

Degree project

Evaluation and

Implementation of Machine

Learning Methods for an

Optimized Web Service

Selection in a Future Service

Market

Author: Philipp Karg

Supervisor: Prof. Dr. Welf Löwe

External Supervisor: Prof. Dr. Sven

Martin, University of Applied Sciences

Karlsruhe

Date: 2014-08-31

Course Code: 4DV01E, 60 credits

Level: Master

Department of Computer Science

- I -

Statement of Authorship

I certify that this master thesis and the research work to which it refers are the
product of my own work and that it has not been submitted for a degree at any other
university. Any ideas or quotations from the work of other people published or
otherwise are fully acknowledged.

Place, Date Philipp Karg

- II -

Abstract

In future service markets a selection of functionally equal services is omnipresent.
The evolving challenge, finding the best-fit service, requires a distinction between
the non-functional service characteristics (e.g., response time, price, availability).
Service providers commonly capture those quality characteristics in so-called
Service Level Agreements (SLAs). However, a service selection based on SLAs is
inadequate, because the static SLAs generally do not consider the dynamic service
behaviors and quality changes in a service-oriented environment. Furthermore, the
profit-oriented service providers tend to embellish their SLAs by flexibly handling
their correctness. Within the SOC (Service Oriented Computing) research project of
the Karlsruhe University of Applied Sciences and the Linnaeus University of Sweden,
a service broker framework for an optimized web service selection is introduced.
Instead of relying on the providers’ quality assertions, a distributed knowledge is
developed by automatically monitoring and measuring the service quality during
each service consumption. The broker aims at optimizing the service selection based
on the past real service performances and the defined quality preferences of a
unique consumer.

This thesis work concerns the design, implementation and evaluation of
appropriate machine learning methods with focus on the broker’s best-fit web
service selection. Within the time-critical service optimization the performance and
scalability of the broker’s machine learning plays an important role. Therefore, high-
performance algorithms for predicting the future non-functional service
characteristics within a continuous machine learning process were implemented.
The introduced so-called foreground-/background-model enables to separate the
real-time request for a best-fit service selection from the time-consuming machine
learning. The best-fit services for certain consumer call contexts (e.g., call location
and time, quality preferences) are continuously pre-determined within the
asynchronous background-model. Through this any performance issues within the
critical path from the service request up to the best-fit service recommendation are
eliminated. For evaluating the implemented best-fit service selection a sophisticated
test data scenario with real-world characteristics was created showing services with
different volatile performances, cyclic performance behaviors and performance
changes in the course of time. Besides the significantly improved performance, the
new implementation achieved an overall high selection accuracy. It was possible to
determine in 70% of all service optimizations the actual best-fit service and in 94%
of all service optimizations the actual two best-fit services.

Keywords

optimized web service selection, central service broker, service oriented computing,
non-functional service characteristics, performances, machine learning, continuous
service optimization

- III -

Table of Contents

1 Introduction .. 1

1.1 Background and Motivation .. 1

1.2 Problem Definition .. 2

1.3 Objectives.. 3

1.4 Goal Criteria ... 4

1.5 Ethical Considerations ... 5

1.6 Structure ... 6

2 SOC Project Machine Learning .. 7

2.1 Current Broker Restrictions .. 7

2.2 SOC Project Challenges .. 8

2.2.1 Speed ... 9

2.2.2 Accuracy ... 9

2.2.3 Scalability .. 9

2.2.4 Robustness ... 10

2.3 Selection of Methods and Libraries ... 10

2.3.1 Method Pre-Selection .. 11

2.3.2 Library Pre-Selection ... 12

2.3.3 Proof of Concept .. 15

3 Design .. 17

3.1 Architecture .. 17

3.2 Foreground-Model ... 18

3.2.1 Pre-Processing .. 18

3.2.2 Service Selection .. 19

3.3 Background-Model ... 20

3.3.1 Pre-Processing .. 20

3.3.2 Strategically Learning .. 20

3.3.3 Performance Prediction .. 21

3.3.4 Service Selection Optimization .. 22

4 Implementation ... 24

4.1 Test Data .. 24

4.1.1 Requirements.. 24

4.1.2 Simulation .. 25

4.2 Data Pre-Processing... 28

4.2.1 Consolidation .. 28

4.2.2 Discretization .. 28

4.3 Machine Learning ... 30

- IV -

4.3.1 Naïve Bayes and Decision Tree .. 30

4.3.2 Continuous Learning .. 31

4.3.3 Utility Calculation .. 31

4.3.4 Best-fit Service Selection .. 33

5 Evaluation .. 35

5.1 Test Data Scenario .. 35

5.1.1 Response Time ... 36

5.1.2 Availability ... 38

5.2 Machine Learning Methods .. 40

5.2.1 Speed and Accuracy .. 40

5.3 Optimized Service Selection ... 42

5.3.1 Selection Quality .. 43

5.3.2 Speed and Scalability ... 45

5.3.3 Robustness ... 46

5.3.4 Utility Prediction ... 47

6 Conclusion.. 52

6.1 Retrospect.. 52

6.2 Achievement ... 53

6.3 Future work .. 54

6.3.1 Strategically Learning .. 54

6.3.2 Production Deployment .. 54

6.3.3 ‘Concept Drift’ Problem ... 54

6.3.4 ‘Lack of Feedback’ Problem ... 55

6.3.5 ‘Navigation Device’ Problem ... 55

7 List of References .. 56

A. Appendix .. 1

A.1 Statistics of the Previous Test Data .. 1

A.2 Simulation Parameters of the Created Test Data Scenario............................ 2

A.3 Overall Trend of the Attribute Response Time .. 4

A.4 Overall Trend of the Service Selection Accuracy (TOP1 and TOP2) 5

A.5 Overall Trend of the Actual and Predicted Utilities of the FIMT-DD
algorithm with Different Utility Functions ... 6

- V -

List of Figures
Figure 1.1: Extended dynamic service binding within a service oriented

architecture aiming at optimizing the service selection (Kirchner, et al.
[1]) ... 2

Figure 3.1: Architecture of the central broker framework aiming at optimizing
the service selection for a unique service consumer 17

Figure 3.2: Procedure of a best-fit service selection within the background-
model and corresponding core activities (1. performance prediction, 2.
utility calculation and 3. service determination) ... 21

Figure 4.1: Example of a simulation cycle within the test data generation
tool .. 27

Figure 4.2: Pre-processing activities within the foreground-/background-
model .. 29

Figure 4.3: Example of best-fit service recommendations for corresponding
call context classes ... 34

Figure 4.4: SQL SELECT query for determining best-fit web service 34

Figure 5.1: Overall response time trend separated by service instances 36

Figure 5.2: Response time aggregated by weekday and daytime 37

Figure 5.3: Overall availability trend .. 38

Figure 5.4: Availability aggregated by weekday and daytime 39

Figure 5.5: Service selection accuracy of the FIMT-DD, Hoeffding Tree and
Naïve Bayes algorithm in the course of time ... 44

Figure 5.6: Overall utility trend of the FIMT-DD algorithm with actual (dashed
lines) and predicted (solid lines) utilities and corresponding service
instances ... 48

Figure 5.7: Overall utility trend of the Hoeffding Tree and Naïve Bayes 49

Figure 5.8: Weekend and workweek utility trend of the FIMT-DD 50

Figure 5.9: Utility trend of Monday mornings (9 am) with different quality
preferences .. 51

- VI -

List of Tables
Table 2.1: Data statistics of the current test data .. 8

Table 2.2: Predicted number of submitted feedback tickets for corresponding
number of participants ... 10

Table 2.3: Comparison of the main machine learning methods (**** represent
the best and * the worst performance) (based on [8], p. 263) 11

Table 2.4: Evaluation results of the pre-selected machine learning methods
and libraries .. 16

Table 3.1: Example of call context classes with corresponding attributes......... 19

Table 3.2: Service recommendation table for determining best-fit services 19

Table 4.1: List of simulation parameter for simulating non-functional service
characteristics .. 26

Table 4.2: Threshold definition within the normalization for the attributes
response time and availability ... 32

Table 4.3: Normalization example of the service quality attributes response
time (RT) and availability (AV) ... 33

Table 4.4: Determination of a best-fit service with corresponding normalized
performances and utility function.. 33

Table 5.1: Statistics of the attribute response time and availability within the
created test data scenario ... 40

Table 5.2: Evaluation results of the machine learning methods for the criteria
speed (time of training) and accuracy (mean absolute error) 41

Table 5.3: Evaluation results of the machine learning methods Naïve Bayes,
Hoeffding Tree and FIMT-DD within the optimized web service
selection.. 43

Table 5.4: Time for processing a single instance in milliseconds of the machine
learning methods Naïve Bayes, Hoeffding Tree and FIMT-DD 45

Table 6.1: Achievement of the initially defined goal criteria 54

- 1 -

1 Introduction

This first chapter serves as introduction into this thesis work as well as presentation
of the thesis emphasis. For an understanding of the topic, first background details
are given and the motivation is highlighted. Afterwards the thesis problem is defined
and the derived objectives are presented. Finally, a brief overview of this thesis
structure is given.

1.1 Background and Motivation

This Master Thesis is part of the research cooperation with the Linnaeus University
in Växjö, Sweden and the Karlsruhe University of Applied Sciences, Germany. The
joint work takes place in a service-oriented setting with the assumption that there
will be a selection of service providers with functionally equal services in future
service markets.

“With Service-Oriented Computing (SOC), Software as a Service
(SaaS), and Cloud Computing, visions of a market of services where
functionalities can be dynamically and ubiquitously consumed have
emerged. Service consumers bind and use services on a dynamic basis.”
[1]

Services offering the same functionality only distinguish between their non-
functional characteristics (e.g., response time, price and availability). The service
providers commonly capture these quality attributes in so-called Service Level
Agreements (SLAs). Within the research of Kirchner, et al. ‘Service Level
Achievements – Distributed Knowledge for Optimal Service Selection’ [1] it is
claimed that a service selection based on the quality promises of the service
providers defined as SLAs, cannot be trusted in general. Due to the fact that service
provider are profit-oriented a certain tendency evolves to embellish the SLAs and to
flexibly handle the correctness of the defined service quality characteristics.
Furthermore, the static SLAs do not consider the dynamic behavior and quality
changes of services in a service-oriented environment. For example, when services
become more popular they are consumed more often and therefore, they possibly
show availability problems. Such behaviors are hard to capture within SLAs. Overall,
consulting SLAs for service quality provision is not optimal because they do not
always reflect the current non-functional service characteristics. The approach of
Kirchner, et al., addresses this problematic by monitoring and dynamically
measuring the service quality during service consumption. Hereby the development
of a distributed knowledge allows a detailed insight in the real and current service
characteristics [1].

As mentioned before, the existence of multiple services with the same
functionality requires a distinction between the non-functional characteristics. The
evolving challenge is to find services with best-fit quality for a unique consumer. The
approach of the mentioned research aims at automatically selecting best-fit services
based on the measured service quality performances. Objective hereby is the
extension of the classical service binding of consumer and provider. The
participants in this scenario are service consumers and service providers as well as
a central service broker. The broker serves as mediator with the core task
automatically binding service consumer and provider. The term service is used for
the general service functionality, whereas the service instance defines the service

- 2 -

implementation having a certain service functionality. For example, a weather
service provides weather predictions as a functional service. The service instance
would be a specific web service from a service provider such as Yahoo!.

Figure 1.1 outlines the core features of the overall framework with the process
for optimizing the service selection within a dynamic service binding.

Service Client Service Provider

Service Broker

4. Service Request

5. Service Response

1. Publication of

Service Interface

2. Service Lookup

with Context and Utility Information

3. Optimized Service Binding

6. Provision of Measured

Information 7. Adaptive Learning

4.1. Intermediary Services are Service Consumers of Sub-Services

Figure 1.1: Extended dynamic service binding within a service oriented architecture
aiming at optimizing the service selection (Kirchner, et al. [1])

The following paragraph gives a brief description of the single process steps. The
service providers have to initially publish their service interfaces to the broker (step
1). When service consumers lookup a service (step 2) the service broker provides
an optimized service binding (step 3). After the service is requested and consumed
(step 4 and 5) the clients transmit their measured end-user quality characteristics
to the service broker (step 6). Finally, the broker adapts the learning process based
on the new measured information (step 7).

This approach for an optimized web service selection significantly distinguishes
from a classical service binding. In classical service binding there is no knowledge
of measured service performances in general, whereas this new approach aims to
optimize the service selection for a unique consumer based on the knowledge of past
service calls. The consumer defines the so-called utility function, which are user
specific preferences for the service quality characteristics. Within the service lookup
(step 2) corresponding to the consumer’s context and the utility, the broker
provides a best-fit service. The central service broker has the leading part in
optimizing the service selection. The input of the optimization is the measured end-
user performances, which are monitored on the client-side and transferred as
feedback ticket to the service broker (step 6). These tickets include call context
attributes (e.g., location, call time), the consumers’ preferences (utility function) and
the performances of the service call (e.g., response time, availability). With this
information, the service broker is capable of selecting the services with best-fit
quality in respect to the consumer’s context and the consumer’s preferences. [1]

1.2 Problem Definition

This section analyzes the objectives of the presented SOC framework, described
more general before, with respect to the machine learning part. The thesis focuses

- 3 -

on the overall optimization of the service binding (step 3) with the adaptive machine
learning (step 7) on part of the central service broker.

For the problem definition the well-known process model CRISP-DM (Cross
Industry Standard Process for Data Mining), for approaching and solving typical
data mining problems, is used. CRISP-DM includes several phases, which are as
follows: business understanding, data understanding, modelling, evaluation and
deployment [2]. The first two phase’s business and data understanding are
examined in this section, whereas the other phases are direct or indirect objectives
of the design, implementation and evaluation chapters.

Within the initial phase, focuses are the project objectives and requirements from
a business perspective. Transferred to the SOC setting, the initial situation is an
existent service market with a selection of multiple services offering the same
functionality but with different service quality characteristics. The consequent
selection problem, which service best-fit the service quality preferences of the
consumer, needs to be solved. The main objective from business perspective is the
improvement of the service quality for a unique consumer by optimizing the service
selection. The supporting technical side for achieving an optimized selection
consists of two mandatory steps. First, continually learn from past service calls to
predict the service performances for similar contexts and secondly, finding a best-
fit service considering the unique service quality preferences of a consumer. The
subsequent part further describes those two steps.

The learning and prediction takes place based on historically collected data from
past service calls. For an understanding of the existent data, the attributes are briefly
described (see Section 3.3.3 for a detailed description of the attributes). The
collected data represents the so-called feedback tickets that are submitted by a
consumer after each service consumption. Those tickets contain information of the
consumers call context as well as information of the performance measurements.
The call context attributes such as the call time, the call location, etc. are input
attributes for the learning, whereas the performance measurement such as the
response time, the availability, etc. are the label attributes, which the machine
learning aims to predict.

Within the second part, selecting a best-fit service to the corresponding consumer
preferences, the concept of utility functions is applied. This approach allows the
definition of the consumer’s service quality preferences and therefore, the
determination of an optimization goal. The consumer sets the preferred weight of
each performance attribute and with simple additive weighting, a consumer’s utility
can be determined. As an example, here the definition of a consumer’s utility
function:

U (response time, availability) = 0.7 x [response time] + 0.3 x [availability]

Within this utility function, the needs for a good response time are greater than the
needs for a high availability. Overall the utility function allows to calculate the
utilities of each possible service and accordingly rank the service to get a best-fit
service [1].

1.3 Objectives

The main objectives of this Master’s thesis are the design, implementation and
evaluation of appropriate machine learning methods for an optimized web service
selection. The current learning approach of the service broker is based on a classical
batch decision tree learning algorithm that has some restrictions in regards to the

- 4 -

service-oriented, dynamic and performance-critical setting. This Master’s thesis is
tackling those drawbacks.

The preliminary objectives are, first the determination of the broker restrictions
within the current implementation, second the assessment of the SOC challenges
with the definition of corresponding evaluation criteria, third the pre-selection of
appropriate machine learning methods and libraries, which are addressing those
restrictions and challenges. The core challenge is the speed and the scalability of the
machine learning methods with regard to the performance-critical path from a
consumers request to the response for an optimized service. Other aspects such as
the ability of incremental learning also have to be examined. The final preliminary
objective is the creation and preparation of appropriate test data for training and
testing the learning algorithms.

After the preliminary, the following final objectives are pursued to obtain the
optimized web service selection. First, a conceptual design has to be outlined
concerning the challenges of the SOC setting. Second, the appropriate learning
methods have to be conceptually implemented and integrated. Third, the new
learning approach has to be evaluated with respect to the defined evaluations
criteria.

In sum, the objectives of this Master’s thesis are as follows:
- Scientific search for alternative machine learning methods, which are

addressing the current challenges
- Definition of appropriate evaluation criteria in context of the SOC setting
- Creation and preparation of appropriate test data
- Design of a concept for the machine learning and the web service selection
- Implementation of the machine learning methods and the best-fit web

service selection and integration into the SOC framework
- Evaluation of the machine learning with regards to the defined evaluation

criteria

1.4 Goal Criteria

This section presents measurable/observable success criteria for this thesis work
concerning the optimized web service selection. For each criteria, a corresponding
assessment method is listed.

High-Performance Service Determination
This work aims at optimizing the critical path for achieving a high-performance
service determination.
Assessment: time duration from requesting to receiving the broker’s best-fit service
selection (in milliseconds)

High Service Selection Accuracy
The optimized web service selection should achieve a high service selection
accuracy.
Assessment: percentage of correctly determined actual best-fit services (in percent)

Continuous Machine Learning Process
The service selection should be based on a continuous machine learning process.
Assessment: capability of the machine learning continuously processing and learning
from past measured service calls

- 5 -

Performance Change Adaption
The machine learning should be capable detecting performance changes in the
course of time.
Assessment: capability of the machine learning detecting performance changes

1.5 Ethical Considerations

This subsection discusses ethical aspects considering potentially threads or
negative impacts on the individuals of the SOC framework and means to avoid such
threads or impacts.

In the literature, the common research field ethics of artificial intelligence can be
divided into roboethics and machine ethics. For this thesis work the field of machine
ethics is more suitable concerning to ensure that the 'behavior of machines toward
human users, and perhaps other machines as well, is ethically acceptable' [3]. Other
research fields such as the ethics of data mining focus on the input data and the
ethical usage of the retrieved results. Data mining, when applied to people, is
frequently used to discriminate. Especially when raising racial, sexual, religious, etc.
data attributes about a person [4]. The next part discusses the collection of data and
the behavior of the central broker from an ethical point of view.

Within the framework the collected data are non-functional properties which can
be seen as the real performance achievements of the providers. From provider’s
perspective, the collected performance details are not sensitive since the providers
generally publish these details within their SLA’s. On the other hand, from
consumer’s perspective a complete insight on the service consumption can be
applied. Thereby not only consumer information about the achieved service
performance but also about when a service was consumed, how often and from
where, can be retrieved. Since the current broker implementation does not run in a
productive environment and the test data is simulated and not collected from real
consumers, no ethical concerns are involved within this thesis. In a later stadium of
the SOC project, the underlying data could be anonymized or the data could be only
stored for a defined period and thereafter be deleted.

The service oriented architecture is based on a machine to machine
communication and human users are not directly involved. The central service
broker continually learns and takes autonomous decision on the service selection.
It cannot be excluded that the service broker makes wrong decisions. In the case of
a wrong decision, there would be a possibly negative impact on the achieved service
quality but not on the service functionality. Within the open market scenario a
market-oriented competition is omnipresent. Services with best-fit quality are
preferred and recommended. The discrimination or moreover ranking of service
providers thereby is a legitimate approach. In the SOC setting the end consumer,
have to trust the central service broker. However, since the broker is an observing
instance and operated separately from the service providers, the objectivity and
independency is guaranteed. Overall, it can be stated that the brokers behavior
towards the framework participants and general approach is ethically acceptable.

- 6 -

1.6 Structure

The overall structure of the study takes the form of six chapters, including this
introductory chapter. Chapter Two begins by laying out the current restrictions of
the machine learning, and examines the core challenges given from the central
broker model. For each challenge, corresponding evaluation criteria are defined.
Afterwards a pre-selection of machine learning methods and libraries, with respect
to defined criteria, is applied. Within a proof of concept, the general usage and
potential of the pre-selected methods and libraries are tested. The third chapter
presents the conceptual design with the underlying architecture of the optimized
web service selection. Chapter Four presents the implementation specifics and
objectives of the overall machine learning process. In the fifth chapter, an overall
evaluation of the machine learning methods as well as of the optimized web service
selection is applied. The final chapter gives the conclusion with a brief summary of
the implementation and the resulting benefits as well as a critique analyses and
given current restrictions.

- 7 -

2 SOC Project Machine Learning

In this chapter, first the current restrictions of the central broker implementation
are examined. Second, corresponding challenges, derived from the general concept
of the central service broker as well as from the current restrictions, are defined.
Furthermore, for each challenge appropriate criteria are defined for the later
evaluation. Finally, a pre-selection of appropriate machine learning methods and
libraries is applied and within a proof of concept, the usage and potential is tested
in advance.

2.1 Current Broker Restrictions

The current central broker machine learning is implemented within the data mining
environment RapidMiner. For predicting the service performances several
RapidMiner processes were modeled for pre-processing, training and testing the
decision tree learning. Loading and executing these RapidMiner processes via the
central broker Java project integrates the RapidMiner machine learning. For
evaluating the decision tree learning specific test data was generated from real-
world web services [5]. The following part examines the restrictions of the current
broker implementation.

Batch Learning
The major restriction of the current approach is the classical batch learning. This
type of learning requires to train on the overall input data and therefore, has a huge
impact on the time consuming training of the prediction model. The batch learning
is challenged with strong linear increase of computation time by increasing data
volume and increasing service candidates. In the SOC setting it has to be assumed,
that there will be produced a high volume of feedback measurement tickets.
Therefore, this learning has to be questioned in general and other learning
approaches in the area of incremental learning have to be considered.

Pre-Processing
In some cases, the discretization of the current implementation is not optimal
regarding the value range division. The attribute ‘daytime’, for example is
aggregated to four hours ranges. If there are many feedback tickets submitted within
the four hours range, the data basis getting too broad and the prediction less
meaningful.

Automation
In general, the handling of the RapidMiner processes is not flexible enough and the
possibilities for automating the machine learning process are limited. The processes
are modeled inside RapidMiner, saved as XML and loaded via Java. A solution for the
automation, and especially the handling of new service candidates, would be to
duplicate an existing process and afterwards accordingly manipulate the XML. This
would not be a proper solution, moreover causing a significant overhead especially
if there are many service candidates.

Test Data
For evaluating the decision tree learning in the current broker implementation, an
‘initial set of measurement tickets (…) [were] created within a real world scenario of
public and private web service providers’ [5]. These web services were implemented
to cover different functionality. For example, the public Stock Quote service
responses with the current stock quote of a specific stock and the public Weather

- 8 -

service responses with the current weather. The dummy service File Digest is
sorting all lines of the submitted input file alphabetically and the Salutation service
responses with a salutation depending on the current time of the day. In this data
generation scenario a total of approximately 110 thousand feedback tickets,
including call context attributes (call time, consumers external IP and message size
of the request) as well as quality attributes (response time and availability), were
created during a 25-day time frame and with a total of 15 unique service candidates.
[5]

Service
Candidate

Records
Response time in ms Message size in ms Availabili

ty in %
Mean Deviation Mean Deviation

File Digest 9786 4477 3567 453153 201929 99,97

Salutation 30350 479 1380 305 0,6 88,72

Stock Quote 29625 1051 2888 1003 9,2 93,19

Weather 42405 756 2172 699 4,2 98,90

Table 2.1: Data statistics of the current test data

Table 2.1 outlines the statistics of these feedback tickets. The data for each service
instance was aggregated and then summarized within the service functionality.
Noticeable is the significant deviation of the attribute response time. The deviation
of each service (except File Digest) is almost three times as big as the average
response time. Because of the many outliers, there is a certain arbitrariness. The
message size of the services Salutation, Stock Quote and Weather has a steady
development and no remarkable deviation. The attribute availability is going from
85% up to 99%. Although the test data is from collected real-world dummy services
there could not be found any patterns or cyclic behavior nor a performance change
over time.

A closer look into the record count shows that the data volume is in general low.
The Weather service for example has only 8.5 thousands records per service
instance (in mean), which is the maximum instance count trained for a single
decision tree learning model. For more details, see Appendix A.1.

This chapter shows that the current central service broker has some significant
limitations regarding both the machine learning and the existing test data.

2.2 SOC Project Challenges

The SOC setting is situated in a dynamic and performance-critical environment. The
machine learning approach for an optimized web service selection is confronted
with several challenges. For an understanding of the problem situation, the
challenges have to be examined first.

According to Han et al., ([6, 7]) there are several aspects for evaluating machine
learning methods: speed, accuracy, scalability, robustness and interpretability. In
the next subsections, these aspects (except interpretability1) were further
discussed, not only concerning the method evaluation, but also as challenge for the

1 The aspect interpretability is not further considered because within an automated machine learning

process an interpretation of the prediction model does not play an import role, but the
performances and results does.

- 9 -

overall machine learning within the optimized web service selection. For each
challenge first, a definition is given and thereafter the specific requirements for the
SOC setting are outlined. Afterwards corresponding criteria are listed, which are
applied for the later evaluation.

2.2.1 Speed

This challenge describes how efficient the machine learning method performs
concerning the training and prediction time. Furthermore, this aspect also concerns
the overall machine learning process as ‘critical path’ from end-user side, meaning
the time from the consumers request for a best-fit web service until receiving the
response.

In the SOC setting the speed in general and the processing of requests in specific,
is a core challenge. The optimized web service selection is requested in real-time
before a service binding takes place and therefore, the response time plays an
important role. For example, if the consumer’s preferences are strongly based on
performance attributes and the request for a best-fit service takes longer than the
actual service consumption, the optimized web service selection does not have an
additional benefit and the existence has to be questioned. This example shows the
significant importance of the performance.

As described in 2.1 the restriction given with the classical batch learning has to
be solved. Incremental learning should therefore be considered for a continual real-
time processing and learning without training on the overall data set.

Evaluation Criterion
 How long does the training and prediction take?

2.2.2 Accuracy

This aspect describes how effective the machine learning method performs and
therefore, the ability to correctly classify a class label or predict a class value. [7]

The predictive accuracy plays also an important role in the SOC setting but
compared to the criteria speed it has a lower priority. A model is not useful if it has
the best accuracy but at the same time the worst computation time. The optimum is
always a tradeoff between a good accuracy and a good speed.

Evaluation Criterion
 How accurate is the machine learning method?

2.2.3 Scalability

This criterion describes the ability of the machine learning method to scale up, in
other words, the ability to build the method efficiently on a large amount of data [7].

As mentioned in the introductory chapter, for each service consumption the
central broker framework receives a feedback ticket. It is assumed that the
framework will produce a high amount of data. Table 2.2 shows an overview of the
predicted number of tickets created with different number of participants.

- 10 -

Participants 2 # Tickets per week # Tickets per month # Tickets per half year

100 14.000 56.000 336.000

500 70.000 280.000 1.680.000

2000 280.000 1.120.000 6.720.000

5000 700.000 2.800.000 16.800.000

15000 2.100.000 8.400.000 50.400.000

Table 2.2: Predicted number of submitted feedback tickets for corresponding number
of participants

The prediction shows that there possibly will be created more than 2 million
tickets per week with 15 thousand participants and 20 service consumptions per
participant. This will continue up to over 50 million tickets during a six months’ time
period. Because of this high volume of data, the machine learning process should be
capable to handle such large amount of data as well as process the data in a
foreseeable amount of time. Therefore, it is mandatory to examine incrementally
learning models, where each instance is learned at a time incrementally.

Evaluation Criteria
 How does the algorithm perform on large data sets?
 Is the machine learning method capable of incremental learning?

2.2.4 Robustness

This criterion describes the ability to make correct classifications and predictions
given noisy data or data with missing values [7]. Furthermore, this criterion also
includes the ability of the machine learning to automatically run in a changing
environment.

The machine learning process in the SOC project is situated within a dynamic and
changing environment. New service candidates and new attributes continually come
and go.

Evaluation Criteria
 How is a continuously changing environment with new service candidates

and new attributes handled?
 Is the machine learning method able to handle noisy data such as outliers and

attributes with missing values?

2.3 Selection of Methods and Libraries

A preliminary objective of this thesis was the search for machine learning methods,
which addresses the current challenges and restrictions described in the previous
sections. Because there exist a significant number of machine learning methods as
well as data mining libraries it is hardly possible to evaluate all of them. Based on
the defined requirements a pre-selection is applied to limit the number of methods
and libraries and therefore, reducing the time of the evaluation and the testing.
Within a proof of concept, the potential and usage of the selected machine learning
methods and libraries are pre-evaluated.

2 20 Consumptions per participant and day

- 11 -

2.3.1 Method Pre-Selection

In the area of machine learning there are two main categories for learning methods:
supervised and unsupervised learning methods. Unsupervised learning methods are
referred to clustering. Hereby, the aim is to discover new classes and hidden
structure since the input examples are not class labeled. Whereas supervised
learning is a synonym for classification, classifying nominal class labels or prediction,
predicting numeric class values [6]. In literature ([7]), the term prediction tends to
be used for predicting numerical class values. The term regression is also synonymic
used for predicting numerical class values, whereas the term classification is used
for predicting the class label. Throughout this thesis, the term prediction will be
used in its broadest sense referring to predict class values as well as class labels and
only in cases of misunderstanding described in detail. As described in Section 1.2,
the aim of the machine learning is to predict the non-functional characteristics of
web services. Accordingly, supervised learning methods are therefore selected.

While there has been much research in the subject of single machine learning
algorithms for certain field of problems, there has been less empirical research
comparing all the main machine learning methods together. This is because of the
variety of the machine learning methods and the different implementations within
a method group. Therefore, it is a challenge to generalize the methods on certain
criteria in general.

However, S. B. Kotsiantis [8] has published a review of established supervised
machine learning classification techniques giving a comprehensive overview of the
main machine learning methods evaluation.

 Decision
Tree

Naïve
Bayes

Neural
Networks

kNN SVM
Rule

Learners

Speed

- Speed of
Learning

* * * * * * * (*) * * * * (*) * *

Speed

- Speed of
Classification

* * * * * * * * * * * * (*) * * * * * * * *

Scalability

- Incremental
Learning

* * * * * * * * * * * * * * * (*)

Accuracy

- Accuracy in
general

* * (*) * * * * * * * * * * *

Robustness

- Tolerance to
missing values

* * * * * * * (*) (*) * * * *

Robustness

- Tolerance to
noise

* * * * * * * (*) * * (*)

Overall Rating 16 20 14 13 15 12

Table 2.3: Comparison of the main machine learning methods (**** represent the best
and * the worst performance) (based on [8], p. 263)

- 12 -

The aim of the publication is to give an orientation for a method selection with
pros and cons to certain aspects, helping to find a best-fit method and not selecting
inappropriate methods. Table 2.3 shows the results with corresponding star rating,
the evaluation criteria on the left column and the methods on the top row.

In section 2.2, the challenges speed, accuracy, scalability and robustness were
introduced. The evaluation criteria within this pre-selection are accordingly
grouped to these defined challenges.

It has been revealed by consulting the supervisors, that those results are
generally also reflect their assessment and experience. Overall, there is no single
method performing better than all others. The comparison strongly depends on the
corresponding single criterion. However, for a more general view, an overall rating
as sum of each single rating has been applied, as seen in the last row. Thereby, the
Naïve Bayes with an overall rating of 20 outperforms all others, and the Decision
Tree follows on the second rank.

For an appropriate pre-selection, the approach of dismissing the worst methods
first, was applied. As seen in Table 2.3, the worst rating within each criterion is
highlighted in brackets. The methods Neural Networks, kNN and Rule learners show
two or more of those worst ratings. They also show the lowest overall rating in
comparison to the other methods. This more general evaluation is briefly explained
with respect to the single criterion in the following part. Neural Networks and kNN
are dismissed, because either of their worse speed in learning or classification and
their low tolerance regarding missing values and noise. Rule learners are also
dismissed because of their low rating in speed of training and because they are not
optimal for incremental learning.

Considering the fact that there exist many implementations within a method
class, as already mentioned before, the best two machine learning methods naming
Decision Tree and Naïve Bayes are considered for the further evaluation. A brief
explanation for this pre-selection is given in the following paragraph.

Because the prediction takes place in a performance critical setting, the speed of
learning and classification plays an important role. Here both methods show a high
overall rating compared to the other methods. Furthermore, it is important to have
a certain ability for incremental learning. Naïve Bayes has a low rating in the
criterion accuracy. As mentioned in section 2.2, the accuracy is important but speed
and scalability is in general more important. It has to be mentioned that Naïve Bayes
has the restriction of dealing with continuous attributes [8], whereas Decision Tree
can handle both continuous and categorical attributes.

For the selected machine learning methods Decision Tree and Naïve Bayes, there
exist many different implementations. Taking only the Decision Tree method there
are implementation for classification, regression, incremental or batch learning, etc.
A concrete example is the Hoeffding Tree, an incremental, any time decision tree,
but there are also classical implementations such as the C4.5 or ID3 decision tree.

2.3.2 Library Pre-Selection

In this section first, the requirements for selecting a machine learning library with
regards to the SOC setting are defined and second, corresponding libraries from
search are presented. Finally, a pre-selection is applied.

The requirements for selecting the libraries were as follows:

- 13 -

- Integration: There should exist an easy way of integrating the library into a
Java environment. The library should be capable of real-time processing
within a machine learning workflow.

- Automation: The library should provide a high automation degree to be able
to adapt changes in the learning environment (e.g., changing service
instances, service consumer with new call context).

- Usage: There is a strong dependency between the library and the methods
itself. Often libraries are created for specific purposes and only contain
certain specific learning methods. Therefore, the general usage for solving
real world problems should be considered as well as the overall method
selection.

- Open Source: The library should be open source because of the non-
commercial research project usage.

For selecting appropriate libraries, different sources were searched. Hereby,
KDnuggets [9], a well-known site for Analytics, Big Data and Data Mining was a
helpful resource finding the most common and proven libraries for machine
learning tasks. The comprehensive list ‘Libraries and Development Kits for Data
Mining’ was examined and corresponding libraries were searched [10].
Furthermore, also experts and other specialized sites for data mining and machine
learning were reviewed for search. For example Albert Biffet, one of the main
contributor of the Weka framework, put together today’s most popular Big Data
Mining Tools in the Open Source market in one of his blog posts [11].

In KDnuggets newest annual survey 3’000 voters answered which Analytics, Data
Mining, Data Science software/tools they used in the past 12 months for real project
and not just evaluation [12]. Here are the top ten results of the survey:

1) RapidMiner, 44.2% share (39.2% in 2013)
2) R, 38.5% (37.4% in 2013)
3) Excel, 25.8% (28.0% in 2013)
4) SQL, 25.3% (na in 2013)
5) Python, 19.5% (13.3% in 2013)
6) Weka, 17.0% (14.3% in 2013)
7) KNIME, 15.0% (5.9% in 2013)
8) Hadoop, 12.7% (9.3% in 2013)
9) SAS base, 10.9% (10.7% in 2013)
10) Microsoft SQL Server, 10.5% (7.0% in 2013)

This list includes all kinds of tools, software, languages as open source or
commercial, etc. The top ten list shows that there are a variety of tools with specific
features, which are used for different fields of problems. For example, Excel, SQL,
Python and all commercial tools are no appropriate solutions for the SOC setting
with respect to the previously defined criteria. The Hadoop framework used for
parallel batch processing of large-data sets is also not a suitable solution for real-
time processing. Furthermore, the list has to be viewed critical because the survey
was publicly opened so that everyone could attend. Therefore, some vendors
pushed the participation on the survey. Nevertheless, the list gives a good overview
of current used Data Mining and Analytics tools within real projects.

The next part covers a selection of all examined libraries that are appropriate for
the SOC setting. Hereby a short presentation of the tools is given not aiming at

- 14 -

comprehensive listing all features, but rather to give an explanation why or why not
the corresponding tool is selected.

RapidMiner
RapidMiner is an easy-to-use desktop application for solving a variety of Machine
Learning, Data Mining, Text Mining and Predictive Analytics tasks. It has a
comprehensive selection of machine learning methods and integrated third-party
libraries [13]. As seen in the top ten list from above, RapidMiner is a well-known and
widely used data mining tool. In the past, there has been a big discussion about the
commercialized licensing model. However, the RapidMiner Company announced
that everything that is currently free stays free. Only the newer versions will be
commercial and when a new release is published the previous version gets open
source [14].

Despite the popularity and established usage, RapidMiner is not selected for
further evaluation. The main reason for the exclusion is the missing capability for
incremental learning. No machine learning method or external library could be
found for incremental learning. That is because the RapidMiner comes from the area
of classical batch processing and analytics. Another point, as examined in section
2.1, is the integration into Java. It is generally practicable but the handling with
processes especially for the automation takes much effort.

R project
R is an open source software environment for statistical computing and graphics. It
has its own programming language and an extensive selection of functions and
extensions [15].

The main reason for not selecting R is the high entry barrier. R has its own
programming language, which causes an additional effort to learn. Although there
are libraries for connecting R with Java such as the ‘Java GUI for R’ [16], but with
regards to automation and integration it seemed not an appropriate solution.
Furthermore, R has a statistical background, which means that modern machine
learning methods and concepts especially in the area of incremental learning could
not be found or are not that popular.

Weka + MOA
Weka is an open source library with a collection of machine learning algorithms for
data mining tasks from the University of Waikato. The library contains different
methods and algorithms for pre-processing, classification, regression, clustering,
association rules and visualization. It is written in Java and can be natively
integrated into Java projects [17].

MOA, which stands for Massive On-line Analysis, is also an open source
framework from the University of Waikato. The framework is designed for testing
and implementing online algorithms with focus on data streams. It includes several
state of the art algorithms for classification, regression and clustering [18].

The Weka and the MOA libraries are selected for the evaluation because of their
extensive collection of classical machine learning methods as well as new algorithms
with state of the art concepts for incremental learning. The bi-directional interaction
of the libraries also allows using them together. Both libraries are implemented in
native Java and therefore, easy to integrate into the central broker Java framework.
In addition, the automation of the machine learning process can be handled without
restrictions because of the native integration. As seen in the top ten ranking from
KDnuggets, Weka is a well-known and an established Data Mining tool with a
widespread usage for solving real-world problems. MOA is quite new in the area of

- 15 -

Data Mining tools but already found recognition in the expert groups of data stream
mining. Overall, they seem to be a perfect combination handling the given machine
learning challenges within the SOC setting.

Apache Mahout
Apache Mahout is a suite of machine learning libraries with algorithms for
clustering, classification and collaborative filtering on top of scalable and
distributed systems. It became a top level project of the Apache foundation in 2010
[19].

Despite the overall advantages, it was not selected for the further evaluation
because of the little selection of machine learning methods and the specific use
cases. Mahout focuses on scenarios in the area of text mining and is generally used
in combination with the complex Hadoop framework.

Other libraries
Libraries, which were reviewed but not further considered with regards to the
defined criteria are: Apache Spark, KNIME, Shogun, Shark, scikit-learn, Vowpal
Wabbit.

2.3.3 Proof of Concept

Prior to the final pre-selection a proof of concept was applied verifying the potential
of the machine learning methods and proofing that the libraries can be integrated
and used with a manageable effort.

As presented in the section above, the selected Weka and MOA library are used
within this proof of concept. Furthermore, also RapidMiner is used for comparing
the current implementation with the new selected machine learning algorithms.
Hereby, implementations for Naïve Bayes and Decision Tree, in MOA the Hoeffding
Tree and in RapidMiner the C4.5 were selected. The C4.5 Decision Tree classifier
within RapidMiner is used in the current implementation of the central broker
framework. The methods in the MOA library are based on incremental learning,
whereas in RapidMiner the C4.5 decision tree is based on a classical batch learning.
The benchmarks were executed within the integrated development environment
(IDE) Eclipse [20]. Therefore, the two libraries had to be integrated and additionally
RapidMiner processes had to be created.

For training and testing the methods, three different data sets were used: Airlines
(540K records - The airlines data set is used for evaluating regression models [12]),
Response time3 (104K records - this data set was used from the current feedback
tickets of the SOC framework) and Availability (14K records). For the evaluation, the
holdout approach was used with stratified sampling to have equally distributed
training and test data sets. Table 2.4 shows the results obtained from the methods
evaluation. The results do not include the computation time for data pre-processing.
Each benchmark was executed ten times and the average was taken.

The results show an overall improvement of the new machine learning
algorithms (MOA Hoeffding Tree and MOA Naïve Bayes) in respect to time of
training, testing and the overall accuracy. The Naïve Bayes classifier performs best
regarding the time of training and testing. At the same time, the Naïve Bayes has
either the best or almost the best accuracy.

3 This data set was used from the current feedback tickets of the SOC framework.

- 16 -

ML Method Training (ms) Testing (ms) Accuracy (%)

Airlines (Training: 270K, Testing: 270K)

Hoeffding Tree (MOA) 3049 836 64.53

Naïve Bayes (MOA) 709 1044 63.22

C4.5 (RM) 1448 775 55.52

Airlines (Training: 512K, Testing: 27K)

Hoeffding Tree (MOA) 4677 110 65.49

Naïve Bayes (MOA) 1080 96 63.66

C4.5 (RM) 2420 104 56.03

SOC Response Time (Training: 52K, Testing: 52K)

Hoeffding Tree (MOA) 255 138 14.82

Naïve Bayes (MOA) 91 164 15.26

C4.5 (RM) 102 284 4.81

SOC Availability (Training: 7K, Testing: 7K)

Hoeffding Tree (MOA) 21 11 91.18

Naïve Bayes (MOA) 10 11 91.18

C4.5 (RM-Cross-Valid.) 247 50 91.18

Table 2.4: Evaluation results of the pre-selected machine learning methods and
libraries

These benchmarks demonstrate that on the one hand there is a significant
performance improvement of the new machine learning methods. On the other
hand, it shows the low entry level of using and integrating these libraries. Further
has to be mentioned that the effort within RapidMiner is much higher, because the
processes have to be modeled within the RapidMiner user interface and afterwards
integrated into Java.

- 17 -

3 Design

This chapter introduces the conceptual design for an optimized web service
selection. Thereby the overall machine learning activities from the data pre-
processing, the performance prediction, the service optimization, up to the
recommendation of a best-fit service are illustrated and described in detail.

3.1 Architecture

Figure 3.1 outlines the architecture for an optimized web service selection. In
comparison to the process of a dynamic web service binding, described in the
introductory chapter, this conceptual design moreover focuses on illustrating the
activities of the adaptive machine learning.

Central Broker Framework

Service Consumer

Foreground-Model Background-Model

Local Component
Service Request

Best-fit Service Recommendation for each
Call-Context-Class and Utility-Function

Service Instance

Data Pre-Processing

Performance Prediction

Service Selection
Optimization

Data Pre-Processing

Feedback Ticket

Service Selection

Optimized Service Selection

Measured Service
Quality Characteristics

C1 Service..U1

Figure 3.1: Architecture of the central broker framework aiming at optimizing the
service selection for a unique service consumer

The involved participant on the one side is the service consumer, represented by
the local component, and on the other side the central broker framework with the
so-called foreground-/background-model. Those participants interact with each
other via several interfaces illustrated as arrows. The next part describes the general
procedure of optimizing the service selection.

- 18 -

The interaction of the service broker and the consumer is triggered when a best-
fit web service is requested. The request of the consumer is received by the
foreground-model and pre-processed. According to the call context attributes and
the consumer preferences, the best-fit service instance is selected and passed to the
service consumer. After a service consumption, the local component submits the
measured performances and call context attributes of the service call to the central
broker, where it is persisted. The background-model has an asynchronous, dynamic
and repetitive characteristic. When new feedback data is submitted, the data is pre-
processed for the prediction and optimization activities. These are controlled and
executed based on certain strategic rules within a repetitive cycle. When the
performance prediction for certain call contexts is triggered, all current
performances of the possible service instance selection are predicted and passed to
the service selection optimization. Within the optimization process, the
performances are normalized and thereafter the utility is calculated. Finally, the
best-fit service for the specific call contexts is determined and submitted to the
foreground-model, where the service recommendation is persisted.

The design is derived from the defined goal criteria (1.4), the problem definition
(1.2), the challenges given from the machine learning (2.1) and the restrictions of
the current implementation (2.2). The core feature of this introduced architecture
is the separation of the service optimization, including learning, predicting and
calculation activities, from the performance-critical request of a best-fit web service.
This leads to the two-part central service broker with the foreground-/background-
model. This asynchronous model enables that the time-consuming prediction and
optimization take place in the background and does not affect the real-time request
for a best-fit web service. Thereby the core approach is the pre-calculation of best-
fit web services for certain unique call context classes. Any kind of performance
issues within the critical path from requesting a best-fit web service to the point of
the service recommendation were thereby eliminated. In the subsequent sections,
the design of the single activities within the foreground-/background-model are
further described.

3.2 Foreground-Model

The foreground-model, compared to the background-model, is less complex and
only exists of the two process steps: pre-processing of the requested call context and
best-fit web service selection.

3.2.1 Pre-Processing

Main objective of the pre-processing is the determination of the call context class
given from the information of the service request.

Call Context Class
Having the overall foreground-/background-model, a concept was required for
identifying a consumer with corresponding call context attributes and their unique
preferences. This was not only needed for controlling the continuous learning in a
systematic way, but also for a high-performance access of the service
recommendations.

A call context classes is a unique combination of all call context attributes,
functional services and utility functions. Table 3.1 shows an example of several call
context classes with corresponding attributes.

- 19 -

id external ip weekday daytime service utility function

34 DE Sat 11 ServiceA 0.5*responsetime+0.5*availability

35 DE Sat 12 ServiceA 0.8*responsetime+0.2*availability

36 US Mon 13 ServiceA 0.5*responsetime+0.5*availability

37 US Mon 13 ServiceB 0.5*responsetime+0.5*availability

Table 3.1: Example of call context classes with corresponding attributes

When a service consumer requests a best-fit service the IP, the timestamp of the
request and corresponding utility function is submitted to the central service
broker. The IP is mapped to a location and information of the timestamp such as the
weekday and daytime hour are extracted. Section 4.2 describes the specifics of the
pre-processing implementation. After the pre-processing, the call context class id is
determined and the next process step, the selection of the best-fit service selection,
is applied.

3.2.2 Service Selection

Within the time-critical request for a best-fit service, the performance of accessing
and receiving a best-fit service plays an important role. Therefore, the simple
approach of a lookup table was applied. The recommendation table contains the
current best-fit services for a specific call context class. As seen in Figure 4.3, the
table contains two service recommendations for the call context class 34 (the value
of the attribute call context class is a foreign key to the id of the call context class
table, as seen in Figure 3.2). In the third column, the best-fit service is listed with the
functional service identifier. In this example, ServiceB replaced ServiceA on the
22.02.2014 at 13:34:46. The attribute instances contains the number of learned
feedback tickets until a service change for the specific call context class was applied.
Here the service change took place after 16 new feedback tickets were learned. The
attribute version is an index counting the number of service changes for the
corresponding call context class. The highest value of the version attribute
represents the current best-fit service.

id call context class service date instances version

210 34 ServiceA 2014-02-22 11:02:12 10 7

211 34 ServiceB 2014-02-22 11:34:46 16 8

Table 3.2: Service recommendation table for determining best-fit services

The advantage of the presented technical selection approach on the one hand, is
the simple and quick determination of a best-fit service for a specific call context
class. On the other hand, the attributes date, instances and version allow an
extensive insight and traceability into the behavior of the central service broker. For
example, when the service recommendation for certain call context classes are
changing often, this could be either an indicator for a close competition or a
significant continuous service quality change of the involved services. It is also
possible to make statements, which services for certain call contexts and consumer
preferences are best.

- 20 -

In addition, this approach could be extended by also persisting the predicted
performances of the quality attributes. Then the performance effect should be
further analyzed and decided, if a benefit is a given.

3.3 Background-Model

The background-model is the core of the optimized web service selection and
synonym for the learning, prediction and optimization activities. The overall
component is designed as a continuous and repeatable process.

3.3.1 Pre-Processing

As seen in Figure 3.1, the measured service quality characteristics submitted from
the local component are input for the pre-processing activities within the
background-model. The input consists of two attribute types: the call context
attributes and the measured quality attributes.

Within the machine learning methods for classification, the class labels can only
be handled as nominal values (e.g., Naïve Bayes or classical Decision Tree).
Therefore, the values of continuous attributes have to be transformed into discrete
class values. This process is called discretization and a general notion in the area of
data mining [6]. For example, the numeric response time value of 739 is discretized
into the nominal class ‘700-750’. There exist different approaches for the
discretization, which are discussed in the implementation part in subsection 4.2.2.

3.3.2 Strategically Learning

The idea behind the foreground-/background-model was to detach the real-time
request for a best-fit web service selection from the overall time-critical prediction
activities and the service determination. The determination of the best-fit services
automatically and continuously takes place in the background. The pre-determined
best-fit services therefore can be quickly provided. This overall model required a
mechanism for controlling the continuous process of learning and predicting the
performances, calculating the utilities and determining the best-fit services.
Thereby, the term strategically learning was introduced, which not only is
addressing the learning activity, moreover can be referred to this overall continuous
optimization process.

As control mechanism, the approach of strategically learning with respect to
defined thresholds was created. A threshold is a value level that when exceeded,
triggers an action. In general, two main threshold types were defined: count and
time thresholds. For example, when defining a count threshold, the background-
model learns and counts the number of new feedback input within a call context
class. After the defined threshold number is exceeded, the count is reset and the
process for optimizing the service selection and determining the current best-fit
service is triggered. The time threshold works similar, but instead of counting the
new feedback tickets, the minutes after the last service optimization are counted. In
the following, all threshold types are listed. Within a call context class the
performance prediction and service optimization is triggered:

 Count - when a defined number of instances is exceeded.
 Time - when a defined number of minutes is exceeded.
 CountANDTime - when both, a defined number of instances and minutes are

exceeded.

- 21 -

 CountORTime - when either a defined number of instances or minutes is
exceeded.

Figure 3.2 illustrates the three main activities within the background-model.
When a defined threshold is exceeded, first the performances of the quality
attributes are predicted (step 1). Thereafter, the performances are normalized into
a certain value range and corresponding utilities are calculated (step 2). Finally, the
service with the highest utility is determined and selected as best-fit service (step
3). All these activities are part of the strategically learning process and core of the
optimized service selection.

The activities of the performance prediction are described in the next subsection,
whereas the other activities of step two and three are further described in Section
3.3.4.

1. Performance Prediction, 2. Utility Calculation and 3. Service Determination

Predict Performance Metrics of
each Service Instance

1 2
Normalize Performances
and Calculate Utility for
each Service Instance

SAQ1 (C1, C2, C3, ...) := PA1

SAQ2 (C1, C2, C3, ...) := PA2

SBQ1 (C1, C2, C3, ...) := PB1

...

S: SERVICE INSTANCE / Q: QUALITY ATTRIBUTE

C: CALL CONTEXT / P: PREDICTION

UA = (PA1 * WQ1 + PA2 * WQ2, ...)

UB = (PB1 * WQ1 + PB2 * WQ2, ...)

...

U: UTILITY / W: WEIGHT OF QUALITY ATTRIBUTE

P: PREDICTION

WQ1

WQ2

...
PA1

PA2

PB1

Pre-defined
weights of each

quality attribute

3 Select Service Instance
with max Utility

U > MAX

Figure 3.2: Procedure of a best-fit service selection within the background-model and
corresponding core activities (1. performance prediction, 2. utility calculation and 3.

service determination)

3.3.3 Performance Prediction

The performance prediction is the overall term for the prediction as well as the prior
learning. After the submitted feedback tickets are pre-processed, they are learned
within the prediction models and underlying machine learning methods. For each
service instance and each quality attribute (seen as SAQ1, SAQ2, etc. in Figure 3.2, step
1) a single prediction model is used (seen as PA1, PA2, etc. in Figure 3.2, step 1).

- 22 -

As described before, when a defined threshold within a call context class is
exceeded, the prediction process is triggered (step 1 in Figure 3.2). Then all
performances of each service instance within a functional service group are
predicted. For example, all current performances of the functional equally services
A1, A2 and A3 are predicted after ten new feedback tickets from service A1 and call
context class ‘DE, Mon, 14’ were submitted.

The input of the prediction are the call context attributes such as the call time
(timestamp) and call location (consumers IP) of the measured past service calls. The
label attributes, which are to be predicted, are the quality attributes. A quality
attribute stands for the non-functional service characteristics. In the research paper
of Kirchner, et al. [1] as well as within the thesis work of Markus Geisler [5] and
Catherine Catherine [21], several non-functional characteristics were introduced
within the SOC framework such as response time, throughput, availability, monetary
costs, reliability and reputation. The attributes generally have different
characteristics and are either dynamic evolving or static attributes. They can be
assessed automatically or manually within a human interaction. This work focuses
on the two main attributes namely response time and availability. These
performance attributes can be assessed automatically and show a dynamic
behavior. The following part further describes those two attributes and outlines
how they are determined.

Response Time
Within the SOC framework, the response time is a performance metric and
expressed as the duration of a service call from end consumer perspective. The
duration includes the time starting from the client’s request, to the processing
within the service instance, until the receiving of the response on client side. For
predicting this numeric quality attribute, the pre-selected machine learning
algorithms are used. The classification models can only handle nominal values,
which is why the response time has to be discretized. Others such as the regression
models can handle continuous values.

Availability
In this work the availability, when referring to a service call, is expressed with the
Boolean values ‘true’ and ‘false’. If the service instance was available at the time of
the request and successfully responded, the availability is ‘true’. When the service
did not successfully answer, then the availability is ‘false’. The availability attribute
is not handled within the pre-selected machine learning methods. This is because
predicting the availability as a nominal value attribute with ‘true’ or ‘false’ is not
accurate enough. Instead of using a prediction model, the statistical approach of
building the probability that a service will be available is chosen. Therefore, within
a call context class the relation between the number of available and total service
calls is built from the observed past service calls. For example, the call context class
for a service instance contains an overall of 74 feedback tickets with a total of two
non-available service calls. In this example, the availability would be 97.3% (72/74).

3.3.4 Service Selection Optimization

As seen from Figure 3.1, the optimization of the service selection exists of step two,
the utility calculation, and step three, the service determination.

Utility Calculation

- 23 -

The concept of calculating the service utilities was already briefly described in the
introductory chapter. The selection of multiple services offering the same
functionality but only distinguishing themselves between their service quality
characteristics results in a multi criteria decision making problem. Within the
research of Kirchner, et al. [1] the selection problem is approached by defining a
utility function as an optimization goal of the unique consumer. The utility function
follows the scoring method of simple additive weighting (SAW) [22]. For each
alternative thereby an evaluation score is calculated, the so-called utility. The utility
is determined by numerically combining the non-functional characteristics (quality
attributes) with the pre-defined weights of the unique consumer (the summed
weights have to be one). Before the calculation, the predicted quality attributes,
which are from different domains, have to be converted into a similar value range to
be comparable. This process is called normalization or standardization approaching
to give all attributes an equal weight [6]. For the response time low values, which
are desired, should show a high benefit, whereas for the attribute availability high
values are desired and therefore should show a high benefit.

Service Determination
The core approach of the foreground-/background-model is to have all current best-
fit services listed in the foreground lookup table. Therefore, a continuous
adjustment takes place to keep the recommended best-fit services up to date.

The service determination aims at maximizing the utilities. Thereby simply that
particular service, which has the highest utility, is selected. When the optimization
process for a certain call context class is triggered and the best-fit service is
determined, a matching with the recommendation table of the foreground-model is
applied. If the best-fit service, listed in the recommendation table, differs from the
determined and just predicted best-fit service, a new service recommendation is
inserted into the table.

Summary

The architecture for an optimized web service selection is designed as a continual
machine learning process aiming to address the current restrictions and challenges
within the SOC setting. The concept eliminates the current performance
problematic, so that requesting a best-fit web service selection is not time-critical
anymore.

- 24 -

4 Implementation

This chapter concerns the specifics of the central broker implementation. First, the
derived requirements for creating appropriate test data and the general simulation
approach are introduced. Thereafter, the consolidation and discretization activities
within the pre-processing are described. Finally, the machine learning specifics for
the optimized web service selection are outlined.

4.1 Test Data

Having meaningful and sufficient test data plays an important role when evaluating
machine learning methods. If the data input of the learning model is bad, the output
and therefore the prediction does not get better. Markus Geisler [5] and Catherine
Catherine [21] also examined the challenge of appropriate test data in their thesis
work within the SOC research project. Both implemented concepts and techniques
for creating test data. As described in 2.1, the current available test data is
insufficient in respect to data volume. Furthermore, the data does shows neither
traceable web service characteristics nor performance changes over time, which all
is necessary for a representative evaluation. Due to this fact, an initial objective of
this work was to create test data fitting the needs for the evaluation. In the next
subsections, the requirements for appropriate test data are described and the
approach for simulating the test data is presented.

4.1.1 Requirements

In the SOC setting, the data used for testing the machine learning methods are the
submitted feedback tickets containing the call context and the performance
measures from each service consumption. The requirements for creating this data
were defined in the categories data volume and data characteristic, which are
further described in the subsequent part.

Data characteristic
Real-world web services can have cyclic performance behaviors such as day and
night cycles or weekly and monthly cycles, etc. They also can show workweek and
weekend behaviors. Other non-cyclic behavior can be unexpected hardware failures
resulting in a service breakdown [5]. Geographical network latency is another
significant and common impact on the performance characteristic of web services.
More general service behaviors are arbitrary performance volatilities or
performance outliers.

All these mentioned examples for web service behaviors should be reflected in
the test data characteristics. For summarizing the above, the following requirements
are given for simulating and creating appropriate test data:

- Cyclic performance behavior
- Performance change over time
- Geographical network latency
- Performance volatility and outliers

Data volume
As discussed in section 2.2.3 with increasing number of participants, the number of
data records can rises into millions. Therefore, the scalability and the handling of a
high data volume have to be evaluated. Especially the incremental learning
algorithms need an appropriate data volume to outperform the classical batch

- 25 -

algorithms. According to the vendor of the MOA library, several millions of instances
are needed to show better performance than classical methods [23]. The proof of
concept (see Section 2.3.3) indicated that already several hundred thousands of
instances resulting in a better performance of the incremental algorithms.
Furthermore, considering weekly cycle behaviors, an appropriate time period
should be chosen. To summarize, the defined requirements are as follows:

- Number of records: several 100K records
- Time period: at least three weeks

4.1.2 Simulation

The first idea for creating test data was to design several dummy web services with
a certain logic to imitate real-world web services. They would being called from
different geographical located clients with a certain time behavior and call
frequency. The same approach was applied for creating the current available test
data of the previous thesis work. As it turned out the implementation, deployment
and scheduling of the services would be complex and difficult to handle.
Furthermore, they had to run in real-time, which would be very time-consuming
since there is the requirement for a high data volume. The missing flexibility to have
several test runs and adapt the defined service logic would not be given.

Instead of imitating real-world web services with dummy services, the approach
of simulating the web service quality characteristics was considered. The first
implementation of a simulation tool showed an easy and comprehensive approach
for generating appropriate test data. According to the previously described data
characteristics requirements, corresponding simulation parameters had been
defined. The subsequent part describes those defined simulation parameters.

Table 4.1 lists all parameters for the test data generation with corresponding
attributes. As described in 3.3.3, the non-functional characteristics response time
and availability were selected for simulating the quality characteristics.

Parameter Attributes

Call Context

Call Time Simulation start (DD-MM-YYYY HH:MM:SS) [start]
 Service call frequency (ms) [periode]

 Duration of Days [days]

 Duration of Hours [hours]

Consumer Consumer ID [consumerId]

 Consumer IP address [externalIp]

Service
Instance

 Service instance name [serverName]

 Service instance IP [calledServiceInstanceAddress]

Service Service name [functionalServiceIdentifier]

Utility Consumers utility function [utility]

Response time

Response
time

 Response time normal (ms) [respNormal]

 Response time volatility (upward) (ms) [respDeviation]

 Response time simulation (ms) [respSimulation]

Shift Begin (% of the overall records) [respOverallBeginPerc]

 End (% of the overall records) [respOverallEndPerc]

- 26 -

Daytime Begin (HH-MM) [respDaytimeBegin]

 End (HH-MM) [respDaytimeEnd]

Weekday Weekday name(s) (EEE) [respWeekday]

Outlier Response time outlier (ms) [respOutlierResponse]

 Response time deviation (ms) [respOutlierDev]

 Rate (% of the overall records) [respOutlierPerc]

Availability

Availability Non-availability (% of the overall records) [nonavailOverallPerc]

 Begin (% of the overall records) [nonavailOverallBeginPerc]

 End (% of the overall records) [nonavailOverallEndPerc]

Daytime Begin (HH-MM) [nonavailDaytimeBegin]

 End (HH-MM) [nonavailDaytimeEnd]

Weekday Weekday name(s) (EEE) [nonavailWeekday]

Outlier Rate (% of the overall records) [nonavailOutlierPerc]

Table 4.1: List of simulation parameter for simulating non-functional service
characteristics

In general, there are three categories of parameters: call context, response time
and availability. The call context parameters allow scheduling the time and
frequency of the service call, but also allow defining the consumer and the provider
details. The response time and availability parameters are for the simulation of the
service quality characteristics. Within the response time simulation, the expected
normal response time has to be defined with an additional upward deviation,
simulating the service volatility. The attribute response time simulation is used for
simulating a response time shift or a daytime and weekday service behavior. Having
a response time shift simulation, the start and end percentage referring to the
overall records have to be defined. For the daytime simulation, the begin and end
time and for the weekday, the weekday names have to be set. Furthermore, response
time outliers can be simulated by defining the response time outlier attribute with a
deviation and percentage rate of the overall records. Within the simulation of the
service availability, similar attributes are used as described before. Instead of
numerical values, nominal attribute values with ‘true’ for availability and ‘false’ for
non-availability are simulated.

The simulation parameters are defined via a configuration CSV file (as seen in the
table, the naming of the CSV parameters are in square brackets). Beside the listed
attributes from Table 4.1, the configuration file contains additional attributes,
needed for selecting only those simulation attributes, which are desired. For
example, there are Boolean flag parameters (‘true’ and ‘false’) for selecting or
deselecting the response time shift simulation and another Boolean parameter for
combining the daytime and weekday simulation. Within a single simulation run,
multiple simulation cycles can be executed at the same time. Each row in the
configuration file corresponds to one simulation cycle. After a simulation run the
created data can be either exported to a CSV file or directly submitted to the central
broker framework via the feedback SOAP interface (SOAP is a protocol intended for
exchanging structured information [24]).

The following part outlines the advantages of the test data generation tool. The
main benefit is the general usage with the ability executing and repeating the

- 27 -

simulation runs easily. This can be very favorable especially in the beginning, when
defining service behaviors and trying to determine an appropriate test data
composition. The creation of the data is completed within seconds, which compared
to measuring real-world web services would take days or weeks. The generation
approach allows simulating any specified time period with no limits in respect to
data volume. The extensive selection of parameters allows creating sophisticated
test data scenarios in any degree of complexity under stable and predictable
conditions.

Figure 4.1 shows the definition of a simulation cycle with a short description on
how the data is created. In this simulation cycle the consumer with the discretized
IP DEConsumer, consumer id 1 and the utility 0.5*responsetime+0.5*availability
requests the service Scenario1 with the address DE1Service starting at 22.02.2014
for 30 days every minute (call frequency of 3.600.000 milliseconds).

The service has an expected response time between 250 and 270 milliseconds
(plus deviation), which is decreasing between 360 and 380 milliseconds in the time
course (50% to 100%) from day 15 to day 30. Furthermore, the service performance
is decreasing weekly, each Friday from 15.00 to 17.00 pm between 360 and 380
milliseconds. Two percent of all service calls are outlier with a response time
between 600 and 620 milliseconds.

The service has a 95% availability (5% of all service calls are non-available) from
day 27 to 30 (90%-100%). Additionally every morning from 08.05 to 08.30 am the
service is non-available. Four percent of all service calls are outliers (non-available
service call).

Figure 4.1: Example of a simulation cycle within the test data generation tool

In the following a short description of the outlier function, which is applied both
for the response time and availability simulation in the same way. First, the number
of outliers is calculated from the total calls and the outlier percentage. Thereafter,
the outlier calls are split and randomly assigned to normal distributed ranges. From
the example above, the outlier creation for response time is illustrated in detail: In
total, there are 43.200 service calls (60min * 24hours * 30days) and an outlier
percentage of 2% resulting in 864 outliers. The outliers are now distributed
randomly within the ranges 1-50, 51-100, 101-150, 151-200, etc. (range of 50:
43.200 / 864), which could result to a outlier distribution of 13, 52, 122, 196, etc.

Call Context
start=22-02-2014 00:00:00, periode=3.600.000, days=30, hours=0, consumerId=1,
externalIp=DEConsumer, calledServiceInstanceAddress=DE1Service,
functionalServiceIdentifier=Scenario1, utilityFunction=0.5*responsetime+0.5*availability

Response Time
respNormal=250, respSimulation=360, respDeviation=20, isRespOverall=TRUE,
respOverallBeginPerc=50, respOverallEndPerc=100, isRespDaytimeAndWeekday=TRUE,
isRespDaytime=TRUE, respDaytimeBegin=15-00, respDaytimeEnd=17-00,
isRespWeekday=TRUE, respWeekday=Fri, isRespOutlier=TRUE,
respOutlierResponse=600, respOutlierPerc=2, respOutlierDev=30

Availability
isNonavailOverall=TRUE, nonavailOverallPerc=5, nonavailOverallBeginPerc=90,
nonavailOverallEndPerc=100, isNonavailDaytimeAndWeekday=FALSE,
isNonavailDaytime=TRUE, nonavailDaytimeBegin=08-05, nonavailDaytimeEnd=08-30,
isNonavailWeekday=FALSE, nonavailWeekday=, isNonavailOutlier=TRUE,
nonavailOutlierPerc=4

- 28 -

The outlier value for response time is defined separately, whereas for availability
the value ‘false’ is set.

4.2 Data Pre-Processing

This section outlines the implementation of the consolidation and discretization
activities within the data pre-processing.

4.2.1 Consolidation

The submitted tickets via the feedback service interface are processed and stored in
a very generic way. This is because within the SOC setting new attributes and
measurements types can quickly change. The feedback ticket itself with all call-
context attributes and performance measurements are saved into four different
tables. [5]

Having the data available for the learning models, different approaches have been
examined and tested. In the beginning, a classic SQL join was used for merging the
data. Afterwards the more convenient PostgreSQL crosstab function, producing a
pivot-table, was applied for achieving a consolidation. After all, fetching the records
with a complex query caused too much overhead. Also in respect to the incremental
learning and the high performance requirements, it appeared not to be an
appropriate solution.

Instead, the approach of merging the data into a single table was chosen. Hereby
for each of the four tables triggers were designed and implemented, fetching the
inserted data and copying those into one table. All required data is located in a single
table and therefore can be fetched very performant. When it comes to incremental
learning, where for each record a single query is executed, this seemed the most
appropriate solution. Furthermore, there could not be observed any significant
performance issues caused from the additional triggers. The time differences, when
submitting several 100 thousands tickets via the feedback service interface with and
without the triggers, did only distinguish in range less than 100 milliseconds.

However, this approach also involves a drawback. The flexible and generic way
of saving the submitted feedback data is restricted. If the framework is confronted
with new attributes such as new call-context attributes or new performance
measures, the triggers always have to be adapted.

4.2.2 Discretization

Table 4.2 shows the discretization activities for the corresponding call contexts and
quality attributes. The different pre-processing approaches are further described in
the subsequent part.

- 29 -

Pre-Processing

Discretization IP Location

Timestamp Service IP

Service12014-02-03 18:29:22 10.84.41.24

Service Location

SwedenService1

Day

Monday

Time

18

Response time Availability

true739

Call Context Attributes Quality Attributes

Discretization

RT

‘700-750‘

Availability

true

Figure 4.2: Pre-processing activities within the foreground-/background-model

Timestamp and IP
The timestamp of the service call, as continuous time value, is discretized and split
into the attributes day and time. For the time attribute, the interval of one hour was
selected. Furthermore, the IP is assigned to a location. In the current
implementation, and the generation of the test data, the IP attribute already is
discretized manually. In further implementation, corresponding services for
mapping IPs to locations could be used [26].

Response Time
As already outlined in the design chapter, for classification models such as the Naïve
Bayes or the classical Decision Tree learner, continuous values have to be
discretized. Within the development phase, it has been shown that there are
different discretization approaches, especially in the area of batch pre-processing.
Discretizing numeric values on the fly within a continuous process, where data is
arriving continuously, is a particular challenge. Here an overall value distribution is
only known from the current data, but moreover can significantly change in the
course of time.

Within the service broker, two discretization types were implemented: batch and
incremental discretization. These are further described in the following:

 Batch Discretization: For this type, the method equal-frequency was applied
with a number of 10 bins. The bin intervals were set to contain an equal
number of instances. This method showed consistent better performance
than the method equal-width, where the intervals are set to have an equal-
sized interval width [25].

 Incremental Discretization: For an incremental discretization, or
synonymous called online discretization, the simple approach of setting
static intervals was applied. Within the central broker, the interval size of 50
milliseconds was selected. There exist only a few methods for discretizing
continuous data streams, because the research in this field of online
discretization just developed in the past few years. Christophe Salperwyck
introduced an extension for the MOA library discretizing numeric values
within a continuous stream [29]. These methods include a dynamic adaption
of the interval sizes when the value distribution changes during the course of
time.

Overall, the implementation of the pre-processing showed that consolidation
and discretization activities are required before the training of the prediction
models can take place. There exist different approaches for discretizing numeric

- 30 -

values. The discretization within a continuous data stream thereby is a particular
challenge. Furthermore, determining the right granularity and finding appropriate
discretization intervals is difficult. The intervals can be selected either too broad,
then information gets lost and the underlying data gets more insignificant, or the
intervals are too precise, which can causes an overhead in computation but also in
prediction accuracy.

4.3 Machine Learning

This section concerns the implementation specifics of the machine learning for an
optimized web service selection. First, the implemented machine learning
algorithms were introduced. Second, the specifics of the continuous machine
learning are outlined. Third, the approach of the utility calculations is introduced.
Finally, the selection of the best-fit service with the activities of the foreground-
/background-model is further described and illustrated.

4.3.1 Naïve Bayes and Decision Tree

As outlined in Section 2.3.1, the Decision Tree and Naïve Bayes machine learning
methods were pre-selected. Thereby the main implementations of these two
method groups within the MOA and Weka libraries were selected for the further
evaluation (see Section 5.2 and Section 5.3). The Naïve Bayes classifier is included
in both libraries. The Decision Tree machine learning algorithms can be further
distinguished between classification and regression trees. The differences, as
described in section 2.3.1, are that within a classification a class label is predicted,
whereas within a regression a numeric class value is predicted. There are
implementations for classification and regression trees in both libraries. The
subsequent part briefly describes all implemented algorithms with references to the
vendor’s information.

Naïve Bayes
The Naïve Bayes performs the classic bayesian prediction and is a classifier
algorithm known for its simplicity and low computational cost [27]. The Weka and
MOA library contain the standard implementation of the Naïve Bayes classifier but
only distinguishing themselves regarding the type of learning. Within Weka the
Naïve Bayes is implemented as batch classification model, whereas within MOA as
incremental classification model.

J48
The J48 algorithm is the Weka implementation of the C4.5 classical decision tree
algorithm [28]. This algorithm corresponds to the machine learning method used in
the previous implementation of the central service broker [5]. The decision tree
algorithm is implemented as batch classification model within Weka.

Hoeffding Tree
The Hoeffding Tree is an incremental, anytime decision tree induction algorithm
that is capable of learning from massive data streams [27]. The prediction strategy
used within the leaf is a classical Naïve Bayes. The Hoeffding Tree is implemented
as incremental classification model within MOA.

FIMT-DD
The FIMT-DD stands for ‘Fast Incremental Model Tree for drift detection’. This
algorithm is an efficient and incremental decision tree for regression with the ability

- 31 -

to handle high-speed and time-changing data streams [30]. This algorithm is
implemented as incremental regression model within the MOA library.

M5P
The M5P is a regression tree, which implements routines for generating M5 Model
trees and rules. It was original invented by R. Quinlan and introduced in 1992 [31].
This algorithm is implemented as batch classification model within Weka.

4.3.2 Continuous Learning

After implementing the first workflow for an optimized web service selection, it
proved that Weka has a much better data handling, whereas the MOA methods are
more scalable. Because of their bi-directional connection, the decision was made to
have both libraries implemented, but Weka mainly for the data management.

Beside the advantages, there are also some restrictions with respect to
incremental learning. Although all algorithms within the MOA library are designed
for incremental learning, but incremental loading of PostgreSQL is not yet fully
supported in the newest developer version of Weka (3.7.11). As seen from the
commits, the subject is paid much attention, so that it is likely to be supported in the
near future. As workaround, instead of using the Weka database loading, a manual
incremental loading approach could be implemented.

Within batch loading, all the data gets loaded into the main memory, whereas
within incremental loading a single instance is loaded at a time as long as there are
new instances. Because Weka does not support PostgreSQL for incremental loading
at this time, a pseudo incremental method is used. ‘In pseudo incremental mode the
instances are read into main memory all at once and then incrementally provided to
the user.’ [25] The learning happens to be incremental but the loading correspond
to be batch. Given this restriction, the possible maximum data volume used for
training the machine learning methods can always only be as large as the size of the
main memory.

4.3.3 Utility Calculation

As described in Section 3.3.4, the utility functions are quality preferences defined by
the unique consumers. For calculating the utility first, the predicted performances
are normalized and second corresponding to the simple additive weighting, the
utility gets determined.

Normalization
In the previous implementation the attributes were normalized within a range of 0
to 10, taking the min and max performance values (min-max normalization [6]). For
example, the best attribute value were normalized with a value of 10, the worst with
a value of 0 and all others in relation between the others [5]. However, the previous
approach has some drawbacks. The major drawback is when having outliers, which
is a data object that deviates significantly from the rest of the objects [6]. Thereby
the normalization is distorted resulting in a lower distinction between the normal
values. Furthermore, even when having a low performance distribution (when the
values are very similar to each other), the worst performance is always normalized
with zero. Therefore, the simple additive weighting, where the performances are
multiplied with the defined weights, caused that services generally had been
eliminated, when showing the worst performance in one of the attributes, even if
the difference was little.

- 32 -

Therefore, instead of normalizing within the max and min performance values,
new max and min thresholds were defined to solve the mentioned drawbacks. Table
4.2 presents the new normalization approach for the quality attributes response
time and availability.

 Response Time Availability

MAX Threshold MAX := (2 ∗ σ) + μ MAX := highest availability

MIN Threshold MIN := lowest response time MIN := 𝑖𝑓 (μ − (2 ∗ σ)) < 0 𝑡ℎ𝑒𝑛 0

𝑒𝑙𝑠𝑒 (μ − (2 ∗ σ))

Normalization NORM := (
(MAX − RT)

(MAX − MIN)
∗ 10) NORM := (

(AV − MIN)

(MAX − MIN)
∗ 10)

μ = average or expectation / σ = standard deviation

Table 4.2: Threshold definition within the normalization for the attributes response
time and availability

For achieving the improved normalization, the max and min thresholds are set
considering an outlier detection. In literature, a data object is defined as an outlier,
when the value is exceeding two times the standard deviation from average or when
falling below two times the standard deviation from average [6]. This concept for
detecting outliers is applied within threshold definition. Thereby first, either an
upper or a lower threshold is fixed corresponding to the best performance value.
For example, for the quality attribute response time, where low values are desired,
the MIN threshold is set with the best performance value, so that the best
performance gets the maximum value of ten. For the quality attribute availability,
where high values are desired, the MAX threshold is set with the best performance
value, so that the best performance gets the maximum value of ten. The other upper
or lower thresholds are accordingly set with two times of the standard deviation
from average (as seen in Table 4.2). It has to be mentioned, that there is no upward
limit for the attribute response time. On contrary, for the attribute availability there
is a downward limit, because a negative availability in fact is not possible. Therefore,
the MIN threshold for the availability is set to zero when it gets negative. The overall
advantage of this presented normalization approach is that outliers are not
distorting the normalization and the worst performance is not eliminated, except it
is an outlier.

Table 4.3 illustrates the normalization process. For the corresponding response
time and availability values the mean, standard deviation and the thresholds are
listed. As seen in the table, the service DE2Service with the best response time is
normalized with the highest possible value of ten. For the attribute availability, the
service DE1Service with the highest availability gets the highest possible value of
ten. All other values are relatively normalized to the defined MAX and MIN
thresholds (corresponding to the normalization formula in Table 4.2).

- 33 -

Service RT RT NORM AV AV NORM

DE1Service 302 7.723 0.961 7.470

DE2Service 240 10.000 0.874 1.825

SE1Service 389 4.529 1.000 10.000

US1Service 457 2.032 0.922 4.939

Mean 347 / 0.939 /

Std. Deviation 82.67 / 0.047 /

MAX Threshold 512.34 / 1.000 /

MIN Threshold 240 / 0.846 /

Table 4.3: Normalization example of the service quality attributes response time (RT)
and availability (AV)

4.3.4 Best-fit Service Selection

This subsection exemplary describes the process of determining a best-fit service
from calculating the utilities, selecting the best-fit service, up to the adaption of the
foreground-table and recommendation of the best-fit service.

Table 4.4 shows the determination of a best-fit service with corresponding utility
functions and the normalized responses from the example above. The utility
functions were defined as follows (the quality attributes in brackets represents the
normalized values):

 U1 = 0.5 x [response time] + 0.5 x [availability]
 U2 = 0.2 x [response time] + 0.8 x [availability]

Within the utility function U1 each of the attributes are weighted with 0.5 and no
particular quality attribute is preferred over the other, whereas within the utility
function U2 a stronger preference for the attribute availability is predominant. This
effects the service selection as shown in the table below. The service DE1Service
within the utility function U1 achieves the highest score of 7.6 and therefore is
selected as best-fit service. On the contrary, when having a stronger availability
preference (utility U2), the best-fit service with a score of 8.9 is service SE1Service.

Service RT-Norm AV-Norm U1 U2

DE1Service 7.723 7.470 7.600 7.521

DE2Service 10.000 1.825 5.913 3.460

SE1Service 4.529 10.000 7.265 8.906

US1Service 2.032 4.939 3.486 4.358

Table 4.4: Determination of a best-fit service with corresponding normalized
performances and utility function

After the best-fit service is determined a comparison and update of the
foreground-model takes place. If the current determined best-fit service differs from
the service listed in the foreground-table, a new service recommendation is
inserted. As seen in Figure 4.3, the recommended service SE1Service is replaced for
the call context class 34 with the service US1Service after 26 instances were trained
within a time period of less than five minutes.

- 34 -

Figure 4.3: Example of best-fit service recommendations for corresponding call context
classes

During the development, it appeared that in some cases, especially within
discretized response times, two or more services had the same utility. To avoid a
random selection several approaches can be applied. Either the service with the
highest number of submitted feedback tickets within the call context class is
selected, arguing that the data basis is more trustfully, or the other way around,
arguing that a performance change is more unlikely because of the lower service
consumptions.

As described in Section 3.2, the idea of the foreground-model is to have all current
best-fit services listed in one table. When a consumer requests a service, the call
context and utility function of the consumer are submitted within the request. After
the pre-processing of the request, a single SQL SELECT query is executed to get the
current-best fit service. Figure 4.3 shows the structure of the SQL SELECT query to
determine the best-fit service instance address. The query includes a sub query with
the pre-processed call context attributes to get the ID of the call context class. The
query result is ordered descending by version and limited to one result to get only
the latest service recommendation.

Figure 4.4: SQL SELECT query for determining best-fit web service

SELECT serviceinstanceaddress

FROM centralcomponentschema.recommendation

WHERE idcallcontextclass =

 (SELECT idcallcontextclass

 FROM centralcomponentschema.callcontextclass

 WHERE externalip = 'DEConsumer'

 AND weekday = 'Tue'

 AND daytime = '11'

 AND functionalserviceidentifier = '{}:Scenario1'

AND utilityfunction = '0.5*responsetime+0.5*availability')

ORDER BY version DESC

LIMIT 1;

- 35 -

5 Evaluation

This chapter presents the evaluation of this work. Thereby not only evidence is
given, on which degree the machine learning and performance prediction is
accomplished, but also on how the service selection could be optimized in general.
In the first section, the created test data scenario used for the evaluation is described
and illustrated. The second and third section focus on the overall evaluation with
respect to the criteria defined in Section 2.2. The machine learning methods are
evaluated separately (5.2), whereas the central service broker with the optimized
service selection is evaluated on the whole (5.3).

5.1 Test Data Scenario

Within this chapter, the web service scenarios for evaluating both the machine
learning methods and the overall central service broker are presented (for the
simulation parameter definition, see Appendix A.2). The aim of the scenario creation
was to imitate typical characteristics and behaviors of real-world web services. As
described in 4.1, the test data generation tool offers an extensive selection of
simulation parameters for creating sophisticated test scenarios with no limits
regarding data volume. Because of the many input parameters and their resulting
dependencies, the definition of test data scenarios is confronted with a certain
complexity. Especially when dealing with a high number of unique participants and
service providers the complexity accordingly increases. Therefore, the main
objective was to focus only on a few but important aspects. The test data scenario
with the definition of the service providers, service consumers and the selected
simulation time period are outlined in the next part.

Service Provider
As described in 4.1.1 real-world web services can show cyclic performance
behaviors, performance changes over time, performance differences caused from
geographical network latency and general performance volatilities. All these
different characteristics were considered when defining the test case scenarios.

Because the optimization of the service selection takes place within a group of
services offering the same functionality, it seemed not necessary to have services
representing different functionalities. Certainly, there are services showing
differences in service quality depending on the service functionality or the data
input. For example, the performance of a translation service strongly depends on
the input size, whereas the input size of weather service request via a zip code does
not. Overall, the focus was to reduce complexity by having only as many services as
necessary showing those quality aspects, which are mentioned above.

For the test data scenario four services instances were selected. The first two
letters of the service name indicate the service location. The services DE1Service and
DE2Service are located in Germany, the service SE1Service in Sweden and the service
US1Service in the United States.

The network latency caused from the different geographical location was also
considered for the four service instances. Hereby the expected response time was
adapted accordingly to the geographic distance. The intention was not to correctly
define the network latency of each service, but moreover to show performance
differences caused from different geographical located services.

Service Consumer

- 36 -

For each service instance four unique consumer were defined with 16 service
consumers. Because of the mentioned complexity, all service calls take place from
consumer located in Germany and identified with the discretized IP DEConsumer.
The number of consumers and the call frequency was selected equally for each
service instance to have a representative comparison not influenced on differences
in data volume.

Time Period and Data Volume
The simulation takes place within a 30-day time period. Each of the service
providers are requested by the consumer with a call frequency of 90 seconds. The
resulting test data set contains of 460,800 unique service calls.

The characteristics of the performances response time and availability are
analyzed in detail in the next subsection. In the first part of the analyses for each
performance attribute, the overall performance trend is illustrated and the specifics
are highlighted. The second part focuses on time specific characteristics with an
analysis of weekday and daytime behaviors.

5.1.1 Response Time

Figure 5.1 shows the overall response time trend in the course of time separated for
each service. The response time ranges from 220 up to 340 milliseconds within the
30-day time period.

Figure 5.1: Overall response time trend separated by service instances

- 37 -

It has to be mentioned that because of visualization purposes, displaying more
than 100K single records for a single service instance, the response time was
aggregated by hour. Therefore, especially extreme outliers are exceeding the
displayed range, but are not appearing on the figure. The aggregation also makes the
visualization of the response time development more compact in general.

The overall performance of the service DE1Service is decreasing in the middle of
the time course form an average of 270 to over 280 milliseconds. On the contrary,
the performance of the service DE2Service is improving from 280 to less than 250
milliseconds. The service SE1Service constantly develops with a response time over
280 milliseconds. A closer look on the distribution shows that the service has a
stronger volatile behavior than the other services. The service US1Service not only
shows a higher mean response time compared to the other services, but also a
significant cyclic behaviors. A detailed look on the figure reveals that this service has
good performances on weekends from Saturday to Sunday. For an additional
analysis, showing the overall response time trend together on one figure, see
Appendix A.3.

Overall, the two German services DE1Service and DE2Service are showing the best
performance with the lowest response time in the main time. As described before,
the service DE1Service having the best performance from the beginning, but is
replaced shortly in the middle of the time course. The performance of service
DE2Service is then increasing from 275 below 250 milliseconds. The service
US1Service generally seems to be out of competition except on weekends where the
response time decreases down to 240 milliseconds.

Figure 5.2: Response time aggregated by weekday and daytime

- 38 -

Figure 5.2 shows the response time aggregated by weekday and daytime. Because
the performances can be developing very diverse in the course of time, it has to be
mentioned that the aggregated data does only allow making statements about the
general and overall trend at the end of the simulation time.

As already clearly seen in the response time trend, the service US1Service shows
the best performance on Saturdays and Sundays. On the other weekdays, the
services DE1Service and DE2Service compete for the best response time. Within the
daytime analysis both German services show the best performance with the lowest
response time values, except on evenings after 20 pm, where the service SE1Service
performs better.

5.1.2 Availability

Figure 5.3 shows the overall trend of the quality attribute availability in the time
course of the 30-day time periode. The overall availability of the services is
aggregated by day and ranges between approximately 96% up to almost 99%.

Figure 5.3: Overall availability trend

After a few days from the beginning of the time course, the availability of the
service DE1Service is dropping down to 98% for a duration of three days. Service
DE2Service shows weekly repeating decreases in availability. On Mondays, the
availability decreases from an average of 98.7% down to 97.5%. The availability of
the Swedish service SE1Service develops constantly in the range of approximately
97.5%. The service US1Service has a performance incident shortly after the first
week. Here the availability decreases from 98% down to almost 96%, but recovers

- 39 -

after the duration of four days. In total, both German services show the highest
availability in the main time of the 30-day simulation period.

The data in Figure 5.4 reveals some different results regarding the service
availability aggregated by weekday and daytime. Another striking result is the
performance decrease of the service DE2Service on Monday mornings at 9 am. All
other services behave relatively constant. Altogether, service DE1Service and
DE2Service have the overall highest availability, whereas service SE1Service and
US1Service can be ranked on third and fourth place.

Figure 5.4: Availability aggregated by weekday and daytime

Table 5.1 finally shows an overview of the main statistics (mean and standard
deviation) of the two quality attributes for the corresponding service instances. The
mean values of the response time and availability attribute are generally close
together. The value distribution was defined on purpose to challenge the machine
learning methods. Otherwise, if the value range would be strongly distinguishing,
the results might be getting too obvious.

In total, service DE2Service performs best regarding the overall mean response
time, but DE1Service follows closely behind. Service DE1Service has the lowest
deviation in response time, whereas service SE1Service has the highest. Service
DE1Service is the most available service, whereas service SE1Service has the lowest
availability as well as the most deviation in availability.

- 40 -

Service Instances RT Mean
(ms)

RT Std. Dev.
(ms)

AV Mean
(%)

AV Std. Dev.
(%)4

DE1Service 115.200 272.591 19.175 98.700 11.329

DE2Service 115.200 271.297 27.273 98.554 11.938

SE1Service 115.200 282.040 49.595 97.500 15.612

US1Service 115.200 292.699 46.648 97.780 14.732

Table 5.1: Statistics of the attribute response time and availability within the created
test data scenario

Overall, the illustrated and described test data scenario shows a variety of
different service behaviors. The scenarios were defined as they are because of
illustration, interpretation and evaluation purposes. The objective was to show
certain possible real-world service characteristics with focus on the development in
the time course. In real-world there obviously exist other scenarios, where web
services behave more volatile, have a much wider range of response time
development or act more differently among each other. The availability of
commercial web services would also be in the main time possibly close to 99.9%.

The main restriction of the simulation approach is that even when aiming to
imitate real-world services, the evaluation results based on this data cannot be
generalized. In real-world there are always unforeseen things, which cannot be
considered in the overall model of the test data generation. Another restriction of
the created test data scenario is the equal data volume for each service instance. In
real-world an equal data basis for each service instance within a functional service
group would be rather unlikely. In future work, the effects of an unequal data basis
could be further analyzed (see subsection 6.3.4). The simulation tool enables to
create corresponding test data scenarios having service instances consumed from
with different call frequencies.

Nevertheless, the ability flexibly creating a variety of different service
characteristics in a short amount of time with no restrictions in data volume, were
mandatory features for this evaluation.

5.2 Machine Learning Methods

This section evaluates the machine learning methods regarding the criteria speed
and accuracy. The methods are evaluated with a 10-fold cross-validation. Hereby the
initial data created within the test data scenario is randomly partitioned into ten
folds. The learning and prediction is performed ten times, each time one fold is
learned by the machine learning method and all other folds are tested (predicted or
classified). For example fold one is trained and fold two to ten is tested, then fold
two is trained and fold one, three to ten are tested and so on [7]. The 10-fold cross-
validation is executed three times and the average is taken.

5.2.1 Speed and Accuracy

Table 5.2 presents the evaluation results of the selected machine learning methods
for predicting the performance attribute response time. Hereby the time of
training/learning (in seconds) and for a uniform accuracy method the mean

4 Given that available means 100% and non-available 0%.

- 41 -

absolute error (in milliseconds) were assessed. Within the classification models,
where instead of numeric values a class label is predicted, the center of the predicted
value range is selected. For example having the class ‘150-200’, the numeric value of
175 is selected.

The results show that the time of training, having more than 100 thousand
instances for a single service, is very low in general. Nevertheless, there are
significant performance differences between the several methods. Overall, the M5P
and J48 are dismissed because of the worse time of training. The other methods
FIMT-DD, Hoeffding Tree and Naïve Bayes, highlighted with a light gray
background, are selected for the further evaluation (see next section).

Training5 (sec) Mean Absolute Error (ms)

Method Lib

DE1 DE2 SE1 US1 DE1 DE2 SE1 US1

0.839 0.671 0.701 0.700 6.212 8.471 12.310 10.339
Naïve Bayes
(Batch Dis.)

Weka

0.671 0.671 0.697 0.685 12.887 11.895 12.882 11.752
Naïve Bayes
(Inc. Dis.)

Weka

0.206 0.095 0.098 0.099 6.409 8.526 12.473 10.798
Naïve Bayes
(Batch Dis.)

MOA

0.114 0.097 0.095 0.095 12.915 12.024 12.904 11.869
Naïve Bayes
(Inc. Dis.)

MOA

5.959 5.822 5.890 5.867 6.118 8.411 12.313 10.294
J48
(Batch Dis.)

Weka

3.103 3.180 3.789 3.529 12.869 11.894 12.882 11.745
J48
(Inc. Dis.)

Weka

0.805 0.613 0.601 0.604 6.118 8.411 12.313 10.294
Hoeffd. Tree
(Batch Dis.)

MOA

0.379 0.441 0.504 0.452 12.869 11.894 12.882 11.745
Hoeffd. Tree
(Inc. Dis.)

MOA

0.640 0.465 0.399 0.397 67.965 70.231 90.325 91.421
FIMT-DD
(Regression)

MOA

133.57 141.36 143.23 138.69 17.763 22.198 45.934 40.385
M5P
(Regression)

Weka

Table 5.2: Evaluation results of the machine learning methods for the criteria speed
(time of training) and accuracy (mean absolute error)

In the following part, an explanation for this selection considering several aspects
is given.

Incremental VS Batch Discretization
The batch discretization, as described in subsection 4.2.2, shows an overall lower
mean absolute error than the incremental discretization. This is because instead of
discretizing by a static value range (incremental discretization) a best-fit
discretization considering the value distribution is applied. On the other side,
therefore the overall training time for the batch discretization is generally a little
higher. Although the mean absolute error of the incremental discretization is twice

5 The time of the batch discretization is additionally included.

- 42 -

as high as the batch discretization, it is generally low with only approximately 12
milliseconds (the average response time deviation is more than 35 milliseconds, see
Table 5.1). Because the optimized service selection is implemented as a continuous
process, the batch discretization is unsuitable. For the later evaluation, therefore the
incremental discretization is chosen.

Weka VS MOA
The machine learning methods within MOA perform generally better with respect
to the training time than those within Weka. The same Naïve Bayes algorithm within
both libraries shows different evaluation results. This is because of the different
types of learning. MOA is optimized for massive data streams, which is why the
methods are based on incrementally learning. As seen from the table, the Naïve
Bayes within MOA has a more than six times lower training time. The MOA library
is selected for the central service broker implementation because of the generally
better performance.

Regression VS Classification
Surprisingly, the main difference between the regression methods (FIMTD-DD,
M5P) and the classification methods (Naïve Bayes, J48, Hoeffding Tree) is the
generally much higher mean absolute error of the regression methods. Despite the
discretization, where information gets lost, the classification methods have a very
high accuracy. Noticeable is also that the mean absolute error is developing
corresponding to the mean deviation of each service. Service SE1Service and
US1Service, which have the highest response time deviation (see Table 5.1), at the
same time have the highest mean absolute error. Despite the high mean absolute
error, the FIMT-DD is selected, because it is assumed that the 10-fold-cross-
validation is not the optimal evaluation method also with respect to the drift
detection function.

5.3 Optimized Service Selection

Objective of this section is the overall evaluation of the central service broker with
focus on the foreground-/background-model. Within the evaluation the selection
quality, speed, scalability, robustness and utility prediction of the optimized service
selection is assessed. The evaluation runs were not executed in real-time, but in
sequential batch mode. Thereby, the created test data first is loaded into the main
memory. Thereafter each single instance is chronological submitted to the service
broker for further processing within the service optimization process. This
evaluation approach was required for a flexible and quick repetition of the
evaluation runs having multiple evaluation settings and machine learning methods.

The created web scenario with completed test data pool allows an insight into the
web service characteristics at any time. The evaluation thereby follows the
approach: when the service optimization for a certain call context class is triggered,
the performances from the learned past service calls were predicted, and on the
other hand, the future performances (as actual performances) within this call
context class were directly fetched from the completed test data pool. This allows,
after normalizing all performances and determining the best-fit services, the
comparison of the actual and predicted best-fit service.

The requirements for running the evaluation were to have an optimal hardware
configuration without restrictions neither in computation nor in main memory
storage. The first development system was configured within a virtualization

- 43 -

environment. Here the evaluation execution caused several performance issues. The
whole development environment therefore was natively installed on a Linux OS
(Ubuntu 12.04 LTS) notebook with an i5-3340M CPU @ 2.70GHz × 4 (64Bit) and
15.6 GiB RAM. The central service broker is executed within eclipse enabling 10GiB
of RAM.

5.3.1 Selection Quality

Table 5.3 presents the final evaluation results of the service broker’s selection
quality. The data shows two evaluation types with respect to the strategically
learning: the results for learning after each 100 instances (A) and after each 10
instances (B). The measure TOP1 Accuracy gives evidence on the selection quality as
percentage of the correctly determined best-fit services with respect to the actual
best-fit services, whereas the measure TOP2 Accuracy shows the percentage of the
correctly determined best-fit services within the actual two best-fit services. The
third measure Mean Absolute Error displays the mean deviation of the calculated
and the actual utilities. The last measure Recommendations shows the number of
inserted recommendations within the foreground-table.

 Naïve Bayes Hoeffding Tree FIMT-DD

A) Strategically Learning after each 10 Instances

TOP1 Accuracy (%) 59.245 60.751 70.039

TOP2 Accuracy (%) 89.397 89.839 93.863

Mean Absolute Error (Utility) 1.682 1.674 1.029

 Recommendations (# records) 1554 1526 3687

B) Strategically Learning after each 100 Instances

TOP1 Accuracy (%) 58.634 59.837 69.287

TOP2 Accuracy (%) 90.163 90.421 93.471

Mean Absolute Error (Utility) 1.656 1.660 1.049

 Recommendations (# records) 659 647 1189

Table 5.3: Evaluation results of the machine learning methods Naïve Bayes, Hoeffding
Tree and FIMT-DD within the optimized web service selection

The results are quite revealing in several ways. Unlike the results of the machine
learning methods from the previous section, the FIMT-DD algorithm outperforms all
other algorithms with the highest TOP1 and TOP2 selection accuracy in both
evaluation types A and B. The FIMT-DD shows an overall selection accuracy of 70%,
which means that in more than 70 percent of all service optimizations the actual
best-fit service could be determined. Within the TOP2 measure, the selection
accuracy for determining either the best or the second best service increases up to
almost 94%. The results of the machine learning methods Naïve Bayes and
Hoeffding Tree are very similar in both evaluation types with an overall TOP1
selection accuracy of approximately 60% and a TOP2 accuracy of approximately
90%.

Surprisingly, a higher learning frequency, in this case the difference of learning
100 and 10 instances at a time, does not have a significant effect on the selection

- 44 -

quality. Within the ten times higher learning frequency a selection accuracy of less
than one percent is gained. This shows that for finding a best-fit learning strategy a
tradeoff between accuracy and learning effort has to be made. Interestingly, there
are significant differences in the update behavior of the foreground-model. Within
the FIMT-DD more than 3600 recommendations were inserted, whereas within the
other methods less than half of this number were inserted. Furthermore, the utility
mean absolute error of the FIMT-DD algorithm (about 1) is generally low in
comparison to the other methods (about 1.6). The mean absolute error compared to
the two evaluation types and within the machine learning methods does not show
significant differences.

Figure 5.5 shows the service selection accuracy of the three algorithms FIMT-DD,
Hoeffding Tee and Naïve Bayes in the course of time. The analysis comprises the
evolving TOP1 selection accuracy with the evaluation type A from Table 5.3 of the
three machine learning methods with strategically learning after 10 instances (for
an analysis of the TOP1 and TOP2 selection accuracy, see Appendix A.4). It is
apparent that the FIMT-DD has the overall highest selection accuracy with an
approximately ten percent higher accuracy at the end.

Figure 5.5: Service selection accuracy of the FIMT-DD, Hoeffding Tree and Naïve Bayes
algorithm in the course of time

What is interesting in this data is the development in the beginning and at the end
of the time course. During the first days, the FIMT-DD outperforms the other
machine learning methods partly more than 20 percent, but the Hoeffding Tree and
Naïve Bayes nearly catch up in the middle of the time course. During the last nine
days, the selection accuracy of the FIMT-DD generally improves, whereas the

- 45 -

accuracy of the other methods invades more than six percent. Analyzing the test data
scenario from section 5.1 shows, that all services, but especially service DE2Service
have performance changes in the response time at the end of the time course. The
Naïve Bayes and the Hoeffding Tree are not able to handle this performance change,
whereas the FIMT-DD is capable to detect and handle this performance drift. This is
because both Hoeffding Tree and Naive Bayes are classifier without drift detection
assuming that the distribution does not change over time.

Furthermore, the FIMT-DD has a more constant and straightened accuracy
development (range of 60 and 70 percent) compared to the other methods, which
are generally more varying (range of 40 and 65 percent). Surprisingly, the accuracy
development of the Hoeffding Tree and Naïve Bayes is almost identical and only
distinguishing constantly in two percent. Although the Hoeffding Tree is an
incremental decision tree, the learning method in the leaves is based on the Naïve
Bayes and therefore shows a similar accuracy.

Overall, the FIMT-DD performs better than all other machine learning methods
with respect to the selection accuracy. In 70% of all service optimizations the actual
best-fit service, in 24% the second best-fit service and in 6% the third or fourth best-
fit service could be determined. The results are outstanding considering the wide
variety of service behaviors with daily and weekly cyclic characteristics as well as
performance changes and strong deviating services. The most striking result is the
accuracy development at the end of the time course, where the FIMT-DD not only
shows a perfect handling of the performance drift, but moreover improving the
accuracy.

5.3.2 Speed and Scalability

The new implementation of the service broker reveals an excellent performance
concerning the overall processing time. The incremental high-performance machine
learning methods and their native Java implementation generally reason this. Table
5.4 shows the evaluation results with the Processing per Instance showing the time
needed to process a single instance in milliseconds. Similar to the table presented in
the subsection above, the two evaluation types with strategically learning after each
100 instances (A) and after each 10 instances (B) are shown.

As seen in the table, a single instance is processed in less than three milliseconds
by an overall of 460 thousand records including the strategically learning, the
service optimization as well as the update of the best-fit services within the
foreground-model. It has to be mentioned that there is an additional overhead
caused by evaluation activities such as measuring and monitoring the broker
processing. The overhead is estimated to be less than 20% of the processing time.

 Naïve Bayes Hoeffding Tree FIMT-DD

A) Strategically Learning after each 10 Instances

Processing per Instance (ms) 22.997 23.080 23.129

B) Strategically Learning after each 100 Instances

Processing per Instance (ms) 2.602 2.614 2.621

Table 5.4: Time for processing a single instance in milliseconds of the machine learning
methods Naïve Bayes, Hoeffding Tree and FIMT-DD

- 46 -

It is apparent from Table 5.4 that the processing time of these methods does not
significantly distinguish from each other. All three methods are implemented within
the high-performance MOA library. In general, the Naïve Bayes method has a slightly
better performance than the methods Hoeffding Tree and FIMT-DD. When
comparing the number of possible processed instances per hour the Naïve Bayes
would be able to process approximately 900 instances more than the FIMT-DD.
What is interesting in this data is that the time of processing is not increasing linear
when increasing the frequency of the strategically learning. In this case, the
processing time is only increasing by a factor of 8.8 when increasing the learning
frequency by a factor of 10.

As described in 4.3.1, the Weka library does not fully support incremental loading
for PostgreSQL, which is the reason why batch loading is applied in the new
implementation. Concerning the fact that real incremental loading does have a
higher overhead, the mentioned results therefore have to be questioned in general.
The overhead results in fetching every single record via database instead of loading
all records into the fast main memory. Since the execution time of a SELECT query,
fetching a single feedback record, ranges below ten milliseconds in average, the
overhead is relatively small. There also exists no network latency, having the
database and central broker on the same machine. Therefore, the overall time for
processing a single instance with incrementally loading is estimated in a range
below 35 milliseconds under the same conditions with strategically learning of 10
instances at a time.

Comparing those results with the ticket persisting rate of the feedback interface
reveals that the data incoming rate is much lower than the possible processing rate
of the service optimization. Within the transmission of 460 thousand feedback
tickets, the time for processing and persisting a single instance takes approximately
215 milliseconds.

In summary, the new implementation is capable of real-time processing when
strategically learning after each 10 instances. The processing of a single instance
within the optimized service selection takes less than 25 milliseconds, whereas the
rate of processing and persisting the submitted feedback tickets takes more than
215 milliseconds. That implies that within the current implementation state the
feedback service interface is the bottleneck. The time for requesting a best-fit web
service from consumer side, does not present any performance issue. Because the
best-fit services are pre-determined and listed on side of the foreground-model, the
best-fit service selection only consists of the call context pre-processing and a single
SQL query. Thereby the overall time constantly ranges between less than ten
milliseconds.

5.3.3 Robustness

In this subsection the robustness of the central service broker, with respect to the
defined criteria in subsection 2.2.4 is evaluated. A criterion for the robustness was
how a continuously changing environment with new service candidates and new
attributes is handled. The integration and native Java implementation of Weka and
MOA enables a high degree of automation. New service candidates can be simply
handled when having an object-oriented environment by just creating a new service
object with corresponding prediction model. The handling of new attributes on the
other hand, cannot be handled fully automatically, because there is always an
adaption necessary within the pre-processing. The label attributes, which the
learning models predict, also have to be declared within the service optimization.

- 47 -

A further defined evaluation criterion was, if the machine learning is able to
handle noisy data such as attributes with missing values and outliers. Within the
current approach for creating test data, missing values (for the attribute response
time) only occur when having non-available service calls. For predicting the
response time, those records are not considered and filtered out. In real-world there
could occur other failures and therefore other types of missing values. The question
is, whether the framework or the learning methods should handle the missing
values. Within the framework, this could be easy accomplished by just filtering out
the corresponding instances. However, this involves that useful information might
get lost. Considering missing values within the machine learning gives an optimal
utilization of the existing data, but on the contrary, the complexity of the machine
learning increase and the prediction might get more prone to error. Before such
architecture decision is made, comprehensive real world data should be collected.
After knowing the scope and types of missing value attributes, the general feasibility
of learning with missing values and their effects could be further analyzed.

The detection of outliers is managed indirectly by the current broker
implementation. Within the normalization process, after the performances are
predicted, the thresholds for the normalization are accordingly set with respect to
an outlier detection. In contrary to this approach outliers also could be handled
directly before the learning takes place. The Weka library provides several outlier
detection functions, but all for batch processing mode. It showed that handling
outlier within a continuous process is not trivial, because the overall value
distribution is not known and can change in the course of time. This advanced
challenge has to be analyzed separately, because of the high complexity.

5.3.4 Utility Prediction

This section analyzes the utility prediction with respect to striking service
characteristics and service performance changes created in the test data scenario.
For the analyses, the FIMT-DD algorithm, as overall best performing machine
learning method, is chosen with strategically learning of 10 instances at a time.

Overall Utility Trend FIMT-DD
Figure 5.6 shows the development of the actual and the predicted utilities of the
FIMT-DD algorithm in the course of time with the defined utility function
‘0.5*responsetime+0.5*availability’. As seen in the figure the utility trend, generally
reflects the service characteristics created within the test data scenario. The
services DE1Service and DE2Service showing the best results with the overall
highest utilities, whereas the other services SE1Service and US1Service compete on
the third and fourth place.

- 48 -

Figure 5.6: Overall utility trend of the FIMT-DD algorithm with actual (dashed lines)
and predicted (solid lines) utilities and corresponding service instances

What is interesting is that the FIMT-DD method has an outstanding prediction
accuracy. All utility changes are recognized and are nearly evolve identical to the
actual utilities. The added notes, as seen in the figure, show the point in time when
the best-fit service changes. Here service DE1Service leads until half time, where
shortly after service DE2Service catches up. Noticeable is that the event of the actual
(seen as note number 1) and predicted (seen as note number 2) service change takes
place at the same time. Even though the predicted utilities of these two services have
an average downward deviation of almost 0.5 points, the predicted utilities behave
and develop the same way as the actual utilities.

Another interesting fact is that the predicted utilities of the services SE1Service
and US1Service, which are generally more volatile than the two German services, do
not show a strong deviation from the actual utilities. This might be affected from the
normalization process, where the lower performance values are generally
smoothened. For another analysis comparing the utility trend of the FIMT-DD with
different utility functions, see Appendix A.5.

Overall Utility Trend Hoeffding Tree and Naïve Bayes
In comparison to the before described analyses Figure 5.7 shows the corresponding
utility trends from the machine learning methods Hoeffding Tree and Naïve Bayes.
The general deviation from the actual and the predicted utilities is striking when
comparing these results with those achieved with the FIMT-DD. The utility of service
DE1Service and DE2Service are evolving almost identically. Furthermore, the
performance decrease of service DE1Service is not recognized both within the Naïve
Bayes and within the Hoeffding Tree. Moreover, the utility increases at the end of

1

2

- 49 -

the time course. Both methods show almost an identically utility development. As
already outlined in subsection 5.3.1, this is because the Hoeffding Tree learning
method in the leaves is based on the Naïve Bayes.

The general discretization process can reason the inaccuracy of those both
methods, where information gets lost. On the other hand, the Naïve Bayes and
Hoeffding Tree also do not have a drift detection, which is why at the end of this
scenario the utilities are evolving with a strong deviation from the actual utility
trend.

Figure 5.7: Overall utility trend of the Hoeffding Tree and Naïve Bayes

Workweek VS Weekend Trend
Within the test data scenario, the service US1Service showed noticeably good
response time performances during weekends. As seen in Figure 5.8, those different
performance characteristics are also reflected when comparing the utilities of
weekends and workweeks. Despite the overall time course illustration, for the
weekend only the utilities for Saturday and Sunday were selected, and for the
workweek the utilities from Monday till Friday.

On the first two weekends, the service US1Service competes for the first place,
whereas later in the course of time this service is ranked on second and third place.
Contrary to that, the predicted utility trend does show different results. Here the
service US1Service first is ranked on the second place, and later on the third place.
In this case, the FIMT-DD did not recognize the best-fit service within the first two
weekends. On the other hand, the utility prediction within the workweek has again
an almost identical development as the actual utility trend.

- 50 -

Figure 5.8: Weekend and workweek utility trend of the FIMT-DD

Monday Morning
The test data scenario showed that the service DE2Service has availability issues on
Monday mornings. The analysis of the utility trend reflects this performance
downfall. The figure below shows the utility development of the services on Monday
at nine am with different utility functions (within the figure top there is a higher
preference for availability, and within the figure below, the preferences are
balanced). As seen in the figure service DE2Service is ranked on the fourth place. The
overall prediction accuracy is very high. Furthermore, the effect of having different
utility functions is also clearly shown. In the figure above with the higher preference
for availability, the service has in general a lower average utility and distinguishing
from the other services by more positioning apart. The utility trend evolves linear
because of the less utility data (filtered by Monday 9 am).

- 51 -

Figure 5.9: Utility trend of Monday mornings (9 am) with different quality preferences

- 52 -

6 Conclusion

This final chapter first concludes with an overall summary of this thesis work and
thereafter compares the initially defined goal criteria with the thesis achievement.
Finally, further challenges given from the implemented optimized service selection,
which could be addressed within future work, are presented.

6.1 Retrospect

This thesis focuses mainly on the design, the implementation and the evaluation of
machine learning methods for an optimized web service selection. It is founded on
the SOC (Service Oriented Computing) research work of Kirchner, et al. assuming
that there will be a future service market with a selection of functionally equal
services. It was outlined that the resulting selection problem requires a distinction
between non-functional service characteristics. Consulting non-functional service
promises of providers (defined as Service Level Agreements) is not optimal because
of several mentioned reasons. The research therefore proposed the development of
distributed knowledge based on a central broker framework monitoring and
automatically measuring the service quality during each service consumption. The
broker aims at optimizing the service selection relying on the past service
performances and the defined quality preferences of a unique consumer.

The challenges and restrictions of the current broker machine learning
implementation were derived and corresponding evaluation criteria were defined.
It was outlined that the performance and scalability of the broker’s machine learning
plays an important role and that the current classical batch decision tree learning is
not appropriate with respect to a continuous and time-critical optimization process.
Therefore, high-performance machine learning methods, which can handle high
data volume and libraries with a high automation and integration degree were
searched and pre-selected. A first implementation within a proof of concept showed
that the alternative machine learning methods have constantly good performance
and the selected library can be used and integrated with a manageable effort.

The conceptual design involved the optimization of the service selection with
focus on a continuous machine learning process. The core idea aimed at separating
the real-time request for a best-fit service selection from the time-consuming
machine learning. This lead to the design of the so-called foreground-/background-
model. Any performance issues within the critical path from the service request to
the determination and recommendation of a best-fit service are thereby eliminated.
The foreground-model basically holds all current best-fit services for certain
consumer call context classes (call location and call time) and the consumer’s
service quality preferences (utility function) in an easy accessible lookup table. The
learning, prediction and service optimization on basis of the past measured service
calls takes place within the background-model. The asynchronous service
optimization process continuously determines the best-fit services for each call
context class. The introduction of a threshold mechanism allows adapting the
learning frequency and defining a corresponding machine learning strategy.

Another core focus was the creation of appropriate test data with corresponding
data characteristics and data volume for the overall evaluation. The development of
a data generation tool allows creating sophisticated test data scenarios by
simulating service consumptions with different call contexts and defined service
quality characteristics (e.g., response time, availability). The implementation of the
optimized web service selection consists of different activities for predicting the

- 53 -

service performances, normalizing them (make them comparable) and calculating
the consumers utilities with respect to their unique service quality preferences.
Furthermore, a threshold mechanism for a strategically learning and continuously
updating of the current best-fit services was implemented. It showed that there are
new challenges within a continual learning process such as the discretization or the
detection of outliers. For the latter an optimized normalization approach with an
outlier detection was introduced.

For the overall evaluation, a sophisticated test data scenario was created with
typically real-world service characteristics such as different volatile service
performances, cyclic performance behaviors and performance changes in the course
of time. The implementation of the machine learning showed a high degree of
automation and an overall outstanding performance. Within the evaluation setting
the real service quality (obtained from the completed test data pool as future
performances) and the resulting actual best-fit service were compared with the
predicted service quality and the recommended best-fit service of the machine
learning process. The results revealed that the incremental regression tree FIMT-DD
has the highest best-fit service selection accuracy. In 70% of all service
optimizations, the central broker could determine the best-fit service and in 94% of
all cases, the actual two best-fit services. Furthermore, the evaluation showed that
the problem of a class label change in time course is omnipresent within the central
broker setting. The FIMT-DD is able to detect and handle such performance changes
with the integrated drift detection. The evaluation also showed that depending on
the learning strategy the time of processing strongly varies. Overall, the time for
processing a single instance is in a range of 23 milliseconds when optimizing the
service selection after 10 instances at a time.

6.2 Achievement

This section serves as final overview comparing the thesis achievement with the
initially defined success criteria.

High-Performance Service Determination

Assessment

duration for requesting and receiving the broker’s best-fit service selection (in milliseconds)

Achievement

The best-fit services for certain call context classes are continuously pre-determined in the
background and listed in the foreground lookup table. This approach significantly improves the
time-critical request of a best-fit service. The service determination thereby consists of a single
SQL query taking in average less than ten milliseconds.

High Service Selection Accuracy

Assessment

percentage of correctly determined actual best-fit services (in percent)

Achievement

In 70% of all service optimizations the actual best-fit service and in 94% of all service
optimizations the actual two best-fit services could be determined within the FIMT-DD machine
learning method and corresponding test data scenario.

Continuous Machine Learning Process

Assessment

capability of the machine learning continuously processing and learning from past measured
service calls

- 54 -

Achievement

The conceptual design of the optimized web service selection is based as continuous machine
learning process and the MOA library enables incrementally learning.

Performance Change Adaption

Assessment

capability of the machine learning detecting performance changes

Achievement

The FIMT-DD with integrated drift detection is capable recognizing performance drifts and
accordingly adapting to the performance change.

Table 6.1: Achievement of the initially defined goal criteria

6.3 Future work

This work showed the capabilities and features of the continuous machine learning
approach for an optimized web service selection. Despite the overall advantages and
performance benefits of the presented implementation, there are further
optimization approaches and advanced challenges, which could be worked on
within future research.

6.3.1 Strategically Learning

The current implementation covers time and count thresholds for controlling the
learning and optimization frequency. Within the current state, the threshold
definition is not yet adapted for a best-fit learning strategy. The optimization
depends on the underlying data in general and the scope of the call context classes
as well as the number of submitted feedback tickets in specific. In future work
learning strategies with respect to different scenarios could be defined and
implemented. A scenario could include different parameters such as the frequency
of submitted feedback tickets or the occurrence of certain call context classes, etc.

6.3.2 Production Deployment

The current implementation leaves space for optimization regarding the usage
within a production environment. The restriction for incremental loading is not
solved so far. Current development trends of the Weka library show that much effort
is spend within the subject, so that it is a matter of time until incremental loading
for PostgreSQL is fully supported. Although the central broker implementation runs
as a continuous process and has generally a high degree of automation, the detection
of new service instances is not handled so far. For handling new service instances
the central broker framework have to be extended. In addition, the automatic
service binding within the broker framework would have be adapted for a
productive deployment.

6.3.3 ‘Concept Drift’ Problem

This problem describes the situation when the values of the label attributes are
significantly changing with respect to the course of time [7]. The machine learning
algorithm FIMT-DD with integrated drift detection function could be further
analyzed focusing on the algorithms parameter optimization with respect to the
specifics of the SOC setting.

- 55 -

When having other machine learning methods without integrated drift detection,
own strategies and methods for handling the distortion of data could be developed.
Different learning models with adaptive time frames could be defined for applying
a selective distortion of the data base. For example, learning models with time
frames of two weeks, four weeks and an overall model. All models could be
considered for calculating the utility but with a different weighting, focusing more
on either current or past events.

6.3.4 ‘Lack of Feedback’ Problem

The lack of feedback is a core challenge within the central service broker framework.
A prediction is only as good as the data input itself and referring to the central
broker framework the corresponding feedback tickets. The concept of measuring
past service consumptions lead to the effect that there are no periodical calls in
general. Therefore, a performance monitoring is only given when services are
consumed. Especially when services are consumed more often, the number of
submitted feedback tickets is accordingly higher compared to services with a low
consumption. Within the introduced simulation tool, test data scenarios could be
created having services, which are consumed variously often and the overall
machine learning on an unsteady data basis could be further analyzed.

6.3.5 ‘Navigation Device’ Problem

The ‘Navigation Device’ problematic is a metaphor for a traffic jam when the
navigation system redirects everyone from the highway. Instead of solving the
problematic situation, the traffic jam is shifted somewhere else besides the highway.
Such behavior can also take place within the SOC setting, when a service showing
the overall best performance and therefore is highly recommended. Thereby the
number of service consumption is increasing, which in turn can lead to a decrease
in performance. The general approach for taking countermeasures could be
researched and corresponding strategies could be defined, implemented and
evaluated.

- 56 -

7 List of References
[1] Jens Kirchner, Jesper Andersson, Andreas Heberle, Welf Löwe, “Service Level

Achivements - Distributed Knowledge for Optimal Service Selection,”
[2] Pete Chapman (NCR), Julian Clinton (SPSS), Randy Kerber (NCR), Thomas

Khabaza (SPSS), Thomas Reinartz (DaimlerChrysler), Colin Shearer (SPSS),
Rüdiger Wirth (DaimlerChrysler), CRISP-DM 1.0: Step-by-step data mining
guide, 2000.

[3] Michael Anderson, Susan Leigh Anderson, “Machine Ethics: Creating an
Ethical Intelligent Agent,” AI Magazine, no. Volume 28 Number 4, pp. 15–26,
2007.

[4] I. H. Witten, E. Frank, and M. A. Hall, Data mining: Practical machine learning
tools and techniques, third edition, 3rd ed. Burlington, Mass: Morgan
Kaufmann Publishers, 2011.

[5] Markus Geisler, “A Machine Learning Component for an Optimized Context-
Aware Web Service Selection based on Decision Trees for a Future Service
Market,” 2013.

[6] J. Han, M. Kamber, and J. Pei, Data mining: Concepts and techniques, third
edition, 3rd ed. Waltham, Mass: Morgan Kaufmann Publishers, 2012.

[7] J. Han and M. Kamber, Data mining: Concepts and techniques, 2nd ed.
Amsterdam, Boston, San Francisco, CA: Elsevier; Morgan Kaufmann, 2006.

[8] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification
Techniques,” 2007.

[9] KDnuggets.com, Data Mining, Analytics, Big Data, Data, Science. Available:
http://www.kdnuggets.com/.

[10] ____, Libraries and Development Kits for Data Mining. Available:
http://www.kdnuggets.com/software/libraries.html (2014, Apr. 28).

[11] Albert Biffet, Big Data Mining Tools. Available: http://albertbiffet.com/big-
data-mining-tools/ (2014, Apr. 28).

[12] KDnuggets.com, Analytics, Data Mining, Data Science software/tools used in
the past 12 months for real project. Available:
http://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-
software-used.html.

[13] RapidMiner.com, Predictive Analytics, Data Mining, Self-service Open Source,
RapidMiner. Available: http://rapidminer.com/.

[14] ____, More Options for our Community Users. Available:
http://rapidminer.com/options-community-users/.

[15] R Project, The R Project for Statistical Computing. Available: http://www.r-
project.org/.

[16] Markus Helbig, Simon Urbanek, Ian Fellows, JGR - Java GUI for R. Available:
http://cran.r-project.org/web/packages/JGR/.

[17] The University of Waikato, Weka 3: Data Mining Software in Java. Available:
http://www.cs.waikato.ac.nz/ml/weka/.

[18] Massive On-line Analysis (MOA), MOA Overview. Available:
http://moa.cms.waikato.ac.nz/overview/ (2014, Apr. 28).

[19] Apache Software Foundation, The Official Mahout FAQ. Available:
http://mahout.apache.org/general/faq.html (2014, Apr. 28).

[20] Eclipse, The Eclipse Foundation open source community website.: An amazing
open source community of Tools, Projects and Collaborative Working Groups.
Available: https://www.eclipse.org.

- 57 -

[21] Catherine Catherine, “Simulation and Measurement of Non-Functional
Properties of Web Services in a Service Market to Improve User Value,” 2013.

[22] Lazim Abdullah, C.W. Rabiatul Adawiyah, “Simple Additive Weighting
Methods of Multi criteria Decision Making and Applications: A Decade
Review,” International Journal of Information Processing and Management
(IJIPM), pp. 39–49, 2014.

[23] Albert Biffet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy
Kremer, Timm Jansen, Thomas Seidl, MOA: Massive Online Analysis, a
Framework for Stream Classification and Clustering.

[24] W3C, SOAP Specifications. Available: http://www.w3.org/TR/soap/.
[25] University of WAIKATO, Trunk weka-dev-3.7.11: weka.filters.DiscretizeFilter.

Available: https://svn.cms.waikato.ac.nz/svn/weka.
[26] IP Location, How to find geolocation of an IP Address? Available:

http://www.iplocation.net/.
[27] Albert Biffet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer, Data

Stream Mining: A Practical Approach.
[28] Remco R. Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby, Peter

Reutemann, Alex Seewald, David Scuse, WEKA Manual for Version 3-7-11: The
University of Waikato, 2014.

[29] Christophe Salperwyck, MOA Extension. Available:
http://chercheurs.lille.inria.fr/salperwy/index.php?id=moa-extension.

[30] Elena Ikonomovska, João Gama, Sašo Džeroski, Learning model trees from
evolving data streams.

[31] Ross J. Quinlan, Learning with Continuous Classes.

- 1 -

A. Appendix

This section lists some additional information about the previous test data statistics,
the defined simulation parameters for the current test data scenario and graphical
analyses from the evaluation chapter.

A.1 Statistics of the Previous Test Data

The table below shows the service candidates with corresponding record count,
response time, message size and availability. The abbreviations of the candidates
are as follows: FD = File Digest, SA = Salutation, SQ = Stock Quote, WE = Weather

Service
Candidate

Records
Response time in ms Message size in ms Availability

in % Mean Deviation Mean Deviation

FD 4228 4304 3644 452510 203261 99,976

FD HSKA 2779 4650 3490 453795 200597 99,964

SA AU 13452 704 1751 305 0,9 91,711

SA DE 6856 240 921 305 0 84,072

SA UK 10042 494 1468 305 0,9 90,380

SQ LUS 6588 384 1486 154 2 98,437

SQ RestFul 6769 1528 5517 5 0 84,429

SQ RF 3440 1480 3570 5 0 83,192

SQ SMW 4052 1003 1004 4838 44 99,975

SQ YUK 8776 859 2862 12 0 99,932

WE DT 10004 636 1954 267 0 99,690

WE NDFD 6842 1096 1714 877 0 97,252

WE DE 10038 801 5782 22 0 99,930

WE WSF 8876 883 893 5 0 98,637

WE Yahoo 6645 364 515 2324 21 99,007

- 2 -

A.2 Simulation Parameters of the Created Test Data Scenario

The figure below shows the simulations parameters of the non-functional property response time.

st
ar

t

p
er

io
d

e

d
ay

s

h
o

u
rs

co
n

su
m

er
Id

ex
te

rn
al

Ip

ca
lle

d
Se

rv
ic

eI
n

st
an

ce
A

d
d

re
ss

fu
n

ct
io

n
al

Se
rv

ic
eI

d
en

ti
fi

er

u
ti

lit
yF

u
n

ct
io

n

re
sp

N
o

rm
al

re
sp

Si
m

u
la

ti
o

n

re
sp

D
ev

ia
ti

o
n

is
R

es
p

O
ve

ra
ll

re
sp

O
ve

ra
llB

eg
in

P
er

c

re
sp

O
ve

ra
llE

n
d

P
er

c

is
R

es
p

D
ay

ti
m

eA
n

d
W

ee
kd

ay

is
R

es
p

D
ay

ti
m

e

re
sp

D
ay

ti
m

eB
eg

in

re
sp

D
ay

ti
m

eE
n

d

is
R

es
p

W
ee

kd
ay

re
sp

W
ee

kd
ay

is
R

es
p

O
u

tl
ie

r

re
sp

O
u

tl
ie

rR
es

p
o

n
se

re
sp

O
u

tl
ie

rP
er

c

re
sp

O
u

tl
ie

rD
ev

22.02.2014 00:00 90000 30 0 1 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability 250 260 20 TRUE 50 85 TRUE TRUE 15-00 17-00 TRUE Fri TRUE 300 2 100

22.02.2014 00:00 90000 30 0 2 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability 260 280 50 TRUE 0 30 TRUE TRUE 09-00 19-00 TRUE Fri TRUE 350 2 100

22.02.2014 00:00 90000 30 0 3 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability 250 290 40 TRUE 70 98

22.02.2014 00:00 90000 30 0 4 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability 240 280 40 TRUE 90 100

22.02.2014 00:00 90000 30 0 5 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability 270 220 35 TRUE 40 90 TRUE 350 5 60

22.02.2014 00:00 90000 30 0 6 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability 280 200 20 TRUE 50 100 TRUE 400 5 70

22.02.2014 00:00 90000 30 0 7 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability 250 220 30 TRUE 70 100

22.02.2014 00:00 90000 30 0 8 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability 260 210 30 TRUE 65 95

22.02.2014 00:00 90000 30 0 9 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability 200 240 160 TRUE 30 35 TRUE 300 4 100

22.02.2014 00:00 90000 30 0 10 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability 220 190 170 TRUE 40 50 TRUE 20-00 23-59 TRUE 300 10 100

22.02.2014 00:00 90000 30 0 11 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability 200 190 120 TRUE TRUE 18-00 23-59 TRUE Mon,Tue,Wed,Thu,Fri

22.02.2014 00:00 90000 30 0 12 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability 225 160 120 TRUE TRUE 20-00 23-59 TRUE Mon,Tue,Wed,Thu,Fri

22.02.2014 00:00 90000 30 0 13 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability 290 200 50 TRUE 40 100 TRUE Sat,Sun TRUE 320 2 10

22.02.2014 00:00 90000 30 0 14 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability 300 220 60 TRUE 50 60 TRUE TRUE 20-00 23-59 TRUE Sat,Sun TRUE 310 3 10

22.02.2014 00:00 90000 30 0 15 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability 280 200 10 TRUE Sat

22.02.2014 00:00 90000 30 0 16 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability 320 170 25 TRUE Sun

- 3 -

The figure below shows the simulations parameters of the non-functional property availability.

st
ar

t

p
er

io
d

e

d
ay

s

h
o

u
rs

co
n

su
m

er
Id

ex
te

rn
al

Ip

ca
lle

d
Se

rv
ic

eI
n

st
an

ce
A

d
d

re
ss

fu
n

ct
io

n
al

Se
rv

ic
eI

d
en

ti
fi

er

u
ti

lit
yF

u
n

ct
io

n

is
N

o
n

av
ai

lO
ve

ra
ll

n
o

n
av

ai
lO

ve
ra

llP
er

c

n
o

n
av

ai
lO

ve
ra

llB
eg

in
P

er
c

n
o

n
av

ai
lO

ve
ra

llE
n

d
P

er
c

is
N

o
n

av
ai

lD
ay

ti
m

eA
n

d
W

ee
kd

ay

is
N

o
n

av
ai

lD
ay

ti
m

e

n
o

n
av

ai
lD

ay
ti

m
eB

eg
in

n
o

n
av

ai
lD

ay
ti

m
eE

n
d

is
N

o
n

av
ai

lW
ee

kd
ay

n
o

n
av

ai
lW

ee
kd

ay

is
N

o
n

av
ai

lO
u

tl
ie

r

n
o

n
av

ai
lO

u
tl

ie
rP

er
c

22.02.2014 00:00 90000 30 0 1 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability TRUE 3 17 24 TRUE 3

22.02.2014 00:00 90000 30 0 2 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability TRUE TRUE 2

22.02.2014 00:00 90000 30 0 3 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability

22.02.2014 00:00 90000 30 0 4 DEConsumer DE1Service Scenario1 0.5*responsetime+0.5*availability

22.02.2014 00:00 90000 30 0 5 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability TRUE 4 21 25 TRUE 1

22.02.2014 00:00 90000 30 0 6 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability TRUE 4

22.02.2014 00:00 90000 30 0 7 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability TRUE TRUE 09-01 09-30 TRUE Mon

22.02.2014 00:00 90000 30 0 8 DEConsumer DE2Service Scenario1 0.5*responsetime+0.5*availability TRUE TRUE 09-10 09-46 TRUE Mon

22.02.2014 00:00 90000 30 0 9 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability TRUE 3

22.02.2014 00:00 90000 30 0 10 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability TRUE 4

22.02.2014 00:00 90000 30 0 11 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability TRUE 1

22.02.2014 00:00 90000 30 0 12 DEConsumer SE1Service Scenario1 0.5*responsetime+0.5*availability TRUE 2

22.02.2014 00:00 90000 30 0 13 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability TRUE 7 30 43 TRUE 4

22.02.2014 00:00 90000 30 0 14 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability TRUE 4

22.02.2014 00:00 90000 30 0 15 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability

22.02.2014 00:00 90000 30 0 16 DEConsumer US1Service Scenario1 0.5*responsetime+0.5*availability

- 4 -

A.3 Overall Trend of the Attribute Response Time

The figure below shows the response time of the services DE1Service, DE2Service,
SE1Service and US1Service in the course of time.

- 5 -

A.4 Overall Trend of the Service Selection Accuracy (TOP1 and TOP2)

The figure below shows the accuracy of the service selection for the machine
learning methods FIMT-DD, Hoeffding Tree and Naïve Bayes. The TOP1 measure is
the percentage of correctly determined best-fit services to the actual best-fit service,
whereas the TOP2 selection shows the percentage of the correctly determined best-
fit services within the actual two best-fit services.

- 6 -

A.5 Overall Trend of the Actual and Predicted Utilities of the FIMT-DD
algorithm with Different Utility Functions

The figure below shows the overall utility trend of two different utility functions
with either a higher preference for the attribute response time (figure below) or
availability (figure above).

Faculty of Technology

SE-391 82 Kalmar | SE-351 95 Växjö

Phone +46 (0)772-28 80 00

teknik@lnu.se

Lnu.se/faculty-of-technology?l=en

