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Bright excitons in ferromagnetic monolayers of CrI3 efficiently interact with lattice magnetization, which
makes all-optical resonant magnetization control possible in this material. Using the combination of ab initio
simulations within the Bethe-Salpeter approach, semiconductor Bloch equations, and Landau-Lifshitz equa-
tions, we construct a microscopic theory of this effect. By solving numerically the resulting set of coupled
equations describing the dynamics of atomic spins and spins of the excitons, we demonstrate the possibility of
tunable control of the macroscopic magnetization of a sample.

DOI: 10.1103/PhysRevB.108.094421

I. INTRODUCTION

Efficient control of the properties of layered structures is an
important problem in both fundamental and applied research.
In particular, a great demand exists for the development of
optimal methods for control of magnetic characteristics of
materials. This is not surprising, given the ever-increasing
requirements for data-recording capacities of magnetic mem-
ory elements. The most important of these are compactness,
energy efficiency, and recording speed. Regarding the latter,
all-optical methods for magnetic order manipulation look very
promising compared with traditional approaches based on the
application of an external magnetic field, as device operating
frequencies can be enhanced by several orders of magnitude.

To date, there already exist a number of theoretical [1,2]
and experimental works confirming the possibility of all-
optical magnetization switching (AOMS) in a variety of
magnetic compounds, including GdFeCo [3–7] and TbFeCo
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[8] ferrimagnetic alloys, as well as in Pt/Co or Co/Gd multi-
layers [9,10].

Among all candidates where such a reorientation of mag-
netization is possible, materials combining ferromagnetic
ordering with the presence of robust bright excitons are of
particular interest [11]. Examples of such materials include
chromium trihalides, such as CrCl3, CrBr3, and CrI3 [12].
In this paper, we take CrI3 as an example, but the reported
results should remain qualitatively the same for other mem-
bers of this family. In the material we consider, the Cr3+ ions
are arranged on the honeycomb lattice vertices surrounded
by nonmagnetic I− ions [13]. Being a two-dimensional (2D)
Ising ferromagnet, this material demonstrates a robust optical
excitonic response, with record high values of excitonic bind-
ing energies and oscillator strengths [14], exceeding even the
values reported for transition metal dichalcogenides [15–18].

The combination of such unique properties allowed some
of us to propose that chromium trihalides are suitable candi-
dates for polarization-sensitive resonant optical magnetization
switching [19], which was later on confirmed experimentally
[11]. The process of magnetic reorientation is connected with
the transfer of angular momentum from excitons (electron-
hole pairs) to the quasilocalized d electrons of the Cr atoms,
and the corresponding phenomenological theory was devel-
oped in Ref. [19]. However, the full microscopic theory of the
effect is still absent.

In this paper, we make an attempt to construct such a
microscopic theory. We apply the well-established atomistic
spin dynamics (ASD) formalism as the basis of our work
and couple it with the equations for the exciton dynamics by
adding the terms describing the interaction between the spins
of the excitons and the magnetic lattice. Numerically solving
the resulting set of equations allows us to analyze in detail
the dynamics of the magnetization switching in real space and
time.
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FIG. 1. DFT band structure of excitons in a CrI3 monolayer
with lattice constant 6.69 Å. The color code shows the total, spin,
and orbital magnetization in the left, middle, and right panels, re-
spectively. The band-gap energy E = 2.59 eV is indicated by gray
shading. According to the first Brillouin zone grid, we have selected
16 valence bands and 14 conduction bands for the exciton basis.

The paper is organized as follows. In Sec. II we present
calculations of the excitonic parameters in CrI3, and then
we present the model Hamiltonian for coupled systems of
excitons and lattice spins in Sec. III. Section IV presents the
dynamic equations, and Sec. V contains the main results of the
work, including the dependence of the switching properties
on the parameters of the incident light beam. Section VI
summarizes the results of the work.

II. CALCULATIONS OF EXCITON
PARAMETERS FOR CrI3

We investigate the electronic structure of ferromagnetic
CrI3 monolayers via first-principles calculations employing
density functional theory (DFT). The computations were
executed using the GPAW package [20,21]. We use a cut-
off energy of 600 eV for the plane-wave basis set and
the local-density approximation (LDA) exchange-correlation
functional incorporating spin-orbit effects [22]. To mitigate
interaction between periodic images, a 16-Å vacuum was used
in the supercell.

The lattice constant for the CrI3 ferromagnetic monolayer
was determined via crystal lattice relaxation procedures, re-
sulting in a value of 6.69 Å. The force convergence criteria
were set at 1 meV/Å per atom. To address the DFT band-gap
issue, a scissor operator was employed to adjust the band-gap
value to the experimental value of 2.59 eV [14].

The exciton spectrum was acquired utilizing the GPAW

implementation of the Bethe-Salpeter equation [23–26].
Screened Coulomb potential expressions were derived with
the dielectric cutoff of 50 eV, 200 electronic bands, and a
2D truncated Coulomb potential [25]. The exciton basis was
configured with 16 valence bands and 14 conduction bands on
a 6 × 6 grid of the first Brillouin zone.

In Fig. 1, we demonstrate the band structure of the CrI3

monolayer with color bars for the total, spin, and orbital
magnetization which are shown below each panel. The band
gap of 2.59 eV is highlighted by the gray area. The analysis

FIG. 2. Absorption spectrum of a CrI3 sample for two circular
polarizations. The solid line and the dash-dotted line correspond to
the σ− and σ+ polarizations, respectively. The band-gap energy E =
2.59 eV is indicated by gray shading.

of the polarization-resolved absorption spectrum of the CrI3

monolayer is shown in Fig. 2. As one can see, there is a
remarkable difference in the absorption of the σ+ and σ− com-
ponents. The prominent absorption peaks in both absorption
profiles are related to the excitonic transitions. Naturally, if
the magnetization of the sample is inverted, the absorption
curves corresponding to opposite polarizations interchange.
This forms the basis of the magnetization switching mech-
anism: For a given pump frequency and polarization, the
magnetic sublattice tends to orient its magnetization so as to
maximize the absorption [19].

III. THE MODEL HAMILTONIAN

The total energy E of the system includes three terms,

E = Em + Eexc + Es, (1)

describing the contributions from the magnetic subsystem, the
excitonic subsystem, and the interaction between them. The
magnetic structure of the CrI3 monolayer is described within
the model of classical spin vectors localized on sites of the
honeycomb lattice of the Cr atoms. The corresponding energy
is given by

Em = − J
∑
〈i, j〉

mi · m j − D
∑
〈i, j〉

d i j · [mi × m j]

− K
∑

i

(mi · ez )2 − μ
∑

i

B · mi. (2)

Here, the first, second, third, and fourth terms describe the
Heisenberg exchange, the Dzyaloshinskii-Moriya interaction
(DMI), the uniaxial magnetocrystalline anisotropy, and the
Zeeman interaction, respectively; mi is the unit vector point-
ing along the ith magnetic moment, whose magnitude is μ

for each lattice site; B is the external magnetic field; and
d i j = ri j × ez/|ri j | is the DMI unit vector with ez and ri j being
the unit vector along the monolayer normal and the vector
pointing from site i to site j, respectively. The angular brack-
ets indicate summation over unique nearest neighbors only.
The effective parameter values are taken from Ref. [27]: J =
2.53 meV, D = 1.2 meV, K = 0.153 meV, and μ = 3.0 μB.
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The external magnetic field is in the monolayer plane, with
the magnitude ranging from 0 to 3.5 T. In our calculations,
we use the computational domain of Nc = 30 × 30 = 900
unit cells equipped with periodic boundary conditions. Note
that the number of magnetic moments Na explicitly included
in the calculations is twice as large as Nc. The parameters of
the magnetic subsystem ensure that parallel alignment of the
magnetic moments in the system is a stable magnetic con-
figuration. Uniform magnetization across the computational
domain that we use (∼30 nm) is consistent with experimental
results showing magnetic domain formation in CrI3 on larger
length scales; see, e.g., Refs. [11,28,29].

The Hamiltonian describing the excitonic subsystem reads

Hexc =
∑
qn

EnqX̂ †
nqX̂nq

+ E±
∑

n

Dnq=0X̂ †
0q=0X̂nk=0 + H.c. (3)

Here, X̂ †
nq (X̂nq) is the exciton creation (annihilation) oper-

ator characterized by momentum q and band index n; Enq
is the exciton energy; Dnq=0 is the dipole moment of the
optical transition obtained from the DFT calculations (see
Appendix A), here limited to the direct-gap transitions; and
E±(t ) = Re[(E0,∓iE0, 0) exp(−iωt )]h(t ) is the right- or left-
circularly polarized electric field characterized by the pulse
envelope h(t ). The effects of both radiative and nonradiative
damping are described phenomenologically; see Appendix B
for details.

The interaction between the excitonic and magnetic sub-
systems is characterized by the following Hamiltonian:

Hs = −gμ
∑

qq′nn′

(
mq−q′ − mg

q−q′
)
Mqq′

nn′ X̂ †
nqX̂n′q′ , (4)

where the term inside the parentheses is the Fourier transform
of the magnetization relative to the collinear ground state (see
Appendix C), Mqq′

nn′ is the dipole matrix element describing
the interaction with the local magnetic moment, and g is the
on-site spin-exciton coupling constant (see Appendix A for
details). The evaluation of the coupling constant g cannot be
performed using standard DFT approaches and requires a sep-
arate consideration which goes beyond the scope of this paper.
Here, g is taken as a phenomenological parameter with the
value g = 2.3 meV, which is slightly less than the exchange
interaction parameter in the magnetic lattice Hamiltonian.

Note that exciton-exciton interaction is neglected and only
the single-exciton wave function �exc is considered explicitly.
Therefore

Es ≈ nexc 〈�exc|Hs|�exc〉 = −gμ
∑

i

σ i
(
mi − mg

i

)
. (5)

Here, nexc is the scaling factor proportional to the number of
unit cells (in our case, nexc = 450), mg ≡ ez is the unit vector
along the ground-state magnetization, and σ i is the exciton
spin vector associated with the ith unit cell (note that excitons
in CrI3 are of the Frenkel type) defined via the equation

σ i = nexc

∑
qq′

e2π i(ri (q′−q))Nc

∑
nn′

Cq∗
n Mqq′

nn′ C
q′
n′ , (6)

where ri is the position of ith unit cell and Cq
n are the expan-

sion coefficients of �exc:

�exc =
∑
nq

Cq
n X̂ †

nq|0〉. (7)

IV. DYNAMIC EQUATIONS

The dynamic equations for the observables follow from the
model Hamiltonian. The evolution of �exc is accessed via the
equation of motion for its coefficients:

ih̄
∂Cq

n

∂t
=

∑
n′q′

Hqq′
nn′ (t )Cq′

n′ (t ), (8)

where Hqq′
nn′ are the matrix elements of the excitonic

Hamiltonian H = Hexc + Hs. On the other hand, the dynamics
of the lattice magnetization is obtained via the time integration
of the Landau-Lifshitz-Gilbert equation (LLGE) for the nor-
malized magnetization vectors at zero temperature:

dmi

dt
= −γ mi × Beff

i + η

(
mi × dmi

dt

)
, (9)

where γ is the gyromagnetic ratio, η is the dimensionless
damping parameter (in this paper we take η = 0.1, 0.2), and
Beff

i is the effective magnetic field defined as

Beff
i = − 1

μ

∂E

∂mi
= gσi − 1

μ

∂Em

∂mi
, (10)

where use was made of Eq. (5) and the fact that only Es + Em

depends explicitly on mi. Note that the effect of excitons on
the magnetization dynamics is treated within the mean-field
approach, where the magnetization-exciton interaction energy
Es depends on the exciton spin vector configuration σ [see
Eq. (5)], which needs to be updated every time step using (8)
and (6). We use the semi-implicit solver by Mentink et al.
[30] for the time integration of the LLGE. We do not include
thermal fluctuations in our simulations so as to focus on exci-
ton dynamics as the main driving force of the magnetization
switching [11].

V. RESULTS AND DISCUSSION

We study the dynamics of the system induced by a spa-
tially homogeneous circularly polarized laser pulse at normal
incidence. The choice of the pulse envelope h(t ) is inspired by
real setups [11,29]:

h(t ) = Aθ (t f − |2t − t f |) exp

[
−B

(
t − t f /2

t f

)2
]
. (11)

Here, t f is the duration of the pulse, and A = 1.94 and B =
32.2 are dimensionless parameters defining the total pulse
fluence F :

F = E2
0 cε0

2

∫ t f

0
h(t )2dt = CI0t f , (12)

where I0 = E2
0 cε0 is the intensity of the pulse and C =

A2erf(
√

B/2)
√

π/(2B) is the dimensionless constant. In our
calculations, the intensity never exceeds the value of 0.1
TW/cm2, which is consistent with experiments [11,29]. We
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Evolution of the magnetic structure of the system for the
pulse fluence F1 = 166 mJ/cm2. The fluence magnitude is sufficient
to induce the magnetization reversal. The snapshots [(a)–(f)] corre-
spond to 1.6, 1.8, 1.84, 1.86, 1.9, and 2.04 ps, respectively. The color
codes the orientation of the magnetic moments of the Cr atoms. This
case corresponds to the solid line in Fig. 5.

take the duration of the pulse t f = 4 ps and its central fre-
quency ω = 1.94 eV, which is below the direct band gap. Note
that the chosen value of ω is in the vicinity of one of the
σ− peaks in the absorption spectrum.

The initial magnetization direction is prepared by aligning
all magnetic vectors along ez and perturbing them with a small
amount of random noise to break the symmetry. The simu-
lation of the spatiotemporal magnetization pattern provides
information about the evolution of the cumulative out-of-
plane magnetization due to the spin lattice and excitons:

Mm
z (t ) = 1

Na

Na∑
i=1

mz
i (t ), Mσ

z (t ) = 1

Nc

Nc∑
i=1

σ z
i (t ). (13)

The dynamics of the magnetization switching is shown in
Fig. 3. The arrival of the pulse with σ− polarization leads to
the appearance of the domains with inverted magnetization.
The domains are distributed randomly due to noise in the
initial conditions for the magnetization. If the fluence exceeds
some critical value Fc, the size of the domains increases with
time, making the system eventually reach the state with spa-
tially homogeneous inverted magnetization (see Fig. 3). On
the other hand, if the fluence is below the critical value, the
growth of the domains with opposite magnetization is not

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Evolution of the magnetic structure of the system for the
pulse fluence F2 = 33 mJ/cm2. The fluence magnitude is insufficient
to induce the magnetization reversal. The snapshots [(a)–(f)] corre-
spond to 2.2, 2.76, 2.98, 3.2, 4.4, and 8.0 ps, respectively. The color
codes the orientation of the magnetic moments of the Cr atoms. This
case corresponds to the dashed line in Fig. 5.

sufficient for the reversal, and the system relaxes back to the
initial homogeneous state (see Fig. 4).

The dynamics of the cumulative magnetization is shown
in Fig. 5. The transition between up and down polarized
states induced by the pulse is quite abrupt, which makes it
possible to introduce the characteristic switching time τ—the
principal parameter characterizing the magnetization reversal.
As expected, τ decreases with increasing F (see Fig. 6). The
switching time becomes infinite when the fluence reaches the
critical value Fc ≈ 46 mJ/cm2, below which no magnetization
reversal is possible. This behavior agrees well with our previ-
ous study based on the phenomenological model of resonant
magnetization switching [19]. We point out, however, that the
details of switching depend on the parameters of the micro-
scopic Hamiltonian as well as on the shape of the pump pulse.
Ultimately, magnetization switching is realized if the sys-
tem overcomes the energy barrier produced by the magnetic
anisotropy. Additionally, the critical fluence and the switching
time are affected by the exciton decay rate δ (see Appendix B)
and the damping parameter η. For example, for a fixed pulse
fluence of 166 mJ/cm2, the switching time increases from
1.85 to 2.07 ps when the damping factor η decreases from
0.2 to 0.1 (see Fig. 5). Interestingly, the switching time is also
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FIG. 5. Time dependence of the cumulative out-of-plane magne-
tization Mm

z for different light polarizations. The blue shaded area
indicates the laser pulse duration. The upper inset shows the time
dependence of |ψex|2 = |�exc|2 − |ψ0|2 describing the evolution of
excited exciton states. The lower inset shows the time dependence of
the exciton magnetization. Gray areas show the envelope functions
for the optical pump pulse with fluence F1 = 166 mJ/cm2 (lighter
gray, magnetization reversal occurs) and F2 = 33.2 mJ/cm2 (darker
gray, magnetization reversal does not occur). The switching time τ

is defined by the instant when Mm
z changes sign. Here, τ = 1.85 ps.

The signs + and − correspond to right-hand and left-hand circularly
polarized light, respectively.

influenced by the lateral magnetic field B (see inset in Fig. 6).
For the considered lateral field range and a pulse fluence of
133 mJ/cm2, τ decreases linearly with increasing B.

While the dynamics of the excitons affects the magneti-
zation of the system, the opposite is also valid. In particular,
ferromagnetic coupling between the subsystems leads to more
productive excitation of excitons whose effective magnetiza-
tion is along the lattice magnetization, as illustrated in the
insets of Fig. 5.

FIG. 6. Magnetization switching time τ as a function of pump
fluence F . Magnetization switching is achieved if the fluence of
the pulse exceeds a critical value Fc ≈ 46 mJ/cm2, at which the
switching time diverges. The inset shows the switching time as
a function of the lateral external magnetic field for a fluence of
133 mJ/cm2.

A change in the circular polarization of the incident beam
modifies drastically the magnetization dynamics: The switch-
ing does not occur for the initial magnetization pointing up,
but can happen for the initial magnetization pointing down.

VI. CONCLUSION

In conclusion, we developed a microscopic theory of all-
optical resonant polarization-sensitive magnetization switch-
ing in monolayers of CrI3. The effect is due to the combination
of the peculiar optical selection rules for excitons in this
material and efficient coupling of excitons to the magnetic
lattice. The spatiotemporal distribution of the magnetization
under circularly polarized pulses was investigated, and the
dependence of the parameters characterizing the switching on
the properties of the optical pulse was determined.

The exciton-mediated magnetization switching was ob-
tained here without including thermal fluctuations in the
simulations. It remains to be seen how thermal effects in-
fluence the coupled exciton-magnetization dynamics and, in
particular, whether thermal fluctuations can assist magnetiza-
tion switching. This is a subject for future research.
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APPENDIX A: MATRIX ELEMENTS
OF THE EXCITON HAMILTONIAN

The matrix elements of the exciton Hamiltonian Hexc + Hs

are computed via the resolution of the Bethe-Salpeter equa-
tion (BSE) parametrized using the first-principles calcula-
tions. The exciton wave functions and associated energies are
obtained by diagonalizing the BSE Hamiltonian [23,31,32] as
follows: ∑

c′v′k′
HBSE

cvkc′v′k′ (q)Anq
c′v′k′ = EnqAnq

cvq. (A1)

Here, HBSE
cvkc′v′k′ (q) are the matrix elements of the BSE

Hamiltonian for excitons possessing momentum q, and Anq
cvq

and Enq are the nth exciton wave function and energy, re-
spectively. The indices c (c′), v (v′), and k (k′) denote the
conduction band, valence band, and single-particle momen-
tum, respectively. The Hamiltonian HBSE is calculated using
the Tamm-Dancoff approximation [31], which is particularly
well suited for wide-gap semiconductors. This approximation
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disregards the coupling between resonance and antireso-
nance poles while preserving the Hermitian character of the
Hamiltonian.

The calculation of the dipole matrix elements is carried out
utilizing the following equation:

Dnq=0 = 〈0|r|nq = 0〉 =
∑
cvk

Anq=0
cvk 〈vk|r|ck〉, (A2)

where 〈vk|r|ck〉 is the single-particle dipole matrix element
corresponding to the optical transition from the conduction
band c to the valence band v with momentum k.

The key ingredients of the exciton-skyrmion Hamiltonian
interaction are the matrix elements of the exciton magnetic
moment Mqq′

nn′ . These matrix elements are assembled from the

matrix elements of the spin magnetic moment Sqq′
nn′ and the

orbital magnetic moment Lqq′
nn′ . The matrix elements of the spin

magnetic moment are calculated from the single-particle spin
moment:

Sqq′
nn′ =

∑
cvk,c′v′k′

(
Anq

cvk

)∗
An′q′

c′v′k′

× [〈ck + q|S|c′k′ + q′〉 − 〈v′k′|S|vk〉], (A3)

where 〈ck|S|c′k′〉 is the single-particle spin matrix element.
While the single-particle spin operators are simply defined
using the Pauli matrices in the spin subspace, the calculation
of the orbital moment requires a more careful consideration.
In this paper, we employ a local projector augmented wave
(PAW) technique to evaluate the orbital single-particle mag-
netic moment, as it offers a more straightforward approach
compared with the previously reported perturbation-theory-
based methods [33–37]. All-electron orbitals inside the PAW
sphere can be expanded as [20,38]

|ck〉 =
∑

i

〈
pa

i

∣∣ϕck
〉∣∣φa

i

〉
, (A4)

where pa
i is a projector of the smooth pseudo wave function

ϕck for band c with momentum k on the ith all-electron partial
wave for atom a, φa

i . We calculate the one-particle matrix
elements of the orbital momentum as follows [22]:

〈ck|L|c′k′〉 =
∑
ai1i2

〈
ϕck

∣∣pa
i1

〉〈
φa

i1

∣∣La
∣∣φa

i2

〉〈
pa

i2

∣∣ϕc′k′
〉
, (A5)

where La is the orbital momentum operator for atom a. Since
partial waves φa

i are usually defined in a spherical basis, the
matrix elements 〈φa

i1|La|φa
i2〉 can be calculated analytically.

Having single-particle matrix elements of the orbital magnetic
moment, we compute the exciton matrix elements as follows:

Lqq′
nn′ =

∑
cvk,c′v′k′

(
Anq

cvk

)∗
An′q′

c′v′k′

× [〈ck + q|L|c′k′ + q′〉 − 〈v′k′|L|vk〉]. (A6)

The total exciton magnetic moment is obtained by computing
a sum of the spin and orbital components:

Mqq′
nn′ = Lqq′

nn′ + Sqq′
nn′ . (A7)

APPENDIX B: INTRODUCTION OF DAMPING

The effects of damping are modeled by introducing finite
inverse relaxation time δ, which results in the decay of ex-
cited excitonic states ∼ exp(−�tδ) with time �t . Since we
do not have data for the exciton-state-resolved damping, we
assume, for simplicity, the same damping parameter for all
excited excitonic states. Note that an increase in the damping
parameter leads to an increase in the switching time. There-
fore, at each time step of the simulation, the vector of state
�exc = (ψ0, ψ1, . . . , ψn), with ψ0 being the component re-
sponsible for the vacuum, is substituted by the modified vector
of state �exc ← �̃exc = (ψ̃0, ψ̃1, . . . , ψ̃n), whose components
are defined via the following operations:

ψ̃i = ψi

√
1 − �tδ, i > 0, (B1)

� = 1 −
(

n∑
i=1

|ψ̃i|2 + |ψ0|2
)

, (B2)

ψ̃0 = ψ0

√
� + |ψ0|2

|ψ0| . (B3)

Note that |�̃exc| = |�exc| = 1. In this paper, we take δ =
80 meV based on the previously calculated exciton absorption
line broadening [14].

APPENDIX C: FOURIER TRANSFORMS

The definition of the direct and inverse Fourier transforms
used in this paper requires a special discussion since the
gratings in the real space r and momentum space q have
different discreteness. For an arbitrary function f , the Fourier
transforms are defined via the following equations:

f (ri ) =
Nq∑
j

exp[2π i(riq j )Nc ] f (q j ), (C1)

f (q j ) = 1

Nc

Nc∑
i

exp[−2π i(riq j )Nc ] f (ri ), (C2)

where Nc = 30 × 30 = 900 is the number of unit cells and
Nq = 6 × 6 = 36 is the number of points in the q space. We
define the dot product (·)Nc as

(rq)Nc = rx
i qx

j

Nx
c

+ ry
i qy

j

Ny
c

+ rz
i qz

j

Nz
c

. (C3)

We use Nx
c = Ny

c = 30 and Nz
c = 1. Since there are two mag-

netic atoms per unit cell, we adhere to the following formula
to compute the Fourier transform of the magnetization:

mq−q′ = 1

Nc

Nc∑
i

exp
[−2π i(ri

(
q − q′))Nc

]
× (m2i + m2i−1), (C4)

where we use the total magnetic moment of the unit cell.
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