Two-sample intraclass correlation coefficient tests for matrix-valued data

Yuli Liang, Chengcheng Hao and Deliang Dai
Two-sample intraclass correlation coefficient tests for matrix-valued data

Yuli Liang, Chengcheng Hao and Deliang Dai
Two-sample intraclass correlation coefficient tests for matrix-valued data

Yuli Liang, Chengcheng Hao and Deliang Dai

Series editor: Thomas Giebe

ISBN: 978-91-8082-149-0 (pdf)
DOI: https://doi.org/10.15626/ns.wp.2024.06

Report No 05, Department of Economics and Statistics, Linnaeus University, Växjö, 2024

This work © 2024 by Yuli Liang, Chengcheng Hao and Deliang Dai is licensed under Attribution-No Derivatives 4.0 International creative commons.
Two-sample intraclass correlation coefficient tests for matrix-valued data

Yuli Liang*, Chengcheng Hao and Deliang Dai

Abstract Under a model having a Kronecker product covariance structure with compound symmetry or circular symmetry, two-sample hypothesis testing for the equality of two correlation parameters is considered. Different tests are proposed by using the ratio of independent F distributions. Several tests are compared with the proposed ones and practical recommendations are made based on their type I error probabilities and powers. Finally, all mentioned tests are applied to a real data example.

Key words: Kronecker covariance structure, Higher order asymptotics, Ratio of F distributions.

1 Introduction

The study of the patterned covariance matrices with Kronecker product of two components, that is, $\Sigma \otimes \Psi$, where $\Sigma(q \times q)$ and $\Psi(p \times p)$, has raised much attention in recent years. Among others, this structure can be particularly useful to model spatial-temporal dependency simultaneously, where Σ is connected to temporal dependency and Ψ models the dependency over space (see Srivastava et al. [2009] for example). In the Kronecker product of two matrices there are only $\frac{1}{2}(p(p + 1) + q(q + 1))$ parameters to be estimated as compared to the general case where we need to estimate $pq(pq + 1)/2$ parameters. Hence it is also preferable in many analysis when there is not enough data otherwise to estimate the model parameters (Dutilleul [2018]). From an inferential point of view, the Kronecker structure makes the estimation more complicated since the identification problem should be resolved and some restrictions have to be imposed on the parameter space. Then it results in non-explicit maximum likelihood estimates (MLEs) which depend on the choice of restrictions imposed on the covariance matrix (Srivastava et al. [2008]).

One interesting extension is when there can be some patterns imposed on matrices Σ and Ψ, the compound symmetry (CS) structure. Roy and Leiva (2008) provide an algorithm to compute

Yuli Liang, Deliang Dai
Department of Economics and Statistics, Linnaeus University, SE-352 52 Växjö, Sweden, e-mail: yuli.liang@lnu.se, deliang.dai@lnu.se

Chengcheng Hao
Department of Data Science, School of Statistics and Information, Shanghai University of International Business and Economics, 201620 Shanghai, China, e-mail: chengcheng.hao@suibe.edu.cn

* Corresponding author
the MLEs of the parameters when both Ψ and Σ have a CS structure or an autoregressive of order one structure. Worsley et al. (1991) published real data where glucose measurements were taken at 15 different regions of their brain paired in both hemispheres ($q = 2$). Two groups of 10 subjects ($n_1 = n_2 = 10$) were analyzed by two different experimental techniques. It was of interest to test whether three specific pairs of the regions ($p = 3$) with equal distance for two different groups are equally correlated. This requires the task of the equality test of two correlation parameters and this application will be used as an illustrative example later in this article.

In this paper, we also consider another case where one Kronecker component is CS structure and the one is circular Toeplitz (CT) structure. Circular dependence is common in many applications, especially in signal processing (Olkin and Press, 1969), medical (Louden and Roy, 2010) and educational studies (Steinmetz et al., 2012). A CT matrix means that the correlation between two measurements depends only on the circular distance between them, in other words, on the number of positions between them on a circle.

Testing Kronecker product covariance matrix is often challenging especially under normality assumptions the existence and uniqueness of the MLE should be considered. Hao et al. (2016) was one of only a few studies (Lu and Zimmerman, 2005; Srivastava et al., 2008) which have proposed some testing procedures and among others it has been noted that two independent exact F tests exist for testing hypothesis concerning the correlations. Moreover, the methodologies for combining the two F tests have been explored.

Motivated by the above arguments, the aim of this paper is to study two-sample intraclass correlation coefficient tests under a model having a Kronecker product covariance structure with compound symmetry or circular symmetry. We shall use one of the higher order asymptotic procedures that modifies the likelihood ratio test so as to achieve accurate performance in small samples; see Brazzale and Davison (2008). By using those independent minimum sufficient statistics, it will also be noted that different independent tests exist by using the ratio of F distributions.

The rest of this paper is organized as follows. In Section 2 the model and the hypothesis are presented. Several test procedures are investigated in Section 3 and it will also be noted that different independent exact tests exist for testing the equality of the two correlations. The performance of all the tests will be evaluated in Section 4 based on simulated type I error probabilities and power. Finally, the example mentioned earlier will be used to illustrate presented methods in Section 5. The article is summarized in the Discussion section.

2 Model and hypothesis

Let $X_{k1}, X_{k2}, \ldots, X_{kn_k}$ is a random sample from the distribution of X_k, so that each X_{ki} is a $p \times q$ matrix. We assume a matrix normal model having the following structure:

$$X_{ki} \sim N_{p,q}(\mu_k, \Psi_k, \Sigma_k), \quad i = 1, \ldots, n_k, \quad k = 1, 2,$$

where $\mu_k : p \times q$ is an unstructured mean, $\Psi_k : p \times p$ describes the covariance between the rows of X_{ki} at any given column, and $\Sigma_k : q \times q$ is the corresponding covariance matrix between the columns at any given row. The matrices μ_k, Σ_k and Ψ_k are unknown. Let I_p be the $p \times 1$ vector with all elements equal to 1 and J_p be the $p \times p$ identity matrix, 1_p be the $p \times 1$ vector with all elements equal to 1 and $J_p = 1_p 1_p'$, $P_1 = \frac{1}{p} J_p$, $Q_1 = I_p - \frac{1}{p} J_p$, $X_{kic} = X_{ki} - \bar{X}_k$, where \bar{X}_k are the means of the $X_{ki}, k = 1, 2$.

The CS structured matrix Ψ_k can be expressed as
\[\Psi_k = \psi_k \left[(1 - r_k)I_p + r_kJ_p \right], \]

where \(\psi_k \) and \(r_k \) are unknown parameters. Furthermore, the following two specific structures of \(\Sigma_k \) are of interest:

(i) \(\Sigma_k \) is a CS matrix, i.e., \(\Sigma_k = \sigma_k \left[(1 - \rho_k)I_q + \rho_kJ_q \right] \), where \(\sigma_k \) and \(\rho_k \) are unknown parameters.

(ii) \(\Sigma_k = (\sigma_{hl}) \) is a CT matrix which depends on \(r = \left[\frac{q}{2}\right] + 1 \) parameters, and for \(h, l = 1, \ldots, q \),

\[\sigma_{hl} = \begin{cases} \tau_{|l-h|+1}, & \text{if } |l-h| \leq r-1, \\ \tau_{q-|l-h|+1}, & \text{otherwise}, \end{cases} \]

where the \(\tau_j \)'s are unknown parameters for \(j = 1, \ldots, r \). For the purpose of identifiability, we shall assume that \(\psi_k = 1 \) in (2). We shall consider the following hypothesis testing problem concerning the correlation coefficients:

\[H_0 : r_1 = r_2 = r \text{ versus } H_a : -\frac{1}{p-1} < r_1 \neq r_2 < 1. \]

3 Test procedures

In this section we shall consider several possible tests for the hypothesis in (3). First we give the eigenvalues and eigenvectors of a CS and CT matrix respectively, since they are important for the subsequent inference. Let \(\Psi_k^* \) denote the matrix \(\Psi_k \) under the restriction \(\Psi_k = 1 \). The distinct eigenvalues of \(\Sigma_k \) and \(\Psi_k^* \) in (i) are

\[\begin{cases} \lambda_{k1} = \sigma_k (1 + (q-1)\rho_k) \\ \lambda_{k2} = \sigma_k (1 - \rho_k) \end{cases} \quad \text{and} \quad \begin{cases} \lambda_{k3} = 1 + (p-1)r_k \\ \lambda_{k4} = 1 - r_k \end{cases} \]

The distinct eigenvalues of the CT structured \(\Sigma_k \) in (ii), i.e., \(\xi_{kj}, j = 1, \ldots, \left[\frac{q}{2}\right] + 1 \), are given in the following lemma. The spectral properties of CT matrices can, for example, be found in Basilevsky (1983), Nahtman and von Rosen (2008); Liang et al. (2021). It is worth noting that a CS matrix is a special case of a CT matrix so the following lemma can also be applied to a CS matrix.

Lemma 1. Let \(\Sigma : q \times q \) be a CT matrix and let \(\lambda_h, h = 1, \ldots, q, \) be an eigenvalue of \(\Sigma \).

(i) If \(q \) is odd, then

\[\lambda_h = \tau_0 + 2 \sum_{j=1}^{[q/2]} \tau_j \cos \left(\frac{2\pi hj}{q} \right). \]

It follows that, \(\lambda_h = \lambda_{q-h}, h = 1, \ldots, q-1, \) and there is only one eigenvalue, \(\lambda_q, \) which has multiplicity 1, all other eigenvalues are of multiplicity 2.

If \(q \) is even, then

\[\lambda_h = \tau_0 + 2 \sum_{j=1}^{q/2-1} \tau_j \cos \left(\frac{2\pi hj}{q} \right) + \tau_{q/2} \cos \left(\frac{\pi h}{q} \right). \]
It follows that, for \(h \neq q, q/2 \): \(\lambda_h = \lambda_{q-h} \), there are only two eigenvalues, \(\lambda_q \) and \(\lambda_{q/2} \), which have multiplicity 1, and all other eigenvalues are of multiplicity 2.

(ii) The number of distinct eigenvalues for CT matrix is \(\lfloor \frac{q}{2} \rfloor + 1 \).

(iii) A set of eigenvectors \((v_1, \ldots, v_q)\) corresponding to the eigenvalues \(\lambda_1, \ldots, \lambda_q \), is defined by

\[
v_{hi} = \frac{1}{\sqrt{q}} \left(\cos(2\pi ih/q) + \sin(2\pi ih/q) \right), \quad i, h = 1, \ldots, q.
\]

The eigenvalues and eigenvectors of a CT matrix in Lemma 1 will be utilized to obtain the minimum sufficient statistics in the next subsection, which in turn can be used to constitute the likelihood function in canonical form (see Section 3.2).

3.1 Minimum sufficient statistics

Let \(\eta \) a vector containing all unknown parameters in the covariance matrices \((\Psi_1, \Sigma_1)\) and \((\Psi_2, \Sigma_2)\). Since the hypothesis of interest concerns two components of \(\eta \), the mean parameters \(\mu_1 \) and \(\mu_2 \) are the nuisance parameters. Therefore we only consider the restricted log-likelihood function of \(\eta \), say \(l_c(\eta) \). With the CS structured \(\Psi^* \) and \(\Sigma^* \) in model (1), the minimum sufficient statistics and the corresponding distributions are given in the following theorem by Hao et al. (2016).

Theorem 1. When \(\Sigma_k \) is assumed to be a CS matrix in model (1), \(k = 1, 2 \), the minimum sufficient statistics of \(\eta \) are \(t_k = (t_{k1}, \ldots, t_{k4})' \), where

\[
t_{k1} = \sum_{i=1}^{n_k} \text{tr} \{ P_{1i}X_{kic}P_{1i}'X_{kic} \} \sim (-2\theta_{k1})^{-1}\chi^2(n_k - 1),
\]

\[
t_{k2} = \sum_{i=1}^{n_k} \text{tr} \{ P_{1i}X_{kic}Q_{1i}P_{1i}'X_{kic} \} \sim (-2\theta_{k2})^{-1}\chi^2((n_k - 1)(p - 1)),
\]

\[
t_{k3} = \sum_{i=1}^{n_k} \text{tr} \{ Q_{1i}X_{kic}'P_{1i}X_{kic} \} \sim (-2\theta_{k3})^{-1}\chi^2((n_k - 1)(q - 1)),
\]

\[
t_{k4} = \sum_{i=1}^{n_k} \text{tr} \{ Q_{1i}X_{kic}'Q_{1i}P_{1i}'X_{kic} \} \sim (-2\theta_{k4})^{-1}\chi^2((n_k - 1)(p - 1)(q - 1)),
\]

and

\[
\theta_k(\eta) = (\theta_{k1}, \ldots, \theta_{k4})' = \frac{1}{2} \left((\lambda_{k1}\lambda_{k3})^{-1}, (\lambda_{k1}\lambda_{k4})^{-1}, (\lambda_{k2}\lambda_{k3})^{-1}, (\lambda_{k2}\lambda_{k4})^{-1} \right)'.
\]

Furthermore, \(t_{k1}, \ldots, t_{k4} \) are independent.

Next, we present the minimum sufficient statistics and the corresponding distributions when \(\Sigma_k \) is a CT matrix in model (1).

Theorem 2. When \(\Sigma_k \) is assumed to be a CT matrix in model (1), \(k = 1, 2 \), the minimum sufficient statistics of \(\eta \) are given by
the orthogonal projection onto the corresponding eigenspace. Equation (8) can be simplified as
\[t_{k1j} = \sum_{i=1}^{n_k} \{ E_jX_{ic}'P_{1p}X_{ic} \} \sim \lambda_{k1} \xi_{kj} \chi^2((n_k - 1)m_j), \]
\[t_{k2j} = \sum_{i=1}^{n_k} \{ E_jX_{ic}'Q_{1p}X_{ic} \} \sim \lambda_{k2} \xi_{kj} \chi^2((n_k - 1)(p - 1)m_j), \]
where \(m_j \) is the multiplicity of \(\xi_{kj} \), for \(j = 1, \ldots, [q/2] + 1 \).

Proof. Based on the distribution
\[\sum_{i=1}^{n_k} \text{vec} X_{kic} \text{vec}'X_{kic} \sim W_{pq}(n_k - 1, \Sigma_k \otimes \Psi^*), \]
the restricted log-likelihood function for \(\mu_k \) is obtained as follows:
\[\ell_c(\eta) = -\frac{n_k - 1}{2} \ln |\Sigma \otimes \Psi^*| - \frac{1}{2} \text{tr} \left\{ \sum_{i=1}^{n_k} \text{vec} X_{ic} \text{vec}'X_{ic})(\Sigma^{-1} \otimes \Psi^{-1}) \right\}. \] \hspace{1cm} (8)

By using the spectral decomposition \(\Sigma_k = \sum_{j=1}^{r} \xi_{kj} E_j \), and \(\Psi^* = \lambda_{k3} P_{1p} + \lambda_{k4} Q_{1p} \), where \(\xi_{kj} \), \(j = 1, \ldots, r \) are the eigenvalues given by Lemma 1 and \(\lambda_{k3} \) and \(\lambda_{k4} \) are given in equation (4). \(E_j \) is the orthogonal projection onto the corresponding eigenspace. Equation (8) can be simplified as
\[\ell_c(\eta) = -\frac{n_k - 1}{2} \ln(\xi_{k1} \lambda_{k3}) - \frac{n_k - 1}{2} \sum_{j=2}^{r} m_j \ln(\xi_{kj} \lambda_{k4}) \]
\[- \frac{(n_k - 1)(p - 1)}{2} \ln(\xi_{k1} \lambda_{k4}) - \frac{n_k - 1}{2} \sum_{j=2}^{r} m_j \ln(\xi_{kj} \lambda_{k4}) \]
\[- \frac{1}{2} \xi_{k1}^{-1} \lambda_{k3}^{-1} \sum_{i=1}^{n_k} \text{tr}(P_{1p} X_{ic}'P_{1p}X_{ic}) - \frac{1}{2} \lambda_{k3}^{-1} \sum_{j=2}^{r} \xi_{kj}^{-1} \left\{ \sum_{i=1}^{n_k} \text{tr}(E_jX_{ic}'P_{1p}X_{ic}) \right\} \]
\[- \frac{1}{2} \xi_{k1}^{-1} \lambda_{k4}^{-1} \sum_{i=1}^{n_k} \text{tr}(P_{1p} X_{ic}'Q_{1p}X_{ic}) - \frac{1}{2} \lambda_{k4}^{-1} \sum_{j=2}^{r} \xi_{kj}^{-1} \left\{ \sum_{i=1}^{n_k} \text{tr}(E_jX_{ic}'Q_{1p}X_{ic}) \right\}. \] \hspace{1cm} (9)

The log-likelihood (9) belongs to a curved exponential family, and the minimal sufficient statistic for the unknown covariance parameters is \(t = (t_{k11}, \ldots, t_{k1r}, t_{k21}, \ldots, t_{k2r})' \), where
\[t_{k1j} = \sum_{i=1}^{n_k} \{ E_jX_{ic}'P_{1p}X_{ic} \}, \quad t_{k2j} = \sum_{i=1}^{n_k} \{ E_jX_{ic}'Q_{1p}X_{ic} \}, \] \hspace{1cm} (10)
where \(m_j \) is the multiplicity of \(\xi_{kj} \), for \(j = 1, \ldots, r \). It is readily seen that \(t_{k1j} \) and \(t_{k2j} \) are independent and
\[t_{k1j} \sim \lambda_{k3} \xi_{kj} \chi^2((n_k - 1)m_j), \quad t_{k2j} \sim \lambda_{k4} \xi_{kj} \chi^2((n_k - 1)(p - 1)m_j). \]
\[\square \]
3.2 Likelihood ratio test

With the CS structured Σ_k, the restricted log-likelihood function $\ell_c(\eta)$ can be written in canonical form as

$$\ell_c(\eta) = [(n_1 - 1) c(\theta_1(\eta)) + t_1' \theta_1(\eta)] \times [(n_2 - 1) c(\theta_2(\eta)) + t_2' \theta_2(\eta)],$$

where $\theta_k(\eta)$ is given in (7) and is the so called canonical parameterization of η, and

$$c(\theta_k(\eta)) = -\frac{1}{2} \left[\ln(-\theta_{k1}) + (p-1) \ln(-\theta_{k2}) + (q-1) \ln(-\theta_{k3}) + (p-1)(q-1) \ln(-\theta_{k4}) \right].$$

With the CT structured Σ_k, the restricted log-likelihood function $\ell_c(\eta)$ is given in (9). The REML estimators of ξ_{kj}, λ_{k3} and λ_{k4} are given by

$$\hat{\xi}_{kj} = \frac{1}{p(n_k - 1)m_j} \left(\frac{t_{k1j}}{\lambda_{k3}} + \frac{t_{k2j}}{\lambda_{k4}} \right),$$

$$\hat{\lambda}_{k3} = \frac{1}{q(n_k - 1)} \sum_{j=1}^{r} \frac{t_{k1j}}{\xi_{kj}},$$

$$\hat{\lambda}_{k4} = \frac{1}{q(p-1)(n_k - 1)} \sum_{j=1}^{r} \frac{t_{k2j}}{\xi_{kj}},$$

where the statistics t_{k1j}, t_{k2j} and m_j are given in Theorem 2.

Now let \tilde{r}_1 and \tilde{r}_2 be the the restricted maximum likelihood estimator (REML) of r_1 and r_2. Based on the restrictive likelihood function, the classical signed log-likelihood ratio statistic can be written as

$$LD_c(r) = \text{sign}(\tilde{r}_1 - \tilde{r}_2) \left[2 \left(\sup_{H_0} \ell_c(\eta) - \sup_{H_1} \ell_c(\eta) \right) \right]^{1/2},$$

(11)

which sup is the supremum function and sign(x) is $+1$ or -1 depending on whether $x > 0$ or $x < 0$, respectively.

It is known that the test statistic given in (11) is asymptotically standard normal distributed under regularity conditions, with the tail area approximations having error $O(n^{-1/2})$. One can show the log-likelihood belongs to a curved exponential family. The MLEs of η do not have closed forms under both H_0 and H_1 and are obtained iteratively.

3.3 Higher order procedure

We shall now consider one higher order modification of $LD_c(r)$ in order to have better type I error performance in small samples. The modification that we shall consider is due to DiCiccio et al. (2001). The modified statistic, say $LD_{conv}(r)$, is given by

$$LD_{conv}(r) = \frac{LD_c(r) - m(\hat{\eta}_{o0})}{\sqrt{1 + v(\hat{\eta}_{o0})}},$$

(12)
where \(m(\eta_{00}) \) and \(1 + v(\eta_{00}) \) are the mean and variance of \(LD_c(r) \), respectively, which can be estimated from Monte Carlo simulation of \(t_k \) at the parameter value \(\eta = \eta_{00} \). Subject to regularity conditions, \(LD_{c_{00}}(r) \) has an asymptotic standard normal distribution, and tail area approximation based on \(LD_c(r) \) has relative error \(O(n^{-3/2}) \).

3.4 Tests based on ratio of independent \(F \) distributions

We note that the eigenvalues \(\lambda_{k1} \) and \(\lambda_{k2} \) in (13) are free of \(r_k \), and \(\lambda_{k3}/\lambda_{k4} = (1 - r_k)/(1 + (p - 1)r_k) \). Then we have the following distributions:

\[
\begin{align*}
& c_k t_{k1}/t_{k2} \sim F_{n_k-1, (n_k-1)(p-1)}, \\
& c_k t_{k3}/t_{k4} \sim F_{(n_k-1)(q-1), (n_k-1)(p-1)(q-1)},
\end{align*}
\]

where \(c_k = (p-1)\frac{1-r_k}{1+(p-1)r_k} \). Using this observation, two exact tests can be constructed for testing the null hypothesis in (3), based on the distributions in (6). Construct the following independent test statistics:

\[
\begin{align*}
& F_1^{CS}(r) = c_1 \left(\frac{t_{11}}{t_{12}} \right) / \left(\frac{t_{21}}{t_{22}} \right), \\
& F_2^{CS}(r) = c_1 \left(\frac{t_{13}}{t_{14}} \right) / \left(\frac{t_{23}}{t_{24}} \right).
\end{align*}
\]

Under the null hypothesis \(H_0 : r_1 = r_2 = r \), we have the distributions \(F_1^{CS}(r) \sim F_{n_1-1, (n_1-1)(p-1)} \) and \(F_2^{CS}(r) \sim F_{(n_2-1)(q-1), (n_2-1)(p-1)(q-1)} \). Under the alternative hypothesis \(H_a : -\frac{1}{p-1} < r_1 \neq r_2 < 1 \), we have \(F_1^{CS}(r) \sim c_4 F_{n_1-1, (n_1-1)(p-1)} \) and \(F_2^{CS}(r) \sim c_4 F_{(n_2-1)(q-1), (n_2-1)(p-1)(q-1)} \).

When \(\Sigma_k \) is a CT matrix, the eigenvalues \(\xi_{kj} \) are functions of \(r_k \) given in (4). Thus,

\[
t_{k11}/t_{k12} \sim (\lambda_{k3}/\lambda_{k4})F_{(n_k-1)m_j, (n_k-1)(p-1)m_j}.
\]

Thus \(r = [q/2] + 1 \) exact tests can be constructed for testing hypothesis in (3):

\[
F_j^{CT}(r) = c_1 \left(\frac{t_{1kj}}{t_{12j}} \right) / \left(\frac{t_{21j}}{t_{22j}} \right),
\]

where \(t_{k1j} \) and \(t_{k2j} \) are given in Theorem 2, \(k = 1, 2, j = 1, \ldots, r \). In the next example the proposed tests in (14) will be illustrated when \(q = 4 \).

Example 1

When \(\Sigma_k \) has a \(4 \times 4 \) CT structure, we have the following distributions:

\[
\begin{align*}
& c_k t_{k11}/t_{k21} \sim F_{n_k-1, (n_k-1)(p-1)}, \\
& c_k t_{k12}/t_{k22} \sim F_{2(n_k-1), 2(n_k-1)(p-1)}, \\
& c_k t_{k13}/t_{k23} \sim F_{(n_k-1), (n_k-1)(p-1)},
\end{align*}
\]

where \(c_k = (p-1)\frac{1-r_k}{1+(p-1)r_k} \). Then we can construct 3 exact tests for testing the hypothesis in (3):
\[F_1^{CT}(r) = c_1 \begin{pmatrix} t_{111} \\ t_{121} \end{pmatrix} / c_2 \begin{pmatrix} t_{211} \\ t_{221} \end{pmatrix}, \]
\[F_2^{CT}(r) = c_1 \begin{pmatrix} t_{112} \\ t_{122} \end{pmatrix} / c_2 \begin{pmatrix} t_{212} \\ t_{222} \end{pmatrix}, \]
\[F_3^{CT}(r) = c_1 \begin{pmatrix} t_{113} \\ t_{123} \end{pmatrix} / c_2 \begin{pmatrix} t_{213} \\ t_{223} \end{pmatrix}. \] (15)

Under the null hypothesis \(H_0 : r_1 = r_2 = r \), we have the distributions:
\[F_1^{CT}(r) \sim \frac{F_{n_1-1}, (n_1-1)(p-1)}{F_{n_2-1}, (n_2-1)(p-1)}, \]
\[F_2^{CT}(r) \sim \frac{F_{2(n_1-1), 2(n_1-1)(p-1)}}{F_{2(n_2-1), 2(n_2-1)(p-1)}}, \]
\[F_3^{CT}(r) \sim \frac{F_{(n_1-1), (n_2-1)(p-1)}}{F_{(n_2-1), (n_2-1)(p-1)}}. \]

Under the alternative hypothesis \(H_a : -\frac{1}{p-1} < r_1 \neq r_2 < 1 \), the distributions are given by
\[F_1^{CT}(r) \sim c_1^2 \frac{F_{n_1-1}, (n_1-1)(p-1)}{F_{n_2-1}, (n_2-1)(p-1)}, \]
\[F_2^{CT}(r) \sim c_3 \frac{F_{2(n_1-1), 2(n_1-1)(p-1)}}{F_{2(n_2-1), 2(n_2-1)(p-1)}}, \]
\[F_3^{CT}(r) \sim c_3 \frac{F_{(n_1-1), (n_2-1)(p-1)}}{F_{(n_2-1), (n_2-1)(p-1)}}. \]

The exact distributions of the test statistics in (13) are non-standard distributions and the
determinations are relatively complex. The exact distributions can be specified by their character-
istic functions and therefore can be computed with the use of R package \textit{CharFunToolR} \cite{Gajdos2018} based on numerical inversion of the characteristic functions.

4 Simulation studies

To investigate the performance of the proposed tests in Section 3, we now evaluate their per-
formance in terms of type I error probabilities and power. The results of testing \(H_0 \) are in the
context of \(r_1 = r_2 = 0.9 \) and based on 10,000 simulations and we put \(\mu_1 = \mu_2 = 0, \sigma_1 = \sigma_2 = 30 \)
and \(\rho_1 = \rho_2 = 0.5 \). In addition, both balanced and unbalanced cases are included in the simu-
lations. For a 5% significance level, Table 1 gives the estimated type I error probabilities of the
tests based on the likelihood ratio test (LRT) given in (11), the mean-variance modified statistics
(m-v) given in (12), and the two independent test statistics \(F_1^{CS}(r) \) and \(F_2^{CS}(r) \) given in (13),
respectively.

From Tables 3-12 we draw the following conclusions. It is clear that m-v, \(F_1^{CS}(r) \) and \(F_2^{CS}(r) \)
(\(j = 1, \ldots, 3 \)) are very accurate under all settings and they provide better control of the
type I probability, compared to LRT. For the unbalanced cases, \(F_1^{CS}(r) \) and \(F_2^{CS}(r) \) are superior to the other two testing procedures in terms of accuracy while both
LRT and m-v produce relatively higher type I error probabilities than the nominal significance
level.

We now compare the power performance of the different tests and the results are given in Table
3. The alternatives used are \((r_1, r_2) = (0.1, 0.2) \) and \((r_1, r_2) = (0.7, 0.8) \). Seen from Table 3 for
the balanced cases, LRT, m-v, \(F_1^{CS}(r) \) and \(F_2^{CS}(r) \) are all competitive except when \(p, q, n \) are all small. In Table 3 all the tests have significantly higher powers when \((r_1, r_2) = (0.7, 0.8) \)
than \((r_1, r_2) = (0.1, 0.2) \). For the unbalanced cases, except \(F_1^{CS}(r) \) all the tests are competitively
powerful when both \(p \) and \(q \) are relatively large and however the same conclusion cannot be made.
when both p and q are small. The overall conclusions based on the numerical results in Tables 1-2 and 3-4 are that the tests based on m-v, $F_{CS}^2(r)$ and $F_{CT}^2(r)$ can be recommended for practical use when we have balanced data on hand. For the unbalanced data we can choose LRT, m-v, $F_{CS}^1(r)$ and $F_{CT}^2(r)$. Since the quantities $m(\hat{\eta}_c)$ and $v(\hat{\eta}_c)$ in (12) are computed numerically, the test procedure m-v is very computer-intensive even through it provides satisfactory performance in terms of Type I error probabilities and power. For both cases both m-v, $F_{CS}^2(r)$ and $F_{CT}^2(r)$ are accurate in terms of type I error performance, and have reasonable power.

Table 1: Type I error probabilities of testing $H_0 : r_1 = r_2 = 0.9$ for a 5% significance level when Σ_k are CS matrices

<table>
<thead>
<tr>
<th>(p, q, n)</th>
<th>(3, 2, 5)</th>
<th>(3, 2, 100)</th>
<th>(24, 12, 5)</th>
<th>(24, 12, 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td>0.0607</td>
<td>0.0496</td>
<td>0.0487</td>
<td>0.0440</td>
</tr>
<tr>
<td>m-v</td>
<td>0.0484</td>
<td>0.0532</td>
<td>0.0520</td>
<td>0.0503</td>
</tr>
<tr>
<td>$F_{CS}^2(r)$</td>
<td>0.0463</td>
<td>0.0501</td>
<td>0.0458</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CS}^4(r)$</td>
<td>0.0480</td>
<td>0.0501</td>
<td>0.0500</td>
<td>0.0499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p, q, n_1, n_2)</th>
<th>(3, 2, 5, 100)</th>
<th>(24, 12, 5, 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td>0.0547</td>
<td>0.0520</td>
</tr>
<tr>
<td>m-v</td>
<td>0.0505</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CS}^1(r)$</td>
<td>0.0494</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CS}^2(r)$</td>
<td>0.0488</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

Table 2: Type I error probabilities of testing $H_0 : r_1 = r_2 = 0.9$ for a 5% significance level when Σ_k are CT matrices

<table>
<thead>
<tr>
<th>(p, q, n)</th>
<th>(3, 4, 5)</th>
<th>(3, 4, 100)</th>
<th>(24, 5, 5)</th>
<th>(24, 5, 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td>0.0687</td>
<td>0.0556</td>
<td>0.0564</td>
<td>0.0520</td>
</tr>
<tr>
<td>m-v</td>
<td>0.0440</td>
<td>0.0450</td>
<td>0.0470</td>
<td>0.0501</td>
</tr>
<tr>
<td>$F_{CT}^2(r)$</td>
<td>0.0491</td>
<td>0.0500</td>
<td>0.0493</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CT}^2(r)$</td>
<td>0.0495</td>
<td>0.0500</td>
<td>0.0499</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CT}^3(r)$</td>
<td>0.0487</td>
<td>0.0501</td>
<td>0.0498</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p, q, n_1, n_2)</th>
<th>(3, 4, 5, 100)</th>
<th>(24, 5, 5, 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td>0.0507</td>
<td>0.0468</td>
</tr>
<tr>
<td>m-v</td>
<td>0.0535</td>
<td>0.0582</td>
</tr>
<tr>
<td>$F_{CT}^2(r)$</td>
<td>0.0495</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CT}^2(r)$</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
<tr>
<td>$F_{CT}^3(r)$</td>
<td>0.0497</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

5 Applications of the results - an example

In this section we use the the positron emission tomography data given in [Worsley et al., 1991] to illustrate our proposed testing methods in Section 3. Researchers are often interested in several selected regions of the brain with closed locations, which tend to be functionally related, such as the Anterior temporal (AT), Midtemporal (MT) and Posttemporal (PT) regions. The locations
Table 3: Powers of the testings $H_0 : r_1 = r_2$ at $\alpha = 0.05$ when Σ_k are CS matrices

<table>
<thead>
<tr>
<th>(r_1, r_2)</th>
<th>(p, q, n)</th>
<th>$(3, 2, 5)$</th>
<th>$(3, 2, 100)$</th>
<th>$(24, 12, 5)$</th>
<th>$(24, 12, 100)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0.1, 0.2)$</td>
<td>LRT</td>
<td>0.0708</td>
<td>0.3386</td>
<td>0.5756</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>LRT</td>
<td>0.1007</td>
<td>0.2792</td>
<td>0.6150</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>$F_{CS}^{r_1}$</td>
<td>0.0701</td>
<td>0.2912</td>
<td>0.1344</td>
<td>0.9303</td>
</tr>
<tr>
<td></td>
<td>$F_{CS}^{r_2}$</td>
<td>0.0739</td>
<td>0.3067</td>
<td>0.6644</td>
<td>1.0000</td>
</tr>
<tr>
<td>$(0.7, 0.8)$</td>
<td>LRT</td>
<td>0.1376</td>
<td>0.9943</td>
<td>0.7903</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>LRT</td>
<td>0.1138</td>
<td>0.9840</td>
<td>0.7902</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>$F_{CS}^{r_1}$</td>
<td>0.0890</td>
<td>0.6182</td>
<td>0.1152</td>
<td>0.8253</td>
</tr>
<tr>
<td></td>
<td>$F_{CS}^{r_2}$</td>
<td>0.0984</td>
<td>0.6350</td>
<td>0.5218</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 4: Powers of the testings $H_0 : r_1 = r_2$ at $\alpha = 0.05$ when Σ_k are CT matrices

<table>
<thead>
<tr>
<th>(r_1, r_2)</th>
<th>(p, q, n)</th>
<th>$(3, 2, 5)$</th>
<th>$(3, 2, 100)$</th>
<th>$(24, 12, 5)$</th>
<th>$(24, 12, 100)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0.1, 0.2)$</td>
<td>LRT</td>
<td>0.0711</td>
<td>0.3482</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LRT</td>
<td>0.1005</td>
<td>0.8791</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{CT}^{r_1}$</td>
<td>0.0947</td>
<td>0.2822</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{CT}^{r_2}$</td>
<td>0.0888</td>
<td>0.8968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(0.7, 0.8)$</td>
<td>LRT</td>
<td>0.2201</td>
<td>0.9618</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LRT</td>
<td>0.2419</td>
<td>0.9611</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{CT}^{r_1}$</td>
<td>0.0958</td>
<td>0.6427</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{CT}^{r_2}$</td>
<td>0.1312</td>
<td>0.8753</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{CT}^{r_3}$</td>
<td>0.0996</td>
<td>0.6302</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

are defined as the centers of the regions in one hemisphere of the brain, measured in centimeters, taken from the brain atlas. We recall from Section 1 that the sample size here is $n = 10$ for each
Two-sample tests for matrix-valued data

Furthermore, we also have $p = 3$ and $q = 2$. We are interested in testing whether the three specific pairs (AT, MT and PT) of the regions ($p = 3$) with equal distance for two groups (with two different experimental techniques) are equally correlated.

In this article, different regions, as well as different hemispheres are considered exchangeable (equicorrelated) among themselves. Thus, it is reasonable to assume that both $\text{vec} \ X_1i$ and $\text{vec} \ X_2i$, $i, \ldots, 10$, in the samples have the covariance matrices of the form $\Sigma_1 \otimes \Psi_1$ and $\Sigma_2 \otimes \Psi_2$, respectively, where (Ψ_1, Σ_1) and (Ψ_2, Σ_2) have the structures given in (2). Note, when $q = 2$ CT and CS become the same pattern. We shall test the following hypothesis:

$$H_0 : r_1 = r_2 = r$$ against $$H_a : -\frac{1}{p-1} < r_1 \neq r_2 < 1$$ given CS structures.

We consider the test statistics LRT, m-v, $F_{CS}^1(r)$ and $F_{CS}^2(r)$. The test statistics and the p-values are given in Table 5. Note, the quantiles (and thus also p-value) of $F_{CS}^1(r)$ and $F_{CS}^2(r)$ exact distributions are computed with the use of R package CharFunToolR. The results indicate that the null hypothesis $H_0 : r_1 = r_2$ cannot be rejected with $\alpha = 0.05$.

<table>
<thead>
<tr>
<th>LRT</th>
<th>m-v</th>
<th>$F_{CS}^1(r)$</th>
<th>$F_{CS}^2(r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat</td>
<td>0.3219</td>
<td>0.4037</td>
<td>1.0453</td>
</tr>
<tr>
<td>p-val</td>
<td>0.7475</td>
<td>0.6864</td>
<td>0.5267</td>
</tr>
</tbody>
</table>

Table 5: Test statistics and p-values for the positron emission tomography data ($\alpha = 0.05$). Test statistics and p-value are reported for the hypotheses $r_1 = r_2$ against $r_1 \neq r_2$ given CS structures.

6 Discussion

The tests $F_{CS}^1(r)$ and $F_{CS}^2(r)$ as well as $F_{CT}^j(r)$, $j = 1, \ldots, r$ proposed in this paper provide a valid alternative to tests for the equality of two correlation parameters in multivariate models with Kronecker product covariance structure with compound symmetric or circular Toeplitz patterns. In some cases these tests are more accurate and powerful than other presented tests although $F_{CS}^1(r)$ has lower power than $F_{CS}^2(r)$. Concerning the test statistics $F_{CT}^j(r)$, $j = 1, \ldots, r$, we may incorporate the information of different statistics and combine them. Another advantage of the tests is the explicit null distributions of test statistics and it is easy to implement.

References

