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Abstract 

Social networking has encouraged users to find new ways to create, post, search, 

collaborate and share information of various forms. Unfortunately there is a lot of data 

in social networks that is not well-managed, which makes the experience within these 

networks less than optimal. Therefore people generally need more and more time as 

well as advanced tools that are used for seeking relevant information. A new search 

paradigm is emerging, where the user perspective is completely reversed: from finding 

to being found. The aim of present thesis research is to evaluate two approaches of 

identifying content of interest: user-initiated and system-initiated. The most suitable 

approaches will be implemented. Various recommendation systems for system-initiated 

content recommendations will also be investigated, and the best suited ones 

implemented. The analysis that was performed demonstrated that the users have used all 

of the implemented approaches and have provided positive and negative comments for 

all of them, which reinforces the belief that the methods for the implementation were 

selected correctly. The results of the user testing of the methods were evaluated based 

on the amount of time it took the users to find the desirable content and on the 

correspondence of the result compared to the user expectations. 

 Keywords: user-initiated content discovery, system-initiated content discovery, 

content-based filtering, collaborative filtering, recommender systems. 
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1 Introduction 

In this chapter the problem background, the motivation of the task and goals will be 

discussed. The problem background and motivation also dive into discussion. Goals are 

defined according to the formulation of the problem and the scope of the thesis task. 

1.1 Background 

In the past decade, social media platforms have grown from a pastime for teenagers into 

tools that pervade nearly all modern adults’ lives due to its nature that allows people to 

meet other people with similar interests [1]. Social networking has encouraged users to 

find new ways to create, post, search, collaborate and share information of various 

forms. Social media users are usually trying to organize themselves around specific 

interests, such as hobbies, jobs and other daily life categories. However, the ever-

growing ocean of content produced online makes it harder and harder to identify 

streams and channels of interest to an individual user. Within the social media to find 

specific topics of interest users are usually trying to engage with like-minded people. 

Unfortunately there is a lot of data in social networks that is not well-managed, which 

makes the experience within these networks less than optimal. Therefore people 

generally need more and more time as well as advanced tools that go beyond those 

implementing the canonical search paradigm for seeking relevant information. A new 

search paradigm is emerging, where the user perspective is completely reversed: from 

finding to being found. Within the present research I aim to evaluate two approaches of 

identifying content of interest: user-initiated and system-initiated. The former comprises 

ways of organizing content to best facilitate discovery. The latter investigates ways in 

which the system can make suggestions based on behavioral data about users. 

It has always been a top priority for entertainment providers to help consumers to use 

their services in the best way. Nowadays social media is transforming the way this 

business is carried out, because it provides many excellent platforms for content 

discovery. Present thesis research is conducted within the project NextHub. NextHub is 

a media channel for organizations seeking to increase engagement with end users and 

customers in a way that is not possible in today’s social media landscape. NextHub is 

always looking for ways to improve and facilitate the content discovery by their users 

and serves as an excellent research platform for these goals. 

1.2 Problem definition and research question 

The problem of choosing the approach that best corresponds to the application needs is 

emerging – due to the lack of resources only a limited amount of content discovery 

methods can be implemented and supported. There has been a lot of theoretical research 

into individual methods of content discovery, and some methods have been compared in 

depth (e.g. recommender systems). This thesis takes a different approach and aims to 

compare the practical results of using these methods. More concretely, the goal is to 

study and compare existing methods and tools for finding content (such as free-text 

search, tagging, fixed categories, navigational hierarchy, etc), implement the most 

suitable methods and according to the practical results evaluate their efficiency, output 

quality and applicability. The research question that this thesis aims to answer is “how 

do different methods of content discovery compare in their applicability, efficiency and 

output quality in practice?” 
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2 Theory 

In this chapter the theory behind content discovery field will be discussed. I focus on 

techniques, technologies and algorithms that can be used by the user to identify the 

content of interest. 

2.1 Introduction 

Nowadays the amount of information in the global network grows exponentially. A 

huge number of new web sites appear; new articles, books, movies and other types of 

data is uploaded daily. The volume of unfiltered and even unwanted content has 

exploded, so it’s becoming harder and harder for an average user to handle tons of new 

information. Therefore the main task of each service provider is to present only relevant 

content to readers and to simplify the user’s operation with it. More and more new 

technologies and tools for achieving this goal appear every day. A new search paradigm 

is emerging, where the user perspective is completely reversed: from finding to being 

found. 

There are two basic classes of approaches for content discovery: user-initiated and 

system-initiated. User-initiated approach is based on the active form of needed 

information finding. It may include free-text or boolean search engines, tagging 

systems, navigating data hierarchy etc. (all the methods will be discussed later in more 

details). System-initiated approach is the opposite of the first method – user is not 

actively involved in the content discovery – the system does everything for him using 

content-based, collaborative filtering and other suggestion techniques. 

2.2 User-initiated approaches 

Active content discovery strategies entail direct interaction between communicator 

(user) and target (the content) during which different tactics are enacted to elicit desired 

information. One of the advantages of these approaches is that there are never any 

ethical concerns inherent to them – all data is prepared by the content provider and there 

is no risk in exposing any sensitive or private data to the users who should not see it or 

have access to it. 

Information search is the process of finding material of an unstructured nature that 

satisfies information needs from within large collections of data. It should be noted that 

when talking about unstructured data, we are still dealing with data that has some 

hidden structure characteristic of natural languages. For example, most of the texts have 

headings, paragraphs, and foot notes [2]. There are several models for the 

implementation of information discovery today: the Boolean model, the vector model, 

probabilistic model, a model based on the Bayes approach and so on. Of course, each 

model has its advantages and disadvantages. Due to the fact that information discovery 

is not a trivial task the choice of a particular model should be carried out on the basis of 

the goals of retrieval. 

Ellis and Haugan propose and elaborate a general model of information seeking 

behaviors based on studies of the information seeking patterns of social scientists, 

research physicists and chemists, and engineers and research scientists in an industrial 

firm. One version of the model describes six categories of information seeking activities 

as generic: starting, chaining, browsing, differentiating, monitoring, and extracting. 

Starting comprises those activities that form the initial search for information - 

identifying sources of interest that could serve as starting points of the search. Identified 

sources often include familiar sources that have been used before as well as less familiar 

sources that are expected to provide relevant information. While searching the initial 

sources, these sources are likely to point to, suggest, or recommend additional sources 

or references [8]. 
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Following up on these new leads from an initial source is the activity of Chaining. 

Chaining can be backward or forward. Backward chaining takes place when pointers or 

references from an initial source are followed, and is a well-established routine of 

information seeking among scientists and researchers. In the reverse direction, forward 

chaining identifies and follows up on other sources that refer to an initial source or 

document. Although it can be an effective way of broadening a search, forward chaining 

is much less commonly used [9]. 

Having located sources and documents, Browsing is the activity of semi-directed 

search in areas of potential search. The individual often simplifies browsing by looking 

through tables of contents, lists of titles, subject headings, names of organizations or 

persons, abstracts and summaries, and so on. Browsing takes place in many situations in 

which related information has been grouped together according to subject affinity, as 

when the user views displays at an exhibition, or scans books on a shelf. 

During Differentiating, the individual filters and selects from among the sources 

scanned by noticing differences between the nature and quality of the information 

offered. For example, social scientists were found to prioritize sources and types of 

sources according to three main criteria: by substantive topic; by approach or 

perspective; and by level, quality, or type of treatment. The differentiation process is 

likely to depend on the individual's prior or initial experiences with the sources, word-

of-mouth recommendations from personal contacts, or reviews in published sources. 

Monitoring is the activity of making sure that all the facts about development are 

recent in an area by regularly following particular sources. The individual monitors by 

concentrating on a small number of what is perceived to be core sources. Core sources 

vary between professional groups, but usually include both key personal contacts and 

publications. 

Extracting is the activity of systematically working through a particular source or 

sources in order to identify material of interest. As a form of retrospective searching, 

extracting may be achieved by directly consulting the source, or by indirectly looking 

through bibliographies, indexes, or online databases. Retrospective searching tends to 

be labor intensive, and is more likely when there is a need for comprehensive or 

historical information on a topic [8][9][10]. 

Following the categories of information seeking activities listed above, the following 

types of information retrieval can be distinguished: 

 Free-text search;  

 Boolean search;  

 Vector space search;  

 Retrieval via tags and labels;  

 Navigating hierarchy;  

 and others.  

 

Free-text search is a good example of active information seeking. It is one of the 

most common and simple ways of content discovery. In a free-text search, a search 

engine examines all of the words in every stored document as it tries to match search 

criteria (text specified by a user). Such search techniques became common in online 

bibliographic databases in the 1990s. 

When dealing with a small number of documents, it is possible for the search engine 

to directly scan the contents of the documents with each query, a strategy called serial 

scanning. However, when the number of documents to search is potentially large, or the 

quantity of search queries to perform is substantial, the problem of full-text search is 

often divided into two tasks: indexing and searching. The indexing stage will scan the 

text of all the documents and build a list of search terms (which is usually called an 
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index). In the search stage, when performing a specific query, only the index is 

referenced, rather than the text of the original documents. 

The indexer will make an entry in the index for each term or word found in a 

document, and possibly note its relative position within the document. Usually the 

indexer will ignore stop words (such as "the" and "and") that are both common and 

insufficiently meaningful to be useful in searching. 

A more advanced version of the simple search is a Boolean retrieval model that was 

originated in the 1950s. 

Boolean retrieval is based on Boolean algebra, named after the English 

mathematician George Boole (1815-1864). In Boolean retrieval words, strings or other 

symbols are organized in sets, which are combined with the logical "AND", "OR" or 

"NOT" (the Boolean operators) [3]. 

Clean formalism, implementation simplicity and intuitive concept are advantages of 

the Boolean retrieval model. However, the model has a number of following 

disadvantages: difficulties in ranking output, equal weight of all terms and complexity 

of translating a query into a Boolean expression. 

Another method of user-based retrieval is vector space search. It involves converting 

documents into vectors. Each dimension within the vectors represents a term. If a 

document contains that term then the value within the vector is greater than zero. Such 

technology has both advantages and disadvantages. The former are the following: 

retrieval is ranked; terms are weighted by importance, etc. The fact that assumed terms 

are independent and weighting is intuitive but not very formal represents the latter. 

Retrieval via labels and tags has become very popular recently. Labeling and tagging 

is carried out to perform functions such as aiding in classification, marking ownership, 

noting boundaries, and indicating online identity. They may take the form of words, 

images, or other identifying marks. 

Tagging has gained wide popularity due to the growth of social networking, 

photography sharing and bookmarking sites. These sites allow users to create and 

manage labels (or “tags”) that categorize content using simple keywords. Keywords 

have been used as a part of identification and classification systems long before these 

systems were automated with the help of computers. In the early days of the web 

keywords meta tags were used by web page designers to tell search engines what the 

web page was about. Today's tagging takes the meta keywords concept and re-uses it. 

The users add the tags, which are clearly visible and act as links to other items that share 

that keyword tag [4]. 

To represent the data by tags, a tag cloud can be used. It is a visual representation for 

text data, typically used to depict keyword metadata (tags) on websites, or to visualize 

free form text. Tags are usually single words, and the importance of each tag is shown 

with font size or color [7]. The example of a cloud tag is shown on the figure 2.1. 
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Figure 2.1: A tag cloud with terms related to Web 2.0 

 

The benefits of tagging are the following: 

 tags allow more flexible content organizing;  

 tags facilitate the annotation process because less or even no knowledge about 

the system is required;  

 tags facilitate content retrieval and discovery.  

 

Apart from these advantages of tagging, research also identifies a number of 

disadvantages. According to Golder & Huberman[5] and Mathes[6] there are also 

disadvantages that require serious consideration: 

 ambiguity (polysemy and homonymy) – a term or concept that have multiple 

meanings;  

 synonymy – multiple terms which describe the same items or actions. This 

includes misspellings, spelling variations, conjugated verbs and mixed uses of singular 

and plural forms;  

 level of term specificity (hyponymy and hyperonomy) – e.g. “Siamese”, “cat”, 

or “animal”;  

 tag syntax – multiple words, spaces, symbols etc.  

 

Another method of user-initiated information retrieval is navigating through data 

hierarchy. To facilitate content discovery and make data finding more convenient a 

hierarchical data model can be used. All the data is organized and represented as a tree-

like structure (see figure 2.2). Each second level category can have many records, but 

each record only has one parent. 
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Figure 2.2: Example of the data represented as a tree-like structure 

 

The most common user-initiated approaches have been discussed in this section. List 

of methods is not finished, it can be endless. New techniques and tools that can help 

user to find required information are appearing right along. 

2.3 System-initiated approaches 

Passive strategies involve acquiring information about a target through unobtrusive 

observation. There is an extensive class of applications that involve predicting user 

responses to options. Such a facility is called a recommendation system. This approach 

does not require active participation of the users, because when User #1 is explicitly 

collaborating with User #2, an algorithmic mediation engine can push some of User #2′s 

activity on to User #1 without requiring User #1 to make additional effort. The goal of a 

recommender system is to generate meaningful recommendations to a collection of 

users for items that might interest them. Suggestions for books on Amazon or movies on 

Netflix are real-world examples of industry-strength recommender systems. 

Unlike user-initiated approaches, system-initiated approaches can have issues with 

data sensitivity. Since these approaches are based on analyzing data and providing 

suggestions to the users automatically, they may use the data confidential to other users 

in their decision processes. This may be undesirable by these users and it is a 

responsibility of the content platform to make sure that users are aware of this 

possibility (if it is used) and approve gathering of their private data. The other concern 

is that these systems may provide suggestions to the users, which they may find 

offensive or inappropriate. This is harder to deal with and is often handled by using 

various rating systems (e.g. PEGI), which can be used to block content based on user’s 

own preferences and settings, as well as legal requirements. Ultimately, it is the 

responsibility of the content provider to make sure that the recommender (and other 

similar) systems they use are compliant with ethical norms and legal regulations. 

There may be other problems with recommender systems, which are not common for 

the user-based content discovery approaches. The users need to be able to trust the 

recommended results, and when the results often seem random or surprising (i.e. the 

correspondence of the recommendation to the user expectation is low), they may lose 
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their belief in the ability of the recommender system to deliver the content that they are 

looking for or may be interested in. There is also an issue of fraud, “flash-mob” kind of 

attacks on the recommender systems, which can easily bring down the confidence of the 

users in the system and even the service in general. 

Recommender systems differ in the way they analyze data sources to provide 

suggestions to the user. There are two basic approaches that are used to recommend the 

item to the user: 

 collaborative filtering;  

 content-based filtering.  

 

Collaborative filtering methods are based on collecting and analyzing a large amount 

of information on users’ behaviors, activities or preferences and predicting what users 

will like based on their similarity to other users. A key advantage of the collaborative 

filtering approach is that it does not rely on machine analyzable content and therefore it 

is capable of accurately recommending complex items such as movies without requiring 

an "understanding" of the item itself. Many algorithms have been used in measuring 

user similarity or item similarity in recommender systems. For example, the k-nearest 

neighbors (k-NN) approach [11] and the Pearson Correlation. 

Collaborative filtering has two meanings, a narrow one and a more general one [13]. 

In general, collaborative filtering is the process of forecasting the point of interest for 

the user using the known preferences (evaluations) of the user group in the 

recommender systems. For example, with the help of the method music applications are 

able to predict what kind of music the user likes according to his preferences. The 

forecasts are prepared individually for each user, but information collected from many 

participants is used. 

In the newer, narrower case, collaborative filtering is a method which can produce 

predictions about the user’s points of interests by collecting preferences or some other 

information from many users that can be used to make predictions (collaborating). The 

basic meaning of the collaborative filtering approach is that if a person A has the same 

opinion as a person B on an issue, A is more likely to have B's opinion on a different 

issue x than to have the opinion on x of a person chosen randomly. These predictions 

are specific to the user, but use information gathered from many users. 

Examples of systems that use collaborative filtering include Amazon, iTunes, 

Netflix, LastFM, StumbleUpon, and Delicious. Thanks to collaborative filtering, a site 

like Amazon can say, "People who bought books A and B also bought book C." 

Content-based filtering is another recommendation approach that is not inferior to the 

efficiency and accuracy of the previous one. Content-based filtering methods are based 

on a description of the item and a profile of the user’s preference [12].In a content-based 

recommender system, keywords are used to describe the items and a user profile is built 

to indicate the type of item this user likes. In other words, these algorithms try to 

recommend items that are similar to those that a user liked in the past (or is examining 

in the present). In particular, various candidate items are compared with items 

previously rated by the user and the best-matching items are recommended. This 

approach has its roots in information retrieval and information filtering research. 

In recommender system applications there are two classes of entities, users and 

items. Users have preferences for certain items depending on their interests, needs etc. 

Items can be represented by books, movies, groups of interest and other types of data 

depending on the application domain. The data in recommendation systems itself is 

represented as a utility matrix which displays users’ ratings on items. For example, 

utility matrix, representing users’ ratings of movies on a 1 to 5 scale. Blanks represent 

the situation where the user has not rated the movie (see table 2.1). 
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        Movie 

User 
M1 M2 M3 M4 M5 

A 4 5 3  5 

B  2 4 5  

C 3 5 5  3 

D 4 5 4 4 5 

Table 2.1: Utility matrix 

 

The goal of a recommender system is to predict the blanks in the utility matrix 

depending on past behavior of the user. However, some applications have a slightly 

different goal – it is not necessary to predict every blank entry in the matrix. Rather, it is 

only necessary to discover some entities in each row that are likely to be high. In most 

applications, the recommender system does not offer users a ranking of all items, but 

rather suggests a few that the user should value highly. 

2.4 Applicability of the approaches 

Basic approaches for content discovery were discussed in this section. Certainly, each 

approach has both advantages and disadvantages. Some of methods using each 

approach are difficult and costly to implement, some take a lot of processing time to 

generate results, some consume a lot of resources either for storing data or analyzing it. 

Which variant is optimal depends on the specific problem faced by the system. 

Even though both approaches server the same goal of helping users to discover and 

identify content of interest for them, the methods of different approaches should not be 

compared to each other directly. Each approach is applicable in different situations and 

works on different kinds of data and for different types of users. When there is a lot of 

user-generated content available, system-based approaches work best, as it is very 

difficult to make a hierarchical data model, and the users are less likely to look for a 

particular item rather than just anything that would suit their needs. On the other hand, 

when users have precise and specific targets in mind, user-based approaches, which take 

less liberty in interpreting the user needs, may be more suitable. For example, for social 

networks system-based approaches are by far more useful to let the users efficiently 

communicate, while for public libraries which provide textbooks and academic articles, 

users will know what they are looking for and precision of search is far more important. 

User-based approaches excel for simpler, static systems and services which are 

mainly interesting to the users who know what they are looking for, and the content 

provider has limited resources or smaller audience, with which it makes no sense to 

implement the heavier and more complex system-based approach. For small systems 

with limited content discovery requirements (smaller services, enterprise systems) 

simple implementations of some of the user-based methods can often be enough. That 

does not mean though that user-based approaches are only good for small systems – 

some of the largest services available in the modern world (like Google, Microsoft Bing 

and many other) use basic searches as a main part of their functionality. This approach 

works best when there is not enough data available to the system to make a 

recommendation to the user at the right moment, which will fulfill their goals well 

enough. This can be illustrated by the backlash that Google has faced when they 

implemented some history-based suggestions (which is a system-based approach) into 

their search results (which is a user-based approach). User-based approaches also have 

no inherent issues with ethics, as they are not based on the private or sensitive data of 

other users. 
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System-based approaches are well suited for large services, which provide a lot of 

non-homogenous content for a wide and diverse range of users. For example, social 

networks, which work with mainly user-generated content, can greatly increase user 

activity by supplying them with recommendations of content that similar users or users 

related to them in some way have generated or consumed before. System-based 

approaches can be used anywhere, but produce best results when sufficient data is 

available (compared to the amount of users and their diversity) for their engines to 

efficiently cluster, categorize and otherwise aggregate and analyze that data. System-

based approaches usually face privacy problems and often raise ethical concerns, as 

they usually automatically parse and analyze content, which is often prepared by users 

themselves. This content may be sensitive or the results of the recommendation may be 

offensive to the users. These issues may be very difficult to handle for the service 

providers, and the responsibility for managing them can be a negative argument for 

using system-based approaches. 

Performance is another consideration when making a choice between different 

content discovery methods and approaches. Search-based approaches usually can use 

efficient pre-processed data sets (like indices), which don’t require much storage or 

processing power. Recommender systems can use both real-time and preprocessed data, 

but the amount of data they use and store grows much faster, as they need to distinguish 

correlations between different content and users. 
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3 Implementation 

This chapter describes the process of implementing the application prototype, tools and 

technologies that were used in the development process. 

3.1 Implemented content discovery methods 

Following a study of existing methods and tools for finding content, I have 

implemented the most suitable approaches. Also various recommendation systems for 

system-initiated content recommendations have been investigated, and best suited ones 

were implemented. 

Four different methods have been chosen for comparison. These methods are very 

commonly used in modern applications. Most users are already well familiar with them, 

which makes them good targets for the study, as the users do not need any special 

learning to use these methods and their skills with using these methods will not skew 

the experimental results. Moreover, for most service and content providers, the selection 

of content discovery methods is usually made between these methods, which make the 

results of this research most useful for the real-world applications. The selected methods 

are as follows: 

 Content-based filtering. Content-based filtering methods are based on an item 

profile (i.e. a set of discrete attributes and features) characterizing the item within the 

system.  

 Collaborative filtering. Methods are based on collecting and analyzing a large 

amount of information on users’ behaviors, activities or preferences and predicting what 

users will like based on their similarity to other users (Apache Mahout library is used).  

 Simple search. Method allows finding the occurrence of the search terms in the 

database by one or more keywords.  

 Hierarchical data model. The data is organized into a tree-like structure. The 

structure allows representing information using parent/child relationships: each parent 

can have many children, but each child only has one parent.  

 

Present research is conducted within the project NextHub which is a media channel 

for organizations seeking to increase engagement with end users and customers in a way 

that is not possible in today’s social media landscape. Therefore in order to compare and 

evaluate the considered approaches an application prototype has been built. The 

prototype takes into account all the specific features and requirements of NextHub. It 

has been implemented as a Java desktop application and it uses flat comma-separated 

values (csv) files as a database. The application is a single-user system and it does not 

assume user separation by the role. 

Basic functionality allows the user to try in action four different content discovery 

approaches: two user-initiated and two system-initiated. All the NextHub data is 

organized through channels. Channels enable public figures, businesses, organizations 

and other entities to create an authentic and public presence on NextHub. Each user can 

connect to these channels by becoming a subscriber and then receive automatic updates 

of their personal news feeds and interact with them and other users through instant 

messaging. NextHub can also be used for small group communication and for people to 

share their common interests and express their opinions. It allows people to come 

together around a common cause, issue or activity to organize and express objectives, 

discuss issues, post photos and share related content. 

3.2 Data used for testing 

The implemented prototype is arranged according to the same analogy: test data is 

organized in the form of channels. A beta-testing version of the application is based on 
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the movies dataset, as it is the most popular domain among the end users that will be 

involved in the research. The entire process used a collection of movies provided by 

MovieLens. The MovieLens datasets were collected by the GroupLens Research Project 

at the University of Minnesota. The dataset is covering a wide range of dimensions 

(different genres, styles, locations etc). 

This dataset consists of: 

 100,000 ratings on a scale from 1 to 5 from 943 users on 1682 movies.  

 Each user has rated at least 20 movies.  

 Simple demographic info for the users (age, gender, occupation, zip code).  

 

The data was collected through the MovieLens website (movielens.umn.edu) during 

the seven-month period from September 19th, 1997 through April 22nd, 1998. The 

users who had less than 20 ratings or did not have complete demographic information 

were removed from this data set [14]. The dataset is openly available and all the data is 

anonymous, without sufficient information, which will allow to identify any real person 

who provided it, so there are no privacy concerns in using it. 

The dataset is organized in a number of data files that consist of different kinds of 

information. Detailed descriptions of the data files that were used during prototype 

implementation are: 

 u.data - The full data set, 100000 ratings by 943 users on 1682 items. Each user 

has rated at least 20 movies. Users and items are numbered consecutively from one. The 

data is ordered randomly. The data structure of the file is: user id | item id | rating | 

timestamp.  

 u.info - The number of users, items, and ratings in the u data set.  

 u.item - Information about the items (movies); this is a tab separated list of 

movie id | movie title | release date | video release date | IMDb URL | unknown | Action 

| Adventure | Animation | Children's | Comedy | Crime | Documentary | Drama | Fantasy 

| Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi | Thriller | War | Western |. 

The last 19 fields are the genres, a one indicates the movie is of that genre, a zero 

indicates it is not. The movie ids are the ones used in the u.data data set.  

 u.genre - A list of the genres.  

 u.user - Demographic information about the users; this is a tab separated list of 

user id | age | gender | occupation | zip code. The user ids are the ones used in the u.data 

data set.  

3.3 Database  

During the application development process some of the files have been modified to 

provide easier handling (i.e. data unused in this research was removed). For example, 

file u.item contains 19 fields that represent the movies genres, where value ‘1’ indicates 

the movie is of specific genre, a ‘0’ indicates it is not. The information in these columns 

has been merged into one column that represents the movie genre by its id. The database 

structure is shown in the figure 3.1. 
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Figure 3.1: Database scheme 

 

To find a channel of interest the user can use multi-level categories list method, 

recommendation system (with two different approaches) or a simple search method.  

 

3.4 Multi-level categories list approach  

 
Figure 3.2: Multi-level categories list approach user interface 

 

To facilitate content discovery and make finding channels more convenient a 

hierarchical data model has been used. All the channels (movies dataset in beta-version) 

are organized and represented as a tree-like structure. Each second level category can 

have many records, but each record only has one parent. The user interface 

implemented for using this method is shown on the figure 3.2. 
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Figure 3.3: Channels data organized as a tree-like structure 

 

Each channel data stores the link to the second level of hierarchy, and top level of 

hierarchy is stored as a reference from the second level. The movies data, which is used 

in prototype, is organized according to this principle: genres function as top and second 

level of hierarchy. An example of the hierarchy is shown on the figure 3.3. 

3.5 Recommendation based on content-based filtering approach  

Content-based filtering methods are based on a description of the item and a profile of 

the user’s preference. In a content-based recommender system, keywords are used to 

describe items. A user profile is built to indicate the type of item this user likes. 

However, currently the prototype was designed in a way that it has no possibility to 

work with user profiles. Furthermore the movies dataset is strictly limited and therefore 

the recommendation is based only on item attributes such as genre, release year and 

others. 

 

 
Figure 3.4: Recommendation based on content-based filtering approach 

user interface 
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To get the recommendation using content-based filtering, the user should open a 

page with the movie he is interested in and press the button “Similar” (see figure 3.4). It 

produces a list of movies similar to the chosen one. At the moment no algorithms or 

previously designed solutions were used for the reason mentioned above. 

3.6 Recommendation based on collaborative filtering approach  

 

 
Figure 3.5: Recommendation based on collaborative filtering approach user 

interface 

 

Collaborative filtering methods are based on collecting and analyzing a large amount 

of information on users’ behaviors, activities or preferences and predicting what users 

will like based on their similarity to other users. 

As already mentioned the prototype currently was designed in a way that it has no 

possibility to work with user profile and it is used for test and research purposes. 

Therefore to get the recommendations the user has to provide a list of movie preferences 

based on MovieLens dataset. 

When the user provides a list of preferences and the data is added to the database, the 

user can simply press the button “Recommendation” and get a list of suggested movies. 

The graphical user interface for this feature is shown on the figure 3.5. 

Nowadays there is a wide variety of systems that developers can use to provide the 

potential application users with suggestions. All of them use different methods and 

algorithms; some are open-source, some are distributed with a license fee. 

Basic algorithms that are used in recommender systems are listed below: 

 Pearson correlation. Present algorithm is based on calculation of similarity 

between two users and their attributes, such as items rating. It selects k users that have 

the highest similarity with active user and compute the prediction from weighted 

combination of  the selected neighbors’ ratings using following formulas: 

, 

where 

wa,u– similarity between user a and u, 

I – set of items rated by both users, 
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ru,i – rating given to item i by user u, 

ȓu – rating given by user u 

, 

where 

pa,i – prediction for the active user for item i 

The result is always between -1 and 1. The closer the value of r gets to zero, the 

greater the variation the data points are around the line of best fit. 

The Pearson correlation, which is widely used, is a popular algorithm for 

collaborative filtering. However it has some limitations, e.g. bad predictions due to few 

neighbors (co-rated items). 

 Clustering algorithms. Item clustering techniques work by identifying groups of 

items who appear to have similar ratings. The simplest clustering algorithm is k-means, 

which partitions items into k clusters. There are three phases in this algorithm: 

 User clustering;  

 Similarity computation;  

 Items recommendation.  

 

Initially, the items are randomly placed into clusters. Then, a centroid (or center) is 

calculated for each cluster as a function of its members. Each item's distance from the 

centroids is then checked. If an item is found to be closer to another cluster, it is moved 

to that cluster. Centroids are recalculated each time all item distances are checked. 

When stability is reached (that is, when no items move during an iteration), the set is 

properly clustered, and the algorithm ends. Other clustering variants include the 

Adaptive Resonance Theory (ART) family, Fuzzy C-means, Expectation-Maximization 

(probabilistic clustering) etc [15]. 

 Some other algorithms include: Bayesian Belief Nets, Markov chains and 

Rocchio classification. 

 

The basic and most popular open-source engines for providing users with 

recommendations were chosen for comparison. Their descriptions are provided in the 

table 3.1. 

 

Name Description 
Programming 

language 

LensKit Open source toolkit for building, researching and 

studying recommender systems. LensKit is currently 

under continual development. 

Java 

Apache 

Mahout 

Implementations of machine learning algorithms 

focused primarily in the areas of collaborative filtering, 

clustering and classifications. 

Java 

Vogoo PHP Powerful collaborative filtering engine presented as 

library. There are 4 types of input data in the Vogoo 

LIB: members IDs, products IDs, ratings, categories. 

The latest version was released on 2008-03-29. 

PHP 

CoFE Collaborative Filtering engine runs as a server to 

generate recommendations for individual items, top-N 

recommendations over all items, or top-N 

recommendations limited to one item type. User data is 

Java 
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stored in MySQL. Project is no longer maintained.[16] 

SWAMI A framework for running collaborative filtering 

algorithms and evaluating the effectiveness of those 

algorithms. It uses the EachMovie dataset, provided by 

Compaq.[16] SWAMI consists of three components: a 

prediction engine, an evaluation system, and a 

visualization component. 

Java 

Crab A framework for building recommender engines 

integrated with the world of scientific Python 

packages. The engine aims to provide a rich set of 

components from which developer can construct a 

customized recommender system from a set of 

algorithms. Crab implements user- and item-based 

collaborative filtering. 

Python 

MyMediaLite Lightweight, multi-purpose library of several 

recommender system algorithms. MyMediaLite 

implements rating prediction (e.g. on a scale of 1 to 5 

stars), and item prediction based on user-item rating 

feedback (e.g. from clicks, likes, or purchase actions). 

C# 

Table 3.1: Open-source recommender engines 

 

Apache Mahout framework was chosen as a recommender engine for the 

implementation of the prototype. Mahout is an open source machine learning Java 

library from Apache. Mahout uses triple data model such as userID, itemID, value as 

input (userID and itemID refer to a particular user and a particular item, and value 

denotes the strength of the interaction). For memory efficiency only numeric identifiers 

are allowed. The dataset holding all interactions is represented by the DataModel Class. 

 

DataModel model = newFileDataModel(new File("…")); 

 

Then, for finding similar users, the system has to compare their interactions. There 

are several methods for doing this. The most popular method is to compute the 

correlation coefficient between their interactions. 

   

UserSimilarity similarity = newPearsonCorrelationSimilarity (model); 

 

The next step to be done is to define which similar users we want to leverage for the 

recommender. For the sake of simplicity, all those have a similarity greater than 0.1 will 

be used. This is implemented via a ThresholdUserNeighborhood: 

  

UserNeighborhood neighborhood = newThresholdUserNeighborhood(0.1, 

similarity, model); 

 

At this point the data is prepared and organized for the recommender: 

 

 UserBasedRecommender recommender = 

newGenericUserBasedRecommender(model, neighborhood, similarity); 

 

Now to get the list of recommendations the method recommend can be used. Input 

for the method is userID(1 in the example) and the number of items recommended (5 in 

the example) [17]: 
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 List<RecommendedItem> recommendations = recommender. 

recommend(1, 5); 

 

Just like all the other implementations, Apache Mahout library has both advantages 

and disadvantages, which are shown in the table 3.2: 

 

+ - 

Well documented, tested, packaged and 

supported product 

Performance issues on large datasets 

Open source solution Low precision with small amounts of data 

Easy to use implementation  

Highly scalable library  

Table 3.2: Apache Mahout library advantages and disadvantages 

 

3.7 Simple search approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Simple search approach user interface 

 

The search procedure is one of the central procedures in any kind of applications 

whether it is a web or a desktop application. Simple search by one or more keywords 

can also be used for channels discovery. It allows finding movies by title and by 

description. Movies with corresponding title are displayed on the top of the list, while 

movies with corresponding description are listed next. The example of the graphical 

user interface built for the prototype application is shown on the figure 3.6. Wide 

variety of search engines that can perform such functions exists nowadays. Most of 

them use indexing technology that helps to improve the speed of data retrieval and 

makes sorting the database much faster. The decision was made not to use any of the 

search engines because the movies database doesn’t contain a lot of values and a simple 

query is enough to get the search results and to represent them in the list. 
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4 Evaluation 

This chapter describes the evaluation process and tests that have been conducted in 

order to form a complete vision regarding the content discovery approaches that have 

been implemented. The four implemented methods have been compared in a practical 

experiment and the results produced by the users have been analyzed. 

4.1 Evaluation process 

The main purpose of the current research was to implement, compare and test selected 

approaches of information retrieval. In order to compare the approaches and test the 

application, a test group of 10 persons consisting mostly of university students has been 

selected. The test group consists of people of various social, ethnical, professional and 

cultural backgrounds as well as different ages and genders, which makes the selection 

representative. University students are also the largest target group of most social 

networks and similar services (like NextHub), which makes them a perfect target group 

for this research. Ten people were deemed enough to cover a large enough variety of 

different backgrounds so exclude systematic bias. The entire process used a collection 

of movies provided by MovieLens. The dataset is covering a wide range of dimensions 

(different genres, styles, locations etc) and consists of 100 000 ratings on 1682 movies. 

Primarily the users were asked to rate a number of movies they have watched (at least 

ten to make the recommendation results more precise). To make movie search more 

convenient for the user there was possibility to sort, group and filter the movies by any 

parameter: name, release date, genre etc. Selected movies were evaluated on a scale 

from one to five (using integer numbers) and the data was sent to the evaluator and 

stored in the database. 

Once the data was stored in the database, the users were provided with the 

application prototype with modifications made for each user individually. The database 

for each user was prepared so that only the ratings of that particular user (and the 

original MovieLens ratings) were included, and no test user was influenced by the 

results or ratings of other users. The purpose was to explore the prototype and after that 

to complete the tasks. Users had to try to use as many approaches as possible to 

complete each task. After that the participants answered a questionnaire and gave 

general feedback about the prototype and the content discovery approaches. As already 

mentioned, four approaches were chosen for comparison: 

1. Multi-level categories list approach  

2. Recommendation based on content-based filtering approach  

3. Recommendation based on collaborative filtering approach  

4. Simple search approach  

 

In order to evaluate all the methods, the tasks were arranged in a way that most of 

them could be used for evaluation and be abstract at the same time. It helped the users to 

use as many approaches as possible to make the overall picture clear. Five tasks listed 

below were generated for each user. 

1. Find a movie to watch with your mother.  

2. Find a movie you haven’t seen which will cheer you up.  

3. Find a movie, you haven’t rated or seen, which you think you’ll enjoy.  

4. Find a popular documentary.  

5. Find an old horror (or any other genre) movie you think you’ll enjoy.  

 

During the testing process each user spent approximately 1-1.5 hour of which about 

30 minutes were spent on the explanation of the process and reading documentation. 20 
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minutes were spent on rating the movies. Finally, the remaining time was spent on 

completing the tasks, evaluation of the prototype and the content discovery methods as 

well as writing feedback. 

4.2 Evaluation form 

In order to obtain the feedback and receive the comments, the following evaluation form 

was created: 

1. Which approach/approaches did you use to complete each task: 

 

 

Task/Approach Category 
Content-based 

filtering 

Collaborative 

filtering 
Simple search 

1     

2     

3     

4     

5     

 

2. Rate your satisfaction using each approach: 

 Multi-level categories list approach 

 

Criteria/Task 1 2 3 4 5 

Time taken (1-least, 5-

most) 

1 2 3 4 5 

Quality of outcome (1-

worst, 5-best) 

1 2 3 4 5 

 

How could your experience have been improved? 

______________________________________________________________________

______________________________________________________________________ 

 

Give the general feedback about using categories list approach 

______________________________________________________________________

______________________________________________________________________ 
 

 Recommendation based on content-based filtering approach 

Criteria/Task 1 2 3 4 5 

Time taken (1-least, 5-

most) 

1 2 3 4 5 

Quality of outcome (1-

worst, 5-best) 

1 2 3 4 5 

 

How could your experience have been improved? 

______________________________________________________________________

______________________________________________________________________ 

 

Give the general feedback about using content-based filtering approach 
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______________________________________________________________________

____________________________________________________________________ 

 

 

 Recommendation based on collaborative filtering approach 

Criteria/Task 1 2 3 4 5 

Time taken (1-least, 5-

most) 

1 2 3 4 5 

Quality of outcome (1-

worst, 5-best) 

1 2 3 4 5 

 

How could your experience have been improved? 

______________________________________________________________________

______________________________________________________________________ 

 

Give the general feedback about using collaborative filtering approach 

______________________________________________________________________

______________________________________________________________________ 

 

 Simple search approach  

Criteria/Task 1 2 3 4 5 

Time taken (1-least, 5-

most) 

1 2 3 4 5 

Quality of outcome (1-

worst, 5-best) 

1 2 3 4 5 

 

How could your experience have been improved? 

______________________________________________________________________

______________________________________________________________________ 

 

Give the general feedback about using simple search approach 

______________________________________________________________________

______________________________________________________________________ 

 

All the answers and comments received were processed and analyzed.  

4.3 User feedback 

The conducted research seems to indicate that on average almost all the approaches 

often end up complementing each other. Firstly, users were asked to complete each task 

using as many approaches as possible and check the approach they think is the best 

option for finding the answer for each task. Tables 4.1-4.5 represent the result of the 

first phase of testing. 

 

User Category 
Content-based 

filtering 

Collaborative 

filtering 
Simple search 

AA X   X 

AK    X 

EI    X 

GC   X X 

RD   X  

VT X X   
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YK X X   

LP   X  

YH  X  X 

HK   X X 

Table 4.1: Task 1 - Find a movie to watch with your mother 

 

 

User Category 
Content-based 

filtering 

Collaborative 

filtering 
Simple search 

AA X   X 

AK X    

EI X    

GC X    

RD  X   

VT X    

YK X  X  

LP    X 

YH X    

HK  X X  

Table 4.2: Task 2 - Find a movie you haven’t seen which will cheer you up 

 

User Category 
Content-based 

filtering 

Collaborative 

filtering 
Simple search 

AA  X X  

AK   X  

EI   X  

GC X  X  

RD    X 

VT   X  

YK   X X 

LP  X   

YH   X  

HK X    

Table 4.3: Task 3 - Find a movie, you haven’t rated or seen, which you think you’ll 

enjoy 

 

User Category 
Content-based 

filtering 

Collaborative 

filtering 
Simple search 

AA    X 

AK  X   

EI X    

GC X    

RD X    

VT X    

YK X    

LP    X 

YH   X  

HK X   X 
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Table 4.4: Task 4 - Find a popular documentary 

 

User Category 
Content-based 

filtering 

Collaborative 

filtering 
Simple search 

AA X   X 

AK X    

EI    X 

GC X    

RD X    

VT X    

YK X    

LP    X 

YH   X  

HK X  X  

Table 4.5: Task 5 - Find an old horror (or any other genre) movie you think you’ll 

enjoy 

 

User Time taken Quality of 

outcome 

AA 5 4 

AK 5 4 

EI 3 2 

GC 4 4 

RD 4 5 

VT 4 2 

YK 3 3 

LP 3 4 

YH 4 1 

HK 5 3 

Table 4.6: Multi-level categories list evaluation 

 

User Time taken Quality of 

outcome 

AA 3 4 

AK 3 3 

EI 2 4 

GC 4 3 

RD 5 5 

VT 3 3 

YK 2 4 

LP 3 5 

YH 4 3 

HK 2 4 

Table 4.7: Recommendation based on content-based filtering evaluation 
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User Time taken Quality of 

outcome 

AA 3 3 

AK 2 3 

EI 2 1 

GC 2 2 

RD 5 3 

VT 3 2 

YK 1 3 

LP 1 4 

YH 2 2 

HK 1 3 

Table 4.8: Recommendation based on collaborative filtering evaluation 

 

User Time taken Quality of 

outcome 

AA 2 2 

AK 3 3 

EI 3 4 

GC 2 4 

RD 1 3 

VT 4 4 

YK 5 2 

LP 1 3 

YH 2 5 

HK 2 4 

Table 4.9: Simple search evaluation 

 

Also, after beta-testing users evaluated the time they spent to complete each task and 

rated general satisfaction using each approach (see table 4.6-4.9). 

4.4 Results of evaluation 

 

Method Time taken 
Quality of 

outcome 

Multi-level categories list 4 3,2 

Recommendation based on content-based filtering 3,1 3,8 

Recommendation based on collaborative filtering 2,2 2,6 

Simple search 2,5 3,4 

Table 4.10: Average results 

 

In the theoretical section it has been shown that we can’t draw meaningful 

conclusions from comparing methods between the two content discovery approaches 

and the selection of approach is usually based on the nature of the service and which 

kinds of data are available to the service provider. 

On the other hand, methods within each approach can be compared with each other, 

as they are based on roughly the same kinds of data and use similar means to provide 

results to the user. 



  
 

24 

 

For the user-based approach, the methods of simple search and multi-level categories 

list were evaluated. The results of the evaluation (see table 4.10) show that multi-level 

categories list method is more time-consuming and produces less accurate results. 

However, according to the users’ feedback, multi-level categories list method is still 

useful as it is helpful when special search criteria is not set and the users do not want to 

expose any of their preferences to the system (e.g. for privacy reasons). The simple 

search method produces the results very quickly and is quite accurate when the user 

knows how to use the search engine and has a specific goal in mind. 

For the system-based approach, the methods of recommendation based on content-

based filtering and collaborative filtering were evaluated. The results of the evaluation 

(see table 4.10) show that there was no clear winner between the two methods – 

collaborative filtering is the quickest to use, but produces the most imprecise results, 

while content-based filtering is slower but provides far more relevant recommendations. 

This shows that both methods have their uses, and depending on the available 

resources and preferences for the service provider either of them can be used 

successfully. 

Small bugs were found during the beta-testing by users that later were fixed. These 

bugs were not relevant to the method implementations themselves and therefore did not 

affect the experimental results. The developed prototype can be further improved – 

more items can be added to the database, some features affecting usability can be 

improved or replaced. However, in general the beta-testing procedure showed that the 

experimental results have corresponded with the expectations: all used approaches have 

different strengths and can be used depending on the nature of the service and the data 

and implementation constraints. 
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5 Conclusion 
In this paper several different content discovery approaches were briefly described. The 

best choice among these ultimately depends on the purpose of use. During the thesis 

project various recommendation systems for system-initiated content recommendations 

were investigated. Additionally, two methods such as free-text search and fixed 

categories list were selected for comparison and implementation. The prototype to 

perform the beta testing and practical evaluation of all the selected methods was created. 

The work on the project demonstrated that content discover area is very extensive 

and more in-depth research should be conducted. Nowadays hundreds of different 

approaches exist to help the end-user to reach and discover the desired information. 

Moreover, new recommender systems and algorithms appear all the time. 

Beta-testing that was performed on ten students that are potential users of the 

application. The testing has shown that the developed prototype can be further improved 

– more items can be added to the database, some features affecting usability can be 

improved or replaced. Better results might be obtained by improving the data model and 

expanding the amount of available data. 

The analysis demonstrated that the users have used all of the implemented 

approaches and have provided positive and negative comments for all of them, which 

reinforces the belief that the methods for the implementation were selected correctly. 

The results of the user testing of the methods were evaluated based on the amount of 

time it took the users to find the desirable content and on the correspondence of the 

result compared to the user expectations. 

The results of the evaluations show that it can be difficult to answer the research 

question. However, some basic conclusion can be made - multi-level categories list 

method is more time-consuming and produces less accurate results. The simple search 

method produces the results very quickly and is quite accurate when the user knows 

how to use the search engine and has a specific goal in mind. For the system-based 

approach collaborative filtering is the quickest to use, but produces the most imprecise 

results, while content-based filtering is slower but provides far more relevant 

recommendations. 

The implemented methods can be seen as complementing each other; so it is 

impossible to choose only one that will perfectly work in the application. The best 

choice is to implement all of these methods, blended together in a way that works well 

within the particular service or application. For example, simple search can be used 

when search criteria are strictly defined; otherwise recommender systems can be used. 

If the resources are limited to build all the described approaches, deeper investigation 

should be performed to make a choice depending on the number of factors: the 

application purpose, target audience, set of data etc. 

In current research the most common approaches for content discovery were 

reviewed and implemented; however there are a lot of other methods that are worth to 

review. A lot of new technologies and algorithms are appearing everyday therefore it 

makes it difficult to predict which content discovery approach meets the application 

needs in the best way. 
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