries are presented in Section 6. Section 7 contains a discussion and some
concluding remarks.

2. Experiments

The material tested was a high-density polyethylene (HDPE) material, which is a semi-crystalline polymer. The HDPE used had
a melt flow index of 26 g/10 min (190 ◦C, 2.16 kg) and a density of 0.953 g/cm3. Uniaxial tensile tests were performed. The test
specimens were punched out from plates with a thickness of 𝐻 = 0.6 mm. The geometry of the test specimen is shown in Fig. 2.
The width of the test specimen in the test region was 𝑊 = 6.0 mm. Thus, the initial cross-sectional area of the specimen in the test
region was 𝐴0 = 𝑊𝐻 = 3.6 mm2.

The HDPE plates had been created through an injection-moulding process. The manufacturing process renders these plates slightly
orthotropic, but in the present study the material was only tested in the moulding direction.

In all tests, digital image correlation (DIC) was used to determine the local strains in the test region during the tests. A speckle
pattern was sprayed onto the test specimens, and the tests were video-recorded for image analysis after the tests. During the tests
with the lowest loading-rate, the thickness of the test specimen was also measured manually with a caliper.

Two types of tests were performed: (i) monotonic loading at low strain rate and up to a relatively high strain (DIC and manual
thickness measurements); (ii) loading up to a prescribed strain followed by unloading to zero stress (only DIC). During the tests,
force vs. time was also recorded using a load cell and a computer. For each load case, 3–8 tests were performed. Based on the
measurements, the true stress–strain relation could be established.
2
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Fig. 2. Test specimen used in uniaxial tensile testing.

3. Constitutive model

3.1. Kinematics

The current position of a material point is denoted by 𝐱, and the velocity is 𝐯 = �̇�, where ̇(∙) denotes differentiation with respect
to time. The velocity gradient 𝐋 and the rate of deformation tensor 𝐃 are defined by

𝐋 = 𝜕𝐯
𝜕𝐱

, 𝐃 = 1
2
(𝐋 + 𝐋𝑇 ) . (1)

The dilatation, 𝐽 , which is taken to be elastic, satisfies the equation

�̇�
𝐽

= 𝐃 ∶ 𝐈. (2)

In other words, inelastic deformations are taken to be incompressible. The elastic distortional deformation is determined by the
symmetric, positive definite, unimodular tensor �̄�e, which is determined by the evolution equation

̇̄𝐁e = 𝐋�̄�e + �̄�e𝐋T − 2
3
(𝐃 ∶ 𝐈)�̄�e − 𝛤 �̄�p, 𝛤 ≥ 0, (3)

where 𝐐 ∶ 𝐑 = tr(𝐐𝐑T), and 𝐈 is the second order unit tensor. The first invariant of �̄�e is 𝛼1 = �̄�e ∶ 𝐈. The entities �̄�e and 𝐽 are similar
to the elastic left Cauchy–Green deformation tensor and the elastic dilatation in the Lagrangian theory. The right hand side of (3)
can be understood as follows: the first two terms are required for objectivity, the third term is needed to ensure that �̄�e remains
unimodular, and the fourth term is where the actual constitutive behaviour is prescribed. In the fourth term, 𝛤 ≥ 0 is a function
that determines the rate of distortional inelasticity, and the direction of inelasticity is determined by the tensor �̄�p, defined by

�̄�p = �̄�e −

(

3
�̄�−1
e ∶ 𝐈

)

𝐈. (4)

This tensor satisfies the condition

�̄�p ∶ �̄�−1
e = 0, (5)

which ensures that �̄�e remains unimodular (i.e. det(�̄�e) = 1).
Two equivalent deformation measures are also introduced. The equivalent elastic distortional deformation is given by

𝛾e =
1
2

√

3
2
�̄�′
e ∶ �̄�′

e, (6)

where

�̄�′
e = �̄�e −

1
3
(�̄�e ∶ 𝐈)𝐈 (7)

is the deviatoric part of �̄�e. Henceforth, (∙)′ denotes the deviatoric part of (∙), in accordance with the definition in (7). Also, the
equivalent rate of total distortional deformation is defined as

�̇� =
√

2
3
𝐃′ ∶ 𝐃′, (8)

where 𝐃′ is the deviatoric part of 𝐃.

3.2. Strain energy and stress

The strain energy of the material, 𝛴, defined per unit mass, is taken to be

𝜌0𝛴 = 𝜌0(1 −𝐷)𝛴0, (9)

where 𝜌0 is the zero-stress density of the material and

𝜌 𝛴 =
𝜇
(𝛼 − 3) + 𝐾 (𝐽 − 1)2. (10)
3
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a

Above, 𝐷 ∈ [0, 1] is a damage variable, and 𝜇 > 0 and 𝐾 > 0 are the shear and bulk moduli of the material.
Within the context of a purely mechanical theory, the rate of material dissipation requires that

𝐓 ∶ 𝐃 − 𝜌�̇� = ⋯ =
{

𝐓 −
𝜌
𝜌0

(1 −𝐷)
(

𝜇�̄�′
e +𝐾(𝐽 − 1)𝐽 𝐈

)

}

∶ 𝐃

+ �̇�𝜌𝛴0 +
𝜌(1 −𝐷)

𝜌0
𝜇
2
𝛤 (�̄�p ∶ 𝐈) ≥ 0, (11)

where 𝐓 is the symmetric Cauchy stress, and 𝜌 is the current density. The Cauchy stress is specified by

𝐓 =
𝜌(1 −𝐷)

𝜌0

(

𝜇�̄�′
e +𝐾(𝐽 − 1)𝐽 𝐈

)

, (12)

and the von Mises stress 𝜎e is defined by

𝜎e =
√

3
2
𝐓′ ∶ 𝐓′. (13)

For later use in the numerical algorithm, the Kirchhoff stress, 𝝉, is also introduced as

𝝉 = 𝐽𝐓. (14)

.3. Rate of inelastic deformations and damage

The inelastic deformations relax the elastic deformations and thereby the stresses. The function 𝛤 is expressed as

𝛤 = 𝑎0

(

exp
(

⟨𝑔⟩
𝑔0

)

− 1
)

+ 𝑏0�̇� ⟨𝑔⟩ , (15)

where 𝑎0, 𝑏0, and 𝑔0 are constants (or functions), and 𝑔 is a yield function, defined as

𝑔 = 𝜎e − 𝜅, (16)

where 𝜅 is a hardening variable. The Macaulay brackets ⟨𝑔⟩ are defined by

⟨𝑔⟩ = max(𝑔, 0) . (17)

The hardening variable 𝜅 is determined by the evolution equations

�̇� = 𝜉𝛤 , (18)
�̇� = 𝑚𝛤 (𝜉s − 𝜉), (19)

where 𝜉 is a state variable that governs the evolution of 𝜅, 𝑚 ≥ 0 governs the rate of 𝜉, and 𝜉s is the saturated value of the hardening
rate.

The evolution of damage is taken to be

�̇� = 𝜂
(1 −𝐷)𝜇𝛤

𝜌0𝛴0
, (20)

where 𝜂 is a positive material parameter. Although 𝛴0 is zero in a zero-stress state, it is positive when 𝛤 > 0, i.e. when (20) is
ctive.

Insertion of the expressions above into (11) yields the internal dissipation

𝐓 ∶ 𝐃 − 𝜌�̇� = ⋯ =
𝜌(1 −𝐷)𝜇𝛤

𝜌0

{1
2
(�̄�p ∶ 𝐈) + 𝜂

}

≥ 0. (21)

The fact that �̄�p ∶ 𝐈 ≥ 0 and the properties of the parameters and entities involved guarantee that the internal dissipation is always
non-negative.

4. Model behaviour in simple load-cases

4.1. Simulation of simple load-cases

In the present section, the model responses for some uniform, simple load-cases – uniaxial tension, biaxial tension, and simple
shear – are considered. For these three cases, the components of the deformation gradient take the forms

𝐅ut =
⎡

⎢

⎢

⎣

𝜆1 0 0
0 𝜆2 0
0 0 𝜆2

⎤

⎥

⎥

⎦

, 𝐅bt =
⎡

⎢

⎢

⎣

𝜆1 0 0
0 𝜆1 0
0 0 𝜆2

⎤

⎥

⎥

⎦

,

𝐅ss =
⎡

⎢

⎢

1 𝛾 0
0 1 0

⎤

⎥

⎥

, (22)
4
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Table 1
Standard model parameters.
𝜇 [MPa] 𝐾 [MPa] 𝑎0 [1/s] 𝑏0 [1/MPa] 𝑔0 [MPa]

350 1633 0.05 0 3.5

𝜅0 [MPa] 𝜉0 [MPa] 𝜉s [MPa] 𝑚 [–] 𝜂 [–]

4 18 0.6 1.65 0.0003

respectively, where a Cartesian coordinate system 𝑋1 − 𝑋2 − 𝑋3 has been assumed. The components of the associated velocity
gradients are

𝐋ut =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̇�1
𝜆1

0 0

0
�̇�2
𝜆2

0

0 0
�̇�2
𝜆2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐋bt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̇�1
𝜆1

0 0

0
�̇�1
𝜆1

0

0 0
�̇�2
𝜆2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐋ss =
⎡

⎢

⎢

⎣

0 �̇� 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

. (23)

For the cases of uniaxial and biaxial tension, 𝜆1 ≥ 1 is the stretch in the direction(s) of tension, and 𝜆2 ≤ 1 denotes the transverse
stretch(es) in the perpendicular direction(s). In simple shear, the deformation is parameterized by the shearing 𝛾. The active
components of the associated �̄�e tensors are

�̄�e,ut =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆2e1 0 0

0 1
𝜆e1

0

0 0 1
𝜆e1

⎤

⎥

⎥

⎥

⎥

⎦

, �̄�e,bt =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆2e1 0 0
0 𝜆2e1 0

0 0 1
𝜆4e1

⎤

⎥

⎥

⎥

⎥

⎦

,

�̄�e,ss =
⎡

⎢

⎢

⎣

𝛽11 𝛽12 0
𝛽12 𝛽22 0
0 0 𝛽33

⎤

⎥

⎥

⎦

, (𝛽11𝛽22 − 𝛽212)𝛽33 = 1. (24)

Time is discretized using a constant time step 𝛥𝑡, and discrete time steps are denoted by 𝑡𝑛, where 𝑛 = 0, 1, 2, 3,… and 𝑡0 = 0. The
tate variable (∙) at time 𝑡𝑛 is denoted by (∙)(𝑡𝑛). Eqs (3), (2), (18), (19), and (20) are discretized using an implicit scheme. Together
ith the boundary condition 𝜎33 = 0 these equations constitute the problem to be solved. For a given time step 𝑡𝑛+1 and a given
alue 𝜆1(𝑡𝑛+1) or 𝛾(𝑡𝑛+1), the problem is solved for the remaining unknowns using a Newton–Raphson scheme.

.2. Model calibration

The model is calibrated by use of the results from the uniaxial tension tests. The optimal set of parameters used in the following
imulations is listed in Table 1. The optimization was carried out manually. Unless otherwise stated, these are the parameters used
n the simulations below.

With regard to the elastic behaviour of the material, the shear modulus and the Poisson’s ratio are treated as free parameters,
nd the bulk modulus is then given as a function of these two entities. The shear modulus 𝜇 = 350 MPa and the Poisson’s ratio
= 0.4 enabled a good fit to the experimental data. This yields a bulk modulus of 𝐾 = 2𝜇(1+𝜈)∕3(1−2𝜈) = 1633 MPa. When plotting

he results, the engineering strain is utilized, i.e. 𝜀11 = 𝐹11 − 1 and 𝜀22 = 𝐹22 − 1.
In Fig. 3(a)–(c), the model is compared to the results from the experimental study. Fig. 3(a) shows the results for monotonic

oading at low loading rate (�̇�11 = 0.0004∕s). The blue lines represent the experimental tests, and 9 tests were performed. As can be
een, the 9 tests are in very good agreement with each other, and the dispersion is very low. Some deviations can be observed just
efore failure (𝜀11 > 0.4), but overall the results agree very well. The green line denotes the calibrated model response. The model is
ble to capture the main features of the experimental curve very well. In particular, the introduction of the state variable 𝜉 enables
nice prediction of the smooth transition from the elastic to the inelastic regime.

Fig. 3(b) shows the lateral strains (width and thickness) as a function of the longitudinal strain for the same tests as in Fig. 3(a).
he width strain (𝜀22, blue lines) was measured using DIC whereas the thickness strain (𝜀33, red lines) was measured by use of
caliper. The width strain shows a very consistent and well collected behaviour, whereas the thickness strain shows a significant

ispersion. The ’stair-like’ graphs for the thickness strain stem from the caliper measurements. Even though the caliper measurements
re a bit crude, the consistent tendencies in the strain paths still make them reliable. It is clear, however, that the dispersion in
he thickness strains is much larger than for the width strain. This should not be taken to mean that the measurements as such are
nreliable, but rather that the material behaviour in the thickness direction is more unpredictable compared to the width direction.
5

he response of the thickness direction is something that should be investigated further.
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Fig. 3. Comparison between experiments (blue and red lines) and model predictions (green lines) for uniaxial tensile tests: (a) Monotonic stress–strain response
with �̇�11 = 0.0004∕s; (b) evolution of width strain (blue lines) and thickness strain (red lines); (c) stress–strain response during loading–unloading with �̇�11 = 0.029∕s
(blue lines and green solid line) and �̇�11 = 0.22∕s (red lines and green dashed line).

The proposed model is isotropic, and it can be discussed if the material that the model is applied to is isotropic. Up to longitudinal
strains of about 0.1, this seems to be a fair assumption, based on the results in Fig. 3(b). Beyond that is seems more questionable,
even though the average thickness strain behaviour can be said to follow the width strains fairly well (but with a significant scatter).
The green line is the calibrated model response, and it agrees well with the width strain, at least up to a longitudinal strain of about
0.4. The initial slope in Fig. 3(b) is governed by Poisson’s ratio, and as indicated above, 𝜈 = 0.4 enabled a nice fit in Fig. 3(b).

In Fig. 3(c), the outcome from loading–unloading tests at two different loading rates is shown. Results for 5 tests with �̇�11 =
0.029∕s (blue lines) and 3 tests with �̇�11 = 0.22∕s (red lines) are shown. For the lower loading rate, the loading part of the curves agree
well with each other, whereas the dispersion during unloading is larger. This is mainly due to the fact that in the tests, the machine
was run to a specified machine displacement after which the unloading started. Since, specimens have a slightly different prestretch
at the start of the test, different specimens will experience slightly different longitudinal strain at a given machine displacement.
Hence, the unloading will start at slightly different strains in different tests.

The calibrated model agrees very well with the experimental results at the lower loading rate (solid green line). At the higher
loading rate, the model captures the tendency and the rate effect well, even though the model seems to underestimate the initial
stiffness of the material and also the width of the hysteresis in the experimental data.

The slope of the curve during loading is higher than the slope of the curve during unloading. This is an indication of damage.
This illustrates why some kind of damage component is needed in the model.

The model behaviour depends on the model parameters in a relatively complicated and inter-connected way, and the model
parameters cannot be fitted in a simple sequence. But some general principles can still be discerned. The shear modulus, 𝜇, is
adjusted so that the initial stiffness of the material in Fig. 3(a) and (c) is reproduced, and the Poisson’s ratio, 𝜈, is adjusted so that
the evolution of the lateral strains in Fig. 3(b) are reproduced. The parameters 𝜅0, 𝜉0, 𝜉s, and 𝑚 are used for capturing the initiation
and evolution of plastic hardening, and 𝑎0 and 𝑔0 model the influence of strain-rate. Finally, 𝜂 enables modelling of the decreased
stiffness during unloading as compared to loading.

4.3. Damage modelling

Rate-independent as well as rate-dependent inelasticity can be modelled with the present model. The hardening behaviour, the
rate-dependent and the rate-independent response of this type of model have been explored in previous works, see e.g. Hollenstein
et al. (2013), Kroon et al. (2021), Kroon and Rubin (2019). In this subsection, the primary focus is on the new aspect of this model,
i.e. the damage aspect. The influence of damage is therefore demonstrated for some simple load-cases.

Fig. 4(a) and (b) illustrates the model response for the load-cases uniaxial tension, biaxial tension, and simple shear. The model
parameters in Table 1 are applied. Fig. 4(a) shows the predicted stress response. The case of biaxial tension (dashed line) provides
the stiffest response (which is expected), and simple shear (dotted line) is the weakest of the three load cases. Fig. 4(b) shows the
6
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Fig. 4. (a) Stress–strain response for uniaxial tension (solid), biaxial tension (dashed), and simple shear (dotted); (b) predicted evolution of damage variable 𝐷
for the same load-cases. Loading rate: �̇�11, �̇� = 0.0004∕s.

Fig. 5. (a) Stress–strain response for repeated loading and unloading in uniaxial tension; (b) predicted evolution of damage variable 𝐷 for the same load-case.
Loading rate: �̇�11 = 0.0004∕s.

associated prediction of the evolution of the damage variable, 𝐷. The damage evolution for uniaxial and biaxial tension is virtually
identical. The damage curve for simple shear is slightly below the curves for the other two cases.

Fig. 5(a) shows the stress–strain response during loading and unloading in uniaxial tension for the damage rate 𝜂 in Table 1. With
every load cycle, the accumulated damage increases, and the effective stiffness of the material decreases. In Fig. 5(b), the associated
evolution of 𝐷 is illustrated. The evolution of 𝐷 is most pronounced right after the onset of inelastic deformations. During unloading,
𝐷 remains constant, since no inelastic deformations take place.

5. Numerical implementation

5.1. Prerequisites

The present model was implemented as a User Material (UMAT) in Abaqus (Hibbitt et al., 2016) using implicit integration of
the evolution equations. This section provides a description of the stress update algorithm and the computation of the consistent
(algorithmic) tangent stiffness.

5.2. Numerical integration of the evolution equations

We consider a time step that starts at 𝑡 = 𝑡𝑛, ends at 𝑡 = 𝑡𝑛+1, and where the time increment is 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛. At 𝑡 = 𝑡𝑛, the set
of variables {𝐽 (𝑡𝑛), �̄�e(𝑡𝑛), 𝜅(𝑡𝑛), 𝜉(𝑡𝑛), 𝐷(𝑡𝑛)} is known, and the numerical integrator determines the values of these quantities at the
end of the time step, i.e. {𝐽 (𝑡𝑛+1), �̄�e(𝑡𝑛+1), 𝜅(𝑡𝑛+1), 𝜉(𝑡𝑛+1), 𝐷(𝑡𝑛+1)}. Following the work in Simo (1988), Papes (2013), and Rubin and
Papes (2011), it is possible to develop an implicit robust and strongly objective numerical algorithm for integrating the evolution
equations. In the following, entities are assumed to be associated with time 𝑡 = 𝑡𝑛+1 unless otherwise indicated.

It is convenient to introduce the relative deformation gradient 𝐅r (𝑡) = 𝐅(𝑡)𝐅−1(𝑡𝑛), which satisfies the evolution equation and
initial condition

�̇�r = 𝐋𝐅r , 𝐅r (𝑡𝑛) = 𝐈. (25)

The relative dilatation, 𝐽r = det 𝐅r , satisfies the equations

�̇� = 𝐽 (𝐃 ∶ 𝐈), 𝐽 (𝑡 ) = 1. (26)
7
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The exact solution of (2) is then given by

𝐽 = 𝐽r𝐽 (𝑡𝑛). (27)

The unimodular part of 𝐅r , �̄�r = 𝐽−1∕3
r 𝐅r , satisfies the equations

̇̄𝐅r =
[

𝐋 − 1
3
(𝐃 ∶ 𝐈)𝐈

]

�̄�r , �̄�r (𝑡𝑛) = 𝐈. (28)

The elastic trial solutions �̄�∗
e (𝑡) and �̄�′∗

e (𝑡) are defined by the expressions

�̄�∗
e (𝑡) = �̄�r �̄�e(𝑡𝑛)�̄�T

r , �̄�′∗
e (𝑡) = �̄�∗

e (𝑡) −
1
3
(�̄�∗

e (𝑡) ∶ 𝐈)𝐈, (29)

with �̄�′∗
e (𝑡) satisfying the evolution equation and initial condition

̇̄𝐁′∗
e = 𝐋�̄�∗

e + �̄�∗
e𝐋

T − 2
3
(𝐃 ∶ �̄�∗

e )𝐈 −
2
3
(𝐃 ∶ 𝐈)�̄�′∗

e , (30)

�̄�′∗
e (𝑡𝑛) = �̄�′

e(𝑡𝑛). (31)

The trial effective stress, 𝜎∗e , is given by

𝜎∗e =
2𝜇
𝐽

(1 −𝐷(𝑡𝑛))𝛾∗e , 𝛾∗e = 1
2

√

3
2
�̄�′∗
e ∶ �̄�′∗

e . (32)

s long as 𝜎∗e < 𝜅(𝑡𝑛), the material response remains elastic, and 𝛤 = 0. This also means that �̄�e = �̄�∗
e , 𝜉 = 𝜉(𝑡𝑛), and 𝜅 = 𝜅(𝑡𝑛). But

s soon as 𝜎∗e exceeds 𝜅(𝑡𝑛), 𝛤 becomes positive and the state variables associated with inelasticity start evolving. In the following,
∗
e > 𝜅(𝑡𝑛) is assumed.

It can be shown that the deviatoric part of the evolution Eq. (3) becomes

̇̄𝐁′
e = 𝐋�̄�e + �̄�e𝐋T − 2

3
(𝐃 ∶ �̄�e)𝐈 −

2
3
(𝐃 ∶ 𝐈)�̄�′

e − 𝛤 �̄�′
e. (33)

Then, the evolution in (33) is approximated by
̇̄𝐁′
e ≈

̇̄𝐁′∗
e − 𝛤 �̄�′

e, (34)

which guarantees an exact solution for an elastic response (𝛤 = 0). Using a backward Euler approximation of the derivative, the
solution of (34) is written in the implicit form

�̄�′
e = 𝜆�̄�′∗

e , (35)

with

𝜆 = 1
1 + 𝛥𝛤

, 𝛥𝛤 = 𝛥𝑡𝛤 (𝑡𝑛+1). (36)

hen with the help of (6) and (35), it follows that

𝛾e = 𝜆𝛾∗e . (37)

lso, the evolution of 𝜅 in (18) is approximated as

𝜅 = 𝜅(𝑡𝑛) + 𝜉𝛥𝛤 , (38)

here

𝜉 =
𝜉(𝑡𝑛) + 𝑚𝜉s𝛥𝛤

1 + 𝑚𝛥𝛤
(39)

is an implicit estimate of 𝜉 based on (19).
Using (15), the value of 𝛥𝛤 can be expressed as

𝛥𝛤 = 𝑎0𝛥𝑡
(

exp
(

𝑔
𝑔0

)

− 1
)

+ 𝑏0�̇�𝛥𝑡𝑔, (40)

𝑔 =
2𝜇(1 −𝐷)

𝐽
𝜆𝛾∗e − 𝜅. (41)

For the evaluation of �̇�, an objective estimate of 𝐃 is needed, and this estimate is given by

𝐃 ≈ 1
2𝛥𝑡

(

𝐁r − 𝐈
)

, 𝐁r = 𝐅r𝐅T
r . (42)

Also, an implicit estimate of 𝐷, based on (20), is given by

𝐷 =
𝐷(𝑡𝑛)𝜌0𝛴0 + 𝜂𝜇𝛥𝛤

𝜌0𝛴0 + 𝜂𝜇𝛥𝛤
. (43)

When evaluating 𝜌0𝛴0 above, 𝛼1 is needed, and 𝛼1 can be determined from the third-order polynomial

det �̄� = det
(

�̄�′ +
𝛼1 𝐈

)

= ⋯
8
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Fig. 6. Geometry and mesh of problem 1.

=
(𝛼1
3

)3
− 1

2
(

�̄�′
e ∶ �̄�′

e
)

(𝛼1
3

)

+ det�̄�′
e = 1, (44)

where �̄�′
e is given by (35).

Eq. (40) together with (35), (38), (39), (43), and (44) provide a system of non-linear equations through which the value of 𝛥𝛤
can be determined. Here, a Newton–Raphson scheme is employed. In the procedure for finding 𝛥𝛤 , �̄�′

e(𝑡𝑛+1), 𝜉(𝑡𝑛+1), 𝜅(𝑡𝑛+1), and
𝐷(𝑡𝑛+1) are therefore also automatically determined.

5.3. Algorithmic tangent modulus

The Kirchhoff stress is given by

𝝉 = 𝐽𝐓 = (1 −𝐷)
(

𝜇�̄�′
e +𝐾 (𝐽 − 1) 𝐽 𝐈

)

= (1 −𝐷)𝝉0. (45)

The updated Kirchhoff stress ultimately depends on 𝐅r , and the variation of 𝝉 is given by

𝛿𝝉 = 𝜕𝝉
𝜕𝐅r

∶ 𝛿𝐅r =
(

𝜕𝝉
𝜕𝐅r

𝐅T
r

)

∶
(

𝛿𝐅r𝐅−1
r
)

. (46)

The consistent tangent modulus, C, can then be identified as

C = 1
𝐽

𝜕𝝉
𝜕𝐅r

𝐅T
r . (47)

Differentiation of 𝝉 yields

𝜕𝝉
𝜕𝐅r

= (1 −𝐷)

{

𝜇
𝜕�̄�′

e
𝜕𝐅r

+𝐾(2𝐽 − 1)𝐈⊗ 𝜕𝐽
𝜕𝐅r

}

− 𝝉0 ⊗
𝜕𝐷
𝜕𝐅r

. (48)

The tangent tensor C can be expressed on the form

C =
𝜇𝜆(1 −𝐷)

𝐽
(

D − �̄�′
e ⊗𝐇

)

+𝐾(1 −𝐷)(2𝐽 − 1)𝐈⊗ 𝐈 − 𝐓0 ⊗𝐆, (49)

where

𝐓0 =
𝜇
𝐽
�̄�′
e +𝐾(𝐽 − 1)𝐈. (50)

The details of the derivation of the tangent modulus and the definitions of D, 𝐇, and 𝐆 are provided in Appendix.

6. Numerical examples

6.1. Preliminaries

Two numerical 3D examples are provided based on the numerical implementation in the previous section. The first problem
consists of an initially bent beam that is opened up. The second problem consists of a plate with a hole that is exposed to combined
stretching and shearing. The analyses are carried out as implicit dynamic simulations, and the density of the material is set to
1000 kg/m3.

6.2. Problem 1: Problem formulation

The implemented model is first applied to the problem illustrated in Fig. 6, i.e. an initially curved and stress-free beam.
The dimensions of the beam are indicated in Fig. 6. The lower end of the bent beam is pinned/fixed. The upper, free end of

the beam is exposed to a shear traction, 𝐭, that initially acts upwards. The shear traction 𝐭 is the true traction acting on the surface
and 𝐭 rotates with the deformation. The magnitude of the traction 𝐭 increases linearly with time and reaches its maximum value,
𝐭0 = 1 MPa, after 1 s. After this, the magnitude is decreased linearly to 0 during 1 s. Hence, this loading–unloading procedure takes
2 s. The geometry of the beam is discretized using second-order wedge elements.
9
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Fig. 7. Contours of the von Mises stress.

Fig. 8. Contours of damage after unloading.

6.3. Problem 1: Results

The shear traction 𝐭 causes the curved beam to open up. After 1s, the shear traction reaches its maximum amplitude, which
is associated with the beam having its maximum opening. When the traction is decreased to zero, this causes the beam to spring
back somewhat. Fig. 7 shows the distribution of the von Mises stress at maximum opening (𝑡 = 1 s) and after the traction has
been removed (𝑡 = 2 s). When the traction reaches its maximum, the inner curved part of the beam experimences the highest stress,
which is slightly above 40 MPa. The upper part of the beam experiences significant rotation. When the traction is removed, the beam
springs back, and the stresses decrease. After unloading, there is, however, a residual stress field in the beam. The peak residual
stress is about 20 MPa.

Fig. 8 shows the contour of the damage variable, 𝐷, after unloading. The inner, curved part of the beam experiences most
damage, and 𝐷 reaches a value of almost 0.6 there. Large parts of the beam experience damage to some extent. It is mainly the top
part, close to where the shear traction was applied, that does not show any damage at all.

6.4. Problem 2: Problem formulation

The second problem to be analysed consists of a plate with a hole in it, see Fig. 9. The dimensions of the plate are indicated in
Fig. 9. The lower horizontal surface of the plate is pinned/fixed. The upper surface of the plate is exposed to a traction vector 𝐭, that
varies with time. This traction can be written as the sum of a normal component, 𝑡n𝐧, and a shear component, 𝑡s𝐬, i.e. 𝐭 = 𝑡n𝐧 + 𝑡s𝐬,
where 𝐧 is the outward normal to the upper surface, and 𝐬 is oriented along the upper surface and in the plane of the plate, see
Fig. 9. The loading path in terms of these two components is illustrated in Fig. 10. As in problem 1, 𝐭 is defined as the true traction
acting on the surface, and 𝐧 and 𝐬 rotate with the deformation, even though the rotations in problem 2 are much smaller compared
to problem 1. The ranges of 𝑡n and 𝑡s are 0 ≤ 𝑡n ≤ 10 MPa and −5 MPa ≤ 𝑡s ≤ 5 MPa. The loading rate is 20 MPa/s, so that the whole
loading cycle takes 2s. The geometry of the plate is discretized using second-order wedge elements.
10
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Fig. 9. Geometry and mesh of problem 2.

Fig. 10. Loading path for hole structure.

6.5. Problem 2: Results

Fig. 11 shows the outcome from the analysis in terms of distributions of the von Mises stress. Results are shown for four different
stages of loading: after the negative shear traction and the positive normal traction has been applied (a), after the shear traction has
become positive (b), when only the positive shear traction is left (c), and the residual stress state after all external tractions have
been removed (d). When external tractions are applied, the peak stress is about 35 MPa. The locations of these peaks vary somewhat
depending on the load-case, but they are located around the hole, as is to be expected. There is also a peak in the stress field at the
lower corners of the plate, associated with the fact that the plate is pinned at the bottom, which causes stress concentrations in the
lower corners. In the residual state, there are some remaining stresses, primarily in connection to the hole. The peak residual stress
at the hole reaches about 20 MPa.

Fig. 12 shows the distributions of the damage variable, 𝐷, at the same time instants as in Fig. 11. The damage variable reaches
a peak value of just below 0.4, and this occurs to the left and right of the hole. As mentioned before, the stress concentrations at
the lower edges also cause damage in these regions.

7. Discussion and concluding remarks

An isotropic model for the elastic, inelastic and damage behaviour of semi-crystalline polymers is proposed. The model contains
a total number of 10 model parameters and was compared to two types of experiments: monotonic loading tests and loading–
unloading tests. The experiments were well captured by the model. Based on this comparison, an optimal set of parameters could
be determined.

The damage aspect of the model is a way to model the weakening response observed in many polymers during cyclic loading.
This observed weakening is not necessarily due to actual damage in the material, but may be due to complex residual stress states at
the micro-level in the polymer. But to introduce damage in the model is a way to model this observation phenomenologically. The
model was essentially calibrated for the material response during one load cycle. More experiments would be needed to determine
the model response during reloading and continued cyclic loading.

The model was implemented in Abaqus as a UMAT. Results from Abaqus and the UMAT routine were compared to Matlab
simulations to confirm the correctness of the implementation. An analytic tangent was derived and implemented as well, and the
nice convergence rate observed in the simulations indicate that the convergence rate is quadratic.

The 3D simulations were performed as implicit dynamic simulations. However, the loading rate was so low that the inertia will
not play any significant role in the equilibrium equations. The presence of damage in the model can cause loss of ellipticity of
the tangent modulus. This will, in turn, cause convergence problems when solving the equations of equilibrium (or motion). Such
11
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Fig. 11. Contours of the von Mises stress at 4 stages of loading.

Fig. 12. Contours of the damage variable at 4 stages of loading.

problems were never observed in the present simulations. The reason is probably that the rate parameter 𝜂 is low enough to keep
the total stiffness positive. For higher values of 𝜂, loss of ellipticity and convergence problems are to be expected.

The present material exhibits significant elasticity compared to most metals. This was seen most clearly when simulating the
curved beam, where the spring-back was significant when the external load was removed.

In summary, an Eulerian constitutive model for isotropic, semi-crystalline polymers has been proposed. The model is able to
account for such essential phenomena as strain-rate dependence, work hardening, and damage. The model was applied to HDPE,
which is a semi-crystalline polymer widely used in the industry. The model was able to reproduce the experimental results well.
The 3D implementation in Abaqus seems to be robust, and no convergence problems were observed.
12
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ppendix

In this appendix, more details are provided on the algorithmic tangent. Recalling that the current value of 𝐽 is given by
= 𝐽 (𝑡𝑛)𝐽r , it follows that

𝜕𝐽
𝜕𝐅r

= 𝐽 (𝑡𝑛)
𝜕𝐽r
𝜕𝐅r

= 𝐽 (𝑡𝑛)𝐽r𝐅−T
r = 𝐽𝐅−T

r , (51)

nd hence,
𝜕𝐽
𝜕𝐅r

𝐅T
r = 𝐽 𝐈. (52)

oreover, we have

𝜕�̄�′
e

𝜕𝐅r
=

𝜕
(

𝜆�̄�′∗
e
)

𝜕𝐅r
= 𝜆

𝜕�̄�′∗
e

𝜕𝐅r
− 𝜆�̄�′

e ⊗
𝜕𝛥𝛤
𝜕𝐅r

. (53)

ifferentiation of (29) yields

𝜕�̄�∗
e

𝜕𝐅r
= −2

3
�̄�∗
e ⊗ 𝐅−T

r + 1
𝐽 2∕3
r

𝜕
(

𝐅r �̄�e(𝑡𝑛)𝐅T
r
)

𝜕𝐅r
, (54)

where
𝜕
(

𝐅r �̄�e(𝑡𝑛)𝐅T
r
)

𝜕𝐅r
=
(

𝐈⊖ 𝐅r + 𝐅r ⊕ 𝐈
)

�̄�e(𝑡𝑛), (55)

nd the notation (𝐐⊖ 𝐑)𝑖𝑗𝑘𝑙 = 𝑄𝑖𝑘𝑅𝑗𝑙 and (𝐐⊕ 𝐑)𝑖𝑗𝑘𝑙 = 𝑄𝑖𝑙𝑅𝑗𝑘 has been introduced for convenience. It then follows that

D =
𝜕�̄�′∗

e
𝜕𝐅r

𝐅T
r =

= 𝐈⊖ �̄�∗
e + �̄�∗

e ⊕ 𝐈 − 2
3
(

𝐈⊗ �̄�∗
e + �̄�∗

e ⊗ 𝐈
)

+ 2
9
(

�̄�∗
e ∶ 𝐈

)

𝐈⊗ 𝐈. (56)

Furthermore, a number of differential relations need to be established. In order to simplify the notation, a number of help
variables, (∙)h, are introduced. Differentiation of (40) gives

d𝛥𝛤 = 𝑏h𝑔d�̇� + 𝑐hd𝑔 =

= 𝑏h𝑔d�̇� + 𝑐h
{

2𝜇
[

−
𝛾e
𝐽
d𝐷 − 1 −𝐷

𝐽
𝛾e𝐅−T

r ∶ d𝐅r

+
𝜆(1 −𝐷)

𝐽
d𝛾∗e −

𝜆𝛾e(1 −𝐷)
𝐽

d𝛥𝛤
]

− d𝜅
d𝛥𝛤

d𝛥𝛤
}

. (57)

ifferentiation of (38) and (39) gives

d𝜅
d𝛥𝛤

=
𝜉(𝑡𝑛) + 2𝑚𝜉s𝛥𝛤 − 𝑚(𝜅 − 𝜅(𝑡𝑛))

1 + 𝑚𝛥𝛤
. (58)

Differentiation of (8) and (42) gives

d�̇� = 1
3𝛥𝑡2�̇�

(𝐁′
r𝐅r ) ∶ d𝐅r , (59)

here 𝐁′
r is the deviatoric part of 𝐁r . Differentiation of (43) gives

d𝐷 =
𝐷(𝑡𝑛) −𝐷

𝑠h
d(𝜌0𝛴0) +

𝜂𝜇(1 −𝐷)
𝑠h

d𝛥𝛤

= 𝑡hd𝛥𝛤 +𝐾(𝐽 − 1)𝐽
𝐷(𝑡𝑛) −𝐷

𝐅−T ∶ d𝐅r
13
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R

A

+
𝜇𝜆(𝐷(𝑡𝑛) −𝐷)

2𝑠h
𝐊h ∶ d�̄�′∗

e . (60)

Differentiation of (10) gives

d(𝜌0𝛴0) =
𝜇
2
d𝛼1 +𝐾(𝐽 − 1)𝐽𝐅−T

r ∶ d𝐅r , (61)

and differentiation of (44) gives

d𝛼1 = 𝐊h ∶ d�̄�′
e = 𝜆

(

𝐊h ∶ d�̄�′∗
e − 𝑝hd𝛥𝛤

)

. (62)

Finally, differentiation of (32)2 gives

d𝛾∗e = 3
8𝛾∗e

�̄�′∗
e ∶ d�̄�′∗

e . (63)

Putting all of the differential relations above together gives

𝐇 = 𝜕𝛥𝛤
𝜕𝐅r

𝐅T
r = ⋯ =

= 1
𝑧h

{

𝑏h𝑔
3𝛥𝑡2�̇�

𝐁′
r𝐁r +

(

3𝑙h
8𝛾e

�̄�′
e − 𝑗h𝐊h

)

∶ D − 𝑓h𝐈
}

. (64)

Above, a number of help variables have also been introduced:

𝑧h = 1 + 𝑐h
d𝜅
d𝛥𝛤

+
𝜇𝑐h𝛾e
𝐽

(

2(1 −𝐷)𝜆 +
2𝜇𝜂(1 −𝐷)

𝑠h
+

𝜇𝜆𝑝h(𝐷 −𝐷(𝑡𝑛))
𝑠h

)

, (65)

𝑐h = 𝑎h + 𝑏h�̇�, 𝑎h =
𝑎0𝛥𝑡
𝑔0

exp
(

𝑔
𝑔0

)

. 𝑏h = 𝑏0𝛥𝑡, (66)

𝑓h =
2𝜇𝑐h𝛾e

𝐽

(

1 −𝐷 +
(𝐷(𝑡𝑛) −𝐷)𝐾(𝐽 − 1)𝐽

𝑠h

)

, (67)

𝑠h = 𝜌0𝛴0 + 𝜂𝜇𝛥𝛤 , (68)

𝐊h =

𝛼1
3
�̄�′
e − det �̄�′

e�̄�
′−1
e

(𝛼1
3

)2
− 1

6
(�̄�′

e ∶ �̄�′
e)
, 𝑝h =

𝛼1
3
(�̄�′

e ∶ �̄�′
e) − 3 det �̄�′

e
(𝛼1
3

)2
− 1

6
(�̄�′

e ∶ �̄�′
e)

, (69)

𝑗h =
𝜇2𝑐h𝜆𝛾e(𝐷(𝑡𝑛) −𝐷)

𝐽𝑠h
, 𝑙h =

2𝜇𝑐h𝜆(1 −𝐷)
𝐽

. (70)

The last part of the consistent tangent that is needed is

𝐆 = 𝜕𝐷
𝜕𝐅r

𝐅T
r =

= 𝑡h𝐇 +𝐾(𝐽 − 1)𝐽
𝐷(𝑡𝑛) −𝐷

𝑠h
𝐈 +

𝜇𝜆(𝐷(𝑡𝑛) −𝐷)
2𝑠h

𝐊h ∶ D, (71)

where

𝑡h =
𝜇
𝑠h

(

𝜂(1 −𝐷) +
𝜆(𝐷 −𝐷(𝑡𝑛))𝑝h

2

)

. (72)
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