
http://www.diva-portal.org

This is the published version of a paper presented at Thirteenth Congress of the European
Society for Research in Mathematics Education (CERME13), 10-14 July, 2023, Budapest.

Citation for the original published paper:

Berggren, E., Perez, M., Olteanu, C., Sollervall, H. (2023)
Praxeologies-in-action during struggle with problem-solving
In: Paul Drijvers, Csaba Csapodi, Hanna Palmér, Katalin Gosztonyi and Eszter Kónya
(ed.), Proceedings of the Thirteenth Congress of the European Society for Research in
Mathematics Education (CERME13). (pp. 2267-2274). ERME

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-127454



HAL Id: hal-04404308
https://hal.science/hal-04404308

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Praxeologies-in-action during struggle with
problem-solving

Elin Berggren, Constanta Olteanu, Miguel Perez, Håkan Sollervall

To cite this version:
Elin Berggren, Constanta Olteanu, Miguel Perez, Håkan Sollervall. Praxeologies-in-action during
struggle with problem-solving. Thirteenth Congress of the European Society for Research in Mathe-
matics Education (CERME13), Alfréd Rényi Institute of Mathematics; Eötvös Loránd University of
Budapest, Jul 2023, Budapest, Hungary. �hal-04404308�

https://hal.science/hal-04404308
https://hal.archives-ouvertes.fr


 

 

 

Praxeologies-in-action during struggle with problem-solving 

Elin Berggren1, Constanta Olteanu1, Miguel Perez1 and Håkan Sollervall1 

1 Linnaeus University, Department of Mathematics, Sweden; elin.berggren@lnu.se 

Engaging in productive struggle during problem-solving activities can be viewed as critical to 

learning mathematics. In this paper, we explore how mathematical praxeologies can be utilised to 

describe students’ struggle with mathematical problem-solving. The results indicate that the students’ 

productive struggle with an optimisation problem involving functions, graphs, and derivatives, 

contains long sequences where the students switch rapidly within and between mathematical 

praxeologies. During the work session as a whole, the students mix coherent arguments with tentative 

and, on occasion, less coherent arguments focusing on technology.  

Keywords: Productive struggle, praxeologies, problem solving, derivative. 

Introduction 

Learning mathematics through problem-solving involves making use of mathematical knowledge and 

skills; strategies and techniques; control, monitoring and self-regulation; and beliefs that influence 

how the problem is approached (Schoenfeld, 1985). The strategies and techniques chosen by the 

learner can either be directly applied or be adapted to solve a specific problem or part of a problem 

or may be inadequate for solving the problem. In a worst-case scenario, the learner may keep pursuing 

various techniques without showing progress towards a solution (Schoenfeld, 1987). When learners 

are confronted with mathematical problems that they cannot immediately solve, they can choose to 

struggle with important mathematics, that is, they are engaged and grapple with key mathematical 

ideas that are comprehensible but not yet well formed. The aim of this struggle is to make sense of 

features and challenges that are embedded in the problem (Hiebert & Grouws, 2007). The struggle is 

an integral part of doing mathematics and is a process in which the connections among mathematical 

facts, ideas, and procedures are restructured (Hiebert & Grouws, 2007). 

Several studies in mathematics education have put focus on mathematics instruction and strategies 

that teachers can implement to encourage productive struggle, as an “effort to make sense of 

mathematics, to figure something out that is not immediately apparent” (Hiebert and Grouws 2007, 

p. 287). To encourage productive struggle, teachers should be careful in selecting tasks to be used in 

their classrooms and employ pedagogical practices that support students’ mathematical reasoning 

(Amidon et al., 2020). Although promoting productive struggle through challenging tasks is gaining 

interest, there is little research on students’ productive struggle during mathematical problem-solving 

activities. By analysing students’ productive struggle, valuable insights can be gained into how they 

utilise and enhance their understanding of mathematical concepts. Such insights can serve as a 

foundation for teachers to effectively support and encourage productive struggle in their classrooms. 

In this paper, we contribute to the needed research by studying students’ reasoning during a problem-

solving activity about an optimisation problem in Calculus, involving functions, graphs and 

derivatives.  

The process of reasoning takes place when two or more persons engage in communication about an 

argument or a proof. Success depends on their common action, as the behaviour that learners 

mailto:elin.berggren@lnu.se


 

 

 

undertake with a specific intention to achieve desired goals or ends. The mutual engagement of 

participants in a coordinated effort to solve the problem together, that is, collaborative problem-

solving (Barkley et al., 2014), supports students in creating positive peer relationships and controlling 

the problem-solving process. 

In this paper, we report on a qualitative study in which we investigate how students organise and 

apply knowledge that they have previously been taught. In our analysis, the forms of reasoning, their 

function, and their use are interpreted through the anthropological theory of the didactic (ATD) and 

particularly praxeologies (Chevallard, 2020). The constructs from ATD will be defined in the next 

section. The purpose of the study is to explore how the constructs in ATD can be used to analyse 

students’ struggle with mathematical problem-solving outside the classroom. We address the 

following research question:  

How can mathematical praxeologies be utilised to describe students’ struggle with mathematical 

problem-solving?  

Related literature and theoretical perspective 

The research in the field of Calculus education discusses, for instance, students’ difficulties with 

Calculus, students’ learning experiences and the meaning-making of concepts and structures in 

Calculus across educational levels (Thompson & Harel, 2021), students’ discourse about the 

derivative (Park, 2013), and the derivative through the problem of the tangent to a generic function 

within textbooks and in teaching (Panero, 2015). A result from those studies shows that the common 

description of the derivative as a tangent line given by students is linked to their use of the word 

“derivative” for both the derivative of the function and the derivative at a point (Park, 2013). Another 

result shows that the discourse about the equation of the tangent “is centred on the definition of the 

tangent as the best linear approximation [without] allusion to pointwise and global aspects of the 

function” (Panero, 2015, p. 515). Such works highlight that in Calculus, calculation practices focus 

on algebraic computational rules, which are rarely explained (Kondratieva & Winsløw, 2018).  

In a problem-solving process within an educational institution, there appears several patterns of action 

connected to the process of construction or reconstruction of a mathematical praxeology. This process 

starts with a specific task that can be interpreted as belonging to a type of task (T). The type of task 

(T) groups together the tasks that can be accomplished by the same technique (τ), explained by a 

technology (θ) which itself is justified by a theory (Θ) (Chevallard, 2020). These four components 

constitute the four elements of a praxeology. Type of task and technique constitute the praxis block 

of the praxeology, while technology and theory constitute the logos block. For the same type of task, 

there may be several techniques, technologies, and theories that constitute different praxeologies. 

Institutional rules or constrains have an important role on how those praxeologies are shaped. In this 

paper we particularly analyse how techniques and technologies are utilised by students with respect 

to different subtasks connected to the task that those students are engaged in. As mentioned above, in 

our study the type of task is an optimisation problem in Calculus. The techniques consist of the actions 

that the students apply when they attempt to solve the problem, while the technologies consist of 

students’ explanations, as justifications of their use of techniques. When the students’ explanations 

also function to justify the technologies, we interpret these justifications as elements of theory. For 



 

 

 

example, when a student calculates the derivative of 𝑒3𝑥, the student implements a technique. If this 

student explains how the formula for the derivative for 𝑒𝑎𝑥 works, this explanation is interpreted as 

technology. In our study, where students work together with mathematical problem-solving, we put 

focus on distinguishing between their technical work and technological discussions where the 

students explain their use of techniques.  

Method  

The study takes place within an educational institution of university mathematics. The participating 

students were enrolled in an introductory Calculus course, with lectures and problem-solving 

sessions, offered in a teacher education for upper secondary school programme.  

In this paper, we describe a part of the analysis of a problem-solving session with two undergraduate 

students (one male, one female) who collaborate to solve an optimisation problem involving 

functions, graphs, and derivatives. 

The students were instructed by the teacher to work in pairs with selected problems, without 

assistance from the teacher. The students had not previously attempted to solve these problems. The 

researcher (the first author of this paper) invited the students to participate in the research study. Two 

pairs volunteered and one pair was selected for further analysis. The session lasted 1 hour and 45 

minutes.  

The task that the students worked on (Figure 1, translated from Swedish to English) was selected by 

the researcher among the problems recommended to the students by the teacher.  

 

Figure 1: The task, as presented to the students 

The participating students’ prior knowledge included the concepts of tangent and derivative, as well 

as how to solve optimization problems by using derivatives, from upper secondary school and their 

regular course work. The task that the students worked on was provided by the teacher at the time of 

the data collection. Therefore, the students had no opportunity to prepare any solution to the task in 

advance. The students worked on the problem by drawing and writing on a touchscreen laptop while 

reasoning about their work. In addition, one of the students explored problem-related constructions 

in GeoGebra on her computer. These constructions were also discussed between the students 

regarding both technical and mathematical aspects. We have chosen not to put focus on these aspects 

in our analysis since these discussions did not contribute significantly towards solving the problem.  

In the a-priori analysis of the task presented to the students, we could identify multiple subtasks, 

which we will briefly present. One of these subtasks involves identifying the equation of the tangent 



 

 

 

line to the given function at a specific tangent point, which in this case can be denoted (𝑎, 𝑒−𝑎). A 

wide variety of techniques can be used by the students when working on this type of task. For 

instance, the slope-intercept formula for a line is 𝑦 =  𝑘𝑥 +  𝑚, where 𝑘 is the slope of the line and 

𝑚 is the 𝑦-intercept (standard Swedish notation); the point-slope formula for a line is 𝑦 − 𝑦1 = 𝑘(𝑥 −

𝑥1) where (𝑥1, 𝑦1) is a point on the line and k is the slope of the line; calculating the first derivative 

𝑦′ = 𝑓′(𝑥) = −𝑒−𝑥 and calculating 𝑓′(𝑎) = −𝑒−𝑎 to find the value for 𝑘. When these calculations 

are connected to the formula for the area of a right triangle (base times height divided by 2) the area 

𝐴 can be expressed in terms of 𝑎 and algebraically simplified to 𝐴 =
1

2
𝑒−𝑎(1 + 𝑎)2. The remaining 

part of the solution can – from a mathematical point of view – be considered as straightforward, by 

computing the derivative 𝐴′ by applying the product rule for derivatives, algebraically simplifying 

the result to 𝐴′ =
1

2
𝑒−𝑎(1 + 𝑎)(1 − 𝑎), identifying the relevant zero 𝑎 = 1 of the derivative and 

analyzing the outcome to confirm the maximum value 𝐴 = 2𝑒−1.  

The data for this paper consists of a video-recorded session, and students’ written answers. The 

researcher (first author) observed the session. A two-phase qualitative content analysis was applied 

to investigate the collected data (Bryman, 2020). During the first phase, data was analysed to identify 

the subtasks that the students chose to address. During the second phase, we characterised students’ 

actions in terms of technical, technological, and theoretical moments, for example technical work and 

technological discussions. During our analysis we observed a connection between students struggles 

with different subtasks and their shifts between praxeologies. For this reason, we particularly put 

focus on identifying these shifts. We identified these shifts based on students’ change of subtasks or 

their use of new techniques. Figure 2 maps the connections within and between different elements of 

the mathematical praxeology which are illustrated by solid lines. The dashed line delimits the praxis 

from logos and at the same time indicates the chronological order between different actions. 

Rectangular shapes are used to indicate headings referring to parts of the praxeology in longer 

episodes, while oval shapes are used to mark the beginning or end of an action. For this paper, the 

relevant transcriptions have been translated from Swedish to English. Square brackets […] are used 

to clarify what the students are referring to when it is not clear what they are talking about, as well as 

to mark that some part of the citation is excluded.  

Results and analysis 

The discernible aim of the initial part of the students’ work with the task (Figure 1) is to determine 

the area of the right triangle. This initial part consists of students addressing several subtasks. 

Student 1 initiates the work session by denoting the tangent point as 𝐴 (𝑎, 𝑓𝑎) [verbatim], 

representing the equation for the tangent line as 𝑔(𝑥) = 𝑘𝑥 + 𝑚, and expressing the slope as 𝑘 =

𝑓′(𝑎). All this is part of a technological moment, a sequence where 𝑘 = 𝑓′(𝑎) appears as a 

technological conviction justified by the students as “The first derivative is an equation for the slope 

of a tangent line to a curve at an indicated point”. Student 1 tries to express the tangent in the point 

𝐴 (𝑎, 𝑓(𝑎)) as 𝑓(𝑎) = 𝑓′(𝑎) ∙ 𝑥 + 𝑚 that is corrected to 𝑓(𝑎) = 𝑓′(𝑎) ∙ 𝑎 + 𝑚. This work sequence 

can be seen as an initiation of a technique τ for the subtask of finding 𝑚. The students are aware of 

the importance of solving this subtask for determining the area of the triangle. At this stage, they 

switch to looking at the screen of Student 2’s computer, which shows the graphic window in 



 

 

 

GeoGebra. The students use GeoGebra to construct a sliding tangent line which allows them to 

dynamically measure the area of the triangle. They agree that they have solved the problem in 

GeoGebra. In the next section, we will focus on students’ struggle towards finding 𝑚.  

Students’ struggle 

In this section we will present a sequence from the students’ struggle. We put focus on a part where 

the students struggle with expressing the point of intersection of the tangent line with the y-axis. We 

first present an overview of this struggle (Figure 2) that will be elaborated below.  

 

Figure 2: Overview of the process of struggle 

Address type of task: The students continue to discuss how to calculate the area of the triangle. 

Student 2 gives the following explanation: 

Student 2: I wrote that the area is equal to 𝑦 times 𝑥 but then I realised that 𝑦 equals 𝑓(0). 
Student 1: Yes! 
Student 2: OK, but 𝑚 is also equal to 𝑓(0) [Pause] therefore you can take 𝑚 times 𝑥 divided 

by 2.  
Student 1: Well, I have written […] I have thought a little differently, but it is the same.  

Student 2 has, in her notes, written: Area  
𝑓(0)∙𝑥

2
, 𝑦 = −𝑒−𝑥 ∙ 𝑥 + 𝑚, 𝑚 = 𝑓(0), 𝐴 =

𝑦∙𝑥

2
. This notation 

is slightly different from the notation introduced by Student 1 and at this point the students seem to 

sense that there is an ambiguity in their reasoning which they address in the continued discussion. 

Technological discussion (θ1): Student 1 initiates the following discussion. 

Student 1: Here we have a straight line 𝑘𝑥 + 𝑚 [points at the line] but the slope for this line 
should be the derivative of this function [points at the graph]. 

Student 2: Yes! 
Student 1: But then I have written that 𝑘 = 𝑓′(𝑎). I don’t know where this point should be 

because it depends on where we move it. And as you said 𝑚 is … no, 𝑚 is… 
Student 2: Yes, 𝑚 is the same as 𝑓(0). 
Student 1: 𝑚 is this [points at the intersection between the y-axis and the tangent line]. The 

function is there [points at the intersection between the y-axis and the graph of 
𝑦 = 𝑒−𝑥], can you see? 

Student 2:  Yes! 
Student 1: The function is up there when zero but 𝑚 is a bit lower down… or do you mean a 

different 𝑚? 
Student 2: I was thinking 𝑚 for the tangent line [shows 𝑦 = −𝑒−𝑥 ∙ 𝑥 + 𝑚 and 𝑚 = 𝑓(0)]. 



 

 

 

Student 1: If you think… 𝑓(0) is this point…but 𝑚 for the line [the tangent line] is further 
down. 

Student 2: Yes. 
Student 1: Therefore it is not 𝑓(0). 

The technology involves one student justifying to the other student, using a drawn graph, that the 

intersect 𝑚 and the intersect of the function with the y-axis are not the same. The discussion continues 

and Student 1 motivates the already made statement 𝑓(𝑎) = 𝑓′(𝑎) ∙ 𝑎 + 𝑚. Student 1 suggests 

continuing by differentiating the function 𝑓(𝑥) = 𝑒−𝑥.  

Technical work: The students calculate 𝑓′(𝑥) and Student 1 writes 𝑔(𝑥): 𝑒−𝑥 = −𝑒−𝑥 which is 

questioned by Student 2. Student 1 writes  𝑔(𝑥) = −𝑒−𝑥 ∙ 𝑥 + 𝑚. This leads to a discussion about x. 

Technological discussion (θ2): This technological discussion involves the use of variables to denote 

mathematical concepts. The students realise that there is a conflict in how they denote the variables 

because they use x both as a variable of the tangent line and as a variable in the derivative of the 

function. Although they agree, with arguments that are not very developed, the students manage to 

connect (𝑥, 𝑦) and the tangent point (𝑎, 𝑓(𝑎)). Eventually the students express the intersect 𝑚 as 

𝑒−𝑎(1 + 𝑎) = 𝑚. The students do not yet realise how to utilise this result for solving the subtask. 

Technological discussion (θ3): Student 2 initiates a new discussion. 

Student 2: If you look at this [points at the expression 𝑒−𝑎 = −𝑒−𝑎 ∙ 𝑎 + 𝑚] we can use, 
choose any x-value and insert into the original function and then you will get a y-
value, then you have an x-value and y-value at that point [points at the tangent 
point]. 

Student 1: Hmm 
Student 2: Then you can use the same y-value to figure out what this is [points at 𝑔(𝑥) =

−𝑒−𝑥 ∙ 𝑥 + 𝑚]. 
Student 1: Hmm? Yes, but then you get 𝑚 for a specific point and we want to be able to derive 

and find the minimum value...we need something more, we are missing something 
in order to move on […]. We need to find 𝑚! What is 𝑚?... 

Thus far, student 2 has made the most of the contributions and finds a need to explain to student 1, 

how to use the expressions above for further work. At this point the explanations provided also 

function as a justification of the choice of notation needed for their continued work. The question 

about 𝑚 marks the end of the part of the students’ struggle that we have focused on and that is shown 

in Figure 2. However, they have not solved the problem. For example, in order to find a way to 

calculate 𝑚, the idea of utilising a linear transformation is suggested but with little success: “Moving 

the line one step up is the same as moving the line there [point to the right]”.  

After having spent 35 minutes on the problem, they engage in a new approach where only a line is 

present in the coordinate system together with 𝑏 and ℎ, as symbols for positive quantities representing 

base and height of a right triangle. The students initiate a new approach, where they pursue a general 

investigation about the equation of a straight line without involving derivatives. This move can be 

interpreted as a shift from a Calculus praxeology to a geometrical praxeology. After introducing new 

notation for the triangle’s base and height, they write down the equation of the tangent line again 

(𝑔(𝑥) = −
ℎ

𝑏
𝑥 + ℎ). This allows them to put focus on the relationship between 𝑘 and 𝑚 in the slope-

intercept formula 𝑦 = 𝑘𝑥 + 𝑚. The students eventually write an expression for the area 𝐴 =



 

 

 

(𝑚 (−
𝑚

𝑘
) ∙

1

2
) and from this point the students’ struggle becomes more straightforward towards the 

solution. 

Discussions and conclusion  

An important contribution of this paper is the identification of a model for analysing students’ struggle 

in terms of mathematical praxeologies (Chevallard, 2020). A traditional classroom study with ATD 

is based on an object of learning connected to a praxeological reference model. Since our focus in 

this paper is not so much on formal mathematical technological justifications, but rather on how such 

justification appears in the students’ discourse, we have opted for not involving any reference models 

as theoretical underpinnings for the praxeologies selected by the students. 

The results indicate that students’ struggle contains long sequences where the students switch rapidly 

between techniques and technology, often prematurely leaving one subtask and switching to the next. 

These switches are intensified, particularly between technical and technological moments, when 

students struggle with temporary confusion. For instance, during technological discussion (θ1) the 

students present coherent arguments about the intersection between the tangent line and the y-axis, 

but from different perspectives. The difference stems from confusion about the notation of the 

function and the tangent line, which the students manage to overcome by trying out new approaches. 

The students’ attempts, that involve technical and technological moments, are often about strategies 

and techniques; control, monitoring, and self-regulation in the problem-solving processes, which, 

according to Schoenfeld (1985), are important elements in problem-solving. One notable exception 

among these attempts is a theoretical moment where the students reduce the complexity of the 

previous subtask by deducing the equation 𝑔(𝑥) = −
ℎ

𝑏
𝑥 + ℎ without involving derivatives. From 

that point on, they are confident that they are on the right track and – although they keep making 

several technical mistakes – finally manage to solve the problem.  

The results also indicate that, in the shift between subtasks the students are not fully able to continue 

where the previous discussion related to the same subtask ended. An example is when the students 

differentiate the function 𝑓(𝑥) = 𝑒−𝑥 and arrive at an expression for the tangent line without realising 

how to utilise this result. Instead, the students keep pursuing familiar techniques, which they are able 

to execute albeit not necessarily being productive, without showing progress towards a solution. One 

explanation for this temporary confusion could be that the students do not distinguish the derivative 

as a function and the derivative at a point. This result is in line with Park’s (2013) observation, 

regarding the students’ description of the derivative as a tangent line. 

A key concern for teachers and researchers is how to develop students’ capacity to persevere in 

solving mathematical problems and to help students realise that they can do well in mathematics with 

struggle. In this paper, we show that the students’ struggle can be described by analysing students 

reasoning in acting to solve a problem and by paying attention to how the students’ switch within and 

between mathematical praxeologies. We also see another type of praxeology that arises when 

GeoGebra is used to try to solve subtasks in the task. GeoGebra is here a tool that is intended to be 

used to solve the task with graphical techniques that differ from the analytical techniques needed to 

solve the task with only pen and paper. This raises a question about the task itself, and how it can be 



 

 

 

designed to support productive struggle (Amidon et al., 2020). The students’ struggle might have 

been more productive if the intended technologies (in GeoGebra and by hand) had been designed to 

support each other. The students’ struggle might also have been more productive if the students had 

been able to choose other techniques and technologies, for example the point-slope formula 𝑦 −

𝑓(𝑎) = 𝑓′(𝑎) ∙ (𝑥 − 𝑎). 

References 

Amidon, J., Monroe, A., Rock, D., & Cook, C. (2020). Shame, shame, go away: Fostering productive 

struggle with mathematics. Kappa delta pi record, 56(2), 64–69. 

https://doi.org/10.1080/00228958.2020.1729636 

Barkley, E. F., Cross, K. P., & Major, C. H. (2014). Collaborative learning techniques: A handbook 

for college faculty. Jossey-Bass. 

Bryman, A. (2020). Samhällsvetenskapliga metoder. [Social science methods.] Liber AB. 

Chevallard, Y. (2020). Some sensitive issues in the use and development of the anthropological 

theory of the didactic. Educação Matemática Pesquisa, 22(4), 13-53. 

https://doi.org/10.23925/1983-3156.2020v22i4p013-053  

Hiebert, J. & Grouws, D. (2007). The effects of classroom mathematics teaching on students’ 

learning. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and 

learning (pp. 371–404). Information Age Publishing. 

Kondratieva, M., & Winsløw, C. (2018). Klein’s Plan B in the early Teaching of Analysis: Two 

theoretical cases of exploring mathematical links. International journal of research in 

undergraduate mathematics education, 4(1), 119–138. https://doi.org/10.1007/s40753-017-0065-

2  

Panero, M. (2015). Teaching the derivative in the secondary school. Actes de la conférence 

CIEAEM67, 507–516.  

Park, J. (2013). Is the derivative a function? If so, how do students talk about it? International journal 

of mathematical education in science and technology, 44(5), 624–640. 

https://doi.org/10.1080/0020739X.2013.795248  

Schoenfeld, A. (1985). Mathematical Problem Solving. Academic Press. 

Schoenfeld, A. (1987). Cognitive Science and Mathematics Education. Erlbaum Assoc. 

Thompson, P.W., & Harel, G. (2021). Ideas foundational to calculus learning and their links to 

students’ difficulties. ZDM – Mathematics education, 53(3), 507–519. 

https://doi.org/10.1007/s11858-021-01270-1  

 

https://doi.org/10.1080/00228958.2020.1729636
https://doi.org/10.23925/1983-3156.2020v22i4p013-053
https://doi.org/10.1007/s40753-017-0065-2
https://doi.org/10.1007/s40753-017-0065-2
https://doi.org/10.1080/0020739X.2013.795248
https://doi.org/10.1007/s11858-021-01270-1

	Praxeologies-in-action during struggle with problem-solving
	Introduction
	Related literature and theoretical perspective
	Method
	Results and analysis
	Students’ struggle

	Discussions and conclusion
	References


