Examensarbete C

Nagios-baserad övervakning
En undersökning av uthämningsmetoders CPU-påverkan

Författare: Olle Karlsson
Handledare: Patrik Brandt
Termin: VT 2012
Kurskod: 2DV40E
Abstrakt

Detta arbete ska med ovanstående som bakgrund undersöka hur stor CPU-belastningen är på en övervakad maskin med de två olika uthämtningsmetoderna NRPE och check_by_ssh. För att ta reda på detta har en experimentmiljö upprättats varefter mätningar har gjorts på en övervakad Linux-maskins CPU. Mätningar har gjorts när maskinen inte är övervakad, när den är övervakad med NRPE och när den är övervakad med check_by_ssh. Resultatet från experimentet tyder på en något högre belastningsgrad vid övervakning med check_by_ssh, påverkan är dock relativt liten.

Nyckelord: Övervakningssystem, NRPE, check_by_ssh, Icinga, Nagios
Innehåll

1 Introduktion
 1.1 Inledning ... 1
 1.2 Åmnesområde och relevans .. 2
 1.3 Tidigare forskning .. 2
 1.4 Frågeställning .. 3
 1.5 Målformulering och nytta ... 3
 1.6 Ansats och syfte ... 5
 1.7 Avgränsningar och disposition ... 4

2 Bakgrund
 2.1 Inledning ... 5
 2.2 Icinga .. 5
 2.2 Daemoner .. 7
 2.3 Secure Shell (SSH) .. 8

3 Metod
 3.1 Ansats och urval ... 9
 3.2 Experimentmiljö ... 10
 3.3 Studieobjekt ... 11
 3.4 Mätinstrument .. 11
 3.5 Genomförande .. 12
 3.6 Metoddiskussion ... 12

4 Resultat
 4.1 Observation #1 ... 14
 4.2 Observation #2 ... 15
 4.3 Observation #3 ... 16
 4.4 Resultatanalys ... 17

5 Avslutning
 5.1 Diskussion .. 18
 5.2 Sammanfattning och slutsatser ... 19
 5.3 Metodreflektion ... 20
 5.4 Bidrag och jämförelser ... 20
 5.5 Erfarenheter och fortsättning .. 21

Referenser .. 22

Bilagor
 Bilaga A - Baseline ... 24
 Bilaga B - NRPE .. 25
 Bilaga C – check_by_ssh ... 26
Förord

Denna rapport har skrivits i samband med mitt examensarbete på C-nivå vid Linnéuniversitetet i Kalmar. Jag vill framföra ett tack till min handledare Patrik Brandt som har varit hjälpsam och engagerad genom hela projektets gång. Jag vill även passa på att tacka Göran Axelsson på Meridium AB som gav mig möjligheten att utföra mitt examensarbete i en företagsmiljö.
1 Introduktion

Introduktionskapitlet kommer presentera ämnesområdet och en motivering till varför ämnet valts. Del 1.2 tar upp tidigare forskning om övervakningssystem. Arbetets problemformulering och huvudsakliga frågeställning tas upp i 1.3. Vidare beskrivs arbetets tänka nyttoområde och vem det riktar sig till i 1.4. Arbetets ansats och syfte tas upp i 1.5. Slutligen tas avgränsningar upp i 1.6 där även dispositionen för resten av arbetet presenteras.

1.1 Inledning

Övervakningssystem finns för att avlasta administratören från att manuellt övervaka IT-miljön. Systemet implementeras för att i realtid kunna upptäcka och motverka problem i infrastrukturen. Tanken är att upptäcka och meddela administratören om felaktigheter i ett så pass tidigt skede att IT-miljön påverkas lite eller inte alls.

Övervakningssystem använder sig ofta av mjukvaruagenter då man vill hämta ut information om interna resurser från maskiner. De concept och teknologier som karaktäriserar mjukvaruagenter har däremot funnits länge och används för närvarande i flera olika områden; däribland informationsbehandling, tillverkning, informationsutvinning och nätverkshantering. Vanliga egenskaper som en mjukvaruagent generellt ska ha är självständighet, interaktivitet, tillgänglighet och planeringsförmåga [2].

med SSH påverkas dock belastningen på CPU:n både på övervakningsservern och på den övervakade maskinen, i vissa fall så pass mycket att administratörer väljer att använda det mindre säkra NRPE i stället[4,5]. Överskrider den totala belastningen processorns kapacitet köas inkommande processer och systemet kan haltas. Med denna bakgrund kommer arbetet undersöka hur stor CPU-belastning de båda uthämningsmetoderna egentligen genererar.

1.2 Ämnesområde och relevans

Arbetet utförs på ett företag som uttryckligen önskat ett nytt övervakningssystem till deras produktions- och utvecklingsmiljö. Även om utredningen görs å företagets vägnar, är dess innehåll av generell relevans då en liknande utredning inte gjorts tidigare. En kunskapslucka finns att fylla gällande prestandamätning av olika uthämningsmetoder.

1.3 Tidigare forskning

Dessa rekommendationer har lyfts vidare till det här arbetet då övervakningssystemet som undersöks är skrivet i öppen källkod och agenten NRPE samt SSH används för att hämta ut information om interna resurser.

1.4 Frågeställning
Arbetet baseras på följande frågeställning:

- Hur mycket påverkar NRPE och check_by_ssh den övervakade maskinens CPU?

Arbetet ska undersöka till vilken grad de olika övervakningstyperna påverkar det övervakade systemet. Påverkan kommer mätas på maskinens CPU-belastning (load).

1.5 Målformulering och nytta

1.6 Ansats och syfte
En experimentmiljö upprättas som består av en fiktiv uppsättning maskiner, en övervakningsserver och en Linux-server som ska övervakas. Linux-servern har grundkonfigurerade server tjänster så som webserver och FTP-server för att ge en grundbelastning och för att simulera en faktisk server i drift. Övervakningsservern kommer sedan skicka en viss mängd data i form av förfrågningar via NRPE eller SSH, vars resursutnyttjande kommer mätas under en förutbestämd tidsrymd. Innan detta kommer en mätning göras av hur belastad servern är då den inte är övervakad.

Syftet med det här arbetet är att få en inblick i hur mycket övervakningssystem och dess metoder för intern övervakning påverkar
övervakade maskiner. Huruvida påverkan av de olika uthämningsmetoderna är liten, stor eller helt obetydlig, kommer undersökas i experimentmiljön.

1.7 Avgränsningar och disposition

2 Bakgrund
Detta kapitel tar upp de grundläggande teknologier, begrepp och termer som arbetet baseras på. De komponenter som undersöks i experimentet förklaras på en grundläggande nivå.

2.1 Inledning

Dessa övervakningsobjekt är centrala även i Nagios, som släpptes 1999 under namnet NetSaint men detta byttes senare till Nagios. Systemet har över en miljon användare och då det är skrivet med öppen källkod har flertalet andra produkter skapats som en direkt förgrening av Nagios, däribland svenska OP5 och övervakningssystemet som används i det här arbetet - Icinga.

2.2 Icinga
Icinga startade som en förgrening av Nagios år 2009. Skaparna består av en grupp utvecklare som tidigare arbetat med Nagios. Utvecklarna vill med Icinga skapa ett nytt övervakningssystem baserat på, men oberoende av, Nagios och de strävar efter att uppnå en snabb utveckling baserat på vad dess användare efterfrågar [12]. Föröreningen var möjlig då Nagios är skriven med öppen källkod, vilket även är fallet med Icinga och eftersom de är så lika
i grunden fungerar alla Nagioskonfigurationer, plugins och tillägg även i Icinga. Icinga släpps under en GNU GPLv2-licens och är gratis att använda.

![Icinga arkitektur](image)

Figur 2.1: Icingas arkitektur, bestående av tre kärnkomponenter och en databas.

Icinga består av tre kärnkomponenter som man kallar Core, API och Web. Samtliga kärnkomponenter är sammankopplade via en Icinga Data Out Database (IODB). Denna databas kan vara av typerna MySQL, Oracle eller PostgreSQL. Arkitekturen illustreras i Figur 2.1.

Uppdelningen av de olika kärnkomponenterna gör det möjligt att separera dem från varandra. Man kan alltså distribuera ut de olika komponenterna runt om i nätverket och exempelvis köra databasen på en server, Icinga Core på en annan server och Icinga Web på en tredje server[13]. Hårdvarumässigt rekommenderar Icinga följande minimumspecifikation för att övervaka upp till 100 maskiner:

<table>
<thead>
<tr>
<th>Tabell 2.1: Minimumkrav för Icinga</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-hastighet</td>
</tr>
<tr>
<td>2Ghz</td>
</tr>
</tbody>
</table>
Betonas bör dock att kraven i tabell 2.1 ska ses som riktlinjer och ingen absolut sanning. Icingas utvecklare menar att det inte är antalet enheter som övervakas som påverkar övervakningsservern, utan snarare hur mycket och ofta man övervakar [14].

Själva övervakningen genomförs med så kallade ”checkar”. Dessa kan modifieras eller läggas till av administratören för att få ut den data han eller hon är intresserad av. Till checkarna returneras olika siffervärden som har olika statusar, dessa är ”OK”, ”WARNING”, ”CRITICAL” och ”UNKNOWN”. Tröskelvärdena för dessa statusmeddelanden kan ändras av administratören.

2.1 NRPE

2.1.2 Check_by_ssh

2.2 Daemoner
2.3 Secure Shell (SSH)

När SSH-TRANS krypterar anslutningen inleds CPU- och minnesintensiva uppgifter då anslutningen ska upprättas och nyckelutbyte ska genomföras. Denna svaghet kan även utnyttjas i Denial of Service- (DoS) attacker, där attackeraren tvingar servern att utbyta nycklar och påbörja en anslutning som senare aldrig autentiseras [16].
3 Metod
Detta kapitel förklarar de metodologiska val som gjorts för att besvara arbetets frågeställning. Under 3.1 sammanfattas den generella metodologiska utgångspunkten i form av arbetets vetenskapliga ansats och urval. 3.2 förklarar hur experimentmiljön är uppbyggd. 3.3 beskriver arbetets studieobjekt samt detaljer kring dem. Under 3.4 beskrivs mätinstrumentet och hur det har använts. 3.5 beskriver hur experimentet har genomförts. Metodkapitlet avslutas med en diskussion som behandlar den valda metoden.

3.1 Ansats och urval
Inledningsvis genomfördes en litteratur- och artikelstudie för att undersöka vad som har och inte har undersömts inom området för nätverksövervakning. Därefter beslutades att experimentet skulle kretsar kring agenter och utlämningsmetoders påverkan på en övervakad maskin. Informationen som samlades in under de inledande studierna har lagt grunden för denna uppsats teorikapitel.

Arbetet utgår från genomförda mätningar i en experimentmiljö. Utifrån kvantitativa mätningar har empiri genererats som presenteras i numeriska procentuella värden.

De valda hård- och mjukvarorna har begränsats till vad företaget som experimentet utförts på har haft att tillgå. Experimentmiljön har placerats på en virtualiseringhost. Vilken hårdvara som används har ingen egentlig betydelse för detta experiment, då de slutsatser som dras i detta arbete främst är baserade på de prestandaskillnader som finns mellan utlämningsmetodernas. Detta skillnadsförhållande bottnar inte i vilken hårdvara som körs.

Icinga har valts som övervakningssystem då det har stöd för både NRPE och check_by_ssh. Valet av övervakningssystem ska inte kunna påverka resultatet så länge det är Nagios-baserat då skillnader mellan Nagios-baserade system vanligen ligger i hur resultatet presenteras (webbgränssnittet). D

Operativsystemen som valts till experimentmiljön är valda då de har officiellt stöd för Icinga och dess utlämningsmetoder. De mjukvaror som körs på den övervakade maskinen har valts då de redan är förinstallerade och bara behöver aktiveras. Mätinstrumentet, som beskrivs tydligare i 3.4, valdes eftersom det presenterade relevanta mätresultat för just det här experimentet.
3.2 Experimentmiljö

Experimentmiljön består av tre huvudsakliga komponenter, en virtualiseringshost, en övervakningsserver och en övervakad server. Dessa kan ses i figur 3.1. Två virtuella maskiner har skapats och installerats med CentOS version 5.6 som kör kerneln 2.6.18-238.el5. IcingaMonitor är övervakningsservern och LinuxServer är den övervakade servern. Maskinerna har sedan placerats på en virtualiseringshost som kör VMWare version 3.5. De är anslutna till varandra via ett internt nätverk med privata adresser i klass C-nätet 192.168.2.x. Maskinernas virtuella hårdvara kan ses i tabell 3.1.

Tabell 3.1: Virtuellt hårdvara på maskinerna

<table>
<thead>
<tr>
<th>Hostname</th>
<th>IcingaMonitor</th>
<th>LinuxServer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Virtuell single(1)-CPU</td>
<td>Virtuell single(1)-CPU</td>
</tr>
<tr>
<td>Minne</td>
<td>1024 MB</td>
<td>1024 MB</td>
</tr>
<tr>
<td>Lagring</td>
<td>20 GB-provision (thick)</td>
<td>20 GB-provision (thick)</td>
</tr>
</tbody>
</table>

Då uthämtningsmetoderna används för att hämta ut intern information om resurser och tjänster har fem övervakningscheckar konfigurerats upp i enlighet med hur NRPE och check_by_ssh vanligen används. Samtliga checkar är konfigurerade med LinuxServer som mål. Checkarna och deras funktion presenteras i tabell 3.2.

Tabell 3.2: Checkar som körs mot den övervakade maskinen (LinuxServer). Likadant konfigurerade för både NRPE och check_by_ssh.

<table>
<thead>
<tr>
<th>Namn</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check_disk</td>
<td>Information om diskanvändning</td>
</tr>
<tr>
<td>Check_users</td>
<td>Information om hur många användare som är inloggade</td>
</tr>
<tr>
<td>Check_load</td>
<td>Information om CPU-belastning</td>
</tr>
<tr>
<td>Check_procs</td>
<td>Information om antalet processer som körs</td>
</tr>
<tr>
<td>Check_zombie_procs</td>
<td>Information om antalet zombieprocesser som körs</td>
</tr>
</tbody>
</table>

I Icingas huvudkonfigurationsfil *icinga.cfg* har inga värden rörande checkar och dess intervall förändrats. Defaultvärdena innebär exempelvis att samtliga inledande checkar ska vara slutförda inom 30 minuter och att en service-check inte får pågå längre än 60 sekunder. Samtliga fem checkar har en intervall på under fem minuter.

3.3 Studieobjekt

I studien undersöks en maskin som använder sig av operativsystemet CentOS. Denna maskin har installerats med de förinställda valen och således har inga ytterligare tjänster installerats förutom de som var förvalda vid installationen. Det som har modifierats på servern är nätverksinställningar och installation av agenten NRPE, en installering av OpenSSL samt aktivering av Apache och VSFTPD. Apache och VSFTPD aktiverades för att ge servern en grundbelastning. Det som mäts är olika CPU-värden under en förutbestämd tid efter kontorstid då risken för extern påverkan är mindre än under dagtid.

3.4 Mätinstrument

För att mäta CPU-belastningen har mjukvarusviten *sysstat* använts. I sysstat ingår verktyget *sar* som kan samla och rapportera information om CPU:n. I experimentet har sar loggat information om CPU:n till läsbara filer. Detta har gjorts med en schemaläggning i *cron* där sar skriver ut informationen till loggfiler var tionde minut. Varje dag tilldelas en ny loggfil med information om CPU-belastningen för just den dagen. Den information som kan utläsas av verktyget är bland annat CPU-typ, hur mycket systemprocesser och användarprocesser påverkar CPU:n och hur stor del av tiden processorn inte behöver exekvera någonting (idle). De resultat som har sammanställts är de mätningar som utförts på processorns idle-tid (observation #1), de mätningar...
som gjorts på processer som exekverats på systemnivå, härefter
systemprocesser (observation #2) och de mätningar som gjorts på processer
som exekverats på användarnivå, härefter användarprocesser (observation
#3).

3.5 Genomförande
Experimentmiljön har satts upp och de fem checkarna har konfigurerats.
Samtliga med målet 192.168.2.68. Lämpliga argument, exempelvis sökväg
till mätobject och tröskelvärden, har skickats med och dessa har varit
identiska för båda utmättningsmetoderna. Sysstat har installerats och dess
verktyg sar har konfigurerats med cron på LinuxServer. Därefter påbörjades
mätningarna. Under samtliga mätningar stod maskinen påslagen utan några
övriga mjukvaror så som Firefox, Open Office eller terminalen igång. Den
första mätningen gjordes då LinuxServer inte var övervakad, den andra
mätningen gjordes då den var övervakad med SSH som utmättningsmetod
och den tredje mätningen gjordes då maskinen hade NRPE som
utmättningsmetod. Samma checkar har utförts med båda
utmättningsmetoderna.

Då experimentmiljön var upprättad övervakades LinuxServer med båda
metoderna. När mätningen av check_by_ssh gjordes kommenterades NRPE-
raderna bort i konfigurationsfilen som Icinga läser in för att veta vad som ska
övervakas. Vid mätningen av NRPE gjordes samma procedur fast då
kommenterades raderna för check_by_ssh bort istället. Inför varje mätning
har Icinga-processen startats om och de checkar som körts efter omstart har
kontrollerats via webbgränssnittet.

Dagen efter varje mätning, som alltid genomfördes mellan 18:00 och 23:50,
har resultaten hämtats ut med kommandot
```
sar -f /var/log/sa/saXX –s 18:00:00
```
där XX är föregående dags datum. Det som visas är samtliga
mätningar som gjorts med intervaller på tio minuter. Varje tidsstämplad
mätning genererar genomsnittsvärden för de gångna tio minuterna och inte
hur belastat systemet är vid det exakta mätningstillfället. Sar summerar också
samtliga mätningar från 18:00 fram till 23:50 och genererar medelvärden för
olika mätningar för hela den gångna tiden.

3.6 Metoddiskussion
För att säkerställa kvaliteten och reliabiliteten på resultatet har mätningar
utförts över en längre tid. I detta arbete har fokus inte lagts vid att göra ett
stort antal mätningar, utan i stället på att göra ett fåtal mätningar över en
längre tid med exakt samma förutsättningar. Man hade kunnat bryta ner
mätningstiden (18:00 – 23:50) i intervaller på en timme för att få fler
mätningar. Men detta hade ändå genererat samma resultat och förlängt tiden
för att sammanställa resultatet. Ett fåtal, mer omfattande, mätningar har därför prioriterats före ett flertal mindre mätningar i detta arbetet.

Experimentmiljön är placerad på en virtualiseringshost. Vad man bör ha i åtanke när man läser och tolkar resultaten är att detta kan ha påverkat mätningarna. Resultatet hade kunnat se annorlunda ut om det hade utförts i en strikt fysisk miljö där virtualiseringslagret inte finns med som en påverkansfaktor.
4 Resultat
Detta kapitel presenterar den empiri som genererats utifrån de tester som definierats i föregående kapitel. Varje diagram och tabell har en tillhörande text som förklarar siffrornas innebörd och hjälper läsaren att tolka resultatet. Kapitlet avslutas med en kortare analys av de insamlade resultaten.

4.1 Observation #1
Följande observation behandlar det värde som visar hur stor del av den uppmätta tiden processorn inte har behövt användas. Detta värde kallas ”idle” och presenteras i sar som %idle då mättenheten är i procent. Resultatet, som ses i Figur 4.1 visar att check_by_ssh kräver mer processortid än NRPE.

![Diagram över de olika mätningarnas genererade idle-värden på CPU:n. Högre är bättre.](image)

Genomsnittsvärden från mätningarna på idle-värde visas i tabell 4.1.

Tabell 4.1: Medeltalsvärden för procentuell Idle-tid

<table>
<thead>
<tr>
<th>Mätning</th>
<th>Medeltal %Idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>99,78 %</td>
</tr>
<tr>
<td>NRPE</td>
<td>99,72 %</td>
</tr>
<tr>
<td>Check_by_ssh</td>
<td>99,55 %</td>
</tr>
</tbody>
</table>
4.2 Observation #2
Följande observation behandlar systemvärdet i mätningarna. Det som mäts är den procentuella belastningen för systemprocesser, det vill säga processer som exekveras på systemnivå (kernel-nivå). Resultatet från denna mätning ses i figur 4.2.
Diagrammet visar en högre belastningsgrad då man använder check_by_ssh.

Figur 4.2: Diagram över procentuell belastning för systemprocesser. Lägre är bättre.

Genomsnittsvärden från mätningarna på systemprocesser visas i tabell 4.2.

Tabell 4.2: Genomsnittliga värden för procentuell belastning av systemprocesser

<table>
<thead>
<tr>
<th>Mätning</th>
<th>Medeltal %system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.08 %</td>
</tr>
<tr>
<td>NRPE</td>
<td>0.12 %</td>
</tr>
<tr>
<td>Check_by_ssh</td>
<td>0.24 %</td>
</tr>
</tbody>
</table>
4.3 Observation #3

Figur 4.3: Diagram som visar procentuell belastning för användarprocesser. Lägre är bättre.

Genomsnittsvärden från mätningarna på användarprocesser visas i tabell 4.3.

Tabell 4.3: Genomsnittliga värden för procentuell belastning av systemprocesser

<table>
<thead>
<tr>
<th>Mätning</th>
<th>Medeltal %system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0,01 %</td>
</tr>
<tr>
<td>NRPE</td>
<td>0,02 %</td>
</tr>
<tr>
<td>Check_by_ssh</td>
<td>0,08 %</td>
</tr>
</tbody>
</table>
4.4 Resultatanalys
I de mätningar som har utförts ses en högre belastningsgrad vid övervakning med SSH. Vid utämning med SSH är skillnaden i belastning för systemprocesser, i den uppsatta experimentmiljön, 0,12 procentenheter större gentemot NRPE. Man ser också skillnader på mätningen av användarprocesser där SSH i genomsnitt belastar processorn 0,06 procentenheter mer. Eftersom processorn lägger mer tid åt systemprocesser och användarprocesser vid övervakning med SSH, ses även ett sämre idle-värde jämfört med NRPE och baseline.

NRPE belastar också systemet, dock är skillnaden mellan baseline och NRPE mindre än den mellan NRPE och check_by_ssh. I mätningen av systemprocessers belastning ser man att NRPE har en mindre fluktuerande belastningsgrad jämfört med check_by_ssh. Samma trend ses i mätningen av användarprocesser där NRPE håller en mer jämn belastningsnivå jämfört med check_by_ssh.

5 Avslutning
I detta sista kapitel diskuteras uppsatsens helhet och de resultat som utvunnits av experimentet. Utifrån vad experimentet påvisat presenteras också en slutsats. Den valda metoden diskuteras och slutligen ges förslag till vidare studier.

5.1 Diskussion
Detta arbete har undersökt två olika uthämtningsmetoders CPU-påverkan på en övervakad maskin. Undersökningen har gjorts uteftre frågeställningen "Hur mycket påverkar NRPE och check_by_ssh den övervakade maskinens CPU?". Utifrån de experiment som utförts ser man att den övervakade maskinens CPU har ett sämre idle-värde vid övervakning med SSH. Man ser också att check_by_ssh belastar CPU:n mer än vad NRPE gör gällande systemprocesser och användarprocesser.

Även om skillnader finns, bör man tänka på att skillnaderna är väldigt små i just denna experimentmiljö. Mellan check_by_ssh och baseline-mätningen är skillnaden mellan 0,06 % och 0,23 % beroende på mätning. En sådan liten belastning bör knappast påverka varken serverns drift eller användarupplevelsen för de som använder servern. Diagrammen kan vara något missvisande då de rent grafiskt presenterar en stor skillnad. När man läser och tolkar resultaten bör man dock ha i åtanke att de procentuella skillnaderna är små.

Sätter man däremot mätningarna i ett större perspektiv, där ett företag har en driftkritisk server som kräver ett flertal checkar på interna värden, kan valet av uthämtningsmetod spela roll. En server som hela tiden måste upprätta SSH-anslutningar för att bli övervakad kan påverkas, speciellt om den redan kör CPU-intensiva processer och program. Som tidigare sagt kan konsekvenserna av en allt för belastad CPU få systemet att stanna upp, vilket man bör ha i åtanke om man planerar att övervaka en redan belastad server. Då kan valet av uthämtningsmetod vara viktigt att planera. NRPE är som utvecklarna säger mindre säkert än check_by_ssh men kan installerades med SSL-stöd vilket säkrar upp kommunikationen.

Graferna för idle-värde visar spikar varje timme vid 18:10, 19:10 och framåt. Detta beror, som tidigare nämnt, på en förhöjd belastning av processer med nice-prioritet. Varför dessa uppkommer har inte undersöckts i detta arbete, men vad som kan tolkas utifrån de mätningar som gjorts är att belastningen även läggs på system- och användarprocesser och detta förklarar varför även dessa två mätningar har spikar varje timme.

I experimentet har antalet checkar varit förhållandevis lågt vilket har gjort att skillnaden mellan de båda uthämningsmetoderna inte har varit speciellt stor. Man hade kunnat använda sig av ett större antal checkar för att tydligare se skillnaderna, men detta har undvikits i min undersökning för att ge en mer verklighetstrogen övervakningsmiljö. De checkar som har valts till det här experimentet anser jag vara en rimlig grundnivå för övervakning med NRPE och check_by_ssh eftersom samtliga checkar kontrollerar interna värden som inte hade kunnat hämtas ut från utsidan. Det finns ingen egentlig mening att exemplifiera övervaka en webbservers tillgänglighet eller en maskins nåbarhet med interna uthämningsmetoder, då detta kan kontrolleras med mindre belastande ”ytliga” metoder.

5.2 Sammanfattning och slutsatser
Sammanfattningsvis visar mätningarna att check_by_ssh belastar den övervakade maskinens CPU mer än vad NRPE gör. Detta stämmer överens med vad utvecklarna säger [4,5]. Däremot är skillnaden mellan de båda inte
speciellt stor i den uppsatta experimentmiljön. Skillnaden kan bero på den CPU-belastning som SSH bidrar till vid anslutningsupprättandet.

Eftersom mätningarna påvisade en relativt liten skillnad mellan de båda uthämningsmetoderna är det svårt att dra några större slutsatser, men då utvecklarna av både Nagios och Icinga påstår att detta fenomen förekommer, blir resultatets trovärdighet större. De slutsatser som kan dras av experimentets resultat är att både check_by_ssh och NRPE belastar CPU:n till en viss grad. Resultatet visar även att check_by_ssh belastar den övervakade maskinens CPU i en större utsträckning än vad NRPE gör. I den uppsatta experimentmiljön är belastningsskillnaden mellan NRPE och baseline 0,06 procentenheter. Skillnaden mellan check_by_ssh och baseline är i samma miljö 0,23 procentenheter. Resultaten är dock specifika för den uppsatta miljön och de skillnader som uppmätts mellan de båda uthämningsmetoderna kan skilja sig om mätningarna görs i en annan miljö.

5.3 Metodreflektion

5.4 Bidrag och jämförelser
Resultaten från detta arbete stämmer överens med vad som tidigare sagts. SSH ger en högre belastningsgrad på den övervakade maskinens CPU. Man ser också att en övervakad maskin generellt sett är mer belastad än en maskin som inte är övervakad, vilket också stämmer överens med vad som tidigare påståtts.

Min förhoppning är att denna rapport har kan vara till hjälp för personer som arbetar med Nagios-baserade övervakningssystem. Jag hoppas att den ger insikt i hur valet av uthämningsmetod kan påverka en typisk Linux-server.
5.5 Erfarenheter och fortsättning
Arbetet med denna uppsats har gett mig fördjupade kunskaper och insikter i hur ett Nagios-baserat övervakningssystem kan påverka en övervakad maskin. Det har också gett mig ny kunskap om hur man utför och sammanställer prestandamätningar.

Fortsättningsvis kan man använda det resultat som denna rapport presenterat för att göra en ny studie i en experimentmiljö med andra förutsättningar, förslagsvis med fler checkar som körs. Man hade då kunnat jämföra resultatet med vad som dokumenterats i det här arbetet för att tydligare kunna dra slutsatser kring CPU-belastningen på en övervakad maskin. En annan tänkbar fortsättning är att undersöka CPU-belastningen på själva övervakningsservern, som checkar flera olika maskiner och därmed behöver upprätta flertalet belastande anslutningar.
Referenser

Bilagor

Bilaga A - Baseline

<table>
<thead>
<tr>
<th>Tid</th>
<th>CPU</th>
<th>%user</th>
<th>%nice</th>
<th>%system</th>
<th>%iowait</th>
<th>%steal</th>
<th>%idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10</td>
<td>all</td>
<td>0,03</td>
<td>0,53</td>
<td>0,15</td>
<td>0,04</td>
<td>0</td>
<td>99,25</td>
</tr>
<tr>
<td>18.20</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,08</td>
<td>0,04</td>
<td>0</td>
<td>99,88</td>
</tr>
<tr>
<td>18.30</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,08</td>
<td>0</td>
<td>99,84</td>
</tr>
<tr>
<td>18.40</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>18.50</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>19.00</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,88</td>
</tr>
<tr>
<td>19.10</td>
<td>all</td>
<td>0,03</td>
<td>0,52</td>
<td>0,14</td>
<td>0,06</td>
<td>0</td>
<td>99,24</td>
</tr>
<tr>
<td>19.20</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>19.30</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>19.40</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>19.50</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,06</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>20.00</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,88</td>
</tr>
<tr>
<td>20.10</td>
<td>all</td>
<td>0,03</td>
<td>0,51</td>
<td>0,14</td>
<td>0,04</td>
<td>0</td>
<td>99,28</td>
</tr>
<tr>
<td>20.20</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>20.30</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>20.40</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,9</td>
</tr>
<tr>
<td>20.50</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>21.00</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,06</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>21.10</td>
<td>all</td>
<td>0,03</td>
<td>0,5</td>
<td>0,15</td>
<td>0,04</td>
<td>0</td>
<td>99,29</td>
</tr>
<tr>
<td>21.20</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>21.30</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>21.40</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>21.50</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>22.00</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>22.10</td>
<td>all</td>
<td>0,03</td>
<td>0,51</td>
<td>0,14</td>
<td>0,04</td>
<td>0</td>
<td>99,28</td>
</tr>
<tr>
<td>22.20</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>22.30</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>22.40</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,05</td>
<td>0</td>
<td>99,88</td>
</tr>
<tr>
<td>22.50</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>23.00</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,05</td>
<td>0</td>
<td>99,87</td>
</tr>
<tr>
<td>23.10</td>
<td>all</td>
<td>0,03</td>
<td>0,5</td>
<td>0,14</td>
<td>0,03</td>
<td>0</td>
<td>99,3</td>
</tr>
<tr>
<td>23.20</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>23.30</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,06</td>
<td>0,03</td>
<td>0</td>
<td>99,9</td>
</tr>
<tr>
<td>23.40</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,03</td>
<td>0</td>
<td>99,89</td>
</tr>
<tr>
<td>23.50</td>
<td>all</td>
<td>0,01</td>
<td>0</td>
<td>0,07</td>
<td>0,04</td>
<td>0</td>
<td>99,88</td>
</tr>
</tbody>
</table>

Median: all | 0,01 | 0,09 | 0,08 | 0,04 | 0 | 99,78
<table>
<thead>
<tr>
<th>Tid</th>
<th>CPU</th>
<th>%user</th>
<th>%nice</th>
<th>%system</th>
<th>%iowait</th>
<th>%steal</th>
<th>%idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10</td>
<td>all</td>
<td>0,04</td>
<td>0,49</td>
<td>0,19</td>
<td>0,05</td>
<td>0</td>
<td>99,22</td>
</tr>
<tr>
<td>18.20</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>18.30</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,05</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>18.40</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,05</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>18.50</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,06</td>
<td>0</td>
<td>99,81</td>
</tr>
<tr>
<td>19.00</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,05</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>19.10</td>
<td>all</td>
<td>0,04</td>
<td>0,5</td>
<td>0,18</td>
<td>0,05</td>
<td>0</td>
<td>99,23</td>
</tr>
<tr>
<td>19.20</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,12</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>19.30</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>19.40</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,07</td>
<td>0</td>
<td>99,8</td>
</tr>
<tr>
<td>19.50</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>20.00</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,08</td>
<td>0</td>
<td>99,79</td>
</tr>
<tr>
<td>20.10</td>
<td>all</td>
<td>0,04</td>
<td>0,52</td>
<td>0,19</td>
<td>0,04</td>
<td>0</td>
<td>99,21</td>
</tr>
<tr>
<td>20.20</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>20.30</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>20.40</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>20.50</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,05</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>21.00</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>21.10</td>
<td>all</td>
<td>0,04</td>
<td>0,52</td>
<td>0,18</td>
<td>0,04</td>
<td>0</td>
<td>99,21</td>
</tr>
<tr>
<td>21.20</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,12</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>21.30</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>21.40</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>21.50</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>22.00</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,05</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>22.10</td>
<td>all</td>
<td>0,04</td>
<td>0,5</td>
<td>0,19</td>
<td>0,05</td>
<td>0</td>
<td>99,22</td>
</tr>
<tr>
<td>22.20</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>22.30</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>22.40</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,05</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>22.50</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>23.00</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,07</td>
<td>0</td>
<td>99,79</td>
</tr>
<tr>
<td>23.10</td>
<td>all</td>
<td>0,04</td>
<td>0,5</td>
<td>0,19</td>
<td>0,04</td>
<td>0</td>
<td>99,23</td>
</tr>
<tr>
<td>23.20</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,12</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>23.30</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,04</td>
<td>0</td>
<td>99,83</td>
</tr>
<tr>
<td>23.40</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,12</td>
<td>0,04</td>
<td>0</td>
<td>99,82</td>
</tr>
<tr>
<td>23.50</td>
<td>all</td>
<td>0,02</td>
<td>0</td>
<td>0,11</td>
<td>0,06</td>
<td>0</td>
<td>99,81</td>
</tr>
<tr>
<td>Medel:</td>
<td>all</td>
<td>0,02</td>
<td>0,09</td>
<td>0,12</td>
<td>0,05</td>
<td>0</td>
<td>99,72</td>
</tr>
</tbody>
</table>
Bilaga C – check_by_ssh

<table>
<thead>
<tr>
<th>Tid</th>
<th>CPU</th>
<th>%user</th>
<th>%nice</th>
<th>%system</th>
<th>%iowait</th>
<th>%steal</th>
<th>%idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10</td>
<td>all</td>
<td>0,09</td>
<td>0,51</td>
<td>0,3</td>
<td>0,04</td>
<td>0</td>
<td>99,06</td>
</tr>
<tr>
<td>18.20</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,09</td>
<td>0</td>
<td>99,62</td>
</tr>
<tr>
<td>18.30</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,24</td>
<td>0,08</td>
<td>0</td>
<td>99,61</td>
</tr>
<tr>
<td>18.40</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>18.50</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>19.00</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>19.10</td>
<td>all</td>
<td>0,1</td>
<td>0,5</td>
<td>0,29</td>
<td>0,06</td>
<td>0</td>
<td>99,05</td>
</tr>
<tr>
<td>19.20</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>19.30</td>
<td>all</td>
<td>0,09</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,64</td>
</tr>
<tr>
<td>19.40</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>19.50</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,05</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>20.00</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,64</td>
</tr>
<tr>
<td>20.10</td>
<td>all</td>
<td>0,09</td>
<td>0,5</td>
<td>0,29</td>
<td>0,04</td>
<td>0</td>
<td>99,08</td>
</tr>
<tr>
<td>20.20</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,66</td>
</tr>
<tr>
<td>20.30</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>20.40</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,66</td>
</tr>
<tr>
<td>20.50</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,03</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>21.00</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>21.10</td>
<td>all</td>
<td>0,09</td>
<td>0,51</td>
<td>0,3</td>
<td>0,04</td>
<td>0</td>
<td>99,06</td>
</tr>
<tr>
<td>21.20</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>21.30</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>21.40</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>21.50</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>22.00</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>22.10</td>
<td>all</td>
<td>0,1</td>
<td>0,5</td>
<td>0,29</td>
<td>0,04</td>
<td>0</td>
<td>99,08</td>
</tr>
<tr>
<td>22.20</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,66</td>
</tr>
<tr>
<td>22.30</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,64</td>
</tr>
<tr>
<td>22.40</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>22.50</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,22</td>
<td>0,03</td>
<td>0</td>
<td>99,67</td>
</tr>
<tr>
<td>23.00</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,65</td>
</tr>
<tr>
<td>23.10</td>
<td>all</td>
<td>0,1</td>
<td>0,51</td>
<td>0,29</td>
<td>0,06</td>
<td>0</td>
<td>99,05</td>
</tr>
<tr>
<td>23.20</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,04</td>
<td>0</td>
<td>99,66</td>
</tr>
<tr>
<td>23.30</td>
<td>all</td>
<td>0,08</td>
<td>0</td>
<td>0,25</td>
<td>0,04</td>
<td>0</td>
<td>99,63</td>
</tr>
<tr>
<td>23.40</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,06</td>
<td>0</td>
<td>99,64</td>
</tr>
<tr>
<td>23.50</td>
<td>all</td>
<td>0,07</td>
<td>0</td>
<td>0,23</td>
<td>0,03</td>
<td>0</td>
<td>99,66</td>
</tr>
<tr>
<td>Medel:</td>
<td>all</td>
<td>0,08</td>
<td>0,09</td>
<td>0,24</td>
<td>0,04</td>
<td>0</td>
<td>99,55</td>
</tr>
</tbody>
</table>