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Abstract

Deep learning, a sub-topic of machine learning inspired by biology, have achieved wide
attention in the industry and research community recently. State-of-the-art applications in
the area of computer vision and speech recognition (among others) are built using deep
learning algorithms. In contrast to traditional algorithms, where the developer fully in-
structs the application what to do, deep learning algorithms instead learn from experience
when performing a task. However, for the algorithm to learn require training, which is
a high computational challenge. High Performance Computing can help ease the burden
through parallelization, thereby reducing the training time; this is essential to fully utilize
the algorithms in practice. Numerous work targeting GPUs have investigated ways to
speed up the training, less attention have been paid to the Intel Xeon Phi coprocessor.

In this thesis we present a parallelized implementation of a Convolutional Neural
Network (CNN), a deep learning architecture, and our proposed parallelization scheme,
CHAOS. Additionally a theoretical analysis and a performance model discuss the algo-
rithm in detail and allow for predictions if even more threads are available in the fu-
ture. The algorithm is evaluated on an Intel Xeon Phi 7120p, Xeon E5-2695v2 2.4 GHz
and Core i5 661 3.33 GHz using various architectures and thread counts on the MNIST
dataset.

Findings show a 103.5x, 99.9x, 100.4x speed up for the large, medium, and small
architecture respectively for 244 threads compared to 1 thread on the coprocessor. More-
over, a 10.9x - 14.1x (large to small) speed up compared to the sequential version running
on Xeon E5. We managed to decrease training time from 7 days on the Core i5 and 31
hours on the Xeon E5, to 3 hours on the Intel Xeon Phi when training our large network
for 15 epochs.



Sammanfattning

deep learning, ett delämne inom maskininlärning, har på den senaste tiden fått stor upp-
märksamhet både i näringslivet och forskarsamhället. State-of-the-art applikationer inom
computer vision och speech recognition är byggda på deep learning algoritmer. I jämfö-
relse med traditionella algoritmer där utvecklaren instruerar vad som ska utföras i detalj,
lär sig deep learning algoritmer genom erfarenhet att uträtta uppgiften som den ska bli bra
på. Hursomhelst, för att algoritmen ska kunna lära sig krävs mycket träning vilket är en
stor beräkningsbörda. High Performance Computing kan minska bördan genom att paral-
lellisera träningen och därmed minska träningstiden; vilket är vitalt för att kunna använda
tekniken fullt ut i praktiken. Flertalet arbeten undersöker potentialen av grafikprocessorer
(GPU), men få har undersökt Intel Xeon Phi.

I denna tes presenterar vi en parallell implementation av Convolutional Neural Network
(CNN), en deep learning arkitektur, och vår förslagna paralleliseringsschema, CHAOS.
Därutöver presenteras en teoretisk analys och en performance model som tillåter diskute-
ra algoritmen och grovt uppskatta exekveringstiden om fler trådar skulle bli tillgängliga i
framtiden. Algoritmen utvärderas på Intel Xeon Phi 7120p, Xeon E5-2695v2 2.4 GHz och
Core i5 661 3.33 GHz genom olika arkitekturer och antal trådar på datamängden MNIST.

Resultaten påvisar en 103.5x, 99.9x, 100.4x speed up för stor, mellan och liten arki-
tektur respektive, för 244 trådar jämfört med 1 tråd på Xeon Phi. Dessutom 10.9x - 14.1x
(stor till liten) speed up i jämförelse med den sekventiella versionen på Xeon E5. Vi lyc-
kades minska träningstiden från 7 dagar på Intel Core i5 till 31 timmar på Xeon E5, och
3 timmar på Intel Xeon Phi när vi tränade vårt stora nätverk 15 epoker.

Keywords: Machine Learning, Deep Learning, Supervised Deep Learning, Intel Xeon
Phi, Convolutional Neural Network, CNN, High Performance Computing, CHAOS, par-
allel computing, coprocessor, MIC, speed up, performance model, evaluation
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Glossary
A short glossary with terms used in the study.

• Machine learning - A group of algorithms learning from experience in performing
a task.

• Deep neural network (DNN) - Non-linear, complex, hierarchic models inspired
by biology solving complex problems in computer science.

• Convolutional Neural Network (CNN) - A specific type of DNNs introducing
convolutional and pooling layers inspired the behaviour of the visual cortex of ani-
mals.

• High Performance Computing (HPC) - The use of parallel processing power be-
yond the TFLOPS boundary facilitating high computational loads.

• Intel Xeon Phi - A HPC device from Intel with up to 61 cores (Knights Corner)
and in total 244 threads performing 1.2 TFLOPS.

• VPU - Vector Processing Unit is a part of modern processing units allowing several
scalar operations to be merged into vector operations and thus lower the number of
instructions (and cycles) required.

• OpenMP - An API/library facilitating the use of thread-, and data-parallelism by
using pragmas and library routines, removing the necessity for developers to man-
age threading and SIMD instructions manually.

• Speed Up - The fraction of how much faster the parallel version is compared to a
base lined version.

• Data- and model-parallelism - Two concepts used in parallelization of CNNs to
define how the problem is divided over threads in the host system. Data-parallelism
denote that the problem is divided by the input space, as in the case of this study.
Model-parallelism define that several workers work on different parts of the model.
Data-parallelism can also refer to SIMD instructions in some literature. To avoid
confusion we will denote SIMD instructions as SIMD parallelism, however the
context will also determine the semantics.

• Processing Unit - A processing unit is an electronic circuitry that carry out arith-
metic, logical, control and I/O operations. In this study we generally used the term
processing unit incorrectly to mean hardware threads, however, in many cases the
number of hardware threads equals the number of processing units, i.e. cores on the
coprocessor.

• Performance Model - A performance model is a model expressing the character-
istics of a system in terms of resources consumed, resource contention, delays, etc.
Its main purpose is to model a realistic system in order to provide insight of how a
proposed system may behave.

• Theoretical Analysis - A way of expressing the behaviour of an algorithm theoret-
ically. That is, how the algorithm is expected to behave in different configurations.
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Chapter 1

Introduction

Traditional applications are created by engineers who strictly feed the computer with in-
structions. Throughout the history of computers, the abstraction level have shifted from
hardware-near to higher level languages eliminating details from the engineer. Never-
theless, it is still the engineer who instructs the computer what actions to take, although
through a higher level of abstraction.

Deep learning algorithms learn from their own experience rather than that of the en-
gineer. The necessity of programmers micro-managing the computer becomes less rele-
vant, instead engineers focus on developing and implementing sophisticated deep learning
models that are able to learn to solve complex problems.

We find these techniques intriguing, their characteristics offer a new way to think
of software engineering. Therefore we decided to investigate them further, focusing on
how to lower the learning time. This thesis introduces the reader to the concepts of deep
learning and the Intel Xeon Phi. In the study we design, implement and evaluate a paral-
lelization scheme applied to a CNN. Moreover, a theoretical analysis is carried out and a
performance model is developed and evaluated.

This chapter is organized as follows. First deep learning and the Intel Xeon Phi are in-
troduced. Thereafter the motivation, problem, goals and research question are discussed.
Lastly, the approach is described together with the contributions and limitations of the
study.

1.1 Deep Learning and the Intel Xeon Phi

Machine learning is the science of making computers perform actions without explicitly
programming them. By teaching computers how to perform a task they can gain experi-
ence and improve their skills in performing it [6].

Deep learning is a sub-field of machine learning which in contrast to machine learn-
ing comprises multiple layers of representations. In essence stacking of multiple layers
allows deep learning algorithms to solve more complex problems than those of shallow,
traditional machine learning algorithms [7]. These deep hierarchical models are inspired
by the visual cortex of mammals where higher level of representations are based on lower
representations [8].

A core component of deep learning, Deep Neural Networks, or DNNs, is the under-
lying representation model of deep learning algorithms. The first network that deserves
the name deep was developed by Fukushima in 1979, which interestingly was a CNN,
however, neural networks dates back even further. It was first in 1981 (Werbos et al.), the
first efficient implementation of the important back-propagation algorithm was applied to
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neural networks. Later, in 1989 LeCun et al. applied the techniques to CNNs and in 1998
published the famous LeNet [9].

Deep Neural Networks (DNNs) can be visualized as weighted graphs as depicted in
Figure 1.1.1. In a nutshell DNNs are able to make predictions by forward propagating
an input through the network. After a forward pass through the network, the output layer
contains a vector comprising the prediction. For instance, an image forwarded through
the network results in a vector comprising classifications at the output layer [10].

Back-propagation is the process of learning the network. Back-propagation is a tech-
nique used in supervised learning to update the weights of the network based on the cal-
culated loss in the forward pass. The ultimate goal of learning is to optimize the network
such that the deviation between the prediction of each sample seen so far, and the desired
output (label) of that sample is as low as possible [11].

In this study we focus on supervised deep learning of CNNs using the back-propagation
algorithm. Supervised learning uses large labelled datasets to train the network. Each pre-
diction is compared to the label and weight parameters are adjusted according to the errors
in prediction [9].

A Convolutional Neural Network (CNN) is a variant of a DNN introducing two new
layer types: convolutional- and pooling-layers. Inspired by the visual cortex of animals,
CNNs are applied to state-of-the-art applications, including computer vision and speech
recognition [7].

A performance model provides insight of how a system is expected to perform in terms
of resources consumed and contentions. A performance model can model the intended
behaviour of a system without the system at hand [12].

Theoretical analysis aims to predict the resources required by an algorithm. The re-
sults of a theoretical analysis allows to express and discuss the algorithm [13].

High Performance Computing (HPC) and larger datasets have paved the way for the
success of deep learning algorithms. Although the current hype, not much work target
the Intel Xeon Phi coprocessor. The Intel Xeon Phi comprises up to 61, 1.2 GHz cores,
and each core can switch between 4 hardware threads in a round-robin manner. Even if
each core has its own Level 2 cache, cores can share cache data internally. Therefore the
coprocessor can be thought of a shared-memory, many-core coprocessor [14]. The Intel
Xeon Phi used in our experiments is of type 7120p.

Figure 1.1.1: A DNN.

Deep learning have emerged from universities to industry in a rapid pace. Applications
of deep learning can be found everywhere, one example of a deep learning application is
the Android voice recognition [15]. Other applications include face recognition, self-
driven cars, predicting liver diseases, image classification, and Skype Translate [16, 17,
18, 3, 15] - and the future will certainly yield even more.
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There is, undoubtedly, a growing interest for deep learning, several large companies,
including Google, Microsoft and Nvidia have announced their interest. Google acquired
DeepMind in 2013 [19], a company focusing solely on deep learning. Researchers at
Google also participated (and won some of the sub-challenges) in the latest ImageNet
competition (2014) [20]. Microsoft perform research in the area as well. In an article
published in February 2015 (this year), researchers at Microsoft claim that they outper-
formed a human on the 2012 version of the ImageNet dataset [21]. At a conference in
March 2015 the co-founder of Nvidia, Jen-Hsun Huang, presented their new gears in con-
junction with deep learning and CNNs [22]. There is no doubt deep learning is a hot topic
in computer science.

Supervised learning is computational costly and time consuming - in many cases sev-
eral weeks are required to complete a training session; large neural networks comprise
millions, if not billions of computations. Unfortunately, large delays in training highly
limit their usage in practice as many parameters often needs to be tested, and each test
requires a full session of training. Intel bring High Performance Computing to consumers
in form of the Intel Xeon Phi coprocessor. Numerous work previously target Graphical
Processing Units GPUs, e.g. [23, 24], fewer target the coprocessor, leaving the potential
of the Xeon Phi unexplored. Adopting deep learning algorithms for the Xeon Phi could
decrease the training time from weeks to days, or from days to hours, allowing the copro-
cessor to be considered for supervised deep learning. Moreover, this allows consumers
already invested in a Xeon Phi to use it for deep learning applications.

The main goal of this thesis is to investigate and position the Intel Xeon Phi in the
context of supervised deep learning in general and CNNs in specific. To achieve this, the
following sub-goals have been identified,

• Find an appropriate implementation targeting an unexplored deep learning algo-
rithm (later narrowed down to CNNs);

• Design a parallelization scheme and adopt it to the selected implementation;

• Perform evaluation, collect data required for analysis and analyse the results;

• Perform a theoretical analysis, in a hardware independent model, to understand
and describe the algorithm. The theoretical analysis should help understand the re-
sources required by the algorithm and what theoretical bounds that can be expected.
E.g. how much work is required to train the network and how much faster (in terms
of execution time) is the algorithm expected to perform when using multiple cores
instead of one core;

• Design and evaluate a performance model extending the theoretical model (as de-
rived in the theoretical analysis) by including hardware characteristics. A perfor-
mance model answers what-if questions with respect to the number of threads that
goes beyond the number of hardware threads supported by the coprocessor. The
performance model can also be used to predict the execution time for varying num-
ber of inputs, epochs and architectures;

This thesis will answer the research question:
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RQ1: What is the potential of Intel Xeon Phi for supervised deep learn-
ing algorithms?

In this thesis we design a parallelization scheme, named CHAOS, which we adapt
to be used with an existing implementation. CHAOS is evaluated experimentally on the
MNIST [25] dataset using varying CNN architectures and thread counts. The evaluation
is performed on three different platforms. We thoroughly analyse the algorithm theoreti-
cally and conclude its theoretical bounds. The theoretical model is further extended into a
performance model accounting for hardware characteristics of the coprocessor. The per-
formance model is evaluated on the coprocessor and used to predict for varying thread
counts beyond that of the Intel Xeon Phi.

Our main contributions of this thesis include,

• our parallelization scheme CHAOS for the Intel Xeon Phi;

• experimental evaluation of the implementation using the MNIST dataset;

• development and validation of a corresponding performance model;

The scope of this study is limited to deep learning in general and CNNs in specific.
For the evaluation we used one dataset (MNIST), one implementation yet several CNN
architectures, platforms and thread counts. The reader should be aware of that the study
is an empirical evaluation of deep learning algorithms, and do not intend to re-implement
the algorithm for the coprocessor. Neither is the intention to cover all deep learning
algorithms or datasets available. The project is time-boxed, time is a vital factor that
cannot be neglected - training networks takes severe amount of time.

We limit ourselves to Intel Xeon Phi even though optimizations implicitly apply to
other Intel architectures as well, however, no comparison will be done for GPUs (or other
competing architectures). The main intentions of the theoretical model and the perfor-
mance model are to discuss the algorithm and may therefore have some limitations in
practice.

The thesis is intended for anyone interested in deep learning and High Performance
Computing (HPC) in general. Readers searching for performance results related to deep
learning and the coprocessor should especially be interested in this study as it contributes
to an otherwise sparse set of work in the area. Knowledge of basic concepts in computer
science are expected, an introduction to the important topics is carried out in chapter 2 .
Readers new to deep learning and/or Intel Xeon Phi can consider this thesis a nice intro-
duction to the topics. Researchers in the area should especially find the empirical results,
the parallelization scheme CHAOS and the performance model to be of interest. We also
recognize the industry as a target group of this work as more applications use deep learn-
ing algorithms in business, and companies may already been invested in a coprocessor.

1.2 Related Work

This chapter discusses previous research related to machine learning, deep learning and
CNNs. Additionally, work targeting Intel Xeon Phi outside the scope of machine learning,
deep learning and CNNs is also included. Overall, we find the research for the coprocessor
and deep learning to be sparse, and that of GPUs to be dense.
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Error rates define the number of images incorrectly predicted by the network and helps
conclude the prediction accuracy of the network.

One epoch is an iteration of training, networks are trained for a set of epochs. In each
iteration all inputs of the training dataset is considered once by the network.

1.2.1 Datasets in Related Work

NORB [26] contains 50 toy objects in 5 categories captured in different conditions and
angles. Its main intention is for 3D object recognition. CIFAR 10 [27] consists of 60,000
colour images divided into 10 classes. The MNIST [25] dataset of handwritten digits
contains 60,000 training images, and 10,000 testing images. The ImageNet [20] dataset
contains over 15,000,000 images divided in 22,000 categories. The number of images and
categories increase by the year, earlier competitions may therefore have a smaller set of
image (1.2 million and 1,000 categories in the set at 2010).

1.2.2 Applications of Intel Xeon Phi

Previous work related to machine learning for the coprocessor is sparse if compared to
other architectures such as GPUs. However, progress have been made for both deep- and
shallow-models. Shallow models have shown to solve simple well-contained problems.
However, complicated problems cause difficulties for shallow models, and many-layered
(deep) models (e.g. deep neural networks) have shown more successful for the task.
Whereas traditional models comprise one or two layers, deep models comprise multiple
layers [7].

In this chapter we introduce previous work for Support Vector Machines (SVMs),
Restricted Boltzmann Machines (RBMs), sparse auto encoders and the Brain-State-in-a-
Box (BSB) model. In addition some related work outside the context of deep learning is
included.

In [28], Yang You et al. present a library for parallel Support Vector Machines
(SVMs), MIC-SVM, which facilitates the use of SVMs on many- and multi-core architec-
tures including Intel Xeon Phi. Previous SVM libraries target serial execution paradigms
and GPUs. One such library is the LIBSVM which is a sequential library that eases the
use of SVMs for programmers [29]. Experiments performed on several known datasets
showed up to 84x speed up on the Intel Xeon Phi compared to the sequential execution of
LIBSVM. Their work target machine learning, our work target deep learning.

In a paper by Lei Jin et al. [30] training of sparse auto encoders and restricted Boltz-
mann machines were carried out on the Intel Xeon Phi. The authors managed to speed
up the algorithm with a factor of 7 to 10 times compared to the Xeon CPU and more than
300 times compared to the un-optimized version executed on one thread on the coproces-
sor. The Xeon CPU was of type E5620 with a clock frequency of 2.4 GHz and 4 cores,
and the Xeon Phi of type 5110p. The work carried out in their study target unsupervised
deep learning of restricted Boltzmann machines and sparse auto encoders, our work target
supervised deep learning of CNNs.

The performance gain on Intel Xeon Phi 7110p for a model called Brain-State-in-a-
Box (BSB) used for text recognition is studied by Ahmed et al. in [31]. Focus lies in
the recall function, i.e. the function that matches the input towards the trained patterns.
According to the author, the speed up is about two-fold for the coprocessor compared
to a CPU with 16 cores when parallelizing the algorithm. Their work target another
architecture than ours, which target CNNs.

5



Studies have investigated the benefits and drawbacks in general for Intel Xeon Phi.
Jianbin Fang et al. [32] investigated empirically the performance of the coprocessor.
They concluded that it is possible to achieve the promised performance if the developer
selects a proper parallelization strategy and puts in the hours to fully optimize the code.
Existing applications will rarely utilize the coprocessor without this additional work.

In a technical report [33] carried out at Linnaeus University in the context of DNA
sequencing, the authors managed to speed up their algorithm by 10x on a Intel Xeon Phi
7120p compared to a Xeon E5-2695v2 using the balanced affinity mode.

Work on the map-reduce framework for the Xeon Phi in [34] by Mian Lu et al. re-
sulted in an optimized map-reduce framework which can be executed both for single and
multiple Intel Xeon Phis. Map-reduce is a well known pattern used to distribute work
over several nodes to speed up computations.

George Teodoro et al. [35] investigated the potential of large scale clusters of Intel
Xeon Phis to facilitate the analysis of images retained from whole slide tissue specimens,
allowing for the intense computations to be divided over several nodes. Intel Xeon Phi
SE10P (5100 series) was used for the experiments.

A library to ease the burden for developer to create offloaded applications for the
Xeon Phi is presented in [36] by Jiri Dokulil et al. In [37] the authors extend their work
by implementing automatic tuning of algorithms to better make use of the resources of
the coprocessor.

Kai-Cheung Leung et al. [38] investigated pattern matching of images on the Xeon
Phi (of model 5110p) and achieved an up to 140x speed up compared to one thread on the
coprocessor. The pattern matching uses k-nearest neighbours, a well-known classification
method.

1.2.3 Related Work Targeting CNNs

Numerous previous work target deep learning in general and CNNs in specific. We will
not attempt to cover work related to deep learning in general as this scope is too wide,
instead this chapter will focus on CNNs for GPUs in the context of computer vision (im-
age classification). Work related to MNIST [25] dataset are of most interest, also NORB
[26] and CIFAR 10 [27] is considered. Additionally work done in speech recognition and
document processing is briefly introduced. The purpose of this chapter is to introduce the
state-of-the-art in the area of GPUs and CNNs.

Work presented in [23] by Dan Cires, an et al. target a CNN implementation raising the
bars for the CIFAR10 (19.51% error rate), NORB (2.53% error rate) and MNIST (0.35%
error rate) datasets. The training was performed on GPUs (Nvidia GTX 480 and GTX
580) where the authors managed to decrease the training time severely - up to 60 times
compared to sequential execution on a CPU - and decrease the error rates to an, at the
time, state-of-the-art accuracy level.

Jordan Vrtanoski et al. [39] showed a 25.8x speed up on an ATI 5870 GPU compared
to a Xeon W3530 CPU when training the model on the MNIST dataset.

Work carried out by Dan Cires, an et al. [40] performed almost human-like on the
MNIST dataset, achieving a best error rate of 0.23%. To be compared to the performance
of humans, about 0.20%. The authors trained the network on a GPU.

The ImageNet challenge aims to evaluate algorithms for large-scale object detection
and image classification based on the ImageNet dataset. Work by Alex Krizhevsky et
al. [41] entered the 2012 challenge. The authors reduced the error rate of the test set
to 15.3% from the second best 26.2% using a CNN with 5 convolutional layers. For
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the experiments, two GPUs (Nvidia GTX 580) were used only communicating in certain
layers. The training lasted for 5 to 6 days.

In a later challenge, ILSVRC 2014, a team from Google entered the competition with
GoogleNet, a 22-layer deep CNN and won the classification challenge with a 6.67% error
rate. The training was carried out on CPUs. The authors state that the network could be
trained on GPUs within a week, illuminating the limited amount of memory to be one of
the major concerns [3].

Work by Omry Yadan et al. [24] used multiple GPUs to train CNNs on the ImageNet
dataset using both data- and model-parallelism, i.e. either the input space is divided into
mini-batches where each GPU train its own batch (data parallelism) or the GPUs train
one sample together (model parallelism). The work does not compare to CPUs, however,
using 4 GPUs (Nvidia Titan) and model- and data-parallelism, the network was trained
for 4.8 days.

Inchul Song et al. [42] constructed a CNN to recognize face expressions and devel-
oped a smart-phone app in which the user can capture a picture and send it to a server
hosting the network. The network, predicts a face expression and sends the result back to
the user. With the help of GPUs (Nvidia Titan), the network was trained in a couple of
hours on the ImageNet dataset.

Experiments carried out on the NORB [26] dataset performed by Dominik Scherer et
al. [43] showed up to 115x speed up trained on an Nvidia GTX 285 compared to a CPU
implementation (Core i7 940). After training the network for 360 epochs, an error rate of
8.6% was achieved.

Dan Cires, an et al. [1] combined multiple CNNs to classify German traffic signs and
achieved a 99.15% recognition rate (0.85 % error rate). The training was performed using
an Intel Core i7 and 4 GPUs (2 x GTX 480 and 2 x GTX 580).

Researchers have also found CNNs successful for speech tasks. Large vocabulary
continuous speech recognition deals with translation of continuous speech for languages
with large vocabularies. Tara N. Sainath et al. [44] investigated the advantages of CNNs
performing speech recognition tasks and compared the results with previous DNN ap-
proaches. Results indicated on a 12-14% relative improvement of word error rates com-
pared to a DNN trained on GPUs.

Kumar Chellapilla et al. [45] investigated GPUs (Nvidia Geforce 7800 Ultra) for
document processing on the MNIST [25] dataset and achieved a 4.11x speed up compared
to the sequential version executed on a CPU (Intel Pentium 4, 2.5 GHz).

1.2.4 Example of Implementations and Libraries

This section enumerates some useful libraries and implementations found during our re-
search study. For each library we present the name, platform, and programming language.
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Name Architecture Support Programming Language

Cuda-Convnet21 GPU C++/CUDA
Tiny CNN2 CPU C++
Eblearn3 CPU/GPU C++
C++ training of CNN4 CPU C++
NNforge5 CPU/GPU C++
RaPyDLI6 GPU/MIC11 Python/C++/Java
Caffe7 CPU/GPU C++
Torch8 CPU/GPU C/CUDA 12

Theano9 CPU/GPU Python
Fnnlib10 CPU C++

Table 1.2.1: Some useful implementations and libraries for deep learning and CNNs.

1.3 Outline

The thesis is organized as follows. In chapter 2 the reader is introduced to the topics cov-
ered in the thesis. Chapter 3 covers the software development and experiments followed
by the results of the evaluation in chapter 4. Chapter 5 performs a theoretical analysis of
the algorithm. Based on the analysis, a performance model is designed and evaluated in
the section 5.4. An analysis of both the theoretical- and experimental findings, and answer
to the research question, is presented in chapter 6. The thesis is closed with reflections,
conclusions and future work in chapter 7.

1https://code.google.com/p/cuda-convnet/source/
2https://github.com/nyanp/tiny-cnn
3http://eblearn.sourceforge.net/
4http://people.idsia.ch/ ciresan/
5http://milakov.github.io/nnForge/
6http://salsaproj.indiana.edu/RaPyDLI/
7http://caffe.berkeleyvision.org/
8http://torch.ch/
9https://github.com/Theano/Theano/

10http://sourceforge.net/projects/fnnlib/
11Many Integrated Core - an architecture from Intel which combines several cores on one chip. The Intel

Xeon Phi is the brand name used for Intel’s MIC architecture.
12CUDA is a parallel computing platform and API facilitating the use of GPUs for general purpose

processing, also known as GPGPU.

8



Chapter 2

Background

The theory chapter introduces the core topics of the thesis including: High Performance
Computing, Intel Xeon Phi, machine learning, deep learning, Deep Neural Networks
(DNNs), and Convolutional Neural Networks (CNNs). Moreover, some optimization
techniques for the coprocessor and parallelization schemes are discussed.

2.1 Intel Xeon Phi

High Performance Computing, devices pushing the computations boundaries beyond 1012

floating points operations per second (TFLOPS) are not only used by industry but are also
made available to consumers as off-the-shelf solutions. As the increasing performance of
single processing units have plateaued, more cores haven been added to the same chip to
increase performance. Moreover, several nodes can be connected in a network to further
increase the computational capabilities. This introduce new advantages for developers if
they are able to fully make use of the hardware and deal with the demands high parallel
computing entails [46].

The Intel Xeon Phi used in this study is of model 7120p, and facilitates 61 cores,
each with a clock frequency of 1.2 GHz. The coprocessor can achieve up to 1.2 TFLOPS
performance. It facilitates 16 GB memory with a maximum theoretical bandwidth of 352
GB/s. Each core has its own private L1 (Level 1) and L2 (Level 2) cache. The L1 cache
is 32KB wide for instructions and data respectively. The L2 cache combines the data and
instructions into a 512KB wide space[47, 48]. Figure 2.1.1 shows an overview of the
coprocessor. More details can be found in Appendix A.

Intel emphasize the simplicity of porting applications to the coprocessor: “Moving a
code to Intel Xeon Phi might involve sitting down and adding a couple lines of directives
that takes a few minutes. Moving a code to a GPU is a project.” [14]. Even if changes to
the code is required to fully make use of the coprocessors’ capabilities, the fundamental
thinking’s of the implementation does not have to change. If written in a language sup-
ported (such as FORTRAN or C(++)) the Intel compiler will take care of the compilation
for the coprocessor automatically. Additionally, time spent optimizing for the Intel Xeon
Phi will result in an optimized version for the Xeon processor as well [14].

The coprocessor runs its own Linux operating system, through ssh it is possible to
communicate to it from the host over the network stack. Programs can either be executed
in native mode, where they execute on the device, or in offload mode, executed on the
host where work is offloaded to the coprocessor [48]. The coprocessor used in our study
runs a µOS of version 2.6.38.8 and a software stack (MPSS) of 3.1.1.

Each core can switch between 4 hardware threads, each thread can only execute every
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second cycle in a round-robin fashion, and hence at least two threads need to be running
for full utilization. However, in most cases even more threads can be beneficial due to
memory latencies - threads not executing can perform memory fetches while waiting. To
minimize memory latencies, the coprocessor automatically perform pre-fetching of data,
pre-fetch commands can also be issued programmatically by the developer [47, 49].

Figure 2.1.1: The architecture of Intel Xeon Phi.

The interconnect ring (in the center of figure 2.1.1) is bidirectional and consist of three
sub-rings. The largest ring carries data, the next second largest ring carry instructions and
the smallest carry data flow commands. When a memory access occur to the L1 cache and
misses, the L2 cache will be queried. If the data is not contained in the core’s L2 cache, a
request will be made to the Tag Directory, TD. The TD contain the memory addresses of
data in L2 cache for all the cores on the MIC, hence data can be transferred between cores,
over the ring, and do not need to be fetched from the main memory. If data is found in
the L2 cache about 250 clock cycles of waiting is omitted and if found in the L1 cache it
20 clock cycles of wait-time is omitted - therefore data locality is essential. The compiler
issues hardware pre-fetches to mitigate memory wait times for future instructions which is
essential to fully make use of the vector processing unit (VPU). The vector processing unit
execute SIMD (Single Instruction Multiple Data) instructions which allows for multiple
operations to be carried out simultaneously on different parts of the data [49, 47].

Each cache (both L1 and L2) at each core has a Translation Lookaside Buffer (TLB)
which maps virtual and physical memory addresses. It also have its own vector processing
unit (VPU) which can perform 8 (8x64) double precision or 16 (16x32) single precision
operations in one cycle. The level of precision depends on the number of decimal points,
i.e. the accuracy of the operations. Vectorization of code, i.e. code utilizing the VPU,
can highly improve the application performance. Careful consideration of vectorization,
data-locality and scalability is essential to fully utilize the Intel Xeon Phi [49, 48, 47].

In contrast, the Intel Xeon E5-2695v2 has a shared high level cache based on Intel
Smart Cache technology, where all cores share 30 MB of memory. This allows the cores
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to dynamically share the space as needed [50].

2.2 DNNs and CNNs

A short introduction to machine learning, and deep learning is carried out in this chapter.
Deep neural networks (DNNs) and convolutional neural networks (CNNs) will be high-
lighted with the specifics required to fully understand the study - the section1 will make
no attempt to cover the full aspect of deep learning.

Tom M. Mitchell provides a formal definition of machine learning algorithms in his
book Machine Learning [51]: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E” [51, p. 2]

A deep neural networks is the underlying model used in deep learning. Many vari-
ations of deep neural networks exist, roughly divided into three categories: supervised,
unsupervised and hybrid. The categorization is based on how the network learn. An un-
supervised configuration learn patterns in data without any assistance, i.e. it has no prior
knowledge of the labels of the data. On the contrary, supervised learning requires large
datasets of labelled data. Hybrid networks is a combination of the both. Examples of
unsupervised configurations are restricted Boltzmann machines and auto encoders. Re-
current Neural Networks and CNNs are both examples of supervised. The latter is the
focus of this study [7].

Deep learning and DNNs are not new concepts, perhaps the first neural network that
deserve the name deep was introduced by Fukushima in 1979, and this was also a CNN.
However, due to larger datasets, better computational abilities and practical achievements,
deep learning have gain an increase in popularity lately. In essence they are multi-layer
models constructed to learn various levels of representations where higher level represen-
tations are described based on the lower level ones [9].

The mammal visual processing system is hierarchical (deep) in nature. Higher level
features are abstractions of lower level ones. E.g. to understand speech, waveforms are
translated through several layers until reaching a linguistic level. A similar analogy can
be drawn for images, where edges, and corners are lower level abstractions translated into
more spatial patterns on higher levels. Moreover, it is also known that the animal cortex
consists of both simple and complex cells firing on certain visual inputs in their receptive
fields. Moreover, simple cells detect edge-like patterns whereas complex cells are locally
invariant, spanning larger receptive fields. These are the very fundamental properties of
the animal brain inspiring DNNs and CNNs. Figure 2.2.1 depicts a DNN consisting of
one input layer, one output layer and two hidden layers, CNNs are covered in more detail
later in this chapter [7, 8].
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Figure 2.2.1: A deep neural network.

2.2.1 DNN Architecture

The architecture of a DNN consists of multiple layers of neurons. Neurons are connected
to each other through edges (weights) (figure 2.2.1). The network can simply be thought
of as a weighted graph; a directed acyclic graph represent a feed-forward network. The
depth and breadth of the network differs as may the layer types. Independent of depth, a
network have at least one input- and one output-layer. A neuron have a set of incoming
weights attached which have corresponding outgoing edges attached to neurons in the
previous layer. Also a bias term is used at each layer as an intercept term. The goal of the
learning process is to adjust the network weights and find a global minimum by reducing
the overall error, i.e. the deviation between the predicted and the desired outcome of all
the samples. The resulting weight parameters can thereafter be used to make predictions
of inputs not yet seen [52].

2.2.2 Forward Propagation

Forward propagation proceeds by performing calculations at each layer until reaching the
output layer. At the output layer it is common to apply a soft max function (or similar)
to squash the output vector and hence derive the prediction. The output on each layer
is calculated as the weighted sum of the outputs of connected neurons at the previous
layer sent through an activation function. Calculating the output given the input can be
done using the equation yli = σ(xli) + I li where yli is the output value of neuron i at
layer l and xli is the input value of the same neuron. The I is used for the input layer
when the output y is non-existing, i.e. there is no previous layer. The input xli can be
calculated as xli =

∑
j(w

l
jiy

l−1
j ) where wl

ji denotes the weight between neuron i in the
current layer l, and j in the previous layer, and yl−1j the output of the jth neuron at the
previous layer. To clarify: the input of a neuron i in the current layer is the weighted sum
of the connected neurons j in the previous layer. In this example the sigmoid function
is used as an activation function - tanh is another popular choice. The goal of activation
functions are to return a normalized value (sigmoid return [0,1] and tanh [-1,1]) [53, 52].

2.2.3 Back-propagation

Back-propagation is the process of propagating errors, i.e. the loss calculated as the devi-
ation between the predicted and the desired output, backward in the network, by adjusting
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the weights at each layer. The stochastic gradient descent seeks to find the global mini-
mum of the weight parameters by adjusting the weights in relation to the error (loss) of
the prediction. After the forward propagation has been performed, the activations for the
neurons at the output layer are known; in the concrete example of image classification, the
output vector contains the prediction of the classification. Based on the predicted output,
the loss as compared to the desired output can be calculated. Back-propagation begins by
calculating the loss of the prediction using a loss function; examples of loss functions are
mean square error and cross entropy. Partial derivatives of the output layer are computed
and propagated backward in the network. Partial derivatives of a neuron are made rela-
tive to the error at the output layer, i.e. how much the neuron participated in the faulty

prediction. The equation:
δE

δyli
=
∑
wl

ij

δE

δxl+1
j

denotes that the partial derivative of neu-

ron i at the current layer l is the sum of the derivatives of connected neurons at the next
layer multiplied with the weights, assuming wl denotes the weights between the maps.
Consequently, weights are updated by subtracting a gradient from each weight parameter
(more on this when considering CNNs below). Additionally, a decay is commonly used
to control the impact of the updates, which is omitted in the above calculations. More
concretely, the algorithm can be thought of as updating the weights on each layer based
on "how much it was responsible for the errors in the output" [53, 11].

2.2.4 Overfitting, Dropout and Early Stopping

Overfitting a network leads to good performance on the training set however bad perfor-
mance on the test set, i.e. the network rather memorizes than learn features. Overfitting
occur when the model have too many parameters relative to the number of samples and
hence many combinations of the parameters can model the same relationship between
samples. Traditionally the problem was mitigated by training several networks, and then
average them or otherwise validate them against the test set before continue training.
However, this process is expensive, and hence a new method called dropout was intro-
duced in 2012 by Hinton et al. who discovered the possibility to leave out every node
with a probability of 0.5 at back-propagation - a cheap way of averaging a neural net-
work. Results show that the need to stop training earlier due to bad convergence was
reduced as well [54]

2.2.5 CNNs

This chapter will cover the basics of CNNs and their properties, extending the discus-
sion in the previous section. CNNs achieve state-of-the-art performance in many appli-
cations including: speech recognition, image classification, natural language processing
and machine translation [7]. The ImageNet competition push the boundaries of image
recognition every year in the annual competition [20].

This section will introduce two new layer types: convolutional layers and pooling
layers, and briefly discuss forward- and back-propagation.

The convolutional layer consists of several feature maps where neurons in each map
connects to a grid of neurons in maps in the previous layer through overlapping kernels
(figure 2.2.2). The kernels are tiled to cover the whole input space. The approach is
inspired by the receptive fields of the mammal visual cortex. All neurons of a map extract
the same features from a map in the previous layer as they share the same set of weights.
Different skipping factors can be used to determine the total amount of neurons required
to scan the entire image. The convolution also removes the high density of an otherwise
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Figure 2.2.2: A CNN with 5 layers emphasizing the kernels. Courtesy to Dan Cires, an et
al [1].

fully connected graph, which allows for faster training since the network contains less
parameters. Feature maps introduce automatic feature extraction as each feature map
learns to extract features from the layer below, e.g. edges or corners (in the case of an
image). Figure 2.2.2 shows an architecture with fully connected convolutional layers,
emphasizing the kernels. Feature maps differ both in size and number of neurons (map
size), commonly less and larger maps are used in the lower layers and more and smaller
in the top layers, which is also the case for the traditional LeNet-5 (figure 2.2.3) [23].

Pooling layers intervene convolutional layers and have shown to lead to faster conver-
gence. Each neuron in a pooling layer outputs the (maximum/average) value of a partition
of neurons in the previous layer, and hence only activates if the underlying grid contains
the sought feature. Besides from lowering the computational load, it also enables position
invariance and down samples the input by a factor relative to the kernel size [2].

CNNs are commonly constructed similar to the LeNet-5 (figure 2.2.3) beginning with
an input layer, followed by several convolutional/pooling combinations, ending with a
fully connected layer and an output layer. Recent networks are much deeper and/or wider,
the GoogleNet shown in figure 2.2.4 consists of 22 layers [2].

Forward propagation in the convolutional layer is similar to that of a fully connected
layer. The input of a neuron is calculated as the weighted sum of all connected neurons
over the kernel spanning the previous layer, as shown in figure 2.2.2. The output is the
input sent through an activation function. The pooling layer is merely computing the
output as the (max/average) value of a non-overlapping grid in the previous layer and
map [23].

Back-propagation in convolutional layers can be divided into computing partial deriva-
tives and computing weights. At a convolutional layer, calculations span over the set of
connected maps in the previous layer. Fixating on one neuron, i, neurons in the previous
layer over the kernel are updated with the derivative of i multiplied with the weight pa-
rameter connecting the two neurons. Each neuron j at the previous layer will therefore be
updated several times, each time it is touched by a kernel. The resulting partial derivative
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Figure 2.2.3: The traditional LeNet-5 architecture [2].

Figure 2.2.4: GoogleNet [3].

propagated to the neuron j at the previous layer can be thought of as
δE

δyl−1j

=
∑

(wl
ji

δE

δyli
)

where i and j are neurons connected over the kernel. Hence, the derivative of neuron j at
the previous layer is the result of each neuron i propagating its delta values to neurons it
touched when performing forward propagation [23, 55].

Weights of the convolutional layers are computed by subtracting a gradient from each
weight parameter. Similar to propagating the partial derivatives, the gradient is calculated
based on the derivative of neuron i at the current layer multiplied with the output of neuron
j at the previous layer over the kernel. A weight is updated for every kernel in a map,
since weights are shared between all kernels in the same map. The goal is to minimize
the error produced by the weights in the forward propagation [23, 55].

When computing partial derivatives for the pooling layer, all neurons in the layer
is iterated, and the partial derivative is pushed to the derivatives of the previous layer

contributing to the (max/average) value in forward propagation: yl−1max(n) =
δE

δyln
where

max(n) is the neuron providing the maximum value in forward propagation. Pooling
layers do not have any weights [23, 55].

2.3 Intel Xeon Phi Optimization Techniques

This chapter discusses some optimization techniques for the Intel Xeon Phi. It considers
both algorithmic optimization and micro-architectural optimizations. The former targets
the design of the algorithm and its data structures whereas the latter is tightly bound the
underlying hardware.

2.3.1 Algorithmic Optimization Techniques

The major algorithmic considerations relates to parallelism (threading, vectorization),
I/O, scalability and data structures.

To fully utilize the coprocessor one should make use of both thread- and SIMD-
parallelism. Thread parallelism can be achieved by using, e.g. OpenMP [56], Cilk [57] or

15



Thread Building Blocks[58]. SIMD parallelism make use of the wide vector processing
unit (VPU) of the coprocessor [59].

A short list of features facilitating parallelism:

• OpenMP: A set of compiler directives, environment variables and API functions to
ease shared-memory parallelism [56].

• Threading Build Blocks (TBB): Is a high performance parallel library from Intel,
allowing for defining logical tasks to be performed in parallel rather than explicitly
working with threads. Intel position it as a "template library for task parallelism"
for C++ [58].

• Cilk (+): Intel describe the library as an extension including reducers, array nota-
tion, SIMD instructions and keywords for spawning and syncing. It is available for
C and C++ [57].

• Compiler Directives: The compiler can help improve the code through directives to
increase the speed and make the memory access more efficient. The default opti-
mization level is O2 which automatically add optimizations to the code at compile
time, including vectorization. The O3 level use a more aggressive loop transforma-
tion compared to O2 which may not always be beneficial [60]

• SIMD: AVX (Advanced Vector Extensions) instructions helps optimize the execu-
tion through efficient vectorization. SIMD can be issued through Cilk, OpenMP or
as native commands for the Intel compiler [57, 56].

• Intel Math Kernel Library: A highly optimized math computing library supporting
BLAS and LAPACK routines in C (++), FORTRAN [61].

• Intel Integrated Performance Primitives (IPP): A highly optimized library for mul-
timedia, data-processing and communication applications. The built-in functions
use Intel Streaming SIMD Extensions and Advanced Vector Extensions instruction
sets [62].

The compiler performs automatic vectorization if possible - in many cases it is not and
the developer needs to assist the compiler vectorize the code. Using an array notation, as
defined in Cilk is one option. Another is to make use of the #pragma SIMD instruction in
OpenMP. The compiler will try to unroll loops if possible, the developer can enforce the
compiler if necessary [56, 59].

The scalability of the application is important in order to fully utilize the cores of the
coprocessor. When spawning threads it is also necessary to be aware of the overhead that
comes with joining the threads at the end of the work-sharing construct. If only a small
subset of the threads exit later than the majority, the execution time (span) will increase
since the total time is no better than that of the worst worker. Moreover, the time to spawn
and synchronize threads will be abundant. Additionally, locks to shared data also have to
be reconsidered when increasing the number of threads [59].

Other scalability issues include system calls and false-sharing; malloc and gettimeof-
day can be replaced by more efficient methods or omitted if possible. False-sharing occur
when several threads work on data originating from the same cache line. The problem
arises when threads work on data that resides nearby in memory since an update of one
value forces other threads to re-fetch if working on data on the same cache lines [59].
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One should try to reduce the number of memory accesses and work with data residing
in the registers. For this, tiling or blocking can be used to work on cached data as far as
possible [59].

Alignment of data should be done to 64 bytes in order to facilitate the memory access
for the coprocessor. This can be achieved by allocating the memory with _mm_malloc().
Also, aligned memory in a structure of arrays (SoA) rather than an array of structures
(AoS) is preferred as it results in a coalesced access pattern. It is also necessary to inform
the compiler of the aligned access by instrumenting the code with aligned attributes. In
case the data is not organized in a coalesced manner, the coprocessor can issue gather
and scatter instructions which makes the loading and storing of data to and from memory
more efficient. The goal is to work on local data as far as possible, and when memory
access is required, optimize the access pattern by fetching larger chunks of data required
by the operations. In some cases pre-fetching directives can help the compiler fetch data
before-hand and alleviate the memory penalties [59].

2.3.2 Micro Architectural Optimization Techniques

This chapter will introduce some hardware-specific optimizations. A couple of metrics
will be discussed in short to get an understanding of what to analyse and how to perform
the fine-grained adaptations for the Intel Xeon Phi [49].

• CPI: To decrease the execution time, the Cycles Per Instruction (CPI) needs to be
reduced, i.e. the number of cycles required to retire one instruction. It is beneficial
to aim for a low CPI per core, as each hardware thread is only allowed to execute
in a round-robin fashion. Moreover, this pattern hides some of the memory penal-
ties, therefore even if the theoretical minimum number of CPIs per core is 0.5, by
increasing the thread count penalties can be hidden. Also, SIMD instructions com-
prise several sub-instructions which infer a higher CPI. Finding hot spots with high
CPI facilitates optimization of the code [49].

• TLB Misses: Both L1 and L2 for each core have a Translation Lookaside Buffer
(TLB). Misses to the L1 TLB infer a penalty up to 25 cycles, and misses to the L2
TLB up to 100 cycles. Therefore it is important to minimize the misses. In cases
were the L1 to L2 ratio is high, large pages can be used to reduce wait times. The
goal should be to avoid spatiality and aggregate cache lookups as far as possible,
which will also infer a better cache locality [49].

• Vectorization Processing Unit (VPU) Usage: Indicates on the magnitude of vector-
ization. The aim should be to utilize the VPU as far as possible [49].

• Memory Bandwidth: A low usage of bandwidth of data transfers between L2 caches
and memory is essential to fully utilize the cores. Reducing the memory bandwidth
used should be the goal of any application [49].

• Cache Usage: Efficient use of the caches are critical, a L2 cache miss infer a 250-
cycle-penalty and a L1 cache miss 20-cycle penalty. Thus, data locality is important
to fully utilize the cores. Software pre-fetching, blocking and alignment help miti-
gate these problems and should be utilized in all cases possible [49].
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2.4 Parallelization Schemes for Stochastic Gradient Descent

On-line stochastic gradient descent have the advantage of instant updates of weights for
each sample. However, the sequential nature of the algorithm yields impediments as the
number of multi- and many core platforms are emerging. Simply training images in a
sequential order will certainly not yield any parallelism and will not fully make use of the
advantages modern architectures provide [63].

To derive the constructed parallelization schemes we searched the literature for exist-
ing successful parallelization schemes targeting on-line stochastic gradient descent. That
is, approaches using supervised learning and the on-line stochastic gradient descent op-
timization function. This section is organized as follows. Firstly differences between
model- and data-parallelism is highlighted. Thereafter strategies A-D discuss the ap-
proaches in more detail. Lastly, we explain model parallelism.

2.4.1 Model- and Data-Parallelism

The parallelism can be either divided data-wise, i.e. workers process several inputs con-
currently, or model-wise, i.e. several workers share the computational burden of one
input. The data parallelism divides the training set into on a batch of inputs, learning
from several samples concurrently updating the weight vector with some delay. On the
contrary, model parallelism aims to speed up the time for computations at each layer [64].
Whether one approach can be advantageous over the other mainly depends on the syn-
chronization overhead of the weight vectors and how well it scales with the number of
processing units.

2.4.2 Strategy A: Hybrid

Figure 2.4.1 visualizes data- and model parallelism, data parallelism is applied in convo-
lutional layers, and model parallelism in fully connected layers. In [4] Krizhevsky argues
that both data- and model-parallelism have their advantages, however in different con-
texts. He concludes that because of layer characteristics one should consider using data
parallelism for the convolutional layers and model parallelism for the fully connected
layers. The argument is based on computation- and representation size. Convolutional
layers are most computational costly and require about 95% of the computations whereas
the fully connected layers have smaller representations and are less computational costly.
Krizhevsky proposes three variations of the algorithm, however in general the process is
as follows: each worker is assigned a set of images and performs calculations on the con-
volutional layers. However, at the fully connected layers the algorithm switch to model
parallelism and the workers help each other carry out the computations [4].

2.4.3 Strategy B: Averaged Stochastic Gradient

Dividing the input into batches and feeding each batch to a node, was presented to work
well for the MNIST dataset when training restricted Boltzmann machines on 40 nodes in
[64]. The algorithm proceeds as follows:

1. Initialize the weights of the learner by randomization.

2. Split the training data into n equal non-overlapping chunks and send them to the
learners together with the weight parameters.
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Figure 2.4.1: The hybrid approach of data- and model-parallelism. Courtesy to Alex
Krizhevsky [4].

3. Each learner process the data and calculates the weight gradients for its subset of
inputs.

4. Calculated gradients are sent back to the master.

5. The master computes the new weights as the mean of the proposed updates and
updates the weights.

6. The master sends the new weights to the nodes and a new epoch/iteration begins.

Results show that the convergence speed is slightly worse than for the sequential ap-
proach, however the training time is heavily reduced. The authors acknowledge that larger
mini-batches sent to the learners reduce the convergence and at the same time speeds up
the computations [64]. A similar study by Zhao You et al. in [65] also uses average
stochastic gradient descent, showing that larger mini-batches leads to slower convergence.

2.4.4 Strategy C: Delayed Stochastic Gradient

In [66] John Langford et al. recognize that the update of weight parameters can be done
in a round-robin fashion by the workers. One proposed solution is to divide samples into
n chunks (where n may be the total number of threads used) and let each thread work
on its own distinct chunk of samples, only sharing a common weight vector. However
threads are only allowed to update the weight vector in a round-robin fashion, and hence
each update will be delayed [66].

2.4.5 Strategy D: HogWild!

Strategy D is based on the HogWild! algorithm proposed in 2011 by Feng Niu et.al. Hog-
Wild! is stochastic gradient descent without locks. The approach is applicable for sparse
optimization problems (threads/core updates do not conflict to a great extent). The authors
theoretically and experimentally show that the algorithm outperforms other stochastic gra-
dient descent parallelization schemes, and mathematically prove the approach to be valid
[63].
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2.4.6 Model Parallelism

By assigning several threads to work on the same layer it is possible to speed up the calcu-
lations of each layer and hence speed up the total training time. For forward propagation
the work is divided over a set of workers, each working on a set of neurons. The back-
propagation work either by pulling or pushing deltas. Pulling deltas facilitates parallelism
as the delta of each neuron can be calculated in atomicity. Pushing deltas are easier to im-
plement, however it leads to concurrent updates by workers. Similar, the weight updates
are divided over the set of kernels shared between maps in consecutive layers [23].

20



Chapter 3

The Approach

This study empirically evaluates the performance of supervised deep learning using CNNs
on the Intel Xeon Phi. First, an implementation was selected and modified into a sequen-
tial non-optimized version. Thereafter, we designed CHAOS (explained in section 3.2)
and implemented it on the sequential implementation, constructing a parallel, optimized
version. The parallel implementation was evaluated experimentally and data was col-
lected for different architectures and threads. Results were processed and presented in
chapter 4, and further analysed and depicted in chapter 6. Lastly, a theoretical study
was conducted and presented in chapter 5 and combined with the experimental study to
conclude the answer to our research question RQ1 in section 6.3.

3.1 Selection of Implementation

Firstly a selection procedure was carried out searching a feasible implementation to be
used in the study. During the literature study several implementations were found, c.f.
section 1.2.4. Primarily the inclusion criteria comprised six items qualifying the imple-
mentation: good reputation of author, simplicity, no (or few) dependencies, dynamic -
supporting various architectures, C++ programming language, supports training of CNN.
Other attributes not required however requested: academic relation, validity (correct im-
plementation), example datasets provided in the package.

CNNs were not the only architecture considered, other supervised learning models
were included in the search as well, including recurrent neural networks. However, at
some point in the process it became clear that CNNs was of most interest, and hence
became a requirement in the selection procedure. No previous research have been found
for CNNs during our literature study and Intel Xeon Phi (no supervised learning for that
matter). Moreover CNNs are applied to state-of-the-art applications, including computer
vision and speech recognition [7]. Moreover, choosing an existing implementation en-
ables us to reach the goals of the study, spending time on evaluation rather than imple-
mentation; numerous implementations already exists, this would not bring anything new
to the research community.
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Figure 3.1.1: Extract from MNIST dataset. Courtesy to Y. Tang et al. [5].

We found a project written by Dan Cires, an to meet all the requirements. The paper
[23] cover a similar, although slightly different, implementation. The project implements
a trainer for CNNs targeting the MNIST [25] dataset of handwritten digits, packaged
with the project. An extract of MNIST is shown in figure 3.1.1. MNIST consists of
60,000 training/validation images and 10,000 testing images. The network architecture
can be defined in a text file dynamically, however, two predefined networks are already
packaged with the project. The project is implemented in C++ and developed in Visual
Studio. There are no dependencies other than Boost.

Other implementations, e.g. Eblearn, Torch, and Caffe had several dependencies,
and/or are reasonably large. Others are highly integrated with GPUs, e.g. Cuda-Convnet2.
Tiny CNN provide a library for CNNs with example of MNIST however we could not find
any academic relation, otherwise this is a promising library.

First a development environment was prepared to favor code completion and code
locality on the host. The project was created on the host to which the coprocessor is
connected. The communication with the host system was done through ssh, both to the
host and to the coprocessor. Compilation was performed using the Intel c compiler, icc
15.0.0, and various parameters, shown in Appendix D.

For the experiments, two CPUs and the Intel Xeon Phi were used. The Linux host
comprises an Intel Xeon CPU E5-2695v2 with a clock frequency of 2.40 GHz with 12
physical cores and 2 threads per core using hyper-threading, resulting in 48 logical cores.
The desktop computer comprises an Intel Core i5 661 with a clock frequency of 3.33 GHz
and 4 logical cores. The coprocessor is of model 7120p comprising 61 cores and 4 threads
per core with a clock frequency of 1.2 GHz. Detailed information of the platforms can be
found in Appendix A.

3.2 CHAOS: Controlled HogWild with Arbitrary Order of Synchro-
nization

We introduce CHAOS, Controlled HogWild with Arbitrary Order of Synchronization, a
parallelization scheme constructed and used in this study. By combining parts of strategies
A to D, defined in section 2.4, we came up with a data parallel, controlled version of
HogWild!, with delayed updates. The key aspects of CHAOS are:

• Data parallelism - Multiple identical network instances (workers) are created, shar-
ing weight parameters; other variables are thread private allowing for several im-
ages to be processed concurrently. Figure 3.2.1 shows an overview of the scheme,
ignoring superfluous details. After creating network instances, and preparing im-
ages, the training starts. Each epoch carries out three major steps. The first step,
Training, proceeds with each worker picking an image, forward propagates it through
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the network, calculates the error, and back-propagates the partial derivatives, adjust-
ing the weight parameters. Since each worker picks a new image from the set as
long as more images are available, other workers does not have to wait for signif-
icantly slow workers. After Training, each worker participates in Validation and
Testing evaluating the accuracy of the network by predicting images in the valida-
tion and test set accordingly. Adoption of data parallelism was inspired by Alex
Krizhevsky in [4], promoting data parallelism for convolutional layers as they are
computational intense.

• Controlled Hogwild - Updates of weight parameters during back-propagation are
not instant nor significantly delayed. To avoid unnecessary invalidation of cache
lines and align memory writes, updates of shared weights are delayed to the end
of each layer’s computations. Intermediate updates are applied to local weight pa-
rameters, thus calculating the gradients before sharing them with other workers.
The approach was inspired by HogWild! [63] proposing instant updates of weights,
and delayed updates as proposed by John Langford et al. in [66]. We use neither
and both, the gradients are calculated and saved locally first, however, workers can
update the global set of gradients at any time - they do not have to wait for other
workers to finish update before sharing their contributions.

• Arbitrary Order of Synchronization - Because all workers share weight parameters,
there is no need for explicit synchronization, however, an implicit synchronization
is performed in an arbitrary order, since writes are controlled by a fist-comes-first
schedule and reads are performed on demand.
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Figure 3.2.1: Activity diagram of CHAOS.

The arbitrary order of updates entails non-deterministic results, however, theory and
practice show this deviation to be negligible. To detain theoretical ground in our work,
we choose to combine the strategies that suits well with our current implementation. The
main goal is to minimize the time spent in the convolutional layers which can be done
through data parallelism, adapting the knowledge presented in strategy A (defined in sec-
tion 2.4.2).

In strategy B (section 2.4.3), the synchronization is performed as a result of averaging
workers gradient calculations. Since work is distributed, computations are performed on
stale parameters. The strategy can be applied in distributed and non-distributed settings.
The division of work over several distributed workers was adapted in CHAOS.

In strategy C (section 2.4.4), the updates are postponed using a round-robin-fashion
where each thread gets to update when it is its turn. The difference compared to strat-
egy B is that instances train on the same set of weights and no averaging is performed.
The advantage is that all instances train on the same weights. The disadvantage of this
approach is the delayed updates of the weight parameters as they are performed on stale
data. Training on shared weights and delaying the updates are adopted in CHAOS.

Strategy D (section 2.4.5) present a lock-free approach of updating the weight param-
eters, updates are performed instantly without any locks. Our updates are not instant,
however, after computing the gradients there is nothing prohibiting a worker contributing
to the shared weights, the notion of instant inspired CHAOS.

Some of the above strategies introduce mini-batch training, i.e. dividing the inputs to
a batch size > 1. This has shown to lead to slower convergence as the batch sizes increase
[64]. Therefore we neglect this approach in our consideration.
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In HogWild! weight updates are instant, using no delays. However, some limitations
of the coprocessor rules out this approach - invalidation of cache lines infer large memory
penalties. Hence update of gradients are delayed until after the weight computations of
the entire layer. Also #atomic pragmas are used to ensure data races are avoided, initial
tests show that without it, some penalties were introduced. At the end of each back-
propagation there is no synchronization required since all weights of all layers are shared
among all network instances. The major benefit is the reduced delay of updates (they are
almost instant); parameter updates are delayed only with a small fraction. We recognize
that weights may change rapidly (even during calculations at one layer) and impact the
training for other workers. Although this seems to be a theoretical problem, it does not
seem to be a problem in practice.

3.3 Implementation

We performed a series of modifications to the implementation in order to run our experi-
ments, resulting in two versions, which we refer to as sequential and parallel. The sequen-
tial version is the original implementation supplemented with a Reporter and Helper class
to facilitate results collection and training. The parallel version is, as the name suggests,
parallelized, and optimized using several optimization techniques. This chapter explains
the development of the application used in the experiments. The main requirement is to
facilitate the many cores of the coprocessor efficiently to lower the execution time, at the
same time maintaining low deviation in error rates, especially on the test set. Moreover,
the quality of the implementation is verified using errors and error rates on the validation
and test set.

3.3.1 Sequential Implementation

The sequential version is a minor justification of the original version. To ease profiling,
a Reporter class was added to serialize execution results. The instrumentation should not
add any time penalties in practice. However, if these penalties occur in the sequential
version they are likely to imply corresponding penalties in the parallel version, therefore
it should not impact the results. Figure 3.3.1 shows a class diagram for the sequential
version. Parameters and variables are omitted to avoid superfluous information, otherwise
almost all methods are included (with some exceptions of Idx) as well as their visibility.
The NeuralNetwork class provides the core functionality including forward- and back-
propagation. The Main class interacts with the NeuralNetwork to initiate the training
process. The Idx class manages the images and labels and the Helper class manages
common tasks such as generating date-time strings for the file names.
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Figure 3.3.1: Class diagram for the sequential version.

3.3.2 Parallel Implementation

The main goal of the parallel version is to lower the execution time of the sequential
implementation and to scale well with the number of processing units on the coproces-
sor. To facilitate this, it is essential to fully consider the characteristics of the underlying
hardware. From results derived in the sequential execution we found the hotspots of the
application to be predominantly the convolutional layers. The time spent in both forward-
and back-propagation occupies about 94% of the total time of all layers (up to 99% for
the larger network), which is depicted in the table 3.3.1. Interestingly, similar measure-
ments are discussed by Alex Krizhevsky in [4]. Moreover, the on-line stochastic gradient
descent is sequential in its nature, making it hard to parallelize the algorithm. To speed
up the execution, we adopted the parallelization scheme designed in this study, CHAOS.

Our proposed strategy, CHAOS, presented earlier in this chapter, only infer smaller
modifications to the implementation. A set of N network instances are created and as-
signed to T threads. We assume T == N , i.e. one thread per network instance. T threads
are spawned, each responsible for its own instance.

The overview of the algorithm was shown previously in figure 3.2.1. In figure 3.3.2
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Layer type Forward propagation Back-propagation % of total

Fully connected 40.9 s 30.9 s 1.4 %
Convolutional 3,241 s 1,438 s 93.7 %
Max pooling 188.3 s 8.2 s 3.9 %

Table 3.3.1: Execution times at each layer for the sequential version on the Xeon E5 using
the small CNN architecture.

the training, testing and back-propagation details are shown. Training (left) picks an im-
age, forward propagates it, determines the loss and back-propagates the partial derivatives
(deltas) in the network - this process is done simultaneously by all workers, each worker
processing one image. Each worker participating in testing (center), picks an image, for-
ward propagates it and then collects errors and error rates. The results are cumulated for
all threads. Perhaps the most interesting part is the back-propagation (right). The shared
weights are used when propagating the deltas, however, before updating the weight gra-
dients, the pointers are set to the local weights. Thereafter the algorithm proceeds by
updating the local weights first. When a worker have contributions to the global weights
it is allowed to update in a controlled manner, avoiding data races. Updates immediately
affects other workers in their training process. Hence the update is delayed slightly, to
decrease the invalidation of cache lines, yet almost instant and workers do not have to
wait for a longer period of time before contributing with their knowledge.

Figure 3.3.2: The training (left), testing (center), and back-propagation (right) of one
image.

Too see why delays are important, consider the following scenario: If training several
network instances concurrently, they share the same weight vectors, other variables are
thread private. The major consideration lies in the weight updates. Let W l

j be the jthe
weight on the lth layer. In accordance with the current implementation, a weight is up-
dated several times since neurons in a map (on the same layer) share the same weights,
and the kernel is shifted over the neurons. Further assume that several threads work on the
same weight W l

j at some point in time. Even if other threads only read the weights, their
local data, as saved in the Level 2 cache, will be invalidated and a re-fetch is required
to assert their integrity. This happens due to cache lines are shared between cores (as
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explained in chapter 2). The approach of slightly delaying the updates and forcing one
thread to update in atomicity leads to fewer invalidations. Still a major disadvantages is
that the shared weights does not infer any data locality (data cannot retain completely in
Level 2 cache for a longer period of time).

In the study, OpenMP was selected to facilitate thread- and SIMD parallelism utilizing
the AVX (Advanced Vector Extension) features. The rationale of choosing OpenMP are
two-fold: firstly, OpenMP is owned and developed by a non-profit organization, supported
by many large vendors, which is the opposite of other techniques, e.g. Intel TBB and Intel
Cilk. Secondly, we have previous positive experience of OpenMP.

A fork of the sequential implementation created the base for the parallel. For version
management we also created a new Git project, and a new project on the host machine.

Figure 3.3.3: Class diagram for the parallel implementation.

The class diagram for the parallel version is depicted in figure 3.3.3. Classes un-
changed are marked blue. Green are classes that have been added, and yellow classes
have been changed. Additionally, stereotypes annotates the state for colorless print outs.
The Trainer class was introduced including the chaos method, the starting point of the
training. It also includes functions to execute the tests and validation in parallel: runTest
and runValidation. The setWeights method sets the pointers of all network instances to
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the weights of the default instance. The initiateImages and preAllocateImages methods
prepares the images in memory for easier access. Structs contains the Argument struct
encapsulating the input parameters.

The NeuralNetwork class have minor changes. Methods to retrieve the layer times
are added and the determineErrorRate* methods are substituted with determineError-
ForChunk.

The main method is parameterized with the training type, CNN architecture size, net-
work size and thread count. Also compiler directives can be used to inform the compiler
to use LOCALWEIGHTS.

A code snippet of the local weight updates is shown in listings 3.1. First, the weights
pointer is set to work on the local weights, and reset their values. After the update (from
line 10) the local gradients contribute to the global weight parameters.

1 / / P o i n t to l o c a l w e i g h t s and r e s e t them
2 # i f d e f LOCALWEIGHTS
3 Wmap = LocalW ;
4 memset ( LocalW , 0 , nWeights ∗ s i z e o f ( do ub l e ) ) ;
5 # e l s e
6 Wmap = W;
7 # e n d i f
8
9 / / Update t h e sh ar ed w e i g h t s from l o c a l w e i g h t s

10 # i f d e f LOCALWEIGHTS
11 f o r ( i n t w = 0 ; w < nWeights ; w++) {
12 # pragma omp a to mic
13 W[w] += LocalW [w ] ;
14 }
15 # e n d i f

Listing 3.1: Code snippet for the update of weight parameters.

To further decrease the time spent in convolutional layers, loops were vectorized
to facilitate the vector processing unit of the coprocessor. Data was allocated using
_mm_malloc() with 64 byte alignment increasing the accuracy of memory requests. The
vectorization was achieved by adding #pragma omp simd instructions and explicitly in-
forming the compiler of the memory alignment using __assume_aligned(). Some unnec-
essary overhead is added through the lack of data alignment of the deltas and weights.
A vectorization report for the back-propagation of convolutional layers can be found in
listings 3.2, showing that the estimated potential speed up is 2.250 when facilitating the
vector processing unit, and that the vectorization suffer from unaligned stores. More re-
ports for the forward- and back-propagation functions can be found in Appendix C.

1 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 5 0 4 , 2 1 )
2 remark #15399: vec to r i z a t i o n s u p p o r t : u n r o l l f a c to r s e t to 2
3 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
4 remark #15451: unmasked u n a l i g n e d u n i t s t r i d e s to r e s : 1
5 remark #15458: masked i n d e x e d ( o r g a t h e r ) l o a d s : 1
6 remark #15475: −−− b e g i n vec to r l oop c o s t summary −−−
7 remark #15476: s c a l a r l oop c o s t : 160
8 remark #15477: vec to r l oop c o s t : 70 .750
9 remark #15478: e s t i m a t e d p o t e n t i a l speedup : 2 .250

10 remark #15479: l i g h t w e i g h t vec to r o p e r a t i o n s : 47
11 remark #15480: medium−o v e r h e a d vec to r o p e r a t i o n s : 2
12 remark #15482: vec to r i z e d math l i b r a r y c a l l s : 1
13 remark #15488: −−− end vec to r l oop c o s t summary −−−
14 LOOP END

Listing 3.2: Vectorization report for forward propagation in the convolutional layer.

Many of the system calls made per thread basis were removed, e.g. the images are
loaded into a pre-allocated memory location instead of allocating new memory when
requesting an image. Likewise for the desired output. This removes the wait times oth-
erwise required by system calls. Compared to loops, experiments show that the overhead

29



was negligible and that using memset to reset the weights did not infer a noticeable time
penalty.

Hardware pre-fetching was discussed in chapter 2, a technique applied by the copro-
cessor to mitigate the shortcomings of the in-order-execution scheme. Pre-fetching loads
data to the L2 cache in order to make it available for future computations. In addition to
the hardware pre-fetcher, a software pre-fetcher can be used with the #pragma pre-fetch
command. Pre-fetching did however in our case not infer a noticeable speed up and was
therefore not included in the final version.

We compile the code with optimization level 03 enabling automatic optimizations of
the compiler, including Block-Unroll-And-Jam. However, identical results was derived
using the O2 option.

The default thread affinity for OpenMP were used as no noticeable speed up were
encountered for other schemes. For the Xeon Phi, the default setting is scatter. We also
run the experiments with balanced and compact, compact showed worse performance
and balanced equal to the ones derived for scatter. Reduction is used for summarizing
the errors in the RunTest, and RunValidation function.

Reducing the spawning and synchronization of threads increase the scalability of the
algorithm. Moreover, letting workers pick images instead of assigning images to workers,
allow for a smaller overhead at the end of a work-sharing-construct. The number of
locks are minimized as far as possible. Additionally, the CHAOS parallelization scheme
mitigates the problem of false-sharing.

The locality of data was achieved by making most of the variables thread private.
Although the weight parameters are not thread private, they can be shared between cores
via the interconnect ring.

To facilitate scalability, minimize memory contention, and synchronization overhead,
CHAOS was adopted to the implementation. Through thread parallelism, dividing the
input space over available workers, training was distributed. CHAOS uses the vector
processing units to improve performance and tries to retain local variables in local cache
as far as possible. The delayed updates decrease the invalidation of cache lines. Since
weight parameters are shared among threads, there is a possibility that data can be fetched
from another core’s cache instead of main memory, reducing the wait times. Also memory
was aligned to 64 bytes and unnecessary system calls was removed from the parallel work.

3.4 Evaluation Approach

The evaluation of the implementation was performed on three different platforms (Core
i5, Xeon E5, and Xeon Phi 7120p) described earlier in this chapter. Also a more detailed
explanation can be found in Appendix A. The evaluation used the MNIST [25] dataset of
handwritten digits, comprising 60,000 training/validation images and 10,000 test images
using varying thread counts, and CNN architectures. This section aims to describe the
details of the evaluation process.

Data collection was done through observations using bat and bash scripts for Windows
(desktop) and Linux (host and coprocessor) respectively. An execution scheme was con-
structed as an overview of the intended configurations to execute. Table 3.4.1 shows an
overview of the scheme, execution reports can be found in Appendix D. All configurations
were run three times with some exceptions (refer to Appendix D for more information),
and the results were averaged - executions lasted for week(s) hence more executions were
not possible to perform. We selected the thread counts based on previous experience.
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Platform Version #Threads

Host Seq. 1
Host Par. 1
Host Par. 12
Host Par. 24
Host Par. 48

Phi Par. 1
Phi Par. 15
Phi Par. 30
Phi Par. 60
Phi Par. 120
Phi Par. 180
Phi Par. 240
Phi Par. 244

Desktop Seq. 1

Table 3.4.1: Planned execution scheme.

Results from each execution were copied by the scripts into a corresponding result
directory and later imported to Excel, averaged and processed for further calculations.
To create the resulting artefacts, data from each sheet was aggregated into a common
results document. The same process was performed repeatedly for each CNN architecture
considered.

Architectures are presented in table 3.4.2. As can be seen, at each step, the size and
hence the number of computations increase. The small and medium architectures were
packaged with the implementation, however, the large architecture was inspired by an
architecture used by Cires, an et al. in [23].

Each execution used a starting eta (decay) of 0.001 and a factor 0.9. For more accurate
comparison between executions the scrambling of images at each epoch was ignored, and
the weights were calculated once and then read into the proceeding executions. The small
and medium architectures were trained for 70 epochs and the large for 15.

The data collected, serialized to disk included:

• Training time per epoch - The total time for training, i.e. forwarding and back-
propagating the images through the network.

• Validation time per epoch - The total time for validation, i.e. forwarding the valida-
tion images through the network and calculate the loss and error rate.

• Testing time per epoch - The total time for testing, i.e. forwarding the testing images
through the network and calculate the loss and error rate.

• Validation error per epoch - The total loss of images during validation in one epoch.

• Testing error per epoch - The total loss of images during testing in one epoch.

• Validation error rate per epoch - The error rate at validation, i.e. the number of
images recognized incorrectly/total number of images per epoch.

• Testing error rate per epoch - The error rate at testing, i.e. the number of images
recognized incorrectly/total number of images per epoch.
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• Epoch time - The execution time for the whole epoch, including training, validation
and testing.

• Layer times per network instance - The total time spent per layer averaged over the
number of network instances.

• Total execution time - The total time for the whole training excluding reading im-
ages to memory and creating instances.

• Total training time - The total time for training.

• Total validation time - The total time for validation.

• Total testing time - The total time for testing.

• Total epoch time - Total time spent in epochs, i.e. the total execution time mi-
nus the sequential work, similar to the total execution time excluding some minor
initialization work.

• Arguments used for execution - CNN Architecture, number of threads, number
of network instances, strategy, name of file, and compiler directives (LOCAL-
WEIGHTS).

Type Maps Map Size Neurons Kernel Size Weights

Small

Input - 29x29 841 - -
Conv 5 26x26 3,380 4x4 85
Max 5 13x13 845 2x2 -
Conv 10 9x9 810 5x5 1,260
Max 10 3x3 90 3x3 -
Full - 50 50 - 4,550
Output - 10 10 - 510

Medium

Input - 29x29 841 - -
Conv 20 26x26 13,520 4x4 340
Max 20 13x13 3,380 2x2 -
Conv 40 9x9 3,240 5x5 20,040
Max 40 3x3 360 3x3 -
Full - 150 150 - 54,150
Output - 10 10 - 1,510

Large

Input - 29x29 841 - -
Conv 20 26x26 13,520 4x4 340
Max 20 26x26 13,520 1x1 -
Conv 60 22x22 29,040 5x5 30,060
Max 60 11x11 7,260 2x2 -
Conv 100 6x6 3,600 6x6 216,100
Max 100 2x2 900 3x3 -
Full - 150 150 - 135,150
Output - 10 10 - 1,510

Table 3.4.2: CNN architectures used in evaluation.

The parallel version is compared to the sequential by the error and error rates collected
during evaluation. This lets us deduce how much accuracy is lost (or gained) compared
to the sequential (base line) version.
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3.5 Analysis Approach

Results collected is analysed in chapter 6, in which the execution time and speed up for
Xeon Phi is discussed for varying number of threads and CNN architectures. Also, errors,
error rates (incorrect predictions), and time spent in different layer types are explained in
more detail. The analysis will also derive conclusions related to the theoretical analysis
(chapter 5) and performance model (section 5.4) to conclude the research question RQ1.

The errors and error rates are used to validate our implementation, comparing the
errors of the parallel version with that of the sequential and original version. Errors and
error rates for the validation and test set were collected for each epoch, and are depicted
in graphs for each CNN architecture in chapter 4. We discuss the deviation in number of
incorrectly predicted images and also a ratio of incorrectly predicted images and deviation
in units for the error. This is further related to the state-of-the-art performance on MNIST.
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Chapter 4

Results

In this chapter results collected in the empirical study are presented. The training was
performed for 70 epochs for the small- and medium-architecture and 15 epochs for the
large, using a starting decay (eta) of 0.001 and factor of 0.9. An epoch is an iteration
in the training process. The evaluation was performed on three different platforms: Intel
Xeon E5-2695v2 with a clock frequency of 2.4 GHz, 12 physical- and 48 logical cores,
Intel Core i5 661 with a clock frequency of 3.33 GHz, 4 logical (2 physical) cores, and
the Intel Xeon Phi 7120p comprising 61 cores with a clock frequency of 1.2 GHz, and a
total of 244 hardware threads. The evaluation was performed using varying thread counts
on Xeon E5 and Intel Xeon Phi. The MNIST dataset of handwritten digits was used as
input.

To ease comparison, network instances were initialized with the same weight parame-
ters and scrambling of images was disabled. This results in worse error rates, nevertheless
evaluation is the main goal of this study, error rates secondary. Each execution was per-
formed three times (with some exception) and then averaged to form the results presented
in this chapter.

4.1 Execution Time, Speed Up and Prediction Accuracy

The execution time is the total time the algorithm executes, excluding initializing the
network instances and images, this is true for both the sequential and parallel version.
The stop criteria used is max epochs, i.e. the network trains until reaching the maximum
number of epochs defined. Other techniques have been investigated, however not used to
collect the results, however, in the results analysis we provide an overview if stopping at a
common error rate. The speed up is measured as the relativeness between two execution
times, with the sequential execution times of E5 and Xeon Phi as the base. The error rate
is the fraction of images the network was unable to predict and the error the cumulated
loss from the loss function.

In the figures and tables we use some abbreviations due to limited space. Par is the
parallel version, Seq the sequential. Also T denote threads. E.g. Phi Par. 1 T is the
parallel version and one thread on the Xeon Phi.

4.1.1 Results on the Small CNN Architecture

The small network consists of 7 layers: 1 input (29x29 neurons), 2 convolutional (5,10
feature maps, 26x26,9x9 map size), 2 max pooling (5,10 feature maps, 13x13,3x3 map
size), 1 fully connected (4,550 neurons) and 1 output (510 neurons). The following sec-
tion shows the results of the small CNN architecture.
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In figure 4.1.1 the total execution times for the different configurations are depicted.
The sequential version is less efficient than the parallel version. The Core i5 Seq is about 5
times worse than Xeon E5 Seq. For the Xeon Phi Par, more threads imply lower execution
time in any case. The time is halved between 15, 30 and 60 threads which is not the case
between 60, 120, 180, 240 and 244 threads where the performance only is a fraction
better.

The sequential version executed on the Xeon E5 spends about 83 minutes training the
network, and Phi Par. 244 T about 6 minutes. Additionally, the Core i5 require about 408
minutes, 7 hours to complete the training.

Figure 4.1.1: Total execution time for the small CNN architecture.

Figure 4.1.2 emphasize the facts shown in figure 4.1.1 in terms of speed up, compared
to Xeon E5 Seq; values in parentheses are relative measurements compared to Xeon E5
Par. 1 T. As can be seen, "throwing more cores at the problem" results in increased speed
up in all cases. 240 threads on the Xeon Phi Par. infer a 94.6x speed up compared to Phi
Par. 1 T and 13.26x compared to Xeon E5 Seq. 244 threads on the coprocessor yield even
higher speed up, 100.4x compared to Phi Par. 1 T and 14.07x compared to Xeon E5 Seq.

Figure 4.1.2: Speed up for the small CNN architecture compared to Xeon E5 Seq (Phi
Par. 1 T).
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Error and error rates are recorded for each epoch and set of images (training/validation
and testing). The errors are cumulated results of the loss function, and hence describe the
magnitude of false predictions of all images. The error rates are the fractions of incorrectly
predicted images. Therefore the error rates on the validation set is deemed to be lower
than for the test set since this is the set of images the network adjusts to.

The error rate on the validation set can be seen in figure 4.1.3. Phi Par. 180 T has the
lowest ending error rate and Phi Par. 15 T the highest. The optimal as derived from Phi
Par. 1 T should be used as a base line. Phi Par. 180 T differ by 0.03% (about 17 images
less) and Phi Par. 15 T with 0.007% (about 4 images).

Figure 4.1.3: Error rate of the validation set for the small CNN architecture.

The error rate for the test set can be seen in figure 4.1.4. In general the curves fluctuates
heavily in the beginning and stabilizes at the end. Phi Par. 1 T has the lowest ending error
rate closely followed by Phi Par. 15 T. Worse is the Phi Par. 120 T, the difference is
0.063% (about 6 images).

Figure 4.1.4: Error rate of the test set for the small CNN architecture.

The error of the validation set (figure 4.1.5) decrease as the training proceeds even if
the curve diminish at the end. The optimal error from Phi Par. 1 T is 2,092 which can
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be compared to 2,105 for the Phi Par. 240 T (13 units) and 2,077 for Phi Par. 120 T (15
units).

Figure 4.1.5: Error of the validation set for the small CNN architecture.

The error on the test set can be seen in figure 4.1.6. The lowest ending error has Phi
Par. 1 T, at each step, the error gets worse, and hence Phi Par. 244 T ends with the highest
error (about 22 units worse than optimal).

Figure 4.1.6: Error of the test set for the small CNN architecture.

The reader should be aware of the collection strategy; results collected in executions
were averaged, which could infer some implicit fluctuations, we provide the standard
deviation in Appendix D.

4.1.2 Results on the Medium CNN Architecture

The medium CNN architecture consists of equal amount of layers as the small. However,
the number of maps for the convolutional (and max-pooling) layers are increased - from
10 to 20 and 20 to 40 - which also increase the number of neurons and weights. More
details of the CNN architectures can be found in Appendix B.
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The total execution time continues to decrease with the number of threads (figure
4.1.7), although it increases almost linearly with the number of threads for up to 60 threads
for the Phi Par. it is only lowered by a fraction for 60, 120, 180, 240, and 244 threads.
Core i5 Seq. spends about 72 hours for the whole training compared to Xeon E5 Seq.
about 13 hours, and Phi Par. 244 T about 1 hour. Additionally, Phi Par. 1 T spend about
114 hours.

Figure 4.1.7: The total execution time for the medium CNN architecture.

In figure 4.1.8 it can be seen that there is almost a linear speed up for Phi Par. 15, 30
and 60 T when compared to Phi Par. 1 T. Additionally, Phi Par. 244 T has a speed up
of 99.9x, compared to Phi Par. 1 T. When increasing the number of threads, the speed up
increase as well. Phi Par 1 T. is about 8 times slower than the sequential version on Xeon
E5.

Figure 4.1.8: The speed up for the medium CNN architecture compared to Xeon E5 Seq
(Phi Par. 1 T).

The error rates of the validation set is shown in figure 4.1.9. The lowest error rate has
Phi Par. 60 T (about 3 images from optimal) and worse Phi Par. 180 T (about 3 images
from optimal).
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Figure 4.1.9: Error rate of the validation set for the medium CNN architecture.

Figure 4.1.10 contains the error rates for the test set. All lines fluctuates a bit before
paving out in the end. It can be seen that the resulting error rates for the Phi Par. differs
slightly from the optimal values - Phi Par. 240 T about 1 image and Phi Par. 15 T about
5 images.

Figure 4.1.10: Error rate of the test set for the medium CNN architecture.

The validation errors are shown in figure 4.1.11. The lowest ending error is that of
Phi Par. 30 T and the highest is Phi Par. 240 T. The optimal error (Phi Par. 1 T) is 508.55,
and hence the worst differs with about one unit compared to the base line and the best two
units.
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Figure 4.1.11: Error of the validation set for the medium CNN architecture.

For the test set (figure 4.1.12) the values are decreasing rapidly until reaching about 20
epochs where the values stabilizes and slightly increase. This is true for all configurations,
even for the Phi Par. 1 T. Although the resulting error is higher than for 30 epochs, this
is only by a fraction. The ending errors only differs by a couple of units, Phi Par. 180 T
being the lowest, and Phi Par. 1 T the highest.

Figure 4.1.12: Error of the test set for the medium CNN architecture.

4.1.3 Results on the Large CNN Architecture

The following section present the results for the large CNN architecture including the
speed up, errors and total execution time.

As can be seen in figure 4.1.13 more threads decrease the running time for Phi Par.
The execution time for Phi Par. 1 T is far more than for Core i5 Seq, however, already
after Phi Par. 15 T the execution time is less. It takes 167.5 hours to train the large
network on Core i5 661, 31.1 hours on Xeon E5-2695v2 and 3 hours on the Xeon Phi
when training for 15 epochs.
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Figure 4.1.13: Total execution time for the large CNN architecture.

The speed up scales well when adding more threads (figure 4.1.14) and is doubled as
the threads are doubled up until 60 threads. The best speed up is encountered by Phi Par.
244 T, 103.5x compared to Phi Par. 1 T and 10.91x compared to the Xeon E5 Seq. Phi
Par 1 T is about 9 times worse than the sequential version on Xeon E5.

Figure 4.1.14: Speed up for the large CNN architecture as compared to Xeon E5 Seq (Phi
Par. 1 T).

In figure 4.1.15 it can be seen that Xeon E5 Seq. ends with an error rate of 0.0167%
(about 10 images), which it shares with both Phi Par. 15 T and Phi Par. 30 T. The worst
error rate is shown by Phi par. 244 T which ends at 0.021% (about 13 images).
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Figure 4.1.15: Error rate of the validation set for the large CNN architecture.

For the test set, in figure 4.1.16, the Phi Par. 15 T ends with 0.84 % error (about 84
images), 10 images better than optimal. Phi Par. 244 T ends at 0.95% (about 95 images),
1 image worse than optimal.

Figure 4.1.16: Error rate of the test set for the large CNN architecture.

In figure 4.1.17, the errors on the validation set is shown. As can be seen, the resulting
error is about 180.14 for all configurations. It seems that the resulting error can be even
lower as the curve is rather steep at the end.
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Figure 4.1.17: Error of the validation set for the large CNN architecture.

The error on the test set can be seen in figure 4.1.18. Xeon E5 Seq. ends at 290.0. The
lowest error has Phi Par. 15 T with 281.2, about 9 better than the base line. Worst is Phi
Par. 120 T, at 294.9, 4.9 worse than optimal.

Figure 4.1.18: Error of the test set for the large CNN architecture.

4.2 Time Spent on Each Layer

In this section the layer times are presented, i.e. the time spent per layer, epoch and
network instances, on average. The results were gathered as the total time spent for all
network instances on all layers together. Dividing the total time by the number of network
instances and later the number of epochs, yield the number of seconds spent on each layer
per network instance and epoch. A lower time spent on each layer per epoch and instance
indicates on a speed up.

In table 4.2.1, layer times for the small architecture is depicted. It can be seen that the
convolutional layers are far more costly than the others, about 84-85 % of the time is spent
here. Back-propagation in the fully connected layer is also time consuming, requiring up
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to 10% of the time. Perhaps more interesting is that the time is decreasing as adding more
threads and that this is true even for the convolutional layers.

BPFull BPConv FPConv FPFull
s % s % s % s %

Core i5 Seq. 4.476 1.3% 127.7 37.1% 199.2 57.8% 4.691 1.4%
Xeon E5 Seq. 0.441 0.6% 20.6 29.1% 46.3 65.5% 0.585 0.8%

Phi Par. 244 T 0.364 9.1% 3 74.2% 0.4 10.6% 0.046 1.2%
Phi Par. 240 T 0.376 8.9% 3.1 74.2% 0.5 10.7% 0.050 1.2%
Phi Par. 180 T 0.411 9.2% 3.3 73.8% 0.5 10.9% 0.053 1.2%
Phi Par. 120 T 0.475 9.5% 3.7 73% 0.6 11.4% 0.058 1.2%
Phi Par. 60 T 0.713 9.6% 5.3 72% 0.9 12% 0.090 1.2%
Phi Par. 30 T 1.238 8.7% 10.4 72.7% 1.7 12.2% 0.173 1.2%
Phi Par. 15 T 2.264 8.0% 20.6 73.1% 3.5 12.3% 0.352 1.2%
Phi Par. 1 T 22.160 5.5% 302.9 74.9% 51.9 12.8% 5.057 1.3%

Table 4.2.1: Average layer times for the small CNN architecture.

For the medium layer times (figure 4.2.2), a similar pattern as for the small architecture
can be seen. Even more time is spent in the convolutional layers. Up to 90% of the time
is spent here. Up to 10% of the time is spent in the fully connected layers.

BPFull BPConv FPConv FPFull
sec % sec % sec % sec %

Core i5 Seq. 51.2 1.0% 1,626 30.6% 1,927 36.3% 44.19 0.8%
Xeon E5 Seq. 6.2 0.9% 267.5 38.9% 399.1 58.0% 4.61 0.7%

Phi Par. 244 T 3.7 7.5% 39.8 81.3% 4.5 9.2% 0.18 0.4%
Phi Par. 240 T 3.8 7.3% 41.9 81.4% 4.8 9.2% 0.19 0.4%
Phi Par. 180 T 4.2 7.6% 44.1 80.8% 5.2 9.6% 0.20 0.4%
Phi Par. 120 T 5.0 8.3% 47.9 79.4% 6.1 10.2% 0.23 0.4%
Phi Par. 60 T 7.8 9.0% 67.1 77.9% 9.3 10.8% 0.37 0.4%
Phi Par. 30 T 14.3 8.4% 133.2 78.4% 18.5 10.9% 0.73 0.4%
Phi Par. 15 T 27.6 8.1% 266.4 78.6% 37.1 10.9% 1.49 0.4%
Phi Par. 1 T 333.2 6.7% 3,946 79.6% 558.6 11.3% 23.32 0.5%

Table 4.2.2: Average layer times for the medium CNN architecture.

The large architecture spends almost all time in the convolutional layer and almost
no time in the other layers, as can be seen in table 4.2.3. For Phi Par. 240 T about
88% is spent in the back-propagation of convolutional layers and about 10% in forward
propagation. Again, the time spent on each layer is non-increasing for larger amount of
threads.
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BPFull BPConv FPConv FPFull
sec % sec % sec % sec %

Core i5 Seq. 103.9 0.31% 16,778 49.32% 16,952 49.83% 86.73 0.25%
Xeon E5 Seq. 30.2 0.19% 7,097 44.51% 8,714 54.66% 17.04 0.11%

Phi Par. 244 T 7.8 1.36% 506.2 88.48% 54.7 9.56% 0.23 0.04%
Phi Par. 240 T 8.1 1.34% 532.2 88.45% 57.8 9.61% 0.24 0.04%
Phi Par. 180 T 9.0 1.41% 557.9 87.78% 64.8 10.20% 0.26 0.04%
Phi Par. 120 T 11.3 1.63% 598.4 86.82% 75.4 10.94% 0.28 0.04%
Phi Par. 60 T 19.5 1.91% 877.7 86.19% 114.4 11.23% 0.47 0.05%
Phi Par. 30 T 34.7 1.71% 1,749 86.36% 228.3 11.27% 0.94 0.05%
Phi Par. 15 T 60.8 1.50% 3,495 86.52% 456.9 11.31% 1.90 0.05%
Phi Par. 1 T 836.7 1.38% 52,387 86.60% 6,859 11.34% 29.75 0.05%

Table 4.2.3: Average layer times for the large CNN architecture.

For all architectures it can be seen that the more threads involved in training the more
percentage of the total time each thread spends in the back-propagation of the convolu-
tional layer, and less time in the others. Overall, the time spent at each layer is decreased
per thread when increasing the number of threads. Therefore there is an interesting rela-
tionship between the layer times and the speed up of the algorithm.
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Chapter 5

Theoretical Study

This chapter carries out a theoretical analysis of the algorithm. First the algorithm is
described as pseudocode, annotated with the number of times each line is executed in its
context. For each function, the total running time, T , is calculated from the amount of
work per line and the number of times a line is executed. The results are later used when
discussing the speed up and parallelism of the algorithm, and when extending the model
into a performance model. Some functions have been moved to Appendix E to avoid
superfluous information in this chapter. The aim of the theoretical study is to understand,
and discuss the potential of the algorithm.

5.1 Pseudocode and Annotation

The analysis was carried out on the parallel version of the algorithm. This section presents
pseudocode for the algorithm, each line is annotated with the number of invocations in its
context. The pseudocode can be somewhat close to the implementation language C++ as
the analysis was performed on an existing implementation. Approaches and terminology
were inspired by [13]. The terminology used in short:

• for-loops are written as: for .. to ... and while conditions as while condition. For-
loops are inclusive and hence -1 is often use to set correct bounds.

• Indentation is used to define code blocks, white-space to separate statements.

• Function calls are denoted as object.function. We intentionally omit arguments
when appropriate, this is used to denote the current object and CamelCase.function
to denote static calls.

• Plain English will be used when convenient.

• #atomic will be used to denote atomic operations.

• break denotes exiting the current loop.

• error indicates on an error.

• print "some text" indicates print outs.

• All variables are assumed to be local, objects are initialized and given a name.

• Declaration of variables are omitted.
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• Switch statements are translated to corresponding if-else statements.

• // denote comments.

• When discussing the time complexity, operations having their own calculations are
denoted as camel case, e.g. SomeComplexOperation, denoting the work required
to carry out the operation. Also, TSomeComplexOperation is used to define the time
required by the operation. In most cases the function also have a corresponding
listing.

To annotate the code, we use a top-down approach, where each function is calculated
in atomicity. For simplicity, details are omitted as often as possible, names for complex
operations will replace the specifics. The analysis will focus on the Main, Trainer and
NeuralNetwork classes. Functions explained in more detail are the most important ones;
because they either occur repeatedly (once per epoch) or are entry points of the applica-
tion. We define clineNumber to be an arbitrary amount of work, targeting a specific line;
in the calculations, constants are used initially and omitted/aggregated when no longer
needed. The constants can either be thought of as a number of operations requiring a
set of cycles to be retired, or as the approximated time to perform the work once. The
semantics does not matter in the general context, and when it does, it will be expanded
lazily.

It is further assumed that each operation takes a constant amount of time respectively,
i.e. the constant time is atomic for each operation and multiplied by the number of times
it is issued. Moreover, all if-statements are assumed to be visited, however only one of the
branches in if-else statements are included in the calculations. Translation from complex
operations are done lazily to ease the perception of the formulas, e.g. arch denotes an
arbitrary architecture.

Table 5.1.1 shows the variables used. The variables i, it, ns and ep are used to pa-
rameterize the formulas later on and are hence the outer-most parameters. Other hidden
variables exists, however are only used to describe the forward- and back-propagation
shown in Appendix E.

Variable Meaning

i Number of training/validation images.
it Number of test images.
ns Number of networks instances.
ep Number of epochs.
p Number of processing units.

Table 5.1.1: Parameters used in the theoretical analysis.

Some parts of the algorithm are easier described in plain English and some using
programming-alike-syntax, whatever suits the situation is used within the frames of the
stated terminology. As the annotation was constructed after the implementation, it makes
little sense to simplify some expressions further away from the actual implementation.

In some cases, a translation to achieve functions in functions are desirable, and will be
done lazily when needed. Also, sometimes more detailed information is required for the
underlying variables to make sense. E.g. by knowing the architecture under consideration
it is possible to extend and perform the discussions and computations, without a known
architecture it makes little sense.
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The viewpoint of the analysis is on the scalability of the parallelization scheme rather
than the CNN architecture. The rationale is that the parallelization scheme CHAOS is
highly related to the network instances and images, whereas the CNN architectures is not.
Two viewpoints are considered: a) keeping the architecture fixed, how will the algorithm
scale with different network instances (processing units), epochs and images? b) keeping
the number of images, epochs and network instances fixed, how will different CNN ar-
chitectures impact the execution time? The main viewpoint is a), and hence discussions
in this chapter will be performed with this in mind.

In the performance model presented in section 5.4 we investigate how varying the
number of processing units and CNN architecture size affects the running time, and com-
pare it to the measured values. In that case we replace the arch placeholder with more
realistic values. The term processing unit is used implicitly to mean hardware thread if
nothing else is stated.

5.1.1 Main Function

The main function presented in listings 5.1 yields no parallelism, this is the entry point
of the application. In the algorithm, the training can be altered by selecting the type of
training, CNN architecture and number of network instances/threads.

1 main ( )
2
3 1 Let inpu tArgumen t be a s t r u c t h o l d i n g t h e i n p u t a rgumen t s
4 1 S e t d e f a u l t v a l u e s f o r i npu tArgumen t
5 1 Check argument i n p u t
6 1 Read a rgumen t s from command l i n e
7 1 V a l i d a t e t h e a rgumen t s
8
9 / / I n i t i a t e t r a i n i n g

10 1 Let T r a i n e r be a newly c r e a t e d T r a i n e r i n s t a n c e
11 1 i f t r a i n i n g T y p e == CHAOS
12 1 p r i n t "CHAOS"
13 1 t r a i n e r .CHAOS( inpu tArgumen t )
14 1 e l s e
15 1 p r i n t " t r a i n i n g t y p e n o t implemented "
16 1 error
17
18 1 re turn

Listing 5.1: Listings of the main function.

T (i, it, ep, ns) = TTrainer(i, it, ep, ns) + c

The total execution time of the algorithm is the execution time of the Trainer plus a
constant amount of work in main.

5.1.2 Trainer Function

The Trainer class carries out the training, pseudocode is presented in listings 5.2. Cur-
rently it holds the chaos function and some helper functions (including runTest). The
Trainer trains the network for a set of epochs (ep) and evaluates the training effort on the
test (it) and validation set (i) for each epoch. Sequentially, the training is performed on one
image at the time, when parallelizing the algorithm, one network instance trains a subset
of the images, picking a new image from the set in each iteration as long as more images
exist in the set of images not yet processed. Note that workers train a non-overlapping
subset of images.
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The number of executions is divided by ns in the listings as the context is the worker.
Therefore some terms are abbreviated, instead of denoting ns/ns we ignore the term
entirely.

1 chaos ( )
2
3 1 Let r e p o r t e r be a newly i n i t i a t e d R e p o r t e r o b j e c t
4
5 / / S e t ETA and name
6 1 e t a S t a r t = ETA_START / / 0 . 001
7 1 e t a F a c to r = ETA_FACTOR / / 0 . 9
8 1 nName = H e l pe r . getNetworkName ( a r c h i t e c t u r e )
9

10 / / Cr ea t e n e t w o r k s w i t h sh ar ed w e i g h t s
11 1 Let d e f be a new Neura lNetwork c r e a t e d f o r a r c h i t e c t u r e o f t y p e nName wi th

Crea t eNe twork
12 1 ReadNetworkWeights ( def , nName )
13
14 1 Let nns be a new vec to r o f s i z e numberOfNetworks
15 ns+1 f o r i = 0 to nns . Length−1
16 ns Let nn be a new Neura lNetwork c r e a t e d wi th nName wi th Crea teNe twork
17 ns SetNe tworkWeigh t s ( nn , d e f )
18 ns Add nn to nns
19
20 / / I n i t i a t e and pre a l l o c a t e images
21 1 Let i d x h _ t r a i n , i d x h _ v a l i d a t i o n , i d x h _ t e s t be IDX h a n d l e r s f o r t h e d a t a s e t s
22 1 I n i t i a t e I m a g e s ( i d x h _ t r a i n ) ; I n i t i a t e I m a g e s ( i d x h _ v a l i d a t i o n ) ; I n i t i a t e I m a g e s ( i d x h _ t e s t ) ;
23
24 / / Loads a l l images to a b u f f e r e a s i e r to manage
25 1 A l l o c a t e s p a c e f o r b u f f e r s t r a i n I m a g e s , t e s t I m a g e s and v a l i d a t i o n I m a g e s
26 1 P r e A l l o c a t e I m a g e s ( t r a i n I m a g e s )
27 1 P r e A l l o c a t e I m a g e s ( v a l i d a t i o n I m a g e s )
28 1 P r e A l l o c a t e I m a g e s ( t e s t I m a g e s )
29
30 1 P r e A l l o c a t e D e s i r e d O u t p u t
31 1 I n i t i a l i z e v a r i a b l e s
32
33 ep+1 whi le con tEpochs == t r u e
34 ep s e t c o u n t = 0
35
36 ep∗(ns+1) p a r a l l e l f o r n = 0 to nns . Length−1
37
38 ep nns [ n ] . s e t E t a ( e t a , e t a S t a r t , e t a F a c to r )
39 ep nns [ n ] . r e s e t L a y e r T i m e s ( )
40
41 ep∗(i/ns+1) whi le t r u e
42 # a to mic
43 ep∗(i/ns+1) myCount = c o u n t ++;
44
45 ep∗(i/ns+1) i f myCount >= numberTra in ing Images
46 ep break
47
48 ep∗i/ns Let l a b e l be t h e l a b e l a s s o c i a t e d to myCount
49 ep∗i/ns Let image be t h e image a s s o c i a t e d to myCount
50 ep∗i/ns S e t image to i n p u t l a y e r
51
52 / / Forward p r o p a g a t e t h e image t h r o u g h t h e ne twork
53 ep∗i/ns∗l f o r j = 1 to numberOfLayers−1
54 ep∗i/ns∗(l−1) nns [ n ] . F o r w a r d P r o p a g a t e ( j )
55
56 ep∗i/ns Let t be t h e d e s i r e d o u t p u t
57 ep∗i/ns Let y be t h e o u t p u t o f t h e l a s t l a y e r
58 ep∗i/ns Let d e l t a be t h e d e l t a s o f t h e l a s t l a y e r
59
60 ep∗i/ns(nll+1) f o r k = 0 to numberOfNeuronsLas tLayer−1
61 ep∗i/ns∗nll i f a c t i v a t i o n T y p e L a s t L a y e r == sof t_max
62 ep∗i/ns∗nll i f y [ k ] < FLOAT_MIN / / The f l o a t minimum
63 ep∗i/ns∗nll y [ k ] = FLOAT_MIN
64 ep∗i/ns∗nll d e l t a [ k ] = y [ k ] − t [ k ]
65 ep∗i/ns∗nll e l s e i f a c t i v a t i o n T y p e L a s t L a y e r == s c a l e d _ t a n h
66 ep∗i/ns∗nll d e l t a [ k ] = t a n h ( y [ k ] ) ∗ ( y [ k ] − t [ k ] )
67 / / End f o r
68

49



69 / / Backward p r o p a g a t e t h e image t h r o u g h t h e ne twork
70 ep∗i/ns∗(l−1) f o r l = numberOfLayers −2 to 0
71 ep∗i/ns∗(l−2) nns [ n ] . BackwardPropaga te ( l )
72
73 / / End w h i l e t r u e
74
75 ep Update l a y e r t i m e s i n R e p o r t e r
76 / / End f o r n e t w o r k s
77
78 ep RunTest ( i , ns )
79 ep RunTest ( i t , ns )
80 ep con tEpochs = H e lp e r . s to p T r a i n i n g ( )
81 ep Update r e p o r t e r t i m e s and error s
82 ep e t a = e t a ∗ e t a F a c to r
83 ep epoch ++
84 / / End w h i l e epochs
85
86 1 Update to t a l e x e c u t i o n t i m e s i n r e p o r t e r

Listing 5.2: Pseudocode for the trainer.

The Trainer needs some explanation:

• (3) - A reporter object is created to serialize execution data to disk.

• (6-7) - ETA (decay) is set for training. The ETA controls the factor of learning, i.e.
how much the deltas (partial derivatives) should affect the weight parameters. The
value is decreased by a factor in each epoch.

• (11-12) - A default network instance is created to hold the shared weights. The
default instance has the same CNN architecture as the other instances. Weights are
read from disk to the shared memory. Each instance is created from the configura-
tion file defining the layers.

• (14-18) - Networks are created and initiated with the shared weights. The pointer
in memory is set to the pointer of the weights of the default network instance.

• (21-22) - Images and labels are loaded from disk to memory.

• (25-28) - Images are pre-allocated in the memory for easier access. Even if the
images and labels are accessible in the Idx class, their memory is allocated lazily.
Instead images and labels are loaded in such a way that they are faster and easier to
access, although with the penalty of more memory required.

• (30) - Desired output vectors are generated and saved in global memory for fast and
easy access.

• (33-83) - The training process is carried out for the number of epochs predefined.

• (36-66) - The learning is performed in parallel by ns network instances, each pro-
cessing a chunk of images. The chunk is not evenly divided, instead each instance
picks images as long as more images are available.

• (41) - Loops until no more images to process. After increasing the current image
count at line 43 each instance checks if all images are processed, and exits if that is
the case.

• (53-54) - Forward propagates the image through the network, calculating the output
of the final layer. Forward propagation calculates the weighted sum through an
activation function at each neuron until the output layer.
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• (60-66) - Calculates partial derivatives (deltas) of the last layer.

• (70-71) - Back-propagates the error through the network to adjust the weight pa-
rameters.

• (78-79) - Runs the test for the validation set and test set respectively.

• (80) - Determines whether to continue training or not.

TTrainer(i, it, ep, ns) = (TCreateNetwork(arch) + c15)(ns+ 1)
+ TReadNetworkWeights(arch) + (TSetNetworkWeights(arch) + C18) ∗ ns
+ 2 ∗ TInitateImages(i) + TInitiateImages(it) + 2 ∗ TPreAllocateImages(i)

+ TPreAllocateImages(it) + TPreAllocateDesiredOutput(arch)

+ (a+ TRuntTest(i, ns) + TRunTest(it, ns)) ∗ ep+ b ∗ ep ∗ ns
+ (c− 2 ∗ TBPropOneLayer(arch)− TFPropOneLayer(arch)) ∗ ep ∗ i/ns
+ (TFpropOneLayer(arch) + c70 + TBPropOneLayer(arch)) ∗ ep ∗ i/ns ∗ l
+ d ∗ ep ∗ i/ns ∗ nll + e

The above formula is the result of simplifying the summation of work on each line.
Some rewrites are performed to ease perception, such as using arch to denote any arbitrary
CNN architecture, and FPropOneLayer to define the forward propagation at one layer.
The variable ns, i.e. the number of network instances/workers depicts that the number of
images per worker will decrease as the number of workers increase. The time complexity
for the complex operations are defined in their respective formula, some defined in this
chapter (main, chaos, runTest, fowardPropagation and backPropagation), others defined
in Appendix E.

In section 5.2 our goal is to, on a high level, discuss the speed up and parallelism of
the algorithm. The problem is that the execution time of our algorithm now depends on
several parameters prohibiting us to safely use the standard Big Oh notation as discussed
in [67]. Therefore we did not further simplify the formula at this point, instead we lazily
do so when necessary to avoid misconceptions.

5.1.3 Forward Propagate Function

The forwardPropagate function, defined in listings 5.3, determines the target-layer func-
tion to invoke depending on the layer type at the given index.

1 f o r w a r d P r o p a g a t e ( )
2 1 t y p e = l a y e r s [ i d x ] . t y p e
3
4 1 i f t y p e == f u l l y _ c o n n e c t e d
5 1 F o r w a r d P r o p a g a t e F u l l y C o n n e c t e d L a y e r ( i d x )
6 1 e l s e i f t y p e == c o n v o l u t i o n a l
7 1 F o r w a r d P r o p a g a t e C o n v o l u t i o n a l L a y e r ( i d x )
8 1 e l s e i f t y p e == p o o l i n g
9 1 ForwardPropaga t eMaxPoo l ingLaye r ( i d x )

10 1 e l s e
11 1 p r i n t " Layer t y p e no implemnented "
12 1 error
13
14 1 Update l a y e r t i m e s

Listing 5.3: Pseudocode for the forwardPropagate function.
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TForwardPropagate(arch, idx) = c2 + c4 + c6 + c8 + c10
+ TForwardPropagateLayer(arch, idx) + c14+

= TForwardPropagateLayer(arch, idx) + c′

where TForwardPropagateLayer(arch, idx) is one of:
TForwardPropagateFullyConnectedLayer(arch, idx),
TForwardPropagateConvolutionalLayer(arch, idx),
TForwardPropagateMaxPoolingLayer(arch, idx) or
c11 + c12. These are further defined in Appendix E.

5.1.4 Back-propagate Function

Back-propagate, shown in listings 5.4, is responsible for determining the sub-routine to be
invoked for the layer type at a specific index. As the algorithm determines the underlying
layer type based on the index of the next layer we will use variable names accordingly,
e.g. we will use nnl to mean neurons in layer idx+1 when discussing calculations at a
specific layer.

1 b a c k p r o p a g a t e ( )
2
3 1 t y p e = l a y e r s [ i d x + 1 ] . t y p e
4
5 1 i f t y p e == f u l l y _ c o n n e c t e d
6 1 B a c k p r o p a g a t e F u l l y C o n n e c t e d L a y e r ( i d x )
7 1 e l s e i f t y p e == c o n v o l u t i o n a l
8 1 B a c k p r o p a g a t e C o n v o l u t i o n a L a y e r ( i d x )
9 1 e l s e i f t y p e == p o o l i n g

10 1 Backpropaga teMaxPoo l ingLaye r ( i d x )
11 1 e l s e
12 1 p r i n t " Layer t y p e n o t implemented "
13 1 error
14
15 1 Update l a y e r t i m e s

Listing 5.4: Pseudocode for the backPropagate function.

TBackpropagate(arch, idx) = c3 + c5 ++c7 + c9 + c11
+ TBackpropagateLayer(arch, idx) + c17

= TBackpropagateLayer(arch, idx) + c

where TBackpropagateLayer(arch, idx) is one of:
TBackpropagateFullyConnectedLayer(arch, idx),
TBackpropagateConvolutionalLayer(arch, idx),
TBackpropagateMaxPoolingLayer(arch, idx) or
c12 + c13

5.1.5 Run Test and Validation Functions

The runTest function (listings 5.5) encapsulates the determineErrorForChunk function
which computes the error and error rates of a set of images. In our case, the chunk size
is fixated to 1. The error and error rates are calculated through the determinerError-
ForChunk function and reduced by all threads participating in the process.
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1 r u n T e s t ( )
2
3 1 c o u n t = myCount = e r r _ l o c = ERR_loc = 0
4
5 ns+1 p a r a l l e l f o r n = 0 to nns . Length−1
6 i/ns+1 whi le t r u e
7 # a to mic
8 i/ns+1 myCount = c o u n t ++;
9

10 i/ns+1 i f myCount >= numberOfImages
11 1 break
12
13 i/ns e r r _ l o c += nns [ n ] . De te rmineEr ro rForChunk ( )
14 i/ns ERR_loc += nns [ n ] . g e t E r r o r ( )
15 / / End w h i l e
16 / / End f o r
17
18 1 re turn e r r _ l o c , ERR_loc

Listing 5.5: Pseudocode for the runTest function.

TRunTest(i, ns) = c3 + c5 + c6 + c8 + c10 + c11 + c18 + c5 ∗ ns
+ (c6 + c8 + c10 + TDetermineErrorForChunk + c14) ∗ i/ns
= a ∗ ns+ (b+ TDetermineErrorForChunk) ∗ i/ns+ c

5.2 Work, Span, Speed Up and Parallelism of the Algorithm

This section discusses the theoretical bounds of the algorithm in terms of work, span,
speed up and parallelism. The work is defined as T1, i.e. the time it takes to perform all
work on one processing unit, or the sum of work on all processing units. The span is the
longest of any of the paths through the algorithm denoted as T∞; it can also be thought
of the execution time given an infinite number of processing units. The running time on
p processing units is denoted as Tp. p == ns is used, i.e. one network instance per
processing unit. The speed up is denoted as T1/Tp and the parallelism as T1/T∞. The
speed up yields a theoretical upper bound of expectation, and the parallelism how well
suited the algorithm is for parallelization, i.e. what variable(s) is the parallelism bound to.
A linear speed up occur when T1/Tp = p = ns [13].

The goal is to understand how well the algorithm scales with an increasing number
of processing units, and how it responds when varying the number of epochs and images.
More importantly, the performance model allows us to assess the implementation.

Details of the CNN architecture is omitted (a more detailed discussion is carried out
in the section 5.3), simplifications are made by denoting the architecture as arch; the
viewpoint a) as discussed previously is of interest in this analysis. Workers can carry out
their work independently of each other except for the weight updates which will be shared
by all workers.

Our algorithm uses parallel for statements to indicate parallelization, there is no need
for recursive calls, or more complex syntax. The spawning and synchronization of threads
are assumed to be negligible since they only contribute to the running time once per epoch
and since no hardware characteristics are present, the overhead is hard to calculate.

The execution time for the main function was calculated previously and repeated here:

T (i, it, ep, ns) = TTrainer(i, it, ep, ns) + c

The main function is simply a constant amount of work plus the work carried out
by the Trainer for i training/validation images, it test images, ep epochs and ns network
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instances. The formula was denoted earlier and repeated below to base our working for-
mula:

TTrainer(i, it, ep, ns) = (TCreateNetwork(arch) + c15)(ns+ 1)
+ TReadNetworkWeights(arch) + (TSetNetworkWeights(arch) + C18) ∗ ns
+ 2 ∗ TInitateImages(i) + TInitiateImages(it) + 2 ∗ TPreAllocateImages(i)

+ TPreAllocateImages(it) + TPreAllocateDesiredOutput(arch)

+ (a+ TRuntTest(i, ns) + TRunTest(it, ns)) ∗ ep+ b ∗ ep ∗ ns
+ (c− 2 ∗ TBPropOneLayer(arch)− TFPropOneLayer(arch)) ∗ ep ∗ i/ns
+ (TFpropOneLayer(arch) + c70 + TBPropOneLayer(arch)) ∗ ep ∗ i/ns ∗ l
+ d ∗ ep ∗ i/ns ∗ nll + e

Where TBpropOneLayer(arch) and TFPropOneLayer(arch) is the time for back- and forward-
propagation respectively for CNN architecture arch on an arbitrary layer. TCreateNetwork(arch)
is performed one time per network instance and one time for the default instance.
TReadNetworkWeights(arch) is the time to read the network weights from disk into memory.
TSetNetworkWeights(arch) is the time to set the pointer of each layer to the memory address
of the shared weights, and TInitiateImages and TPreAllocateImages to prepare the images in
memory. RunTest performs validation on the test- and validation-sets.

5.2.1 Amount of Work Required by the Algorithm

To ease discussion, we simplify the original formula to a working formula, removing
superfluous information. The variables used below have no direct relation to the ones in
the original formula. We define the working formula as:

Tp(i, it, ep) = a ∗ p+ 4 ∗ b ∗ i+ 2 ∗ c ∗ it

+ d ∗ ep+ e ∗ ep ∗ p+
((f + TFProp + TBProp) ∗ i

pi

)
∗ ep

+
((g + TFProp) ∗ i

pi

)
∗ ep+

((h+ TFProp) ∗ it
pit

)
∗ ep+ w

Terms performing a constant amount of work are aggregated and hidden to ease the
calculations. Remember that restrictions were put on the CNN architecture being fixed
and hence operations related to the architecture requires a constant amount of work even
when changing the input parameters; although the constant is certainly large, it is still a
constant. The formula is also extended to forward- and back-propagation level, TFProp

and TBProp denotes the time to forward- and back-propagate an image through the net-
work, respectively. TCreateNetwork, TSetNetworkWeights and some other terms are aggregated
into a. TInitiateImages and TPreAllocateImages is exchanged with constants b and c to denote
that the time to prepare images are 2 times each set, where each image require a con-
stant amount of work. We introduce pi and pit to denote that p cannot exceed i or it, i.e.
pi ≤ i ∧ pit ≤ it and thus pi = min(p, i) ∧ pit = min(p, it). This also put restrictions
on that the work over epochs cannot be lowered by adding more threads as this still needs
to be carried out sequentially for ep epochs. Also we exchanged ns with p to denote the
number of processing units. Even though it is possible to simplify further, we see no point
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in doing so. From the working, formula T1 is denoted as:

T1(i, it, ep) = a+ 4 ∗ b ∗ i+ 2 ∗ c ∗ it
+ d ∗ ep+ e ∗ ep+ (f + TFProp + TBProp) ∗ i ∗ ep
+ (g + TFprop) ∗ i ∗ ep+ (h+ TFProp) ∗ it ∗ ep+ w

As the formula is annotated with p = ns it is possible to use p = ns = 1 to deter-
mine the amount of work required by the algorithm. The algorithm carries out a constant
amount of work a, w, some minor work per epoch, and work dependent on the number of
images in the test- and validation sets. That is, the preparation of the images and labels
and forward- and back-propagation of images. The total amount of work is independent
of the number of processing units, as more processing units only share the total amount of
work. The asymptotic notation can be defined as: O(i) if it < i for a fixed ep, indicating
that the execution time grows by the number of images.

5.2.2 Span of the Algorithm

Before defining the span, it can be seen that the parallelism cannot exceed the number of
images i - the speed up is likely to decrease after reaching p > it. Another observation
is as p increases, the time for a which is mainly the creation of network instances also
increases. At the same time the e∗ep∗p increase, however, this is really small in compar-
ison. The time spent in each epoch for the forward- and back-propagation is decreasing
when adding more processing units since each instance trains a smaller set of images.
Without detailed calculations, the time required for the creation of the instances is far
less than the time to forward propagate i images 2 ∗ ep times, back-propagate them ep
times, and forward propagate it images ep times. It would require really large and wide
networks training a small set of images for a low number of epochs. Moreover, although
not currently implemented, the creation of network instances could be parallelized as well
and hence each processing unit would create its own instance - an easy modification to the
existing algorithm. We could mitigate the time to create instances by just transforming
a ∗ ns to a ∗ ns/ns = a, and therefore this will be omitted further on in this chapter, if
not stated otherwise.

In figure5.2.1, an overview of the algorithm is shown using call outs to denote the
time complexity for different operations. Dashed lines denote the critical path through the
algorithm. As each processing unit carries out equal amount of work, doing so in parallel
reduces the overall computations required per worker, the shortest execution time depends
on the slowest worker. Here, the creation of network instances is not parallelized. The
span can be thought of as the sequential amount of work required to initialize images and
labels, and other variables necessary, plus the maximum time for each network instances
to carry out its intended amount of work in training, validation and testing. If applying
infinite number of processing units, what remains are the initial amount of work and the
maximum time spent by each processing unit to process its chunk of images. The call
outs makes the figure easier to relate to the simplified working formula.
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Figure 5.2.1: An overview of CHAOS.

Before making an attempt to define the span we first simplify Tp one last step. It inter-
ests us how the execution time for the algorithm changes with the number of processing
units primarily, yet keeping the epochs and images in the equation. We do not remove
anything, simply exchange terms with abbreviations to avoid excessive information:

Tp(i, it, ep) = a ∗ p+ 4 ∗ b ∗ i+ 2 ∗ c ∗ it

+ d ∗ ep+ e ∗ ep ∗ p+
((f + TFProp + TBProp) ∗ i

pi

)
∗ ep

+
((g + TFprop) ∗ i

pi

)
∗ ep+

((h+ TFProp) ∗ it
pit

)
∗ ep+ w

= (b′ ∗ i+ c′ ∗ it+ d ∗ ep) +
(f ′ ∗ i

pi

)
∗ ep+

(g′ ∗ i
pi

)
∗ ep+

(h′ ∗ it
pit

)
∗ ep+ w′

The work by a is aggregated in tow′ as each instance creates itself. The work divisible
by the number of processing units (forward- and back-propagation) are aggregated into
f ′, g′, h′. We remove e ∗ ep ∗ p as this is only the work to spawn the threads and does not
impact the execution time as we omitted the synchronization in our theoretical model.

As each processing unit clearly cannot process less than one image, denoted above,
the ideal case for the parallel parts of the algorithm would occur for p == i, one worker
process one image. This infers that the critical path is the sequential amount of work plus
the work by each network instance: train one image, test one image, and validate one
image, as these cannot be separated. From the simplified working formula the span is
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defined as:

T∞(i, it, ep) = (b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ + g′ + h′) ∗ ep

i/pi and it/pit can be removed since each instance trains, validates and tests one image
each. Also, as can be seen, some work is carried out once (b′ ∗ i+ c′ ∗ it+ w′) and some
per epoch (d + f ′ + g′ + h′) ∗ ep. The equation shows that if infinite number of threads
are available, the sequential amount of work will depend on the number of images, and
the parallel part will decrease to the time of processing one images for ep epochs.

5.2.3 Speed Up of the Algorithm

The speed up is the ratio between execution times of T1 and Tp, i.e. how much faster p
processing units are than one processing unit to carry out the work. From the simplified
Tp we derive the simplified T1:

T1(i, it, ep) = (b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ ∗ i+ g′ ∗ i+ h′ ∗ it) ∗ ep

The speed up, T1/Tp is the total amount of work divided by the work as carried out by
p processing units:

Sp =
T1

Tp
=

(b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ ∗ i+ g′ ∗ i+ h′ ∗ it) ∗ ep

(b′ ∗ i+ c′ ∗ it+ w′) +

(
d+

(f ′ ∗ i
pi

)
+
(g′ ∗ i

pi

)
+
(h′ ∗ it

pit

))
∗ ep

Grouping the terms and factor out ep clarify the speed up - if pi == pit == 1, the
speed up is one. Increasing the number of processing units will decrease the denominator
and therefore increase the speed up. However, the speed up will not be linear as the
overhead from the sequential amount of work will be a limiting factor. If increasing
the number of images, we could expect the right term to outgrow the left term as the
constants f ′, g′ and h′ are larger than b′ and c′ and thereby diminish the impact of the left
term. Another observation is that ep adds a factor to the right term, indicating that the left
term will have less impact for larger epoch counts.

To visualize the theoretical speed up, the formula was parameterized with: a) ep=70,
i=60,000, it=10,000 and b) ep=70, i=120,000, it=20,000, and increasing p values. More-
over, the values of the constants were set to values approximately relative to each other.
As can be seen, the speed up diminishes after 60,000 and 120,000 images respectively as
it is no longer possible to divide the images over available instances. Moreover, it can be
seen that an almost linear speed up is encountered up to 10,000 threads for a) and 20,000
threads for b). After this point only the training and validation can be sped up, not the
testing, and hence the speed up increase more slowly. The values used are approximations
and number of threads overestimated in reality. However, the plot depicts the expected be-
haviour when increasing the number of threads. More importantly, the algorithm seem to
scale well with the number of threads until reaching i. If focusing on less than it threads,
which is a more realistic scenario, the algorithm seem to encounter an almost linear speed
up, in theory.
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Figure 5.2.2: Instantiation of the theoretical speed up model.

5.2.4 Parallelism of the Algorithm

We end this section by denoting the parallelism as:

T1
T∞

=
(b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ ∗ i+ g′ ∗ i+ h′ ∗ it) ∗ ep

(b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ + g′ + h′) ∗ ep

The parallelism is bound to the number of images. The left term is present in both
the denominator and numerator, when increasing the number of images they will grow
in a similar fashion, however, the right term in the numerator will grow faster as f ′, g′

and h′ are larger than b′ and c′, and also include ep. For large i and it, the left term
in the numerator will diminish. Again assuming it ≤ i we can asymptotically state the
parallelism as a function that is bound by the number of images: θ(i).

Note that the magnitude of forward- and back-propagation hidden in f ′, g′ and h′ does
not seem to impact the parallelism theoretically, just increase the amount of work, and
hence the total execution time. To conclude: given an infinite number of processing units,
the maximum achievable speed up in theory is highly bound to the number of images i.

5.3 CNN Architectures

In our original viewpoint, referred to as a) we omitted the underlying architecture en-
tirely. In this section we will briefly discuss what we could expect from the different
architectures. For each architecture we will define the aggregated amount of operations
for forward- and back-propagation on the different layers. These are calculated from the
number of maps, weights, map sizes and kernel sizes from the detailed listings in Ap-
pendix E. Further on we will assume each operation to consume an arbitrary factor of
instructions in order to compare architectures. This is far from accurate as operations will
infer different number of instructions, however it allows for comparison of architectures.
The table 5.3.1 shows the results of inserting the parameters for the different architectures
into the forward propagation formula. The ratio shows the increase as compared to the
previous architecture. About 10 times more operations are carried out at each step when
increasing the architecture size.
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Max Pooling Fully Connected Convolutional Total Ratio

Small 7k 5k 46k 58k -
Medium 29k 56k 474k 559k 9.64
Large 99k 137k 5,113k 5,349k 9.57

Table 5.3.1: Number of operations when forward propagating one image for different
CNN architectures.

In table 5.3.2 the approximated number of operations needed to backpropagate one
image is shown. At each step the number of operations increase by a factor of about 12.

Max Pooling Fully Connected Convolutional Total Ratio

Small 2k 10k 512k 524k -
Medium 4k 112k 6,003k 6,119k 11.68
Large 8k 274k 72,896k 73,178k 11.96

Table 5.3.2: The number of operations when back-propagating one image for different
CNN architectures.

5.4 Performance Model

The theoretical model presented in the previous section 5.2 have some practical limita-
tions. In this section we make an attempt to include the wait times (memory latency,
synchronization overhead) in a performance model, escalating the theoretical model one
step closer to the reality. Adding memory latencies, and synchronization overhead to the
theoretical model allow to plot the measured and predicted execution times and thereby
evaluate the theoretical model and the implementation of the parallelization scheme. Ad-
ditionally it allow us to claim the execution time for increasing thread counts, and chang-
ing number of epochs and images.

5.4.1 Design of the Performance Model

The performance model was derived by extending the theoretical model. Below is the
non-simplified working formula repeated:

Tp(i, it, ep) = a ∗ p+ 4 ∗ b ∗ i+ 2 ∗ c ∗ it

+ d ∗ ep+ e ∗ ep ∗ p+
((f + TFProp + TBProp) ∗ i

pi

)
∗ ep

+
((g + TFprop) ∗ i

pi

)
∗ ep+

((h+ TFProp) ∗ it
pit

)
∗ ep+ w

The goal is to construct a parameterized model with ep, i, it and p as parameters. The
ambition is not to create a model to scale well over several nodes and a large number of
threads, rather to evaluate the theoretical model and relate it to the actual measurements.

The total execution time depends on several factors including: speed, number of pro-
cessing units, communication costs (such as network latency), and memory contention.
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As the current algorithm is not implemented to facilitate message-passing between pro-
cessing units, this is omitted. Most interesting is contentions causing wait times, including
memory latencies and synchronization overhead. A time penalty referred to as Tmem is
added to the model, adding memory and synchronization overhead. The contention is
measured through an experimental approach by executing a small script on the coproces-
sor for different thread counts, weights and layers. The full set of variables are shown in
table 5.4.1.

Variable Explanation

Parameters

p Number of processing units
i Number of training/validation images
it Number of test images
ep Number of epochs

Constants - hardware dependent

CPI Best theoretical CPI/thread
s Speed of processing unit
OperationFactor Operation factor

Measured - hardware dependent

MemoryContention Memory contention
TFprop+ Forward propagation / image (ms)
TBprop+ Back-propagation / image (ms)
TPrep+ Time for preparations

Calculated - hardware independent

FProp* # FProp Operations / image
BProp* # BProp Operations / image
Prep* # Operations carried out for preparations

* The parameter is only used in prediction a)
+ The parameter is only used in prediction b)

Table 5.4.1: Variables used in the performance model.

Term Value

Epochs (ep) 70 (small, medium), 15 (large)
Images (i) 60,000
Images (it) 10,000
Processing units/threads (p) 1 - 3,840

FProp See table 5.3.1
BProp See table 5.3.2

Prep
Small: 109

Medium: 1010

Large: 1011

Table 5.4.2: Hardware independent parameters used in the performance model.
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Parameter Intel Xeon Phi

s 1.238 GHz
Max processing units available (p) 244 (240 used for prediction)

TFprop(ms)
Small: 1.45
Medium: 12.55
Large: 148.88

TBprop(ms)
Small: 5.3
Medium: 69.73
Large: 859.19

TPrep(s)
Small: 12.56
Medium: 12.7
Large: 13.5

CPI 1-2 threads: 1; 3 threads: 1.5; 4 threads: 2
MemoryContention Table 5.4.4

OperationFactor
Small: 15
Medium: 15
Large: 15

Table 5.4.3: Hardware specific parameters used in the performance model.

# Threads Small Medium Large

1 7.10 ∗ 10−6 1.56 ∗ 10−4 8.83 ∗ 10−4
15 6.40 ∗ 10−4 2.00 ∗ 10−3 8.75 ∗ 10−3
30 1.36 ∗ 10−3 3.97 ∗ 10−3 1.67 ∗ 10−2
60 3.07 ∗ 10−3 8.03 ∗ 10−3 3.22 ∗ 10−2
120 6.76 ∗ 10−3 1.65 ∗ 10−2 6.74 ∗ 10−2
180 9.95 ∗ 10−3 2.50 ∗ 10−2 1.00 ∗ 10−1
240 1.40 ∗ 10−2 3.83 ∗ 10−2 1.38 ∗ 10−1
480* 2.78 ∗ 10−2 7.31 ∗ 10−2 2.73 ∗ 10−1
960* 5.60 ∗ 10−2 1.47 ∗ 10−1 5.46 ∗ 10−1
1,920* 1.12 ∗ 10−1 2.95 ∗ 10−1 1.09
3,840* 2.25 ∗ 10−1 5.91 ∗ 10−1 2.19

* Predicted values.

Table 5.4.4: Measured and predicted memory contention (s) for the Intel Xeon Phi.

We define Tmem(ep, i, p) = MemoryContention∗ep∗i
p

where MemoryContention is the
measured memory contention when p threads are fighting for the weights I/O concur-
rently, the values are depicted in table 5.4.4. In table 5.4.1 parameters used in the per-
formance model are depicted, some are hardware dependent others independent of the
underlying hardware. Each parameter is either measured, calculated, a constant or a pa-
rameter in the model. Table 5.4.3 shows the parameters used specific for the Intel Xeon
Phi and table 5.4.2 shows parameters independent of the hardware.

In essence two strategies are provided: strategy a) is not concerned with any practical
measurements except for Tmem. An approximation of the number of operations required
for the calculations are done, w.r.t. the calculated values in section 5.3 - each operation
can be thought of as an arbitrary amount of instructions. Along with the CPI and Op-
erationFactor it is possible to derive the number of instructions (theoretically) per cycle
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that each thread can perform. Strategy b) applies the measurements for the sequential
work, and the forward- and back-propagation when measured sequentially executing the
algorithm.

Strategy a) of the formula is defined as:

T (i, it, ep, p, s) = Tcomp(i, it, ep, p, s) + Tmem(ep, i, p)

=

(
Prep+ 4 ∗ i+ 2 ∗ it+ 10 ∗ ep

s

+

(((FProp+BProp

s

)
∗ i
pi
∗ ep

)
+

((FProp
s

)
∗ i
pi
∗ ep

)

+

((FProp
s

)
∗ it

pit
∗ ep

))
∗ CPI

)
∗ OperationFactor + Tmem(ep, i, p)

Note that the constants are high approximations, they are relative to each other yet far
from precise. We use Prep to be different for each CNN architecture (109, 1010 and 1011

for small, medium and large architecture respectively) and to denote the number of opera-
tions required to create network instances, prepare weights, etc. Additionally, b′, c′ can be
thought of as having a factor of 1, i.e. the work per epoch (not concerned with network in-
stances) is 10 times more costly than the work to prepare/initialize one image. Constants
f, g, h are omitted as they diminish with Fprop and BProp. The OperationFactor is
adjusted to closely match the measured value for 15 threads, and mitigate the approxima-
tions done for instructions in the first place, at the same time account for vectorization.

When one hardware thread is present per core, one instruction per cycle can be as-
sumed. For 4 threads per core, only 0.5 instructions per cycle can be assumed per thread -
each thread gets to execute two instructions every fourth cycle (CPI of 2) and hence we
use the CPI factor to control the best theoretical amount of instructions a thread are able
to retire. The speed s is defined in table 5.4.3. FProp and BProp are placeholders for
the actual number of operations shown in tables 5.3.1 and 5.3.2 respectively.

For strategy b) the following formula is used:

Tp(i, it, ep) = Tcomp(i, it, ep, p) + Tmem(ep, i, p) =

Tprep +

(((
TFProp + TBprop

)
∗ i
pi
∗ ep

)
+
(
TFProp ∗

i

pi
∗ ep

)
+
(
TFProp ∗

it

pit
∗ ep

))
∗ CPI + Tmem(ep, i, p)

Where Tprep is the measured time it takes to prepare the training (small:12.56s, medium
12.7s and large 13.5s) and TFprop, TBProp the time it takes to forward- and back-propagate
one image through the network.

5.4.2 Evaluation of the Performance Model

This section aims to evaluate the predicted values using the performance model w.r.t. the
measured values in the experimental study. Also, the number of epochs and images are
scaled to predict execution time for larger datasets and longer training.
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In figure 5.4.1 the predicted and measured execution times are depicted. Values for
b) have a dark-gray background, measured values have a black background, and a) has
a light-gray background. For the small network, the predictions are pretty close to the
measured values with a slight deviation at the end. The prediction models seem to over-
estimate the execution time a with a small factor.

Figure 5.4.1: Predicted vs Measured execution times for Intel Xeon Phi using the small
CNN architecture.

For the medium CNN architecture, depicted in figure 5.4.2, the measured execution
time is similar to both predicted a) and predicted b). At 120 threads, the measured and
predicted values starts to deviate, which is recovered at 240 threads. Overall the prediction
follow the measured values closely, although it underestimates the execution time slightly,
in contrast to the small, which made an overestimation.

Figure 5.4.2: Predicted vs Measured execution times for the Intel Xeon Phi using the
medium CNN architecture.

The large CNN architecture (figure 5.4.3) yields similar results as the medium. As
can be seen, the measured values are slightly higher than the predictions, however, the
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predictions follow the measured values. As can be seen for 120 threads there is a deviation
which is recovered, more or less, for 240 threads. Also, the predictions increase between
120 and 180, and 180 and 240 threads for both predictions whereas the actual execution
time is lowered. This is most probably due to the CPI factor that is added when 3 or more
threads are present on the same core. If adding more steps in the model (more thread
counts), the transition is expected to be smoother. With larger steps in the graph, the
values become disjointed.

Figure 5.4.3: Predicted vs Measured execution times for Intel Xeon Phi using the large
CNN architecture.

By calculating the difference between measured and predicted values and divide the
difference over the predicted value yields the relative error in prediction. The averaged
value over all measured thread counts (1, 15, 30, 60, 120, 180, 240 and 244 threads) are

depicted in table 5.4.5. Mathematically we formulate x =
|m− p|

p
to derive the deviation

in prediction where x denote the deviation, m the measured value, and p the predicted
value.

Small Medium Large
a) b) a) b) a) b)

14.57% 16.35% 14.76% 7.48% 15.36% 10.22%

Table 5.4.5: Averaged deviation in predictions for both prediction models and all consid-
ered CNN architectures.

In table 5.4.6, the same prediction models were used to predict the execution times for
480, 960, 1,920 and 3,840 threads for the different CNN architectures, otherwise using
the same parameters. According to the predictions, if 3,840 threads were available, the
small network should take about 4.6 minutes to train, the medium 14.2-14.5 and the large
18-36.8 minutes. It can be seen that the predictions for the large CNN architecture are
not as well aligned when increasing to larger thread counts as for small and medium. The
speed up for prediction b) is more prominent than that of prediction a). However, in these
predictions we did not account of the deviation as calculated above.
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Small Medium Large
a) b) a) b) a) b)

480 6.6 6.7 36.8 39.1 92.9 82.6
960 5.4 5.5 23.9 25.1 60.8 45.7
1,920 4.9 4.9 17.4 18.0 44.8 27.2
3,840 4.6 4.6 14.2 14.5 36.8 18.0

Table 5.4.6: Predicted execution times (min) for 480, 960, 1,920 and 3,840 images using
the performance models.

Additionally we evaluated the execution time for varying image counts, and epochs,
for 240 and 480 threads for the small CNN architecture and prediction a). As can be
seen in table 5.4.7 doubling the number of images or epochs, approximately double the
execution time. However, doubling the number of threads does not halve the execution
time.

240 Threads

Images x1000 Epochs
i it 70 140 280 560

60 10 8.9 17.6 35.0 69.7
120 20 17.6 35.0 69.7 139.3
240 40 35.0 69.7 139.3 278.3

480 Threads

Images x1000 Epochs
i it 70 140 280 560

60 10 6.6 12.9 25.6 51.1
120 20 12.9 25.6 51.1 101.9
240 40 25.6 51.1 101.9 203.6

Table 5.4.7: Execution time (minutes) when scaling epochs and images for 240 and 480
threads using the small CNN architecture.
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Chapter 6

Results Analysis

The aim of this chapter is to analyse the results derived experimentally and theoretically
in an objective manner to answer the research question RQ1.

6.1 Experimental Analysis

The experimental results are presented in chapter 4 including speed up, error and error
rates for the small, medium and large CNN architectures. Additionally the average time
spent on each layer for each network instance was presented in section 4.2.

All experiments were carried out on the MNIST [25] dataset of handwritten digits,
comprising 60,000 training/validation images and 10,000 test images. The details of the
CNN architectures can be found in table 6.1.1. The small and medium networks were
trained for 70 epochs and the large for 15, using a starting decay of 0.9 and factor of
0.001. The affinity for OpenMP was set to the default of the coprocessor, scatter.

For the experiments, three platforms were used with different characteristics and per-
formance: The Core i5 661 has the lowest performance with 3.33 GHz, 4 logical (2
physical) cores and 4GB of memory. The Intel Xeon Phi 7120p comprises 61 cores, each
able to handle 4 hardware threads, running at 1.2 GHz, with 16 GB memory. The Xeon
E5-2695v2 has 12 physical cores, in total 48 logical, with a clock frequency of 2.4 GHz
and memory size of 132GB.

Each parallel configuration were executed three times for 1, 15, 30, 60, 120, 180, 240
and 244 threads on Intel Xeon Phi and Xeon E5 (with some exceptions, refer to Appendix
D) and results were averaged. Additionally, the sequential version were evaluated on the
Xeon E5 and Core i5 661.

In the figures and tables we use some abbreviations due to limited space. Par is the
parallel version, Seq the sequential. Also T denote threads. E.g. Phi Par. 1 T is the
parallel version and one thread on the Xeon Phi.
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Type Maps Map Size Neurons Kernel Size Weights

Small

Input - 29x29 841 - -
Conv 5 26x26 3,380 4x4 85
Max 5 13x13 845 2x2 -
Conv 10 9x9 810 5x5 1,260
Max 10 3x3 90 3x3 -
Full - 50 50 - 4,550
Output - 10 10 - 510

Medium

Input - 29x29 841 - -
Conv 20 26x26 13,520 4x4 340
Max 20 13x13 3,380 2x2 -
Conv 40 9x9 3,240 5x5 20,040
Max 40 3x3 360 3x3 -
Full - 150 150 - 54,150
Output - 10 10 - 1,510

Large

Input - 29x29 841 - -
Conv 20 26x26 13,520 4x4 340
Max 20 26x26 13,520 1x1 -
Conv 60 22x22 29,040 5x5 30,060
Max 60 11x11 7,260 2x2 -
Conv 100 6x6 3,600 6x6 216,100
Max 100 2x2 900 3x3 -
Full - 150 150 - 135,150
Output - 10 10 - 1,510

Table 6.1.1: CNN architectures used in evaluation.

6.1.1 Execution Time and Speed Up

The primary goal of the study is to lower the execution time for the working algorithm
through parallelism. Perhaps most interesting is the total execution time of the algorithm
as seen in figure 6.1.1. It shows that the execution time increase for each CNN architec-
ture size for all thread counts on the Xeon Phi, however, adding more threads to a fixed
architecture size decreases the execution time. Therefore, the scalability of the algorithm
seems to be promising.

In figure 6.1.1 it can be seen that Xeon E5 spends 31 hours training the large network.
The Phi only need about 3 hours to complete the training. Training the large network on
Xeon Phi is possible during an afternoon, on the Xeon E5 it requires one-and-a-half-day.
In addition, not shown in the chart, the Core i5 trains the network for a week. Moreover,
the small network requires 6 minutes (a coffee break) training for 244 threads on the Xeon
Phi and 1 hour and 24 minutes on the Xeon E5.

It should be considered that the small, medium and large CNN architecture was not
trained for the same amount of epochs, and that larger networks tend to produce better
predictions (better ending error rates). A more fair comparison would be to compare the
execution times until reaching a specific error rate on the test set. In figure 6.1.2 the total
execution times for the different CNN architectures and threads on the Xeon Phi is shown,
setting the stop criteria as the error rate ≤ 1.54%, the ending error rate of the test set for
the small architecture. It can be seen that the large network executes for a longer period
of time even if it converges in fewer epochs, and that the medium network actual needs
less time to reach an equal (or better) ending error rate than the small and large network.
Many different stop criterion could be used for comparison, however, we will stick to the
number of epochs in the analysis from now on.
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Figure 6.1.1: Total execution times for all CNN architectures on the Xeon Phi, and Xeon
E5 Seq.

Figure 6.1.2: Execution times on the Xeon Phi for all architectures, using early stopping.

Note that several other factors impact training, including the starting decay, the factor
which the decay is decreased, dataset, loss function, preparation of images, initial weight
values. Therefore several combinations of parameters needs to be tested before finding
a balance. In this study we focus on the number of epochs as the stop criteria and draw
conclusions from this, taking into account the deviation of the error and error rates.
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Figure 6.1.3: Speed up compared to Phi Par. 1 T for all architectures.

If considering the speed-up-viewpoint, a speed up (even if only by a small factor)
is encountered for all CNN architectures when applying more threads on the Xeon Phi
(figure 6.1.3). Moreover it can be seen that when keeping the number of threads fixed and
increasing the architecture size, the speed up increases with a small factor as well, except
for 244 threads. It seems like larger architectures are beneficial. However, it could also
be the case that Phi Par. 1 T executes relatively slower for larger architectures than for
smaller ones, which could be seen in the results as well. To illuminate this, figure 6.1.4,
shows that the speed up compared to Xeon E5 Seq. decreases for larger architectures,
and hence the Xeon E5 Seq. seem to do a better job for larger architectures than Phi
Par. 1 T does. On the positive, more threads still increase the speed up when fixating the
architecture size.

One should keep in mind that even if the speed up is rather constant for different
architecture sizes, the total execution time is still decreasing by the speed up factor - only
depicting the speed up can be confusing. In the end, what is interesting in most cases is
the total execution time.

Figure 6.1.4: Speed up compared to Xeon E5 Seq for all CNN architectures when executed
on the Xeon Phi.

6.1.2 Time Spent at Each Layer

The total execution time is highly bound to the forward- and back-propagation in the
network, and as earlier concluded, the convolutional layers is the most computational
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heavy ones. Table 6.1.2 presents the speed up relative to the Phi Par. 1 T for the different
architectures on the convolutional layer. The times are collected by each network instance
(through instrumentation of the forward- and back-propagate function) and averaged over
the number of network instances and epochs. As can be seen, in almost all cases there is
an increase in speed up when increasing the network size, more importantly, the speed up
does not decrease. Maybe the most interesting phenomena is that the speed up per layer
have an almost direct relationship to the speed up of the algorithm, especially if compared
to the back-propagation part. This emphasizes the importance of reducing the time spent
in the convolutional layers.

1BPC S BPC M BPC L 2FPC S FPC M FPC L

Phi Par. 244 T 102.0 99.3 103.5 122.3 124.2 125.4
Phi Par. 240 T 96.5 94.1 98.4 114.3 117.3 118.7
Phi Par. 180 T 91.8 89.5 93.9 106.3 107.0 105.8
Phi Par. 240 T 82.7 82.4 87.5 91.0 91.0 91.0
Phi Par. 60 T 56.9 58.9 59.7 58.6 60.1 60.0
Phi Par. 30 T 29.2 29.6 29.9 29.8 30.2 30.1
Phi Par. 15 T 14.7 14.8 15.0 14.9 15.1 15.0

Table 6.1.2: Averaged layer speed up compared to the Phi Par. 1 T.

6.1.3 Prediction Accuracy

In order to validate the implementation, the error and error rates were collected for each
epoch and configuration. This section aims to analyse them in more detail. The results
are presented in chapter 4.

Figure 6.1.5: Relative cumulative error (loss) compared to Xeon E5 Seq.

In figure 6.1.5 the ending errors for all CNN architectures and thread counts are pre-
sented, for both the validation and test set. The black dashed line emphasize the base line,

1BP is an abbreviation of back-propagation, C for convolutional layer. Additionally, S, M and L denote
the Small, Medium and Large architecture respectively.

2FP is an abbreviation of forward propagation.

70



i.e. a ratio of 1. Values below the line is considered better, and values above worse than
for Xeon E5 Seq. We use Xeon E5 as the base line, however, identical results are derived
executing the sequential version on any platform. The largest difference is encountered
by Phi Par. 244 T, about 22 units (0.05%) worse than the base line. On the contrary, Phi
Par. 15 T has 9 units lower error compared to the base line for the large test set. It can be
seen that the validation sets are rather stable whereas the test sets fluctuates more heavily.
Although one should consider the deviation in error respectfully, they are not abundant
in this case. The reader should be aware of that the diagram has a high zoom factor, the
differences are therefore magnified.

In table 6.1.3 the number of incorrectly predicted images are shown for each CNN
architecture. The number of images were derived by multiplying the error rates collected
in the experiments with the number of images in the set and then rounded to the near-
est integer. The reason for rounding is the loss of precision in the collection procedure
occurring when dividing the number of incorrectly predicted images over the size of the
set.

For each architecture, the total (Tot) amount of images and the difference (Diff) com-
pared to the optimal numbers of Xeon E5 Seq. are shown. Negative values indicate that
the ending error rate was better than optimal, less images were incorrectly predicted. Pos-
itive values indicate that more images than optimal was not predicted correctly. Values
annotated with bold fonts are the worst values for the set and italic fonts the best. No
obvious pattern can be found, however, increasing the number of threads does not lead to
worse prediction in general. Phi Par. 180 T stands out as it was 17 images better than
optimal for the small architecture on the validation set, a similar value can be found for
Phi Par. 15 T on the large architecture on the test set. Phi Par. 15 T also performs worst
on the small architecture on the validation set. The overall worst performance is achieved
by 120 threads on the test set for the small architecture. One should consider that the total
number of images in the validation set is 60,000 and 10,000 for the test set. Overall, the
number of wrongly predicted images and the deviation from the base line is not abundant.

Validation Test
Small Medium Large Small Medium Large

Tot Diff Tot Diff Tot Diff Tot Diff Tot Diff Tot Diff

Phi Par. 244 T 616 4 85 1 12 2 155 2 98 3 95 1
Phi Par. 240 T 610 -2 86 2 11 1 154 1 95 0 91 -3
Phi Par. 180 T 595 -17 87 3 12 2 158 5 98 3 95 1
Phi Par. 120 T 607 -5 83 -1 11 1 159 6 95 0 94 0
Phi Par. 60 T 615 3 81 -3 11 1 156 3 98 3 91 -3
Phi Par. 30 T 612 0 83 -1 10 0 156 3 98 3 90 -5
Phi Par. 15 T 617 5 84 0 10 0 153 0 100 5 84 -10

Table 6.1.3: The number of incorrectly predicted images for the different CNN architec-
tures.

It should also be considered that training could be stopped earlier or other techniques
such as dropout (refer to section 2) could be used to lower the error rates; the test error
rates seem to slightly increase after a given amount of epochs at which point training will
not improve the prediction accuracy of the network any further. Therefore, if stopping at
the lowest error rate, the ending error rates could be lowered. However, the main goal of
this study is not to increase the performance of the prediction, instead we use the errors
and error rates in order to validate the correctness of our approach.
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When training the small architecture using the original implementation an ending error
rate on the test set of 1.41% was achieved. To be compared to 1.55% using 244 threads on
the Xeon Phi, and 1.53% for the sequential version (not randomizing weights and images).
Hence, when randomizing images, a 12-14 (0.12-0.14%) images better prediction could
be expected. It should be considered that the original version was trained for 65 epochs
as default, not 70 as the results presented in this section. Nevertheless, a small deviation
in error insure the quality of the parallelization scheme and the implementation.

6.2 Theoretical Analysis

In chapter 5, a theoretical analysis of the algorithm was carried out concluding the paral-
lelism and speed up. This model did not account for hardware characteristics - in essence
it evaluated the thread parallelism of the algorithm. The same model was later extended
in the section 5.4 into a performance model, in which hardware characteristics were ac-
counted for. This model was compared to the measured values allowing for validation of
the theoretical model and predictions of varying epochs, images and processing units. In
addition, adjusting the number of operations/time spent in forward-and back-propagation
allow for predictions of other architectures as well.

Our theoretical model had some obvious impairment, it almost stated a linear speed
up except for the small fraction of sequential work required. Nevertheless, we ended up
concluding the parallelism as:

T1
T∞

=
(b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ ∗ i+ g′ ∗ i+ h′ ∗ it) ∗ ep

(b′ ∗ i+ c′ ∗ it+ w′) + (d+ f ′ + g′ + h′) ∗ ep

in which it can be seen that the parallelism is bounded by the number of images (i and
it), assuming the number of training/validation images i are larger than the test set it, and
fixating ep we stated the asymptotic notation as θ(i). Additionally, the number of epochs
is expected to affect the execution time, however not the parallelism per se. The constant
amount of work carried out in the left terms b′, c′, d, and w′ is both in the numerator and
the denominator. The constants f ′, g′ and h′ are considerable larger than the left term, and
hence an increasing amount of images and epochs will diminish the left term. Although,
even theoretically the speed up will not be linear as it the sequential amount of work add
some overhead.

However, the theoretical model is not completely true since it excludes several hard-
ware specific factors, including memory latencies and synchronization overhead. There-
fore we created a performance model using two strategies. The model is parameterized
by the number of epochs (ep), testing images (it), training images (i) and processing units
(p). Also other parameters can be used, both related to the hardware and not.

In prediction a) we approximated the number of instructions required by each part of
the algorithm (using major simplifications). We plotted a graph pretty close to the mea-
sured values in our results. In prediction b) we inserted measured times for the sequential
execution of the different parts of the algorithm. The results were similar to the ones
from prediction a), again closely mimicking the measured values. We do not replicate the
formulas here, please refer to the section 5.4 for more information. Additionally predic-
tions were made for increasing epoch counts, images and processing units. The algorithm
scaled well with the number of processing units, showing promising results if more units
are available in future experiments.

To conclude, the theoretical model was promising with the number of training/val-
idation images as an upper bound of the maximum speed up of the algorithm. When
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applying hardware specific parameters, the model turned out to be pretty accurate, and
encouraging to facilitate the many cores of the coprocessor. The sequential work and
memory contention limited the algorithm to scale linearly, however scaled well even for
larger number of threads. Errors found in experiments were not abundant, in fact for some
configurations the number of incorrectly predicted images were even better than the base
line. Hence, even if the current parallelization scheme has its shortcomings, it indicates on
speed up both in theory and in practice for the coprocessor. Moreover, a lower execution
time did not decrease the prediction accuracy noticeably.

6.3 RQ1: What is the Potential of Intel Xeon Phi for Supervised Deep
Learning Algorithms?

Results derived in experiments and theoretical analysis highlighted the capabilities of the
Intel Xeon Phi coprocessor. Results showed an increase in speed up for increasing thread
counts, at the same time lowering the execution time significantly. Using on-line stochas-
tic gradient with back-propagation to train CNNs, supervised, was proven successful on
the Xeon Phi. By exploiting thread- and SIMD-parallelism, memory alignment and other
optimization techniques, the training was increased many-fold - 103.5x compared to a
single thread on the coprocessor (large architecture) and 14.07x compared to the sequen-
tial version on the Xeon E5-2695v2 (small architecture). Training lasted for 31.1 hours
on the Xeon E5-2695v2 was lowered to 2.9 hours on the Xeon Phi (244 threads) when
training the large network for 15 epochs.

The speed up brought some deficiency in terms of fluctuation and deviation of errors
and error rates, however, as shown in the analysis these were not prominent, and in some
cases even better than those of the compared sequential version. The absence of image
randomization, randomization of weights and presence of shared weights should also be
taken into account when considering the errors. Nevertheless, a small difference in error
to gain salient speed up is in our opinion an acceptable trade-off.

Additionally, the theoretical model and performance model showed promising results
in terms of scaling, and if, in the future, more threads become available, it could be
expected that the algorithm has an increased speed up, lowering the execution time even
further.

On the contrary, optimizing algorithms to run smoothly on the Xeon Phi requires
work. The same phenomena has been found by others, e.g. Jianbin Fang et al. [32].
The time spent optimizing for the Xeon Phi pays of two-fold as the algorithm becomes
optimized for other Intel architectures implicitly. In order to fully utilize the many cores
on the coprocessor, one needs to carefully consider the characteristics of the underlying
hardware.

The scope of deep learning algorithms is wide and deep, generalizing our findings to
all algorithms, architectures, datasets, and implementation would be naive. Nevertheless,
there are similarities allowing for some generalization, including the back-propagation
algorithm. Moreover, experiments showed promising results for larger architectures as
well and larger, more complex datasets commonly require larger architectures. Perhaps
the most important factor prohibiting generalization is related to the implementation, i.e.
data structures and how propagation is carried out at each layer. Bad alignment of data,
and loops impossible to vectorize prohibit an efficient use of the vector processing units.
Additionally, markedly large datasets which will not fit in main memory are also prob-
lematic. Sparse deep learning implementations able to adopt CHAOS successfully are
expected to work well with the coprocessor, in accordance with our findings.
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As a result, the potential of Intel Xeon Phi for supervised deep learning algorithms is
certainly promising - promising results were derived for CNNs and in many aspects they
can be generalized to other supervised deep learning models as well.

Previous work targeting deep learning and the Intel Xeon Phi is sparse. To our best
knowledge this is the first work targeting supervised deep learning algorithms and CNNs
on the Intel Xeon Phi many core coprocessor.
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Chapter 7

Discussion

This chapter is organized as follows. The section social impact and ethical considerations
discusses the relation to the society as a whole. The validity and reliability section illumi-
nates the actions taken to increase the quality of the work. In contributions we share the
major achievements of the study and how they contribute to the community. A personal
reflection on the method discusses decisions made in the approach. Some explicit limita-
tions of the study are mentioned in its own section. The chapter ends with a conclusion
and suggestions of future work.

7.1 Social Impact and Ethical Considerations

Findings of this study have several applications in the society. First, illuminating the
coprocessor’s ability to speed up supervised deep learning algorithms widen the scope for
its usage; individuals or companies who already own a device, can make use of the many
advantages of deep learning, understanding the potential of the Xeon Phi to perform the
task. Secondly, individuals or companies that do not own a device, can with the help of
this study understand the advantages and shortcomings in the context of deep learning
algorithms, making wiser decisions whether or not to invest in a device. Moreover, the
coprocessor have been shown to be very energy efficient, to reduce power consumption
it could be a feasible alternative - the Xeon Phi is used in a super computer positioned in
the top 20 on the GREEN list [68].

Furthermore, with the help of the developed performance model, the community can,
roughly, get an understanding of what to expect in future settings and the capabilities of
the parallelization scheme.

This work position the Xeon Phi as a target for research, and allows both industry and
consumers to make use of it for deep learning. All data used in our experiments were
publicly available and no privacy considerations were necessary.

7.2 Reliability and Validity of the Results

Reliability of the results are important to ensure testability and repeatability. Therefore,
we perform several executions for each configuration and provide their average as the
final results. It should also be noted that training for several epochs also removes some of
the deviations as an equal amount of work is carried out by each worker in each epoch. In
addition, the standard deviation is included in Appendix D, errors are documented in our
results (chapter 4), and the analysis (chapter 6) covers the prediction accuracy. Moreover,
Appendix D also describes the compilation and execution parameters needed to repeat the
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experiments. The source code can be distributed at request, please send an email 1 to
announce your interest.

The sequential and parallel versions executed on one thread were proven equal. Ad-
ditionally, the original implementation of the code was validated towards our sequential
version to be equal when including the randomization of weights. Therefore it is expected
that the deviation originates from the lack of randomization and the non-deterministic up-
date scheme.

It should be noticed that the sequential and the parallel version should not be compared
when executing the parallel version for network/thread sizes > 1. This since the unordered
sequence of updates when several networks are trained using the same weights will not
be deterministic. Nevertheless, we showed in the analysis of the results (chapter 6) that
the errors of the algorithm did not deviate markedly from the optimal values. A small
deviation in error and a considerable speed up, is in our opinion an acceptable trade-
off. Moreover, the transparency of all of the results collected, and the collection process,
emphasize the absence of bias in the study.

The external validity of our experiments, measured by generalization is limited by
the scope defined. Due to the limited scope it is not possible to prove the results to be
valid for all implementations, datasets, architectures, and deep learning algorithms, nor
for all supervised deep learning algorithms. We acknowledge a limited external validity
of the study as we did not randomize, or investigate several datasets, CNN architectures or
implementations - yet again, this was not the goal of the study, however the reader should
be aware of the limitations and the quality of the work.

7.3 Contributions

The evaluation of the Intel Xeon Phi for deep learning algorithms is our main contribution
in this thesis. Findings illuminate the potential of the Xeon Phi in the context of CNNs and
shows significant speed up for increasing thread counts on the coprocessor. Results also
indicate on increased performance for the Intel E5-2695v2 processor. We designed, im-
plemented and evaluated Controlled HogWild with Arbitrary Order of Synchronization,
CHAOS, taking advantage of positive qualities from existing stochastic gradient descent
schemes.

Additionally, a performance model was designed, and evaluated. Except from eval-
uating the theoretical model, and positioning the measurements of the evaluation, the
performance model allows to predict varying epochs, images and thread counts. It is also
possible to adapt it to changing CNN architecture sizes and hardware properties. Using
the performance model we made predictions of the execution time for larger thread counts
and various CNN architectures. Additionally, we made predictions for varying number of
images and epochs.

We believe that the study contribute to an otherwise sparse set of work targeting deep
learning and the Intel Xeon Phi, and minimize the gap of knowledge mentioned in the
problem context of this study.

Previous studies, as discussed in section 1.2, investigated unsupervised deep learning
and machine learning. We found no work targeting supervised deep learning explicitly
for the Xeon Phi, nor any work targeting CNNs and the Xeon Phi. Work done by Lei
Jin et al. in [30] present work for Intel Xeon Phi and unsupervised training of sparse
auto encoders and restricted Boltzmann machines. Moreover, a library for Support Vector

1av22cj@student.lnu.se
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Machine (SVM), MIC-SVM, was developed and later evaluated on the Xeon Phi by Yang
You et al. [28].

To our best knowledge this is the first study investigating the potential of Intel Xeon
Phi for supervised deep learning and CNNs.

7.4 Personal Reflections on the Method

In this section we aim to subjectively discuss the method, the rationale of decisions and
what could have been done differently, i.e. lessons learned.

7.4.1 Personal Reflections on the Selection of Implementation

First off, the selection of an existing implementation is a core decision in order to be
successful with the study. As described in chapter 3, the selection procedure was based
on inclusion criterion, and resulted in code written by Dan Cires, an. Limitations of the host
system demanded few dependencies, otherwise most of the time would have been spent
solving dependencies, and otherwise get the code running on the host and the coprocessor.
In future work a clean implementation, or an implementation based on a well-known
library would be to prefer, e.g. Tiny CNN 2.

7.4.2 Personal Reflections on the Parallelization Scheme

The choice of parallelization scheme was not obvious. The main concern was not to de-
viate too much from the original implementation. The literature was searched for promis-
ing, and simple, schemes that would require only smaller modifications to the code. Ad-
ditionally, if possible to generalize the scheme to other implementations that would be
beneficial.

A couple of schemes were evaluated before developing CHAOS. Among them were
mini-batch stochastic-gradient-descent shown to have a bad convergence, especially for
larger batch sizes, similar results have been presented by other researchers [64]. Addition-
ally, we also tried asynchronous stochastic gradient descent, averaging the weight updates
from several instances. In addition, we applied model parallelism with little success, the
overhead of spawning threads and inseparable loops prohibited the use of this approach.
Hence we focused on the data parallel approach.

CHAOS is far from perfect, to further improve it we would like to dig deeper into the
hotspots, using VTune Amplifier or similar analysis tool to derive a more optimized ver-
sion. Without the performance metrics available we propose the following improvements
to CHAOS:

• Data locality is essential for the coprocessor to operate smoothly. Many variables
are thread private and together they require much storage, several threads sharing
the same caches increase this problem eve further. One idea is to divide the work on
each core model-wise letting all threads work on the same data. Another approach is
to group cores to train one instance of the network and average gradients at specific
points in time, similar to asynchronous stochastic gradient descent. In general,
the distribution of network instances and the synchronization of weight parameters
could be altered to minimize wait times.

2https://github.com/nyanp/tiny-cnn
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• The alignment of data structures could be improved to reduce the number of mem-
ory requests and increase the amount of relevant data fetched. The current data
structures are not optimized fully for the Xeon Phi even if allocated using align-
ment and annotated SIMD instructions are used. Additionally, higher utilization of
the vector processing (VPU) unit can be achieved.

• Combining CHAOS with model parallelism have been discussed thoroughly in [4]
by Alex Krizhevsky where data- and model-parallelism are combined using differ-
ent approaches on different layers.

Moreover, other optimization techniques such as using the Math Kernel Library (MKL)
was not introduced and can be added in a future update.

7.4.3 Personal Reflections on the Evaluation

The data collection procedure was carried out based on a set of epochs, where each epoch
produced similar measurements in execution time. However, more executions lead to
better predictability (in many cases). There is a balance of execution time and prediction
accuracy which have to be weighed into the resulting execution time. Other research
have shown, e.g. [40], that training for a large amount of epochs results in the best error
rates. However, at some point the error does not longer decrease. On the contrary training
for a fraction of epochs may yield "good enough" results. Therefore the comparison in
execution time should be relative to the accepted predictability in the specific case and
one should be careful when comparing execution time of CNN architectures.

In this study we do not consider all viewpoints, we focus on the total execution time.
Additionally, we provide some insight in the results analysis (chapter 6) when training is
stopped at a fixed error rate. Nevertheless, as the error rates did not deviate much from the
base line, whatever architecture provides best results for the problem should be compared
in the specific case. Moreover, the training should preferably stop when the error rate
seem to converge, i.e. do not decrease in consecutive epochs.

7.5 Limitations of the Study

We acknowledge the scope of the study to be limited to the MNIST [25] dataset, the CNN
architectures used, the parallelization scheme, and the implementation selected. Due to
the limited scope, we cannot claim the results to be valid for all architectures, datasets or
implementations used in conjunction with supervised deep learning algorithms. Careful
implementation allowing all common optimization functions, activation functions, archi-
tecture types, datasets, etc. would allow for a wider scope; however, this was not our goal
of the study.

We assume the scalability, and speed up of the algorithm to be reasonably good even
for larger CNN architectures and datasets since we recognized a speed up for an increas-
ing number of threads for large architectures. The limiting factor may be the memory
size of the coprocessor. The input and architecture size affects the number of calculations
not their characteristics, although more variables may lead to worse data locality. More-
over, we recognize no restrictions in using other activation functions or loss functions.
Nevertheless, the scope should be restricted to on-line stochastic gradient descent and the
back-propagation algorithm applied to sparse deep learning models. As CHAOS divide
the work on a high level, it should be applicable to other deep learning algorithms that
have the possibility to divide the work by the input domain.
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The performance model should not be considered generic for all platforms, its in-
tended scope is the algorithm used in this study and the Intel Xeon Phi, codenamed
Knights Corner.

7.6 Conclusion

Based on an existing implementation of a CNN we developed a highly parallel algorithm
optimized for the Intel Xeon Phi. Results show a 103.5x, 99.9x and 100.4x speed up
(large, medium, small) for 244 threads compared to one thread on the Xeon Phi and
14.07x (small) compared to the sequential version executed on the host, Xeon E5-2695v2.
Training the large network for 15 epochs on the coprocessor requires about 3 hours, a
sequential execution on the host, Xeon E5-2695v2 requires 31 hours and on the Core i5
661 it takes a week. Additionally, one thread on the Xeon Phi takes 12 days. The parallel
version showed only a smaller deviation in error rates compared to the sequential version.

Our contributions also include CHAOS, a parallelization scheme using thread- and
SIMD-parallelism to facilitate the training, and a performance model, allowing for eval-
uation of the theoretical claims and future predictions. Based on the results derived from
experiments and theoretical deduction we answered the research question with the pleas-
ing answer: promising - the potential of the Intel Xeon Phi for supervised deep learning
algorithms is promising, and theoretically the algorithm should scale well even beyond
the cores of the coprocessor. Results pave the way for future research in the area. The
Intel Xeon Phi position itself as a consumer-load-balancer to be used in conjunction with
CPUs, providing off-the-shelf, high computational power.

7.7 Future Work

Except from an improved version of CHAOS, mentioned in section 7.4.2 we also promote
future work to focus on larger architectures and datasets, e.g. GoogleNet and ImageNet to
further analyse the Xeon Phi. Also, a dynamic implementation, presumably a fork of an
existing well known implementation should be created and optimized to be used with the
coprocessor, facilitating multiple nodes as well. With such scalable model, the evaluation
could cover a larger extent of the scope - larger architectures, different models and other
datasets. The implementation should not suffer from too many third-party libraries, to
ease the execution on the coprocessor. Additionally, an offload version of CHAOS (or
similar) would make use of both the host CPU and the coprocessor and facilitate the use
of several coprocessors as well. A promising library called HyPhi [36] can be used to
enable this. Another promising project not yet finished, RaPyDLI [69] aims to create
a library addressing many of the concerns mentioned above. Furthermore, future work
should target the second generation of Intel Xeon Phi, codenamed Knight Landing.
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Appendix A

Platforms

This chapter discusses the details of the platforms used in evaluation.

Xeon E5 @ Host

• CPU: Intel Xeon CPU E5-2695v2 @ 2.40GHz with 12 physical cores, using hyper-
threading resulting in 48 logical cores in total. Intel Smart Cache 1: 30 MB.

• OS: Linux 2.6.32431.el6.x86_64

• Memory: 132 GB

Core i5 661 @ Desktop

• CPU: Intel Core i5 661 3.33 GHz, 2 physical cores, 4 logical. Intel Smart Cache: 4
MB.

• OS: Windows 7 64bit

• Memory: 4GB

Intel Xeon Phi

• Model: 7120P

• Speed: 1.238 GHz / core

• OS: Linux 2.6.38.8, MPSS 3.1.1

• Memory: 16 GB

• Memory bandwidth: 352 GB/s

• L1 cache: 32 KB data, 32 KB instructions

• L2 cache: 0.5 MB /core, 30.5 MB in total

The Host and coprocessor was accessed using ssh and the Desktop using Remote
Desktop.

1The Intel Smart Cache technology from Intel allow cores to share high level cache dynamically, i.e.
each core has no dedicated cache space[50].
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Appendix B

Details of CNN Architectures

The small network used at training is shown in figure B.0.1. The input layer has 841
neurons in a 29x29 grid. The input of images is 28x28 using a stride of 1 pixel. The first
convolutional layer has 5 maps, 3380 neurons, uses a kernel size of 4x4, a map size of
26x26 and 85 weights. The first max-pooling layer consists of five maps, 845 neurons,
a 2x2 kernel, 13x13 map size. The second convolutional layer consists of 10 maps, 810
neurons, 5x5 kernel size, 9x9 map size and 1260 weights. The last max-pooling layer
has 10 maps, 90 neurons, 3x3 kernel and 3x3 map size. The fully connected layer has
50 neurons and 4,550 weights. Ending with the output layer with 10 neurons and 510
weights.

Figure B.0.1: Details of the small CNN architecture.

The medium network used at training can be seen in figure B.0.2. The input layer has
841 neurons in a 29x29 grid. The first convolutional layer has 20 maps, 13,520 neurons,
uses a kernel size of 4x4, a map size of 26x26 and 340 weights. The first max-pooling
layer consists of 20 maps, 3,380 neurons, a 2x2 kernel, 13x13 map size. The second
convolutional layer consists of 40 maps, 3,240 neurons, 5x5 kernel size, 9x9 map size
and 20,040 weights. The last pooling layer has 40 maps, 360 neurons, 3x3 kernel and 3x3
map size. The fully connected layer has 150 neurons and 54,150 weights. Ending with
the output layer with 10 neurons and 1,510 weights.
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Figure B.0.2: Details of the medium CNN architecture.

The large network used at training in figure B.0.3. The input layer has 841 neurons
in a 29x29 grid. The first convolutional layer has 20 maps, 13,520 neurons, uses a kernel
size of 4x4, a map size of 26x26 and 340 weights. The first max-pooling layer consists of
20 maps, 13,520 neurons, a 1x1 kernel, 26x26 map size. The second convolutional layer
consists of 60 maps, 29,040 neurons, 5x5 kernel size, 22x22 map size and 30,060 weights.
The middle max-pooling layer has 60 maps, 7,260 neurons, 2x2 kernel and 11x11 map
size. The last convolutional layer has 100 maps, 3,600 neurons, a 6x6 kernel, a map size
of 6x6 and 216,100 weights. The last pooling layer has 100 maps, 900 neurons, 2x2
kernel size and 3x3 map size. The fully connected layer has 150 neurons and 135,150
weights. Ending with the output layer with 10 neurons and 1,510 weights.

Figure B.0.3: Details of the large CNN architecture.

All maps in consecutive layers are fully connected, no image processing was used, no
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pooling at convolutional layers, and tanh was used as activation function.
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Appendix C

Vectorization Reports

This section includes vectorization reports for the convolutional layer and the back-propagation
of the fully connected layer, superfluous information has been removed, only inner vec-
torized loops are retained.

1 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 5 0 4 , 2 1 )
2 remark #15399: vec to r i z a t i o n s u p p o r t : u n r o l l f a c to r s e t to 2
3 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
4 remark #15451: unmasked u n a l i g n e d u n i t s t r i d e s to r e s : 1
5 remark #15458: masked i n d e x e d ( o r g a t h e r ) l o a d s : 1
6 remark #15475: −−− b e g i n vec to r l oop c o s t summary −−−
7 remark #15476: s c a l a r l oop c o s t : 160
8 remark #15477: vec to r l oop c o s t : 70 .750
9 remark #15478: e s t i m a t e d p o t e n t i a l speedup : 2 .250

10 remark #15479: l i g h t w e i g h t vec to r o p e r a t i o n s : 47
11 remark #15480: medium−o v e r h e a d vec to r o p e r a t i o n s : 2
12 remark #15482: vec to r i z e d math l i b r a r y c a l l s : 1
13 remark #15488: −−− end vec to r l oop c o s t summary −−−
14 LOOP END

Listing C.1: Vectorization report for forward propagation in the convolutional layer.

Listings C.1 shows the forward propagation in the convolutional layer. The report
relates to the part calculating the input of a neuron by iterating connected neurons in the
previous layer. As can be seen the unroll factor is set to 2 and unaligned stores are issued,
the estimated speed up is 2.250.

1 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 6 3 0 , 5 )
2 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 6 3 4 , 9 )
3 remark #15399: vec to r i z a t i o n s u p p o r t : u n r o l l f a c to r s e t to 4
4 remark #15300: LOOP WAS VECTORIZED
5 remark #15442: e n t i r e loop may be e x e c u t e d i n r e m a i n d e r
6 remark #15448: unmasked a l i g n e d u n i t s t r i d e l o a d s : 2
7 remark #15449: unmasked a l i g n e d u n i t s t r i d e s to r e s : 1
8 remark #15475: −−− b e g i n vec to r l oop c o s t summary −−−
9 remark #15476: s c a l a r l oop c o s t : 15

10 remark #15477: vec to r l oop c o s t : 16 .000
11 remark #15478: e s t i m a t e d p o t e n t i a l speedup : 3 .570
12 remark #15479: l i g h t w e i g h t vec to r o p e r a t i o n s : 6
13 remark #15480: medium−o v e r h e a d vec to r o p e r a t i o n s : 1
14 remark #15488: −−− end vec to r l oop c o s t summary −−−
15 LOOP END
16 LOOP END

Listing C.2: Vectorization report for back-propagation in the fully connected layer.
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Listings C.2 shows the back-propagation in the fully connected layer. The weight
gradient calculation is vectorized. According to the vectorization report it encounters a
potential speed up of 3.570.

1 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 6 8 3 , 9 )
2 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 6 9 4 , 2 5 )
3 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
4 remark #15460: masked s t r i d e d l o a d s : 2
5 remark #15462: unmasked i n d e x e d ( o r g a t h e r ) l o a d s : 1
6 remark #15475: −−− b e g i n vec to r l oop c o s t summary −−−
7 remark #15476: s c a l a r l oop c o s t : 30
8 remark #15477: vec to r l oop c o s t : 7 . 500
9 remark #15478: e s t i m a t e d p o t e n t i a l speedup : 3 .980

10 remark #15479: l i g h t w e i g h t vec to r o p e r a t i o n s : 6
11 remark #15480: medium−o v e r h e a d vec to r o p e r a t i o n s : 1
12 remark #15481: heavy−o v e r h e a d vec to r o p e r a t i o n s : 1
13 remark #15488: −−− end vec to r l oop c o s t summary −−−
14 LOOP END
15 LOOP END
16
17 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 7 0 6 , 9 )
18 remark #15399: vec to r i z a t i o n s u p p o r t : u n r o l l f a c to r s e t to 4
19 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
20 remark #15448: unmasked a l i g n e d u n i t s t r i d e l o a d s : 3
21 remark #15449: unmasked a l i g n e d u n i t s t r i d e s to r e s : 1
22 remark #15475: −−− b e g i n vec to r l oop c o s t summary −−−
23 remark #15476: s c a l a r l oop c o s t : 22
24 remark #15477: vec to r l oop c o s t : 32 .000
25 remark #15478: e s t i m a t e d p o t e n t i a l speedup : 2 .680
26 remark #15479: l i g h t w e i g h t vec to r o p e r a t i o n s : 12
27 remark #15480: medium−o v e r h e a d vec to r o p e r a t i o n s : 1
28 remark #15488: −−− end vec to r l oop c o s t summary −−−
29 LOOP END
30
31 LOOP BEGIN a t n e u r a l n e t w o r k . cpp ( 7 2 8 , 2 1 )
32 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
33 remark #15460: masked s t r i d e d l o a d s : 2
34 remark #15462: unmasked i n d e x e d ( o r g a t h e r ) l o a d s : 1
35 remark #15475: −−− b e g i n vec to r l oop c o s t summary −−−
36 remark #15476: s c a l a r l oop c o s t : 26
37 remark #15477: vec to r l oop c o s t : 7 . 500
38 remark #15478: e s t i m a t e d p o t e n t i a l speedup : 3 .450
39 remark #15479: l i g h t w e i g h t vec to r o p e r a t i o n s : 6
40 remark #15480: medium−o v e r h e a d vec to r o p e r a t i o n s : 1
41 remark #15481: heavy−o v e r h e a d vec to r o p e r a t i o n s : 1
42 remark #15488: −−− end vec to r l oop c o s t summary −−−
43 LOOP END

Listing C.3: Vectorization report for back-propagation in the convolutional layer.

Listings C.3 shows the vectorization report for the back-propagation of the convolu-
tional layer. The report has three sections, one for each loop. The loop beginning at
row 1 is responsible for back-propagating partial derivatives. The compiler performs a
good job and manage to speed it up by almost 4 times. The loop beginning in row 17 is
simple, it iterates the collected derivatives and multiplies them with the tanh function. Fi-
nally, the loop beginning at row 31 updates the weight parameters over the current kernel,
estimating a speed up of 3.450.
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Appendix D

Execution and Validation Details

This chapter includes detailed execution information including the standard deviation of
the results and errors, compilation and execution options, as well as execution reports.

D.1 Compilation and Execution of the Application

To ease compilation and execution, scripts were created with different parameters. For
the coprocessor the mmic parameter was added and all dependent libraries were copied
manually. To prepare environment variables a .profile script was added on the coprocessor.
LOCALWEIGHTS was added as a compiler directive to imply that local weights should be
used to delay the updates. All compilation was done using the Intel compiler icc 15.0.0.

The parameters used as input to the application (in order):

1. Training type - currently only support 0 (CHAOS).

2. CNN Architecture (0: Small, 1: Medium, 2: Large).

3. Number of network instances ≥ 1 && ≤ 244.

4. Number of threads ≥ 1 && ≤ 244. Preferably equal to number of network in-
stances.

Compilation command for sequential version: icc main.ccp neuralnetwork.cpp helper.cpp
trainer.cpp reporter.cpp idx.cpp -o network.out

Compilation command for parallel version: icc main.ccp neuralnetwork.cpp helper.cpp
trainer.cpp reporter.cpp idx.cpp -o network.out -O3 -openmp -DLOCALWEIGHTS

To generate code for the coprocessor the following was added: -mmic -I/usr/include.

D.2 Standard Deviation of the Results

For error and error rates the standard deviation of each epoch were calculated over the
executions and averaged. The results are presented in table D.2.1, D.2.2 and D.2.3. Some
results are incomplete due to less than two executions were performed for that configu-
ration. Overall, it can be seen that very small deviations were encountered. The most
interesting results are the execution times for Core i5 showing that the execution time
differs with a large factor between executions. To reduce the deviation more executions
should be carried out and hence derive a better average. Nevertheless, the deviation did
not affect the final results abundantly.

7



The standard deviation was calculated over the set of values in each execution, e.g.
test error for an epoch, and averaged. All values were calculated using Excel, and it
should be considered that a deviation is presented even if all values are identical. For the
executions performed on one thread, the deviation is small, however not equal between
executions, although results showed identical results over all executions. Moreover, in
general the standard deviation is not abundant and is not expected to affect the results
negatively. Nevertheless, we do not change the output of Excel, the values to pay most
attention to is the ones with higher values.

Error Rate Error
Test Validation Test Validation Tot. Exec. Time

Xeon E5 Seq. 3.72 ∗ 10−19 3.72 ∗ 10−19 1.30 ∗ 10−14 1.95 ∗ 10−14 6.76
Core i5 Seq. 3.66 ∗ 10−19 3.66 ∗ 10−19 1.30 ∗ 10−14 1.95 ∗ 10−14 1.66 ∗ 102
Phi Par. 244 T 1.93 ∗ 10−4 9.93 ∗ 10−5 1.86 3.65 1.02 ∗ 101
Phi Par. 240 T 1.83 ∗ 10−4 6.62 ∗ 10−5 1.10 4.15 2.27 ∗ 10−1
Phi Par. 180 T 1.76 ∗ 10−4 7.36 ∗ 10−5 6.65 ∗ 10−1 4.40 9.41
Phi Par. 120 T 1.90 ∗ 10−4 1.26 ∗ 10−4 1.98 3.80 3.13 ∗ 10−1
Phi Par. 60 T 2.54 ∗ 10−4 8.48 ∗ 10−5 1.13 3.75 1.89 ∗ 10−1
Phi Par. 30 T 2.61 ∗ 10−4 1.10 ∗ 10−4 2.15 6.63 5.48 ∗ 10−1
Phi Par. 15 T 2.17 ∗ 10−4 4.88 ∗ 10−5 2.11 5.97 2.96
Phi Par. 1 T 3.66 ∗ 10−19 3.66 ∗ 10−19 1.28 ∗ 10−14 1.92 ∗ 10−14 2.86 ∗ 101
Xeon E5 Par. 48 T 2.52 ∗ 10−4 1.08 ∗ 10−4 2.50 7.83 1.55 ∗ 101
Xeon E5 Par. 24 T 2.66 ∗ 10−4 8.11 ∗ 10−5 1.55 5.55 8.38
Xeon E5 Par. 12 T 2.31 ∗ 10−4 7.98 ∗ 10−5 1.44 5.85 2.69
Xeon E5 Par. 1 T 3.72 ∗ 10−19 3.72 ∗ 10−19 1.30 ∗ 10−14 1.95 ∗ 10−14 7.12

Table D.2.1: Average standard deviation for the error, error rates and execution time for
the small CNN architecture.

Error Rate Error
Test Validation Test Validation Tot. Exec. Time

Xeon E5 Seq. 9.91 ∗ 10−20 7.43 ∗ 10−20 0 4.87 ∗ 10−15 1.57 ∗ 101
Core i5 Seq. 1.08 ∗ 10−19 8.13 ∗ 10−20 0 5.33 ∗ 10−15 3.49 ∗ 103
Phi Par. 244 T 1.49 ∗ 10−4 4.02 ∗ 10−5 1.94 1.10 2.65 ∗ 10−1
Phi Par. 240 T 2.07 ∗ 10−4 3.38 ∗ 10−5 5.99 ∗ 10−1 2.49 1.68
Phi Par. 180 T 9.35 ∗ 10−5 3.86 ∗ 10−5 1.43 1.38 2.96 ∗ 10−1
Phi Par. 120 T 1.32 ∗ 10−4 4.88 ∗ 10−5 2.72 2.06 8.54 ∗ 10−1
Phi Par. 60 T 2.63 ∗ 10−4 5.46 ∗ 10−5 1.26 9.55 ∗ 10−1 1.99 ∗ 10−1
Phi Par. 30 T 1.45 ∗ 10−4 2.63 ∗ 10−5 1.52 2.10 9.80
Phi Par. 15 T 1.58 ∗ 10−4 4.64 ∗ 10−5 2.21 2.64 2.41 ∗ 101
Phi Par. 1 T X X X X X
Xeon E5 Par. 48 T 2.02 ∗ 10−4 5.70 ∗ 10−5 1.83 3.58 1.82 ∗ 101
Xeon E5 Par. 24 T 2.17 ∗ 10−4 3.80 ∗ 10−5 1.50 1.93 5.11
Xeon E5 Par. 12 T 1.78 ∗ 10−4 3.12 ∗ 10−5 1.73 3.34 1.58 ∗ 101
Xeon E5 Par. 1 T 9.91 ∗ 10−20 7.43 ∗ 10−20 0 4.87 ∗ 10−15 9.07 ∗ 10−1

Table D.2.2: Average standard deviation for the error, error rates and execution time for
the medium CNN architecture.
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Error Rate Error
Test Validation Test Validation Tot. Exec. Time

Xeon E5 Seq. 1.16 ∗ 10−19 2.33 ∗ 10−19 1.14 ∗ 10−14 1.14 ∗ 10−14 5.40
Core i5 Seq. 0 0 0 0 3.73 ∗ 104
Phi Par. 244 T 1.65 ∗ 10−4 7.55 ∗ 10−5 2.98 1.21 ∗ 101 5.10 ∗ 103
Phi Par. 240 T 1.86 ∗ 10−4 7.20 ∗ 10−5 2.85 9.95 7.34
Phi Par. 180 T 2.56 ∗ 10−4 8.30 ∗ 10−5 2.78 8.19 7.99
Phi Par. 120 T 2.00 ∗ 10−4 6.43 ∗ 10−5 4.44 9.60 4.42 ∗ 10−1
Phi Par. 60 T 1.61 ∗ 10−4 1.37 ∗ 10−4 4.11 1.85 ∗ 101 5.31
Phi Par. 30 T 9.67 ∗ 10−5 4.72 ∗ 10−5 3.95 7.63 6.41 ∗ 101
Phi Par. 15 T X X X X X
Phi Par. 1 T X X X X X
Xeon E5 Par. 48 T 2.26 ∗ 10−4 8.31 ∗ 10−5 4.23 1.22 ∗ 101 1.29 ∗ 101
Xeon E5 Par. 24 T 1.70 ∗ 10−4 4.96 ∗ 10−5 2.20 5.27 1.42 ∗ 101
Xeon E5 Par. 12 T 1.68 ∗ 10−4 0 2.10 5.18 4.36
Xeon E5 Par. 1 T 0 0 0 0 8.23 ∗ 10−1

Table D.2.3: Average standard deviation for the error, error rates and execution time for
the large CNN architecture.

D.3 Execution Reports for the Experiments

In this section we present the executions as performed in experiments, most of the config-
urations were carried out 3 times (with some deviations due to time restrictions) and the
average was used to derive the final results. The small and medium networks were trained
for 70 epochs and the large for 15.

Version #Threads Platform #Executions

Sequential 1 Host 3
Sequential 1 Desktop 3

Parallel 244 Phi 3
Parallel 240 Phi 3
Parallel 180 Phi 3
Parallel 120 Phi 3
Parallel 60 Phi 3
Parallel 30 Phi 3
Parallel 15 Phi 3
Parallel 1 Phi 3

Parallel 48 Host 3
Parallel 24 Host 3
Parallel 12 Host 3
Parallel 1 Host 3

Table D.3.1: Execution report for the small architecture.
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Version #Threads Platform #Executions

Sequential 1 Host 3
Sequential 1 Desktop 3

Parallel 244 Phi 3
Parallel 240 Phi 3
Parallel 180 Phi 3
Parallel 120 Phi 3
Parallel 60 Phi 3
Parallel 30 Phi 3
Parallel 15 Phi 3
Parallel 1 Phi 1

Parallel 48 Host 3
Parallel 24 Host 3
Parallel 12 Host 3
Parallel 1 Host 3

Table D.3.2: Execution report for the medium architecture.

Version #Threads Platform #Executions

Sequential 1 Host 3
Sequential 1 Desktop 2

Parallel 244 Phi 3
Parallel 240 Phi 3
Parallel 180 Phi 3
Parallel 120 Phi 3
Parallel 60 Phi 3
Parallel 30 Phi 2
Parallel 15 Phi 1
Parallel 1 Phi 1

Parallel 48 Host 3
Parallel 24 Host 3
Parallel 12 Host 3
Parallel 1 Host 3

Table D.3.3: Execution report for the large architecture.
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Appendix E

Additional Theoretical Analysis

This chapter discusses the running time of the complex functions related to the forward-
and back-propagation, and initialization, excluded in the chapter 5. In table E.0.1 vari-
ables used in the formulas are enumerated.

Variable Meaning

arch CNN Architecture (small, medium, large)
l Number of layers
labels Number of labels

nll Number of neurons last layer
npl Number of neurons previous layer (idx)
ntl Number of neurons this layer (idx)
nnl Number of neurons next layer (idx)

msx Map size x this layer (idx)
msy Map size y this layer (idx)
msyn Map size y next layer (idx)
msxn Map size x next layer (idx)

ksx Kernel size x this layer (idx)
ksy Kernel size y this layer (idx)
ksxn Kernel size x next layer (idx)
ksyn Kernel size y next layer (idx)

nwl Number of weights this layer (idx)
nwnl Number of weights next layer (idx)
mtl Number of maps this layer (idx)
mpl Number of maps previous layer (idx)
mnl Number of maps next layer (idx)

Table E.0.1: Abbreviations used in the theoretical analysis.

E.1 Forward Propagate Function for the Max Pooling Layers

Forward propagation in the max pooling layer calculates the maximum value inside each
kernel spawning neurons in the previous layer. The goal is to aggregate the maximum
values held by neurons in the previous layer to increase the spatiality and reduce the
number of neurons required in later layers.
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1 f o r w a r d P r o p a g a t e M a x P o o l i n g L a y e r ( )
2
3 mtl+1 f o r t h i sLaye rMap = 0 to numberOfMapsThisLayer−1
4 mtl(msy+1) f o r neuronY = 0 to numberOfNeuronsThisLayerY−1
5 mtl∗msy(msx+1) f o r neuronX = 0 to numberOfNeuronsThisLayerX−1
6 mtl∗msy∗msx Let max be s m a l l e s t do ub l e v a l u e
7 mtl∗msy∗msx(ksy+1) f o r ke rne lY = 0 to k e r n e l S i z e Y−1
8 mtl∗msy∗msx∗ksy(ksx+1) f o r ke rne lX = 0 to k e r n e l S i z e X−1
9 mtl∗msy∗msx∗ksy∗ksx Let i d x be t h e i n d e x of t h e neuron a t p rev . l a y e r t h r o u g h k e r n e l

10 mtl∗msy∗msx∗ksy∗ksx i f max < o u t p u t s P r e v i o u s L a y e r [ i d x ]
11 mtl∗msy∗msx∗ksy∗ksx max = o u t p u t s P r e v i o u s L a y e r [ i d x ]
12 mtl∗msy∗msx∗ksy∗ksx idx_max = i d x
13
14 mtl∗msy∗msx Let i d x be i n d e x of neuron : ( neuronX , neuronY ) i n th i sLaye rMap
15 mtl∗msy∗msx o u t p u t s T h i s L a y e r [ i d x ] = max
16 mtl∗msy∗msx m a x P o s i t i o n s T h i s L a y e r [ i d x ] = idx_max

Listing E.1: Pseudocode for forward propagation in the max-pooling layer.

TForwardPropagateMaxPoolingLayer(mtl,msx,msy, ksx, ksy)
= c3 + (c3 + c4)mtl + (c4 + c5)mtl ∗msy + (c5 + c6 + c7 + c14

+ c15 + c16)mtl ∗msy ∗msx+ (c7 + c8)mtl ∗msy ∗msx ∗ ksy
+ (c8 + c9 + c10 + c11 + c12)mtl ∗msy ∗msx ∗ ksy ∗ ksx
= a ∗mtl + b ∗ (mtl ∗msy) + c ∗ (mtl ∗msy ∗msx)
+ d ∗ (mtl ∗msy ∗msx ∗ ksy) + e ∗ (mtl ∗msy ∗msx ∗ ksy ∗ ksx) + f

E.2 Forward Propagate Function for the Fully Connected Layers

The fully connected layer either uses the tanh or the soft max activation function. There-
fore, the calculations are separated. The output is retrieved by passing the input through
the activation function.

1 f o r w a r d P r o p a g a t e F u l l y C o n n e c t e d L a y e r ( )
2
3 1 i f a c t i v a t i o n T y p e L a y e r == t a n h
4 1 i d x = 0
5 ntl+1 f o r n e u r o n T h i s L a y e r = 0 to numberOfNeuronsThisLayer−1
6 ntl I n i t i a l i z e sum to b i a s
7 ntl∗npl f o r c = 1 to numberOfNeuronsPrev iousLayer−1
8 ntl∗(npl−1) I n c r e a s e sum by m u l t i p l y i n g w e i gh t and o u t p u t o f r e l a t e d neuron c a t

p r e v i o u s l a y e r
9

10 ntl S e t o u t p u t o f neuron n e u r o n T h i s L a y e r to t a n h ( sum )
11 ntl Move w e ig h t i n d e x
12 / / End f o r
13
14 1 e l s e i f a c t i v a t i o n T y p e L a y e r == sof t_max
15 1 Let a be t h e i n p u t o f t h i s l a y e r
16 ntl+1 f o r i = 0 to a . Length−1
17 ntl a [ i ] = 0
18
19 / / C a l c u l a t e i n p u t s
20 ntl+1 f o r n e u r o n T h i s L a y e r = 0 to numberOfNeuronsThisLayer−1
21 ntl I n i t i a l i z e a [ n e u r o n T h i s L a y e r ] to b i a s
22 ntl∗npl f o r c = 1 to numberOfNeuronsPrev iousLayer−1
23 ntl∗(npl−1) Add o u t p u t ∗ we ig h t o f c o n n e c t e d neuron to a [ n e u r o n T h i s L a y e r ]
24
25 / / C a l c u l a t e o u t p u t s
26 1 c u t = 700
27 1 denomina to r = 0
28 ntl+1 f o r n e u r o n T h i s L a y e r = 0 to numberOfNeuronsThisLayer−1
29 ntl i f a [ n e u r o n T h i s L a y e r ] > c u t
30 ntl a [ n e u r o n T h i s L a y e r ] = c u t
31 ntl e l s e i f a [ n e u r o n T h i s L a y e r ] <− c u t
32 ntl a [ n e u r o n T h i s L a y e r ] = −c u t
33
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34 ntl denomina to r = denomina to r + eExponent ( a [ n e u r o n T h i s L a y e r ] )
35 / / End f o r
36
37 ntl+1 f o r n e u r o n T h i s L a y e r = 0 to numberOfNeuronsThisLayer−1
38 ntl y T h i s L a y e r [ n e u r o n T h i s L a y e r ] = eExponent ( a [ n e u r o n T h i s L a y e r ] ) / denomina to r

Listing E.2: Pseudocode for forward propagation in the fully connected layer.

TForwardPropagateFullyConnectedLayerTanh(ntl, npl) = c3 + c4 + c5 + c14
+ (c5 + c6 + c10 + c11)ntl + (c7 + c8)ntl ∗ npl
= a ∗ ntl + b ∗ ntl ∗ npl + c

TForwardPropagateFullyConnectedLayerSoftMax(ntl, npl) =

c3 + c14 + c15 + c16 + c20 + c26 + c27 + c28 + c37

+ (c16 + c17 + c18 + c20 + c21 − c23 + c28 + c29 + c30 + c31 + c32 + c37 + c38)ntl

+ (c22 + c23)ntl ∗ npl = a ∗ ntl + b ∗ ntl ∗ npl + c

E.3 Forward Propagate Function for the Convolutional Layers

The convolutional layer calculates the output of each neuron as tanh of the input. The
input is calculated over all connected maps and kernels for each neuron in the current
map and layer.

1 f o r w a r d P r o p a g a t e C o n v o l u t i o n a l L a y e r ( )
2
3 1 i f a c t i v a t i o n T y p e T h i s L a y e r == s c a l e d _ t a n h
4 mtl+1 f o r t h i sLaye rMap = 0 to numberOfMapsThisLayer−1
5 mtl Let numberOfMapsConnec tedPrev iousLayer be t h e number o f c o n n e c t e d maps i n

p r e v i o u s l a y e r
6 mtl(msy+1) f o r neuronY = 0 to numberOfNeuronsThisLayerY−1
7 mtl∗msy(msx+1) f o r neuronX = 0 to numberOfNeuronsThisLayerX−1
8 mtl∗msy∗msx Let sum e q u a l b i a s
9 mtl∗msy∗msx∗(mpl+1) f o r prev iousLayerMap = 0 to numberOfMapsConnectedPreviousLayer−1

10 mtl∗msy∗msx∗mpl∗(ksy+1) f o r ke rne lY to k e r n e l S i z e Y−1
11 mtl∗msy∗msx∗mpl∗ksy(ksx+1) f o r ke rne lX to k e r n e l S i z e X−1
12 mtl∗msy∗msx∗mpl∗ksy∗ksx Add to sum , t h e o u t p u t ∗ we ig h t o f t h e c o n n e c t e d neuron

t h r o u g h t h e k e r n e l
13
14 mtl∗msy∗msx Let o u t p u t o f neuron ( neuronX , neuronY ) e q u a l t a n h ( sum )
15 mtl Move w e i g h t s p o i n t e r to n e x t c o n n e c t e d map

Listing E.3: Pseudocode for forward propagation in the convolutional layer.

TFPropConvLayer(mtl,mpl,msy,msx, ksx, ksy)
= c3 + c4 + (c4 + c5 + c6 + c15)mtl + (c6 + c7)mtl ∗msy
+ (c7 + c8 + c9 + c14)mtl ∗msy ∗msx+ (c9 + c10)mtl ∗msy ∗msx ∗mpl
+ (c10 + c11)mtl ∗msy ∗msx ∗mpl ∗ ksy
+ (c11 + c12)mtl ∗msy ∗msx ∗mpl ∗ ksy ∗ ksx
= a ∗mtl + b ∗ (mtl ∗msy) + c ∗ (mtl ∗msy ∗msx)
+ d ∗ (mtl ∗msy ∗msx ∗mpl) + e ∗ (mtl ∗msy ∗msx ∗mpl ∗ ksy)
+ f ∗ (mtl ∗msy ∗msx ∗mpl ∗ ksy ∗ ksx) + g
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E.4 Back-propagate Function for the Max Pooling Layers

Backpropagation in the max pooling layer simply pushes deltas from this layer to the
previous one through the max filter as determined in the forward propagation.

1 b a c k p r o p a g a t e M a x P o o l i n g L a y e r ( )
2
3 1 i f i d x > 0 / / I g n o r e i n p u t l a y e r
4 1 S e t p r e v i o u s l a y e r d e l t a s to 0
5
6 nnl + 1 f o r n = 0 to numberOfNeuronsThisLayer−1
7 nnl d e l t a P r e v i o u s L a y e r [ max_pos [ n ] ] = d e l t a T h i s L a y e r [ n ]

Listing E.4: Pseudocode for back-propagation in the max-pooling layer.

TBackwardPropagationMaxPoolingLayer(ntl) =
c3 + c4 + c6 + (c6 + c7) ∗ nnl = a ∗ nnl + b

E.5 Back-propagate Function for the Fully Connected Layers

The propagation of values at the fully connected layer is similar to the one of the con-
volutional layer. First deltas are pulled from the next layer by multiplying them with
connecting weight values and decay. Then weights are updated: each weight parameter is
decreased by the output of the neuron at the current layer multiplied with the delta of the
connected neuron at the next layer. This is performed for each combination of weights
connected neurons in the layers.

1 b a c k p r o p a g a t e F u l l y C o n n e c t e d L a y e r ( )
2
3 / / Propaga te d e l t a s to t h i s l a y e r
4 1 i f i d x L a y e r > 0 / / I g n o r e i n p u t l a y e r
5 ntl+1 f o r n e u r o n T h i s L a y e r = 0 to numberOfNeuronsThisLayer−1
6 ntl d e l t a T h i s N e u r o n = 0
7 ntl w e i g h t I d x = n e u r o n T h i s L a y e r + 1
8 ntl(nnl+1) f o r neuronNex tLaye r = 0 to numberOfNeuronsNextLayer−1
9 ntl∗nnl Add d e l t a o f neuron i n n e x t L a y e r ∗ we ig h t to d e l t a T h i s N e u r o n

10 ntl∗nnl Move w e i g h t I d x
11
12 ntl M u l t i p l y d e l t a T h i s N e u r o n wi th t a n h ( o u t p u t T h i s N e u r o n )
13
14 / / Update w e i g h t s o f n e x t l a y e r by i t e r a t i n g neuron p a i r s
15 1 S e t Weights p o i n t e r Loca lWeigh t s to d e l a y u p d a t e s
16 1 S e t Loca lWeigh t s to 0 a t a l l p o s i t i o n s
17
18 nnl+1 f o r neuronNex tLaye r = 0 to numberOfNeuronsNextLayer−1
19 nnl Let e t a _ n e x t D e l t a be e t a ∗ d e l t a N e u r o n N e x t L a y e r
20 nnl Pre−compute w e i g h t I d x
21 nnl D e c r e a s e w e i gh t w i th b i a s
22 nnl(ntl+1) f o r n e u r o n T h i s L a y e r = 0 to numberOfNeuronsThisLayer−1
23 nnl∗ntl S u b t r a c t e t a _ n e x t D e l t a ∗ o u t p u t T h i s N e u r o n from l o c a l W e i g h t s [ w e i g h t I d x ]
24
25
26 / / Update w i t h d e l a y
27 nwnl+1 f o r w = 0 to numberOfWeightsNextLayer−1
28 # a to mic
29 nwnl w e i g h t s N e x t L a y e r [w] = w e i g h t s N e x t L a y e r [w] + l o c a l W e i g h t s N e x t L a y e r [w]

Listing E.5: Pseudocode for back-propagation in the fully connected layer.

TBackpropagateFullyConnectedLayer(nnl, ntl, nwnl)
= c4 + c5 + c15 + c16 + c18 + c27 + (c5 + c6 + c7 + c8 + c12)ntl

+ (c8 + c9 + c10 + c22 + c23)ntl ∗ nnl
+ (c18 + c19 + c20 + c21 + c22)nnl + c27 ∗ nwnl + c28 ∗ nwn
= a ∗ ntl + b ∗ (ntl ∗ nnl) + c ∗ nnl + d ∗ nwnl + e
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E.6 Back-propagate Function for the Convolutional Layers

First deltas are propagated to the previous layer based on the deltas on the current layer.
Thereafter, the weights are calculated and the gradients are added to the local weights.
For each neuron in the current map, all weights that are touched by this neuron is updated
accordingly over all connected maps. After the local calculations of weights are done, the
global weights are updated with the calculated values.

1 b a c k p r o p a g a t e C o n v o l u t i o n a l L a y e r ( )
2
3 / / Propaga te d e l t a s to p r e v i o u s l a y e r
4 1 i f i d x > 0 / / I g n o r e i n p u t l a y e r
5 1 S e t d e l t a s on p r e v i o u s l a y e r to 0
6 mnl+1 f o r m a p t h i s L a y e r = 0 to numberOfMapsThisLayer−1
7 mnl Let numberOfMapsConnec tedPrev iousLayer be t h e number o f c o n n e c t e d maps i n

t h e p r e v i o u s l a y e r
8 mnl∗(msyn+1) f o r neuronY = 0 to numberOfNeuronsThisMapY−1
9 mnl∗msyn∗(msxn+1) f o r neuronX = 0 to numberOfNeuronsThisMapX−1

10 mnl∗msyn∗msxn Let d e l t a be t h e d e l t a o f neuron ( neuronX , neuronY )
11 mnl∗msyn∗msxn∗(mpl+1) f o r mapPrev iousLayer = 0 to numberOfMapsConnectedPreviousLayer−1
12 mnl∗msyn∗msxn∗mtl Pre−c a l c u l a t e i n d i c e s
13 mnl∗msyn∗msxn∗mtl∗(ksyn+1) f o r ke rne lY = 0 to k e r n e l S i z e Y
14 mnl∗msyn∗msxn∗mtl∗ksyn∗(ksxn+1) f o r ke rne lX = 0 to k e r n e l S i z e X
15 mnl∗msyn∗msxn∗mtl∗ksyn∗ksxn Add d e l t a ∗ Weights [ ( neuronX , neuronY ) , ( kerne lX ,

ke rne lY ) ] to d e l t a P r e v i o u s L a y e r [ ( kerne lX , ke rne lY ) ]
16
17
18 mnl Move p o i n t e r to w e i g h t s f o r n e x t c o n n e c t e d maps
19 / / End o u t e r f o r
20
21 ntl+1 f o r i = 0 to numberOfNeuronsPrev iousLayer−1
22 ntl p r e v i o u s L a y e r D e l t a [ i ] = p r e v i o u s L a y e r D e l t a [ i ] ∗ t a n h ( p r e v i o u s L a y e r O u t p u t [ i ] )
23
24 / / Update w e i g h t s
25 1 S e t Weights p o i n t e r to Loca lWeigh t s f o r d e l a y i n g u p d a t e s
26 1 S e t a l l Loca lWeigh t s to 0
27
28 mnl+1 f o r m a p t h i s L a y e r = 0 to numberOfMapsThisLayer−1
29 mnl Let numberOfMapsConnec tedPrev iousLayer be t h e number o f c o n n e c t e d maps i n t h e

p r e v i o u s l a y e r
30 mnl∗(msyn+1) f o r neuronY = 0 to numberOfNeuronsThisMapY−1
31 mnl∗msyn∗(msxn+1) f o r neuronX = 0 to numberOfNeuronsThisMapX−1
32 mnl∗msyn∗msxn∗(mnl+1) f o r mapPrev iousLayer = 0 to numberOfMapsConnectedPreviousLayer−1
33 mnl∗msyn∗msxn∗mnl Pre−c a l c u l a t e i n d i c e s
34 mnl∗msyn∗msxn∗mtl∗(ksyn+1) f o r ke rne lY = 0 to k e r n e l S i z e Y−1
35 mnl∗msyn∗msxn∗mtl∗ksyn∗(ksxn+1) f o r ke rne lX = 0 to k e r n e l S i z e X−1
36 mnl∗msyn∗msxn∗mtl∗ksyn∗ksxn D e c r e a s e t h e g r a d i e n t w i th t h e d e l t a o f neuron (

neuronX , neuronY ) ∗ t h e o u t p u t o f t h e c o n n e c t e d neuron ( kernelX , ke rne lY ) ove r t h e
k e r n e l

37
38 mnl Move w e i g h t s p o i n t e r to n e x t map
39 / / End o u t e r f o r
40
41 / / Update w e i g h t s w i t h a d e l a y from v a l u e s i n L o c a l W e i g h t s
42 nwl+1 f o r w = 0 to numberOfWeightsThisLayer−1
43 # a to mic
44 nwl W e i g h t s T h i s L a y e r [w] = W e i g h t s T h i s L a y e r [w] + L o c a l W e i g h t s T h i s L a y e r [w]

Listing E.6: Pseudocode for back-propagation in the convolutional layer.
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TBackpropagateConvolutionalLayerD(mnl,mtl,msyn,msxn, ksyn, ksxn)
= c4 + c5 + c6 + (c6 + c7 + c8)mnl + (c8 + c9)mnl ∗msyn
+ (c9 + c10 + c11)mnl ∗msyn ∗msxn
+ (c11 + c12 + c13)mnl ∗msyn ∗msxn ∗mtl
+ (c13 + c14)mnl ∗msyn ∗msxn ∗mtl ∗ ksyn+ (c14

+ c15)mnl ∗msyn ∗msxn ∗mtl ∗ ksyn ∗ ksxn
= a ∗mnl + b ∗ (mnl ∗msyn) + c ∗ (mnl ∗msyn ∗msxn)
+ d ∗ (mnl ∗msyn ∗msxn ∗mtl) + e ∗ (mnl ∗msyn ∗msxn ∗mtl ∗ ksyn)
+ f ∗ (mnl ∗msyn ∗msxn ∗mtl ∗ ksyn ∗ ksxn) + g

TBackpropagateConvolutionalLayerW (mnl,mtl,msyn,msxn, ksyn, ksxn, nwnl)
= c25 + c26 + c28 + c42 + (c28 + c29 + c30 + c38)mnl

+ (c30 + c31)mnl ∗msyn+ (c31 + c32)mnl ∗msyn ∗msxn
+ (c32 + c33 + c34)mnl ∗msyn ∗msxn ∗mtl
+ (c34 + c35)mnl ∗msyn ∗msxn ∗mtl ∗ ksyn
+ (c35 + c36)mnl ∗msyn ∗msxn ∗mtl ∗ ksyn ∗ ksxn+ (c42 + c44)nwnl

= a ∗mnl + b ∗ (mnl ∗msyn) + c ∗ (mnl ∗msyn ∗msxn)
+ d ∗ (mnl ∗msyn ∗msxn ∗mtl) + e ∗ (mnl ∗msyn ∗msxn ∗mtl ∗ ksyn)
+ f ∗ (mnl ∗msyn ∗msxn ∗mtl ∗ ksyn ∗ ksxn) + g ∗ nwnl + h

TBackpropagateConvolutionalLayer

= TBackpropagateConvolutionalLayerDelta

+ TBackpropagateConvolutionalLayerWeights
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E.7 Determine Error For Chunk Function

The DetermineErrorForChunk function calculates the error for a chunk of images. In the
current implementation it is used with a single image.

1 d e t e r m i n e E r r o r F o r C h u n k ( )
2
3 1 cur ren tERR = 0
4 1 S e t p o i n t e r s f o r image and l a b e l
5 1 P o i n t image to i n p u t l a y e r
6
7 l f o r i = 1 to numberOfLayers−1
8 (l−1) F o r w a r d P r o p a g a t e ( i )
9

10 1 S e t image to NULL
11 1 S e t d e s i r e d o u t p u t to y
12 1 d i g i t = 0
13
14 nll f o r i = 1 to numberOfNeuronsLas tLayer−1
15 (nll−1) i f y [ i ] > y [ d i g i t ]
16 (nll−1) d i g i t = i
17
18 (nll+1) f o r i = 0 to numberOfNeuronsLas tLayer−1
19 nll i f l a s t L a y e r A c t i v a t i o n T y p e == sof t_max
20 nll S e t y [ i ] bound to DOUBLE_MIN
21 nll Update cur ren tERR
22
23 nll e l s e i f l a s t L a y e r A c t i v a t i o n T y p e == s c a l e d _ t a n h
24 nll Update cur ren tERR
25
26 1 to talERR = to talERR + curren tERR
27 1 re turn 1 i f wrong p r e d i c t i o n , 0 i f c o r r e c t s

Listing E.7: Pseudocode for the determineErrorForChunk function.

TDetermineErrorForChunk = c3 + c4 + c5 − TFPropOneLayer(arch) + c10 + c11
+ c12 − c15 − c16 + c18 + c26 + c27 + TFPropOneLayer(arch) ∗ l
+ (c14 + c15 + c16 + c18 + c19 + c20 + c21 + c23 + c24)nll

= TFPropOneLayer(arch) ∗ l − TFPropOneLayer(arch) + b ∗ nll + c

E.8 Other Functions

This chapter cover other non-trivial operations included in the calculations. Each complex
function is approximated and summarized.

TPreAllocateDesiredOutput(arch) = a ∗ nll2 = O(nll2)
TPreAllocateImages(i) = a ∗ i ∗ ss = O(i)

The number of images i will always grow faster than the sample size ss as the sample size
is fixed.

TInitiateImages(i) = a+ 3i+ i ∗ labels+ log(labels) + labels = O(i)

The number of labels are constant, in our case 10, and hence we can omit them in the
asymptotic notation.

TReadNetworkWeights(nwl) = O(nwl)
TSetNetworkWeights(l) = O(l)
TCreateNetwork(l) = O(TCreateLayer ∗ l)
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where TCreateLayer is one of: TCreateInputLayer, TCreateFullyConnectedLayer,
TCreateConvolutionalLayer or TCreateMaxPoolingLayer

TCreateInputLayer = O(ksx ∗ ksy)
TCreateMaxPoolingLayer = O(1)
TCreateFullyConnectedLayer = O(nwl)
TCreateConvolutionalLayer = O(mtl ∗mpl) (E.1)
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Appendix F

Additional Results

In this chapter we provide additional results related to the Xeon E5 and Core i5 excluded
in the chapter Results.

F.1 Results for Intel Xeon E5

This section aims to describe data collected for the Xeon E5 including execution time,
speed up and error. In figure F.1.1 it can be seen that Xeon E5 Par. lower the execution
time for 12 and 24 threads, however when further increasing the count to 48 threads it
takes slightly longer time. The training of the large network takes 1 hour and 45 minutes
for 24 threads on the Xeon E5 and about 31 hours for the sequential version.

Figure F.1.1: The total execution time for all CNN architectures on the Xeon E5, for
various thread counts.

In figure F.1.2 the speed up for Xeon E5 compared to Xeon E5 Seq. is shown. The
speed up is increasing from 12 to 24 threads for all CNN architectures. From 24 to 48
threads the speed up only increases for the medium architecture, for the large and small, it
decreases. Except for the medium architecture on Xeon E5 Par 48 T, smaller architectures
seem to infer a better speed up than larger ones. When executing the experiments again
for 48 threads, the same values were encountered, however, execution times fluctuates
highly for all architectures, which is not the case for 24 and 12 threads on the Xeon E5.
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Figure F.1.2: Speed up compared to Xeon E5 Seq. for all architectures and thread counts
on the Xeon E5.

Optimizing the code for the Xeon Phi also optimize it for the Xeon CPU as it share
similar properties and the compilation is similar (just ignoring the mmic switch). The
ending error rates are shown for the Xeon E5 in table F.1.1.

Error Error Rate
Validation Test Validation Test

Small Medium Large Small Medium Large Small Medium Large Small Medium Large

48 T 2085 512 183 477 293 295 1.03% 0.14% 0.02% 1.57% 0.99% 0.92%
24 T 2093 510 181 475 292 285 1.02% 0.14% 0.02% 1.58% 0.99% 0.91%
12 T 2090 506 180 471 297 290 1.01% 0.13% 0.02% 1.51% 1.01% 0.90%
1 T 2092 509 183 468 296 290 1.02% 0.14% 0.02% 1.53% 0.95% 0.94%
Seq. 2092 509 183 468 296 290 1.02% 0.14% 0.02% 1.53% 0.95% 0.94%

Table F.1.1: The ending error and error rates for the Xeon E5 on all CNN architectures
compared to the base line Seq.

F.2 Speed Up compared to Intel Core i5

Figures F.2.1, F.2.2, and F.2.3 show the speed up compared to Core i5. It can be seen that
the same pattern is found as for Xeon E5 Seq. however, the values are a fraction higher.

Figure F.2.1: Speed up compared to Core i5 Seq. for the small architecture.
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Figure F.2.2: Speed up compared to Core i5 Seq. for the medium architecture.

Figure F.2.3: Speed up compared to Core i5 Seq. for the large architecture.
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