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A B S T R A C T

Diagnosing and treating abnormalities in the wrist, specifically distal radius, and ulna fractures, is a crucial
concern among children, adolescents, and young adults, with a higher incidence rate during puberty. However,
the scarcity of radiologists and the lack of specialized training among medical professionals pose a significant
risk to patient care. This problem is further exacerbated by the rising number of imaging studies and limited
access to specialist reporting in certain regions. This highlights the need for innovative solutions to improve the
diagnosis and treatment of wrist abnormalities. Automated wrist fracture detection using object detection has
shown potential, but current studies mainly use two-stage detection methods with limited evidence for single-
stage effectiveness. This study employs state-of-the-art single-stage deep neural network-based detection models
YOLOv5, YOLOv6, YOLOv7, and YOLOv8 to detect wrist abnormalities. Through extensive experimentation,
we found that these YOLO models outperform the commonly used two-stage detection algorithm, Faster R-
CNN, in fracture detection. Additionally, compound-scaled variants of each YOLO model were compared, with
YOLOv8 m demonstrating a highest fracture detection sensitivity of 0.92 and mean average precision (mAP)
of 0.95. On the other hand, YOLOv6 m achieved the highest sensitivity across all classes at 0.83. Meanwhile,
YOLOv8x recorded the highest mAP of 0.77 for all classes on the GRAZPEDWRI-DX pediatric wrist dataset,
highlighting the potential of single-stage models for enhancing pediatric wrist imaging.
1. Introduction

Wrist abnormalities are a common occurrence in children, adoles-
cents, and young adults. Among them, wrist fractures such as distal
radius and ulna fractures are the most common with incidence peaks
during puberty [1–4]. Timely evaluation and treatment of these frac-
tures are essential to prevent life-long implications. Digital radiography
is a widely used imaging modality to obtain wrist radiographs. While X-
ray is often the first and most common imaging modality used for wrist
problems, the choice of test depends on the suspected abnormality,
clinical presentation, and available resources. If an X-ray does not
provide a clear diagnosis, other imaging modalities like MRI, CT, or
ultrasound may be recommended. The obtained radiographs are then
interpreted by surgeons or physicians in training to diagnose wrist
abnormalities. However, medical professionals may lack the specialized
training to assess these injuries accurately and may rely on radiograph
interpretation without the support of an expert radiologist or qualified
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colleagues [5]. Studies have shown that diagnostic errors in reading
emergency X-rays can reach up to 26% [6–9]. This is compounded by
the shortage of radiologists even in developed countries [10–12] and
limited access to specialist reporting in other parts of the world [13]
posing a high risk to patient care. The shortage is expected to escalate in
the upcoming years due to a growing disparity between the increasing
demand for imaging studies and the limited supply of radiology res-
idency positions. The number of imaging studies rises by an average
of five percent annually, while the number of radiology residency
positions only grows by two percent. [14]. While imaging modalities
such as MRI, CT, and ultrasound can further assist in the diagnosis of
wrist abnormalities, some fractures may still be occult [15,16].

Recent advances in computer vision, more specifically, object de-
tection have shown promising results in medical settings. Some of
the positive results of detecting pathologies in trauma X-rays were
recently published [17–19]. In recent years, significant progress has
vailable online 23 February 2024
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been made in the development of object detection algorithms, leading
to their widespread adoption in the medical community. An earlier
approach called the sliding window approach [20] for object detection
involved dividing an image into a grid of overlapping regions and then
classifying each region as containing the object of interest or not. Key
implementations of this method include cascade classifiers that employ
LBP (Local Binary Patterns) or Haar-like features. These classifiers are
trained using positive examples of a specific object set against random
negative images of the same size. Once optimized, the classifier can
accurately identify the target object within a specific section of an
image. To detect the object throughout the whole image, the classifier
systematically examines each segment. It is essential to differentiate
between LBP and Haar-like features. LBP characterizes the local texture
of an image by comparing a pixel to its neighboring ones, while Haar-
like features measure differences in pixel intensities within neighboring
rectangular areas. There are several disadvantages of the sliding win-
dow approach, one of them being that it is computationally expensive
as a large number of regions need to be classified. To address these
issues, region-based methods were invented. The main idea behind
these methods was to generate candidate object regions and classify
only those regions as containing the object of interest or not.

Another method developed as an improvement over the sliding
window approach was the single-stage detection method which has
gained popularity in recent years due to its efficiency and good perfor-
mance. This approach uses a single forward propagation through the
network to predict bounding boxes and class probabilities, eliminating
the need to generate candidate object regions, and making it faster
than region-based approaches. While two-stage detection generates
candidate regions in the first stage and refines them in the second stage
at the cost of speed and computational efficiency, single-stage detection
provides a balance between speed and accuracy by predicting final
results in a single pass through the network.

Two-stage detection has been the most widely used approach for
detecting wrist abnormalities in recent years. However, there has been
limited research on the effectiveness of single-stage detectors in detect-
ing various abnormalities in the wrist, including fractures. In this study,
we focus on the effectiveness of SOTA single-stage detectors in detect-
ing wrist abnormalities. Additionally, this study is unique in its use
of a large, comprehensively annotated dataset called GRAZPEDWRI-
DX presented in a recent publication [21]. The characteristics and
complexity of the dataset are discussed in Section 4.

Wrist fractures represent just one of several typical wrist abnor-
malities, other prevalent conditions include Carpal Tunnel Syndrome
(CTS), Ganglion Cysts, Osteoarthritis, Tendinitis, as well as Sprains and
Strains. Within the dataset that we use, the distinct objects are cate-
gorized as fracture, periostealreaction, metal, pronatorsign, softtissue,
bone-anomaly, bonelesion, and foreignbody. It is crucial to understand
that our primary goal is to detect these specific objects rather than
diagnose the overarching abnormalities. In our context, the presence
of these objects (including fractures) in the wrist can be considered as
‘abnormal’. Moreover, the presence of objects other than fractures may
suggest another associated wrist abnormality. For instance, soft tissue
presence might be indicative of CTS or a ganglion cyst. In CTS, swelling
of the synovial tissue that lines the tendons in the carpal tunnel may
be observable. Conversely, a ganglion cyst manifests as a soft tissue
structure. The term ’bone lesion’ denotes an anomalous area within the
bone, severe sprains can involve avulsion fractures where a fragment
of bone is pulled away by the ligament.

1.1. Study objective & research questions

The primary objective of this study is to test the effectiveness of the
state-of-the-art YOLO detection models, YOLOv5, YOLOv6, YOLOv7,
and YOLOv8 on a comprehensively annotated dataset ‘‘GRAZPEDWRI-
DX’’ recently released to the public. We compare the performances of
2

all variants within each YOLO model employed to see whether the use
of a compound-scaled version of the same architecture improves its
performance. Moreover, this study also investigates how effective these
single-stage detection methods are in detecting fractures compared to a
two-stage detection method widely used in the past. In addition to con-
ducting object detection across multiple classes, we also evaluate the
performance of a conventional CNN in binary classification, specifically
in distinguishing between fractures and non-fractures. We hypothesize
that fractures in the near vicinity of the wrist in pediatric X-ray images
can be detected efficiently using YOLO models proposed by ultralytics
[22], Li et al. [23], Wang et al. [24], and ultralytics [25] respectively.

We analyze the potential of utilizing object detection techniques in
answering the following research questions (RQs):

1. To what extent do state-of-the-art YOLO object detection models
effectively detect fractures in the vicinity of the wrist in pediatric
X-ray images?

2. In the analysis of wrist images, do the single-stage detection
models outperform a two-stage detection model widely used in
the past?

3. Does the use of compound scaled variants within each YOLO
algorithm improve its performance in detecting fractures?

4. To what extent can the YOLO surpass conventional CNN archi-
tecture and DenseNets in terms of sensitivity in fracture recog-
nition?

1.2. Contribution

The major contributions of this article are as follows:

• A thorough performance assessment of SOTA YOLO detection
models on the newly released GRAZPEDWRI-DX dataset, a large
and diverse set of pediatric X-ray images. To the best of our
knowledge, this is the first study of its kind.

• An in-depth comparison of the performance of various variants
within each YOLO model utilized.

• Achieved state-of-the-art mean average precision (mAP) score on
the GRAZPEDWRI-DX dataset.

• A detailed performance analysis of single-stage detection models
in comparison to the widely-used two-stage detection model,
Faster R-CNN.

2. Related work

Fracture detection is a crucial aspect in the field of wrist trauma, and
computer vision techniques have played a significant role in advancing
research in this area. This section provides a comprehensive overview
of the existing studies on fracture detection and highlights the key find-
ings. The studies are divided into two subheadings. The first subheading
covers studies that have used two-stage detection techniques, while
the second subheading focuses on studies that have only employed
single-stage detection algorithms.

2.1. Two-stage detection

The detection of bone abnormalities, including fracture detection,
has been widely studied in the literature, mainly using two-stage de-
tection algorithms. For instance, In a study by Yahalomi et al. [26],
a Faster R-CNN model utilizing VGG16 was applied to identify dis-
tal radius fractures in anteroposterior wrist X-ray images. The model
achieved an mAP of 0.87 when tested on a set of 1312 images. It should
be noted that the initial dataset consisted of only 95 anteroposterior
images, with and without fractures, which were then augmented for
training as well as for testing.

Thian et al. [27] developed two separate Faster R-CNN models with
Inception-ResNet for frontal and lateral projections of wrist images. The
models were trained on 6515 and 6537 images of frontal and lateral

projections, respectively. The frontal model detected 91% of fractures,
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with a specificity of 0.83 and a sensitivity of 0.96. The lateral model
detected 96% of fractures, with a specificity of 0.86 and a sensitivity of
0.97. Both models had a high AUC-ROC value, with the frontal model
having 0.92 and the lateral model having 0.93. The overall per-study
specificity was 0.73, the sensitivity was 0.98, and the AUC-ROC value
was 0.89.

Guan et al. [28] used a two-stage R-CNN method to achieve an
average precision (AP) of 0.62 on approximately 4000 X-ray images of
arm fractures MURA dataset. Wang et al. [29] developed a two-stage
R-CNN network called ParallelNet, with a TripleNet backbone network,
for fracture detection in a dataset of 3842 thigh fracture X-ray images,
achieving an AP of 0.88 at an IoU threshold of 0.5.

Qi et al. [30] used a Faster R-CNN model with an anchor-based
approach, combined with a multi-resolution Feature Pyramid Network
(FPN) and a ResNet50 backbone network. They tested the model on
2333 X-ray images of different types of femoral fractures and obtained
an mAP score of 0.69.

Raisuddin et al. [31] developed a deep learning-based pipeline
called DeepWrist for detecting distal radius fractures. The model was
trained on a dataset of 1946 wrist studies and was evaluated on two test
sets. The first test set, comprising 207 cases, resulted in an AP score
of 0.99, while the second test set, comprising 105 challenging cases,
resulted in an AP of 0.64. The model generated heatmaps to indicate
the probability of a fracture near the vicinity of the wrist but did not
provide a bounding box or polygon to clearly locate the fracture. The
study was limited by the use of a small dataset with a disproportionate
number of challenging cases.

Ma and Luo [32] in their study, first classified the images in the
Radiopaedia dataset into the fracture and non-fracture categories using
CrackNet. After this, they utilized Faster R-CNN for fracture detection
on the 1052 bone images in the dataset. With an accuracy of 0.88, a
recall of 0.88, and a precision of 0.89, they demonstrated the usefulness
of the proposed approach. Wu et al. [33] applied a Feature Ambiguity
Mitigate Operator model along with ResNeXt101 and an FPN to identify
fractures in a collection of 9040 radiographs of various body parts,
including the hand, wrist, pelvic, knee, ankle, foot, and shoulder. They
accomplished an AP of 0.77.

Xue et al. [34] proposed a guided anchoring method (GA) for
fracture detection in hand X-ray images using the Faster R-CNN model,
which was used to forecast the position of fractures using proposal
regions that were refined using the GA module’s learnable and flexible
anchors. They evaluated the method on 3067 images and achieved an
AP score of 0.71.

Hardalaç et al. [35] conducted 20 fracture detection experiments
using a dataset of wrist X-ray images from Gazi University Hospital. To
improve the results, they developed an ensemble model by combining
five different models, named WFD-C. Out of the 26 models evaluated
for fracture detection, the WFD-C model achieved the highest average
precision of 0.86. This study utilized both two-stage and single-stage
detection methods. The two-stage models employed were Dynamic R-
CNN, Faster R-CNN, and SABL and DCN models based on Faster R-CNN.
Meanwhile, the single-stage models used were PAA, FSAF, RetinaNet
and RegNet, SABL, and Libra.

Joshi et al. [36] employed transfer learning with a modified Mask
R-CNN to detect and segment fractures using two datasets: a surface
crack image dataset of 3000 images and a wrist fracture dataset of
315 images. They first trained the model on the surface crack dataset
and then fine-tuned it on the wrist fracture dataset. They achieved an
average precision of 92.3% for detection and 0.78 for segmentation on
a 0.5 scale, 0.79 for detection, and 0.52 for segmentation on a strict
0.75 scale.

2.2. One-stage detection

Very few studies have been conducted demonstrating the perfor-
3

mance of one-stage detectors in the area of wrist trauma and fracture
detection. In the study by Sha et al. [37], a YOLOv2 model was used
to detect fractures in a dataset of 5134 spinal CT images, resulting in
an mAP of 0.75. In another research by the same authors [38], a Faster
R-CNN model was applied to the same dataset, yielding an mAP of 0.73.

A recent study by Hrži’c et al. [39] compared the performance of
the YOLOv4 object detection model to that of the U-Net segmentation
model proposed by Lindsey et al. [40] and a group of radiologists on the
‘‘GRAZPEDWRI-DX’’ dataset. The authors trained two YOLOv4 models
for this study: one for identifying the most probable fractured object in
an image and the other for counting the number of fractures present in
an image. The first YOLOv4 model achieved high performance, with an
AUC-ROC of 0.90 and an F1-score of 0.90, while the second YOLOv4
model achieved an AUC-ROC of 0.90 and an F1-score of 0.96. These
results demonstrate the superior performance of YOLOv4 in comparison
to traditional methods for fracture detection.

The ‘‘GRAZPEDWRI-DX’’ dataset used in this study was recently
published [21]. The authors presented the baseline results for the
dataset using the COCO pre-trained YOLOv5 m variant of YOLOv5. The
model was trained on 15,327 (of 20,327) images and tested on 1000
images. They achieved a mAP of 0.93 for fracture detection and an
overall mAP of 0.62 at an IoU threshold of 0.5.

In conclusion, the literature review shows that the majority of
studies on fracture detection have utilized the two-stage detection
approach. Additionally, the datasets utilized in these studies tend to be
limited in size in comparison to the dataset used in our study. This study
builds upon the work of studies [21,39] by conducting a comprehensive
comparative study between the state-of-the-art single-stage detection
algorithms (YOLOv5, v6, v7, and v8) and a widely used two-stage
model Faster R-CNN. The results of this study provide valuable insights
into the performance of these algorithms and contribute to the ongoing
research in the field of wrist trauma and fracture detection.

3. Material & methods

3.1. Research design

A quantitative (experimental) study is conducted using data from
10,643 wrist radiography studies of 6091 unique patients collected
by the Division of Paediatric Radiology, Department of Radiology,
Medical University of Graz, Austria. As shown in Fig. 1, the dataset
was randomly partitioned into a training set of 15,245, a validation set
of 4066, and a testing set of 1016.

In the context of binary classification, the dataset was partitioned
into two categories: ‘fracture’ and ‘No-fracture’. The ‘fracture’ class
consisted of 13,549 images, while the ‘No-fracture’ class contained
6777 images. To establish training, testing, and validation sets, the
dataset was split using the same ratio as for the aforementioned object
detection task.

3.2. Tools & instruments

Python scripts were utilized for dataset partitioning. The PyTorch
framework was employed for training object detection models. Whereas,
the TensorFlow framework was employed for classification. The train-
ing process for all variants, excluding the P6 variants of YOLOv7 and
the Binary Classifier, was conducted on a Windows PC equipped with
an NVIDIA GeForce RTX 2080 SUPER graphics card with 8192 MB
of VRAM, an Intel(R) Xeon(R) W-2223 CPU@3.60 GHz processor, and
64 GB of RAM. On the other hand, the training of the P6 variants and
the binary classifiers took place on COLAB, utilizing an NVIDIA Tesla
T4 GPU with 15,360 MB of VRAM and 12 GB of RAM. The Python
version used was 3.9.13.
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Fig. 1. Dataset split into training, validation, and test sets.

3.3. Deep learning models for object detection

In this study, we employed 4 single-stage detection models, namely
YOLOv5, YOLOv6, YOLOv7, and YOLOv8, as well as a two-stage detec-
tion model Faster R-CNN. To further optimize the performance of the
single-stage models, we experimented with multiple variants of each
YOLO model, ranging from 5 to 7 variants. This resulted in a total of
23 wrist abnormality detection procedures.

The YOLO (You Only Look Once) algorithm, initially introduced
by Redmon et al. [41] in 2015, is a single-stage object detection
approach that uses a single pass of a convolutional neural network to
make predictions about the locations of objects in an image, making
it faster than other approaches to date. In 2021, YOLOv4 achieved the
highest mean average precision on the MS COCO dataset while also
being the fastest real-time object detection algorithm [42]. Since its
initial release, the algorithm has undergone several improvements, with
versions ranging from v1 to v8, with each subsequent version offering
smaller volume, higher speed, and higher precision. Fig. 2 illustrates
the general structure of YOLO with various backbones used in this study
such as CSP, VGG, and EELAN.

3.3.1. The YOLOv5 model
The YOLO framework comprises of three components: the back-

bone, neck, and head. The backbone extracts image features using the
CSPDarknet architecture, known for its superior performance [43]. We
adopted the same architecture in our research. CSPDarknet involves
convolution, pooling, and residual connections represented as:

𝐹𝑖 = 𝑓 (𝐹𝑖−1,𝑊𝑖) + 𝐹𝑖−1 (1)

(Where 𝐹𝑖 and 𝐹𝑖−1 are feature maps at 𝑖th and (𝑖 − 1)th layer respec-
tively, 𝑊𝑖 represents weights and biases, and 𝑓 (⋅) applies convolution
and pooling operations). The SPP structure is then used to extract
multi-scale features from the CSPDarknet’s output:

𝐹𝑆𝑃𝑃 = 𝑔(𝐹𝑖) (2)

(Where 𝐹𝑆𝑃𝑃 denotes multi-scale feature maps, and 𝑔(⋅) performs the
SPP operation on 𝐹𝑖). The neck component adopts the Path Aggregation
Network (PANet) to aggregate backbone features, generating higher-
level features for output layers. The head constructs output vectors
containing class probabilities, objectness scores, and bounding box
4

coordinates. YOLOv5 encompasses five model variants (‘‘n’’, ‘‘s’’, ‘‘m’’,
‘‘l’’, and ‘‘x’’), which are compound-scaled versions of the same architec-
ture. These variants offer varying detection accuracy and performance,
achieved by adjusting network depth and layer count.

3.3.2. The YOLOv6 model
YOLOv6 features an anchor-free design and reparameterized Back-

bone, with VGG and CSP Backbones used in the ‘‘n’’ and ‘‘s’’ variants,
and ‘‘m’’, ‘‘l’’ and ‘‘l6’’ variants respectively. This Backbone is referred
to as EfficientRep. The Neck, named Rep-PAN, is similar to YOLOv5,
but the Head is efficiently decoupled, improving accuracy and reducing
computation by not sharing parameters between the classification and
detection branches. The YOLOv6 includes five model variants (‘‘n’’, ‘‘s’’,
‘‘m’’, ‘‘l’’, and ‘‘l6’’).

3.3.3. The YOLOv7 model
YOLOv7 comes with several changes, including E-ELAN, which uses

expand, shuffle, and merge cardinality to improve network learning
without disrupting the gradient path. Other changes include Model
Scaling techniques, Re-parameterization planning, and Auxiliary Head
Coarse-to-Fine. Model scaling adjusts the width, depth, and resolution
of a model to align with specific application requirements. YOLOv7 uses
compound scaling to simultaneously scale network depth and width by
concatenating layers, maintaining optimal architecture while scaling.

Re-parameterization techniques use gradient flow propagation to
identify modules that require averaging weights for robustness. An aux-
iliary head in the middle of the network improves training but requires
a coarse-to-fine approach for efficient supervision. The YOLOv7 model
consists of seven variants: ‘‘P5’’ models (v7, v7x, and v7-tiny) and ‘‘P6’’
models (d6, e6, w6, and e6e).

3.3.4. The YOLOv8 model
YOLOv8 is reported to provide significant advancements in object

detection when compared to previous YOLO models, particularly in
compact versions that are implemented on less powerful hardware.
At the time of writing this paper, the architecture of YOLOv8 is not
fully disclosed and some of its features are still under development. As
of now, it has been confirmed that the system has a new backbone,
uses an anchor-free design, has a revamped detection head, and has a
newly implemented loss function. We have included the performance of
this model on the GRAZPEDWRI-DX dataset as a benchmark for future
studies, as further improvements to YOLOv8 may surpass the results
obtained in this study. YOLOv8 comes in five versions at the time of
release (January 10, 2023), namely, ‘‘n’’, ‘‘s’’, ‘‘m’’, ‘‘l’’, and ‘‘x’’.

3.3.5. Faster R-CNN
The Faster R-CNN model includes a backbone, an RPN (regional

proposal network), and a detection network. ResNet50 with FPN is
used as the backbone for feature extraction. Anchors with variable
sizes and aspect ratios are generated for each feature. The RPN selects
appropriate anchor boxes using a classifier that predicts if an anchor
box contains an object based on an IoU threshold of 0.5. The regressor
predicts offsets for anchor boxes containing objects to fit them tightly to
the ground truth labels. Finally, the RoI pooling layer converts variable-
sized proposals to a fixed size to run a classifier and regress a bounding
box. Fig. 3 illustrates the architecture of Faster R-CNN.

3.4. Binary classifiers

For our binary classification task (fracture/no-fracture), we em-
ployed a standard CNN architecture that consists of multiple convo-
lutional layers, followed by pooling layers, fully connected layers, and
a final layer with sigmoid activation. The detailed architecture of this
conventional ConvNet is presented in s Fig. 4. we also explored the
capabilities of DenseNets, which have been observed to outperform
traditional CNNs in various tasks. It is important to note that for
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Fig. 2. YOLO Architecture depicting the input, backbone, neck, head, and output.
Fig. 3. Faster R-CNN Pipeline.
the conventional CNN, the selection of the number of layers and
other hyperparameters was not intentional; rather, they represent com-
monly used configurations in the literature. We trained four variants of
the DenseNet models: DenseNet121, DenseNet161, DenseNet169, and
DenseNet201. Each model increases in complexity and depth from the
previous one. The models are pre-trained on ImageNet data. Imple-
mentations for these variants are readily available in PyTorch. Finally,
since YOLOv8 also comes with classification capabilities, initially, the
YOLOv8 m model was pre-trained using chest data sourced from Kag-
gle [44]. Subsequently, we fine-tuned this pre-trained model on our
primary dataset pertaining to wrist data. The aim was to compare the
classification performance of YOLOv8 m with DenseNets and conven-
tional CNNs in terms of sensitivity and accuracy. Our choice of using
chest X-ray pretrained weights over ImageNet or COCO was influenced
by the domain and content similarities between chest and wrist X-rays.
Both share specific features inherent to medical imaging, such as X-ray
beam artifacts and consistent grayscale patterns. In contrast, ImageNet
or COCO comprises diverse, colored images from various non-medical
contexts, which do not capture the nuances of medical imaging.

3.5. Training details

In the experimentation of YOLO variants, standard hyperparameters
were utilized. The input resolution was fixed at 640 pixels. The op-
timization algorithm employed was SGD with an initial learning rate
5

𝛼 = 1 × 10−2, final learning rate 𝛼𝑓 = 1 × 10−2 (except for YOLOv7
variants with a final learning rate 𝛼𝑓 = 1 × 10−1), momentum = 0.937,
weight decay = 5×10−4. Each variant/model underwent 100 epochs of
training from scratch and was observed to converge between 90–100
epochs. Every variant was trained with a batch size of 16 except for the
‘‘P6’’ variants of YOLOv7 namely (d6, e6, w6, e6e) which were trained
with a batch size of 8 due to computational constraints.

With Faster R-CNN, the only difference was the learning rate of
𝛼 = 1 × 10−3, momentum of 0.9 and weight decay of 5 × 10−4. All other
parameters were the same as YOLO variants. As with YOLO models,
the selection of these parameters is not deliberate, they are the default
settings.

All binary classifiers were trained for a maximum of 100 epochs
using a batch size of 64. The learning rate was set at 1×10−3. The Adam
optimization algorithm guided the training process. Input images were
standardized to a resolution of 224 pixels.

3.6. Evaluation metrics

3.6.1. mAP
To evaluate object detection, Intersection over Union (IoU) is com-

monly used to determine the accuracy of predicted object location. It is
the ratio of the intersection of the predicted and ground truth bounding
boxes to the union of these boxes. For a given image, let A be the set
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Fig. 4. Architecture summary of the conventional CNN binary classifier.

of predicted bounding boxes and B be the set of ground truth bounding
boxes. IoU can be computed as:

𝐼𝑜𝑈 (𝐴,𝐵) = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

; where 𝐴,𝐵 ∈ [0, 1] (3)

Commonly, If IoU > 0.5, the detection is considered true positive, else
it is false positive. TP and FP can be computed using IoU to calculate
Average precision (AP) for each object class c as follows:

𝐴𝑃 (𝑐) =
𝑇𝑃 (𝑐)

𝑇𝑃 (𝑐) + 𝐹𝑃 (𝑐)
(4)

Finally, after computing AP for each object class, we compute the Mean
Average Precision mAP which is an average of AP across all classes C
under consideration. mAP is given as:

𝑚𝐴𝑃 = 1
𝐶

𝐶
∑

𝑐=1
𝐴𝑃 (𝑐) (5)

mAP is the metric that quantifies the performance of object detection
algorithms. Thus, the metric 𝑚𝐴𝑃 0.5 indicates mAP for 𝐼𝑜𝑈 > 0.5.
Furthermore, it takes into account the balance between precision and
recall and considers both the occurrence of false positives and false
negatives.

3.6.2. Sensitivity
Sensitivity, in the context of our model, pertains to its capacity

to accurately recognize true detections among all positive detections
within the dataset. Specifically, it gauges the model’s ability to cor-
rectly identify the presence of a fracture or abnormality. We prioritize
this metric due to the potential consequences of false negatives in
wrist trauma cases. Failure to detect fractures is a frequent reason
for differences in diagnosis between the initial interpretation of X-ray
6

images and the final analysis conducted by certified radiologists. The
calculation for sensitivity is as follows:

Sensitivity = True Positives
True Positives + False Negatives (6)

Initially, we evaluated the models using a default confidence thresh-
old of 0.001. This default threshold will give us an initial understanding
of the performance of each model in terms of fracture detection. Object
detection models typically have lower confidence thresholds compared
to classification models. This is because object detection involves both
classifying objects and precisely localizing multiple objects within an
image. Setting a lower threshold helps ensure that the model does not
miss any potential objects. We then select the best-performing model
and test its performance at higher thresholds (0.5, 0.7, 0.9).

3.7. Supplementary materials

The supplementary materials, including source code, and dataset
split can be accessed through the following links:

• Source Code1

• Dataset Split2

4. Dataset

The dataset used in this study is called GRAZPEDWRI-DX for ma-
chine learning presented by the authors in [21] and is publicly made
available to encourage computer vision research. The dataset contains
pediatric wrist radiograph images in PNG format of 6091 patients
(mean age 10.9 years, range 0.2 to 19 years; 2688 females, 3402 males,
1 unknown), treated at the Division of Paediatric Radiology, Depart-
ment of Radiology, Medical University of Graz, Austria. It contains
a total of 20,327 wrist images covering lateral and posteroanterior
projections. The radiographs were acquired over a 10-year period
from 2008 to 2018 and annotated between 2018 and 2020 by expert
radiologists and medical students. The annotations were validated by
three experienced radiologists. We choose to use this dataset in our
study for the following reasons:

1. The dataset is quite large consisting of 20,327 labeled and
tagged images, making it suitable for various computer vision
algorithms

2. To our knowledge, there are no related pediatric datasets pub-
licly available, with others featuring only binary labels or not as
comprehensively labeled as the one we use.

3. It contains diverse images of the early stages of bone growth
and organ formation in children. Studying the wrist at this
stage offers unique insights into the diagnosis, treatment, and
prevention of anomalies that are not possible when studying
adult wrists.

4.1. Analysis of objects in the dataset

The dataset has 9 objects, including periostealreaction, fracture,
metal, pronatorsign, softtissue, boneanomaly, bonelesion, foreignbody,
and text. The ‘‘text’’ object, typically present in most X-ray images, is
used to identify the side of the body. However, some images might not
contain any objects, including this text. Table 1 shows the number of X-
ray images containing each object. Aside, from the object ‘text’, fracture
is the most common object, followed by periostealreaction and metal.
Boneanomaly, bonelesion, and foreignbody have the lowest occurrence.

In Table 2, we show the number of images in which a particular
abnormality occurs only once, twice, or multiple times.

1 https://github.com/ammarlodhi255/pediatric-wrist-abnormality-
detection

2 https://studntnu-my.sharepoint.com/:u:/g/personal/ammaa_ntnu_no/
EVUBFTvHlu9DgxcmmoTyFQoBGqRiGrKc5EzV1-b3YPnhyw?e=HNvu5j

https://github.com/ammarlodhi255/pediatric-wrist-abnormality-detection
https://github.com/ammarlodhi255/pediatric-wrist-abnormality-detection
https://studntnu-my.sharepoint.com/:u:/g/personal/ammaa_ntnu_no/EVUBFTvHlu9DgxcmmoTyFQoBGqRiGrKc5EzV1-b3YPnhyw?e=HNvu5j
https://studntnu-my.sharepoint.com/:u:/g/personal/ammaa_ntnu_no/EVUBFTvHlu9DgxcmmoTyFQoBGqRiGrKc5EzV1-b3YPnhyw?e=HNvu5j
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Table 1
Class distribution.
Abnormality Instances Ratio

Boneanomaly 192 0.94%
Bonelesion 42 0.21%
Foreignbody 8 0.04%
Fracture 13 550 66.6%
Metal 708 3.48%
Periostealreaction 2235 11.0%
Pronatorsign 566 2.78%
Softtissue 439 2.16%
Text 20,274 99.74%

Table 2
Object occurrences.

Abnormality Zero One Two More Total

Fracture 6777 9212 4137 201 13 550
Boneanomaly 20 135 42 24 126 192
Bonelesion 20 285 11 8 23 42
Foreignbody 20 319 0 0 8 8
Metal 19 620 347 219 141 707
Periostealreaction 18 092 1273 885 77 2235
Pronatorsign 19 761 456 71 39 566
Softtissue 19 888 221 82 136 439

5. Results & discussion

This section presents a comprehensive analysis of the performance
of all models utilized in this study. We start by conducting a de-
tailed analysis of the different variants within each YOLO model.
Subsequently, we identify the best-performing variant from each YOLO
model based on the highest mAP score at an IoU threshold of 0.5 and
recall (sensitivity) at a fixed confidence threshold of 0.001 across all
classes and the fracture class. Finally, we compare the performance of
the best-performing variants against each other and also against Faster
R-CNN. The top-performing variant is further evaluated for sensitivity
at higher confidence thresholds (0.5, 0.7, 0.9), we also look at the
sensitivity vs. precision trade-off of the model.

The performance of YOLOv5 variants is presented in Table 3 illus-
trating their performance across all classes and also on the fracture
class. The results reveal that the variants, "l’’, "x’’, and ‘‘s’’ achieved
the highest mAP of 0.95 for fracture detection. However, the highest
sensitivity of 0.91 was attained only by the variants ‘‘n’’ and ‘‘s’’ with
variant ‘‘s’’ exhibiting superior performance in detecting fractures by
excelling in both sensitivity and mAP. Notably, variant ‘‘s’’ also exhibits
a precision of 0.89, indicating a favorable balance between precision
and recall. Regarding overall performance across all classes, variant ‘‘x’’
obtained the highest mAP score of 0.69, while variant ‘‘s’’ achieved the
highest sensitivity of 0.66. Increasing the complexity beyond variant
‘‘s’’ seems to decrease the sensitivity of the model.

Table 4 displays the performance of YOLOv6 variants. Among the
variants, ‘‘n’’, ‘‘s’’, and ‘‘m’’ achieved the highest mAP of 0.94 for
fracture detection, with ‘‘s’’ having the highest sensitivity of 0.89. How-
ever, we observed that increasing the model complexity beyond the ‘‘s’’
variant had a diminishing effect on its sensitivity in fracture detection.
We found that the sensitivity improved by 0.03 when transitioning
from the ‘‘n’’ variant to the ‘‘s’’ variant, suggesting that the ‘‘s’’ variant
struck the optimal balance between complexity and performance for
this specific task of fracture detection. When considering performance
across all classes, the ‘‘m’’ variant exhibited the highest overall mAP of
0.64, along with a sensitivity of 0.83. The ‘‘s’’ variant followed closely
behind with an mAP of 0.62 and a sensitivity of 0.82.

Table 5 presents the performance evaluation of YOLOv7 variants.
The results demonstrate that the second variant of the YOLOv7 model
achieved the highest mAP of 0.94 and a sensitivity of 0.91 for fracture
detection. This variant also exhibits superior performance across all
classes, attaining the highest mAP of 0.61 and a sensitivity of 0.54.
7

Fig. 5. Confusion Matrix (YOLOv8 m).

Consistent with previous observations in YOLO5 and v6, increasing the
model’s complexity beyond the second variant negatively impacts its
sensitivity.

Table 6 illustrates the performance of YOLOv8 model variants for
all classes, including the fracture class. The ‘‘m’’ variant achieved a
mAP of 0.95 and the highest sensitivity of 0.92 in detecting fractures.
Beyond this variant, increasing complexity appears to decrease fracture
detection sensitivity while maintaining the same mAP score. For all
classes, the variant ‘‘x’’ demonstrated the highest mAP of 0.77 and
sensitivity of 0.64. Interestingly, here increasing the model complexity
generally enhanced performance in terms of both mAP and especially
sensitivity across all classes.

In the majority of YOLO models, excluding YOLOv8, a rise in model
complexity corresponded to reduced sensitivity for fracture detection
and across all classes. Several factors might account for this observa-
tion. The ‘‘s’’ variant appears to optimally balance model complexity
and performance. Simpler variants like ‘‘n’’ may not capture intricate
patterns adequately, while highly complex variants might overfit to
training data. Additionally, the architecture and parameters of the
‘‘s’’ variant may be intrinsically better aligned for discerning features
pertinent to wrist abnormalities in the dataset. However, in the latest
version of YOLO, YOLOv8, the ‘‘m’’ variant appears to excel specifically
in fracture detection. Adding further complexity beyond this variant
might introduce redundant parameters or layers without significantly
enhancing fracture detection capabilities. It is worth noting that in-
creased complexity led to enhanced performance across all classes, the
‘‘x’’ variant’s superior performance suggests a more robust generaliza-
tion capability. This could be due to its ability to effectively extract
diverse and generalized features across various abnormality classes.

The experimental evaluation results using the Faster R-CNN model
are presented in Table 7. The obtained sensitivity values for fracture
detection and overall performance across all classes are 0.75 and 0.36,
respectively. The results clearly demonstrate that all variants of the
YOLO model significantly outperform Faster R-CNN. This conclusion is
further supported by the higher mean mAP scores observed for every
YOLO variant compared to Faster R-CNN, both in terms of fracture
detection and overall performance across all classes. Moreover, the
performance of YOLO across all classes suggests that YOLO is also
capable of handling high-class imbalance compared to Faster R-CNN.
These findings strongly suggest that the YOLO model, with its single-
stage detection algorithm, is a more effective choice for this particular
task.
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Table 3
YOLOv5 results.

Model variant Precision (All) Sensitivity (All) mAP@0.5 (All) Precision (Fracture) Sensitivity (Fracture) mAP@0.5 (Fracture)

YOLOv5n 0.77 0.52 0.59 0.87 0.91 0.94
YOLOv5s 0.75 0.66 0.65 0.89 0.91 0.95
YOLOv5 m 0.80 0.62 0.69 0.91 0.90 0.94
YOLOv5l 0.76 0.61 0.68 0.92 0.90 0.95
YOLOv5x 0.73 0.64 0.69 0.91 0.90 0.95
Table 4
YOLOv6 results.

Model variant Precision (All) Sensitivity (All) mAP@0.5 (All) Precision (Fracture) Sensitivity (Fracture) mAP@0.5 (Fracture)

YOLOv6n 0.50 0.73 0.51 0.94 0.86 0.94
YOLOv6s 0.51 0.82 0.62 0.92 0.89 0.94
YOLOv6 m 0.59 0.83 0.64 0.94 0.87 0.94
YOLOv6l 0.60 0.80 0.64 0.94 0.87 0.93
YOLOv6l6 0.49 0.77 0.52 0.91 0.86 0.92
Table 5
YOLOv7 results.

Model variant Precision (All) Sensitivity (All) mAP@0.5 (All) Precision (Fracture) Sensitivity (Fracture) mAP@0.5 (Fracture)

YOLOv7-Tiny 0.59 0.52 0.50 0.79 0.91 0.93
YOLOv7 0.79 0.54 0.61 0.86 0.91 0.94
YOLOv7x 0.68 0.49 0.53 0.85 0.90 0.94
YOLOv7-W6 0.84 0.44 0.47 0.86 0.88 0.92
YOLOv7-E6 0.81 0.46 0.48 0.86 0.88 0.92
YOLOv7-D6 0.74 0.48 0.49 0.84 0.88 0.92
YOLOv7-E6E 0.69 0.50 0.47 0.85 0.87 0.90
Table 6
YOLOv8 results.

Model variant Precision (All) Sensitivity (All) mAP@0.5 (All) Precision (Fracture) Sensitivity (Fracture) mAP@0.5 (Fracture)

YOLOv8n 0.73 0.58 0.59 0.87 0.88 0.93
YOLOv8s 0.72 0.63 0.65 0.87 0.91 0.94
YOLOv8 m 0.60 0.60 0.56 0.84 0.92 0.95
YOLOv8l 0.74 0.60 0.62 0.92 0.90 0.95
YOLOv8x 0.79 0.64 0.77 0.91 0.89 0.95
Table 7
Faster R-CNN results.
Abnormality Sensitivity mAP@0.5

Fracture 0.64 0.75
All 0.36 0.36

We now move towards binary classification results. Table 8 displays
he summary of the classification report for the binary classifiers. For
larification, class 0, represents no fracture. The table reveals that the
retrained YOLOv8 m achieved the highest fracture recall (sensitivity)
f 0.93 and an overall accuracy of 0.92. Followed by conventional CNN,
hich achieved a fracture sensitivity of 0.89 and an overall accuracy of
.80. The diminished accuracy observed in the DenseNet models may
e attributed to the significant class imbalance present in the binary
ataset. While DenseNets exhibit better performance in identifying the
resence of a fracture, they falter in detecting its absence, likely due to
he limited instances of this class compared to fractures. DenseNets,
ith their dense inter-layer connections, are designed to retain and

euse features throughout the network. In situations of dataset imbal-
nce, the features predominantly reflect the majority class, potentially
ndermining the representation of the minority class. Furthermore,
he inherent depth and intricacy of DenseNets elevate the risk of
verfitting, particularly when dealing with underrepresented classes.

Fig. 6 provides an overview of the sensitivity scores obtained for
racture class as well as across all classes by all best-performing YOLO
ariants and Faster R-CNN. Moreover, it is clear from Table 9 that
he variant ‘‘YOLOv8m’’ is the best-performing variant out of all the
8

ariants employed in this study when it comes to fracture detection.
Table 8
Classification report of binary classifiers.

Model Acc Class P R F1

Conventional CNN 0.80 0 0.74 0.64 0.68
1 0.83 0.89 0.86

DenseNet121 0.61 0 0.40 0.35 0.38
1 0.70 0.74 0.72

DenseNet161 0.63 0 0.44 0.39 0.41
1 0.71 0.76 0.73

DenseNet169 0.62 0 0.40 0.28 0.33
1 0.69 0.79 0.74

DenseNet201 0.61 0 0.40 0.35 0.37
1 0.70 0.74 0.72

Pretrained YOLOv8m 0.92 0 0.86 0.90 0.88
1 0.95 0.93 0.94

Interestingly, YOLOv6s outperformed all other variants when it comes
to sensitivity across all classes. For binary classification, YOLOv8 m out-
performed other classifiers achieving an impressive fracture sensitivity
of 0.93. It should be noted that YOLOv8 m was pretrained on chest
X-rays as mentioned earlier. The results presented in this study using
the variant ‘‘YOLOv8m’’ represent a significant improvement upon the
ones originally presented in [21] for the fracture class. In that paper,
the model variant ‘‘YOLOv5m’’ trained on COCO weights achieved a
mAP score of 0.93 and a sensitivity of 0.89 for fracture detection. In
contrast, the results obtained in this study demonstrate a higher mAP

score of 0.95 for fracture detection and a sensitivity of 0.92.
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Fig. 6. Overview of sensitivity scores of best performing YOLO variants and Faster R-CNN.
Table 9
Sensitivity scores summary of detection models as well as binary classifiers.

Task Model Fracture All

Detection

YOLOv5s 0.91 0.52
YOLOv6s 0.89 0.82
YOLOv7 0.91 0.54
YOLOv8 m 0.92 0.60
Faster R-CNN 0.64 0.36

Binary
Classification

Conventional CNN 0.89 –
DenseNet169 0.79 –
Pretrained YOLOv8 m 0.93 –

In applications where the cost of false positives is substantial, a
model exhibiting high precision is generally preferred, whereas in situ-
ations where the cost of missed detections is significant then the model
with high recall (sensitivity) is preferred. However, in the context of
fracture detection, our research prioritizes high sensitivity due to the
potentially severe consequences of false negatives when fractures are
overlooked by the AI-based screening system. Achieving high sensitiv-
ity is crucial to ensure fractures are not missed and to facilitate prompt
treatment for patients. Consequently, the selection of the optimal model
is primarily based on sensitivity, while also considering a favorable
balance of precision. A high precision score helps minimize the occur-
rence of unnecessary additional tests or procedures, ultimately reducing
patient anxiety and healthcare costs. While maximizing sensitivity may
lead to an increase in false positives, emphasizing precision may result
in missed fractures. Thus, achieving the right equilibrium is essential
to avoid unwarranted investigations while ensuring accurate fracture
detection.

Ensuring patient safety by detecting all fractures without missing
any is crucial for an AI algorithm. Therefore, a sensitivity close to 100%
is desirable. We now conduct a threshold analysis for the ‘‘YOLOv8m’’
variant to examine the impact of increasing the confidence threshold
(0.5, 0.7, 0.9) on the fracture detection sensitivity score, which is
shown in Table 10. It is observed that as the confidence threshold
is increased, the sensitivity of the algorithm decreases. This decrease
is expected because object detection tasks, unlike classification tasks,
perform both detection and classification hence requiring a low thresh-
old to avoid missing any fractures. However, ‘‘YOLOv8m’’ performs
reasonably well at a confidence threshold of 0.5, exhibiting a sensitivity
of 0.83. Fig. 8 displays the bounding box estimations for fractures in an
X-ray image from the best-performing models, including Faster R-CNN.
Among these models, ‘‘YOLOv8m’’ accurately predicted the bounding
boxes of fractures while avoiding false positive detections. We also
9

Table 10
Threshold analysis for fracture detection (YOLOv8 m).
Confidence threshold Sensitivity

0.001 (Default) 0.92
0.5 0.83
0.7 0.67
0.9 0.00

evaluated the performance of the variant ‘‘YOLOv8m’’ on a challenging
image containing multiple objects of interest overlapping each other,
including 2 fractures, 3 periosteal reactions, 1 metal, and 1 text. The
bounding box estimates for these objects are illustrated in Fig. 9. It
can be seen that the model demonstrates an excellent job in detecting
fractures even in the presence of other abnormalities that may conceal
the fractures. However, it is important to acknowledge that the variant
does not fully cover the bottom edges of the ‘‘metal’’ object and missed
one ‘‘periosteal reaction’’ object. These instances highlight the ongoing
necessity for continuous improvement and fine-tuning of algorithms
to effectively handle complex cases like these. Additionally, it should
be noted that the limited number of instances for classes other than
fractures might have contributed to these observations.

Figs. 7(a), and 7(b) present Recall (sensitivity) versus Confidence
and Precision versus Recall curves, respectively, for the variant
‘‘YOLOv8m’’ across all classes. These curves provide a visual repre-
sentation of the model’s performance and allow for a more thorough
evaluation of its capabilities. The Recall versus Confidence curve illus-
trates the model’s ability to correctly identify abnormalities at different
confidence thresholds, while the Precision versus Recall curve shows
the trade-off between the model’s precision and recall, with higher
precision typically corresponding to lower recall and vice versa. Ad-
ditionally, a confusion matrix 5 is shown for the variant ‘‘YOLOv8m’’.

6. Conclusion & future work

In this study, we aimed to evaluate the performance of state-of-
the-art single-stage detection models, specifically YOLOv5, YOLOv6,
YOLOv7, and YOLOv8, in detecting wrist abnormalities and compare
their performances against each other and the widely used two-stage
detection model Faster R-CNN. Additionally, we evaluated a conven-
tional binary convolutional CNN and DenseNets and compared their
sensitivity to that of YOLO. Moreover, the analysis of the performance
of all variants within each YOLO model was also provided. The eval-
uation was conducted using the recently released GRAZPEDWRI-DX
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Fig. 7. YOLOv8 m Curves for Recall vs. Confidence and Precision vs. Recall.
Fig. 8. Bounding box estimates for fractures in an X-ray image.
dataset, with a total of 23 detection procedures being carried out.
The findings of our study demonstrated that YOLO models outperform
the commonly used two-stage detection model, Faster R-CNN, in both
fracture detection and across all classes, hlit also outperforms the
DenseNets and conventional CNN in terms of sensitivity when it comes
to fracture recognition.

Furthermore, an analysis of YOLO models revealed that the YOLOv8
variant ‘‘YOLOv8m’’ achieved the highest sensitivity score in fracture
detection and the mAP score. On the other hand, ‘‘YOLOv6m’’ achieved
the highest sensitivity across all classes. Meanwhile, ‘‘YOLOv8x’’
achieved the highest mAP across all classes. We also discovered that
the relationship between the complexity of a YOLO model, as measured
by the use of compound-scaled variants within each YOLO model,
and its performance is not always linear. Specifically, our analysis of
the dataset revealed that the performance of YOLO variants did not
consistently improve with increasing complexity, with the exception of
YOLOv8.
10
These results contribute to understanding the relationship between
the complexity of YOLO models and their performance, which is im-
portant for guiding the development of future models. Our study high-
lights the potential of single-stage detection algorithms, specifically,
the YOLO models for detecting wrist abnormalities in clinical settings.
These algorithms are faster than their two-stage counterparts, making
them more practical for emergency situations commonly found in hos-
pitals and clinics. Additionally, the study’s results indicate that single-
stage detectors are highly accurate in detecting wrist abnormalities,
making them a promising choice for clinical use.

Physicians can utilize single-stage detection systems as valuable
screening tools to assist in the initial assessment of patients. These
systems can offer additional information and insights to support physi-
cians in their clinical decision-making. They can effectively highlight
suspicious areas on medical images, draw attention to potential frac-
tures, and provide precise measurements or annotations for accurate
assessment. By leveraging the capabilities of fracture detection systems,
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Fig. 9. Bounding box estimates by YOLOv8 m variant using a challenging image with overlapping objects.
physicians can enhance their ability to detect fractures and make
informed decisions regarding patient care.

While this research was conducted, YOLOv8 was the most recent
version. The results of this study can serve as a benchmark for evaluat-
ing the performance of future models for wrist abnormality detection,
as further improvements to either YOLOv8 or future versions of YOLO
may surpass the results obtained in this study. It is worth noting
that this study did not explore the entire hyperparameter space and
finding the best hyperparameters for each YOLO model may improve
the performance on the dataset. Computational limitations restricted
the input resolution to 640 pixels, but higher resolutions could further
improve performance. In future research, it would also be valuable
to assess the model’s robustness by evaluating its performance using
cross-validation on multiple folds of the data. Moreover, the study used
a dataset with class imbalance, so increasing their instances through
augmentation or image generation could enhance performance. Ad-
ditionally, our classification outcomes indicated that YOLO surpassed
DenseNets in performance. This advantage may stem from the use of
pre-trained weights based on chest data. Further investigations into
the implications of transfer learning, especially in object detection, are
warranted.
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