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Abstract

Near real-time event streams are a key feature in many popular social media applications.
These types of applications allow users to selectively follow event streams to receive a
curated list of real-time events from various sources. Due to the emphasis on recency,
relevance, personalization of content, and the highly variable cardinality of social sub-
graphs, it is extremely difficult to implement feed following at the scale of major social
media applications. This leads to multiple architectural approaches, but no consensus has
been reached as to what is considered to be an idiomatic solution. As of today, there are
various theoretical approaches exploiting the dynamic nature of social graphs, but not all
of them have been applied in practice. In this paper, large-cardinality graphs are placed in
the context of existing research to highlight the exceptional data management challenges
that are posed for large-scale real-time social media applications. This work outlines the
key characteristics of data dissemination in large-cardinality social graphs, and overviews
existing research and state-of-the-art approaches in industry, with the goal of stimulating
further research in this direction.

Keywords: Data dissemination, message delivery, social graph, big data, large scale,
feed following, materialized views, social network analysis, community structure detec-
tion, graph theory, database theory.
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1. Introduction

1.1. Introduction / Background

It is estimated that by 2016 the global Internet traffic will be 91.3 exabytes (one billion
gigabytes) per month, with half of the traffic going through content delivery networks by
2018 [1]. Existing social network applications are constantly under increasing load. As
of 2013, Facebook is processing a billion reads and millions of writes per second through
their social graph [2] and Twitter is handling five billion sessions a day [3]. At this scale,
simple architectural approaches are no longer possible and new approaches require a deep
understanding in a wide range of topics.

The majority of modern social network applications are feed following applications
where a user chooses the events to be curated into a personalized event stream or feed. It
is the emphasis on recency and relevance of these feeds, as well as variable cardinality of
the follows social graph, that makes this feature an implementation challenge at the scale
seen in existing social networks [4].

In the context of a "follows" application there are producers and consumers of con-
tent. Producers create content and consumers follow producers to consume the content.
Naturally, this causes clusterization of the social graph, where a select producer attracts
on average more consumers than any other producer. This is not uncommon when pop-
ular personalities, i.e., Lady Gaga who has 46.7 million followers on Twitter, use the
application and publish content. The problem in question occurs when the tweet needs
to be delivered to all those followers in real-time. The clusters of consumers are called
community structures and can be analyzed using many algorithms of cluster analysis and
community structure detection discussed in this work. As a result, even though the re-
quirements for delivering events through all the producer-consumer social graphs are the
same, the laws governing data dissemination through small and large cardinality graphs
are completely different.

While these laws have not yet been clearly defined, their effect on the architecture of
social graph based applications is great. Multiple approaches aimed to solve this problem,
potential theoretical approaches, and the background required to understand this problem,
are discussed in the paper in an attempt to form a synthesis of existing knowledge regard-
ing this topic.

1.2. Previous research

Previous research on the topic is abundant, as the problem in question interacts with many
areas of computer science and mathematics. The research in Feeding Frenzy: Selectively
Materializing Users’ Event Feeds [5] and Feed Following: The Big Data Challenge in
Social Applications [4] by Adam Silberstein et al is of most importance to this work and
relates to the practical aspects of feed construction in large-scale social networks. The
paper Piggybacking on Social Networks [6] provides a valuable theoretical insight on how
the structure of a social graph itself can be exploited to further optimize dissemination of
data. Multiple works by M. E. J. Newman in the field of social network analysis and
graph theory have provided an indispensable contribution to the theoretical background
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of this work. Multiple engineering blogs were also consulted for up-to-date empirical
data collected by applications in industry.

The theoretical background required to study dissemination of data in large-cardinality
social graphs falls in several fields of science: graph theory, social network analysis and
database theory. Graph theory is required to understand the formal definition of the prop-
erties and forms of social graphs. Social network analysis studies the various properties
of social networks which are a natural environment for large-cardinality graphs due to
the high clustering nature of social networks. Finally, database theory shows how social
network applications interact with the database layer to cope with the huge daily load.

1.3. Problem definition

The problem of data dissemination in large-cardinality social graphs appears when there
is a high-rate producer with many consumers and there are strict requirements for deliv-
ering events from the producer to the consumers. The scenario described is typical for
modern real-time social network applications. With large-cardinality graphs the time for
an event to reach all the consumers increases up to the point where it no longer meets the
constraints of a real-time application and causes massive resource consumption.

This problem has been studied from both the theoretical and practical perspectives. As
discussed in section 1.2, previous research regarding this topic lies in three different fields
of science. Each proposes a different perspective and defines area-specific terminology
in the process of examining the problem. While giving a wide theoretical background,
the interchanging terminology and overlapping of knowledge areas creates unnecessary
confusion for investigators. In the practical sense, this problem has also been tackled from
different angles. There are known approaches regarding materialized views [4], [5] and
distributed social graph databases [2], [7], [8]. In general, it can be seen that this area of
research lacks consensus and systematization of knowledge, and that research is needed
to bridge the gap between three areas of science relating to the same topic.

1.4. Purpose and research questions

The purpose of this work is to conduct an analysis of existing large-scale architectures to
evaluate if large-cardinality social graphs actually do represent a problem. By conducting
a systematic literature review this work aims to answer the following research questions:

[SLRQ1] What problems do large-cardinality social graphs pose for existing large-scale
social network applications?

[SLRQ2] What is the current practice of dealing with large-cardinality social graphs in
the enterprise?

Along with answering the research questions, the end goal of this study is to:

• Define research areas which should be studied to analyze the problem of data dis-
semination in large-cardinality graphs.

• Conduct a systematic review of the literature found in the related research areas
regarding large-cardinality graphs.

• Select the most relevant studies to be reviewed in greater detail.
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• Collect empirical data offered to the public by companies in industry dealing with
the same problem.

• Provide an up-to-date picture of the state of research in this field.

• Offer a direction for further research in this field.

The intended result that this research aims to produce is descriptive and explanatory
knowledge regarding large-cardinality social graphs in existing social graph based sys-
tems, current state-of-the-art approaches to solving the problem in question, aggregation
of previous research and terminology, as well as clear specification of theoretical and
practical limitations that this problem poses on a system architecture.

1.5. Scope / Limitation

The scope of research is limited to studying message delivery through social graphs. This
research does not try to address approaches of architecture design of social media appli-
cations in general, neither does it intend to be a guide on decision-making in software de-
sign. Rather the purpose of the research is to define the problem area of large-cardinality
graphs in social media applications, their effects on these applications and what restric-
tions on software architecture are imposed in the context of this problem.

This study is heavily based on previous work, as well as data provided to public by
companies in industry. Because the reviewer (the author) does not have control over the
data collected by other sources, a certain limitation is placed on the validity of the results
of the study. The context in which the data was collected in should also be taken into
account.

Due to time limitation, a majority of practical aspects must be overlooked, as it would
otherwise be impossible to reach a needed theoretical depth for this research to be of use.
This, however, does not limit the practical application of this research in future work.

1.6. Target group

This research is intended to be of interest to software developers, system architects or
computer scientists interested in the topics of social network analysis, graph theory and
database theory that are part of this research. In the practical sense, the problem area in
question will be of interest to system architects dealing with large data and high scale
systems in their field of work.

1.7. Outline

The bulk of research in this work is divided into several parts: introduction, theoretical
background, existing approaches and discussion. In the introduction the problem is de-
scribed in the context of the problem area and previous research. The background chapter
provides insight on the theoretical background that is required to fully understand the
complexity of the problem. Afterwards an overview of existing approaches is given. The
architectures and approaches that are currently used in the enterprise are heavily based on
the concepts discussed in the theoretical overview of this work. Finally, the discussion
chapter compares existing approaches and concludes the research, along with suggestions
for future work that is possible in this research area.
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2. Method

2.1. Scientific approach

Systematic literature review (SLR) was chosen as the primary research methodology. The
motivation for an SLR was to utilize a reliable tool aimed at identifying gaps in previous
research, summarizing existent evidence and positioning future research. The SLR was
conducted according to the procedures [9] and guidelines [10] defined by Keele Univer-
sity.

The scientific approach of the study was focused on conducting a proper systematic
review adhering to the defined SLR protocol. The protocol is attached to the submis-
sion as a separate document and should be referenced for full information regarding the
investigation. In general, the research consisted of defining the SLR protocol, and then
following the steps described in the protocol. The steps defined were the search strategy,
selection criteria, data extraction and the limitations of the study.

The search strategy consisted of full text searches against the resources documented
in the protocol (electronic databases, journal publications, conference proceedings, etc.).
As the studies were found, a two step selection process was used to find the most rele-
vant publications. Selection was based upon inclusion/exclusion criteria defined in the
protocol.

The selected studies then underwent a quality assessment to identify inadequate or
inappropriate statistical analysis or bias, as well as evaluate internal and external validity.
After the primary studies were identified, it was possible to proceed to data extraction.
When processing the data in the context of the research problem, inductive reasoning was
used. Due to the lack of quantitative data, a qualitative analysis strategy was chosen. The
result of the collected data was a data synthesis summarizing the information extracted
from the primary studies. Dissemination has taken form in the writing of the final report.

2.2. Analysis

Content analysis was used as a method of qualitative analysis of the results. The empir-
ical data found by the systematical literature review of different architecture approaches
was evaluated for bias and subjectivity and then compared. Each approach was evaluated
and analyzed for repeatability and patterns were detected and then referenced to the back-
ground theory to find the reasoning behind the architecture decisions. The results of the
qualitative content analysis were then noted down in the form of the final report.

2.3. Reliability

The reliability of this work is dependent on the reliability of the primary studies that
were used in the systematic literature review. Due to this research being based on data
generated by previous research in other studies, it is not possible to precisely evaluate the
amount of bias that is present in the primary studies. Even though it is not always possible
to correctly determine the adequacy of the empirical data provided in previous research,
biased measurements were removed to the best of the author’s knowledge.
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3. Background / Theory

3.1. Social network analysis

Social network analysis (SNA) is a strategy for investigating social structures through the
use of network and graph theories [11]. It characterizes networked structures in terms
of nodes (individual actors, people, or things within the network) and the ties or edges
(relationships or interactions) that connect them.

3.1.1. Social graph

A social network can be represented as a graph. A graph can be either unipartite, bipar-
tite or multipartite. When we think of a social network, we usually think of a unipartite
network - for instance, the membership of a person to a certain Facebook group or Google
circle, etc. Bipartite graphs, like a graph modeling which football players play for which
clubs, is a disjoint set of nodes V1 and V2 with no edges among nodes of the same type.
In multipartite graphs there are multiple classes of nodes, and edges only exist between
different classes of nodes. Graphs can also be directed and undirected - i.e., a directed
graph is a graph of friendship requests, with outgoing and incoming requests, while mu-
tual friendships can be represented as an undirected graph. In this chapter, graph theory
will be applied to the social network domain, taking form in the concept known as a social
graph.

A social graph, in the Internet context, is a graph that depicts personal relationships be-
tween users. The concept of social graphs is heavily based on its origin, social networks,
but is still closely related to graph theory [12]. The term was first introduced in 2002
by Harvard student Philippe Bouzaglou, in a paper published on the Harvard Department
of Economics website. This was the first time that analysis of the network characteris-
tics using graph theory was proposed. The term was later popularized at Facebook’s F8
conference on May 24, 2007. The shape of the general social graph, as well as the lo-
cal subgraphs formed by communities, discussed in section 3.1.4, can take many forms.
Following is the analysis of various possible social graph types, starting with the most
common one.

A star graph (figure 3.2a) is a graph whose diameter (the longest distance between
any two nodes) is 2, with a cardinality that can sometimes be very large, in the case
of celebrities or other popular producers of content. The typical use-case that spawns
these types of graphs is when a popular producer publishes content that is propagated to
consumers who do not interact with each other. A real-life example of this would be a
Twitter reply graph when a single user generates a tweet to which a large number of people
reply - however, users do not respond to each others’ replies [13]. Another possible type
of social graph is a tree (figure 3.2b). Following the example of Twitter, a tree graph is
possible when a user tweets and then a reply graph is formed of users replying to each
others’ replies.

In general there are many other types of social graphs, some of the relevant ones being
a complete graph (figure 3.2c) and a ring (figure 3.2d). As can be seen from the above
examples, the type of social graph that is formed is determined on a local basis by the
social interaction at hand.
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(a) Star graph; (b) Tree;

(c) Complete graph; (d) Ring;

Figure 3.1.: Examples of types of social graphs.

3.1.2. Types of networks

A good characterization of network types is given by M. E. J. Newman in The struc-
ture and function of complex networks [14]. As mentioned in the research, a network
can be more complex than just being a set of nodes connected by edges, as illustrated
in figure 3.2. One of the areas of network modeling that can lead to complexity is the
possibility to attach arbitrary properties to nodes. Both nodes and edges can be of dif-
ferent types and represent different things. For example, nodes can represent people of
different gender, region, nationality, etc. Edges can also have different semantic meaning
depending on the context. Edges can have different weights, represent friendship, as in
the Facebook social graph, or professional acquaintance, as in the professional social net-
work LinkedIn. Edges can be directed or undirected. Graphs composed of directed edges
are called directed graphs or, more shortly, digraphs. Directed graphs can also be cyclic
or acyclic.

Beyond simple edges that connect only two nodes, there are also hyperedges. Hyper-
graphs are graphs that contain such edges that connect more than two nodes at a time.
Hypergraphs are a common way to represent cliques in clique-based community structure
detection algorithms. There are also multiple ways in which a graph can be partitioned:
unipartite, bipartite or multipartite. In social network analysis, affiliation networks take
the form of biparite partitioning where people and their affiliation groups are two distinct
types of nodes.

3.1.3. Network properties

Network properties are certain attributes of a network that can be analyzed. The analysis
of these attributes is what allows to compare networks between each other. Here it is
important to note that, unless explicitly stated otherwise, an assumption is made that any
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(a) An undirected network with homoge-
neous nodes;

(b) An undirected network with heteroge-
neous nodes and edges;

(c) An undirected network where nodes and
edges have weights;

(d) A directed network with homogeneous
nodes;

Figure 3.2.: Examples of types of networks [14, p. 4].

graph under discussion is a connected graph. An undirected graph is considered to be
connected if there is always a path between any two nodes. The point of this assumption
is that the network under analysis is always a single interconnected entity.

Size
The size of a network usually refers to the number of nodes N, or, less commonly, the
number of edges. The number of edges can range from N �1, in case of a tree, to Emax,
in case of a complete graph.

Density
The density D of a network is the ratio of the number of edges E (or T for undirected
edges) to the number of possible edges defined by

�N
2
�
.

Network density for directed edges:

D =
2E

N(N �1)
(3.1)

Network density for undirected edges:

D =
T

N(N �1)
(3.2)

Average degree
The degree k of a node is the number of edges connected to it.
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Diameter of a network
The diameter of a network is the largest distance between any two nodes in the network:

diameter = max
i, j

I(i, j) (3.3)

where I(i, j) is the length of the shortest path from node i to node j.

Average path length
The average path length is the average distance between any two nodes (i, j) in the net-
work:

average path length =
Âi� j I(i, j)
N(N �1)

2

(3.4)

where N is the number of nodes in the network. The average path length is bounded by
the diameter, as it is not possible to have a path greater than the diameter of the network.
As stated in the beginning, this property holds true as long as the graph is connected. For
an unconnected graph, the path length between two nodes belonging to different "parts"
of the network is either undefined or infinite.

Clustering coefficient
The measurement of the degree of clustering of a network can be done by evaluating the
clustering coefficient, a term taken from graph theory. There are two versions of this
measure: a global and local clustering coefficient. The global version gives an overall
indication of the clustering in the network, while the local clustering coefficient indicates
the embeddedness of single nodes.

The global clustering coefficient is based on triplets of nodes. A triplet consists of three
nodes that are connected by either two (open triplet) or three (closed triplet) undirected
ties. A triangle consists of three closed triplets, one centered on each of the nodes. The
global clustering coefficient is the number of closed triplets (or 3 ⇥ triangles) over the
total number of triplets (both open and closed).

The global clustering coefficient is defined as:

Cl(g) =
3⇥number of triangles

number of connected triplets of nodes
(3.5)

The local clustering coefficient for a node i is defined as:

Cli(g) =
number of triangles connected to node ı

number of triplets centered at ı
(3.6)

The average clustering coefficient is defined as:

ClAvg(g) =
1
N Â

i
Cli(g) (3.7)

Connectedness
Networks can be categorized in four different categories:

• Clique/Complete Graph - a completely connected network. Each node in the
network is connected to every other node in the network.
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• Giant Component - a single component that contains almost all the nodes of the
network.

• Weakly connected component - a set of nodes where there exists an undirected
path from any node to another.

• Strongly connected component - a set of nodes where there exists a directed path
from any node to another.

Node centrality
A measure that represents the importance of a node’s position in the network. There are
different measures of centrality:

• Degree centrality
di(g)
N �1

(3.8)

where di(g) is the degree of node i and N is the number of nodes in the network.

• Closeness centrality - measure of how close one node is to another

N �1
Â j 6= j I(i, j)

(3.9)

where I(i, j) is the distance between nodes i and j.

• Betweenness centrality - defines how well a node is situated in terms of paths that
it lies on.

3.1.4. Community detection

Existing work, such as [15]–[18], indicates that social networks tend to have a local clus-
tering nature, where neighbors of a node in a social graph are interconnected, but have
weaker connections to nodes outside of it’s neighboring range. An example of a typical
community structure in a network is illustrated in figure 3.3. While being a computation-
ally difficult task, community structure detection has won the interest of researchers and
multiple approaches have been proposed over the years [18], [19]. As communities grow
they often form large-cardinality graphs, therefore detection of community structures can
be considered one of the ways for pinpointing areas for optimization in large-scale appli-
cations. There are multiple applicable algorithms of community detection:

• Minimum-cut method

• Hierarchical clustering

• Girvan–Newman algorithm

• Modularity maximization

• Statistical inference

• Clique-based methods

9



Figure 3.3.: A small network with highlighted community structures. Nodes that do not
belong to a community are grayed out.

Minimum-cut method
The minimum-cut method works by dividing a network into a predefined number of ap-
proximately equal parts. Variations of this algorithm are the ratio cut and the normalized
cut algorithms. The parts are chosen in such a way that the number of edges between
them is minimal, such as in figure 3.4. Due to this algorithm being one of the oldest for
partitioning networks, it is capable of finding only a fixed number of communities, and
while working in specific networks, it might not be the ideal approach in general networks
[20].

Figure 3.4.: An example of a graph partitioned using the minimum-cut method.

Hierarchical clustering
Hierarchical clustering is a method of cluster analysis which is focused on building a
hierarchy of clusters. Hierarchical clustering can be of two types [21]:

• Agglomerative - A "bottom up" approach: each observation starts as a separate
cluster, and pairs of clusters are merged by moving up the hierarchy.
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• Divisive - A "top down" approach: all observations start in a topmost common
cluster, and splits are performed divisively by moving down the hierarchy.

In general, the time complexity of agglomerative clustering is O(n3) and O(2n) for
divisive clustering, meaning these algorithms are inefficient on a large-scale network.
However, single linkage and complete linkage clustering are more efficient and have a
time complexity of O(n2).

This algorithm is based on the idea of developing a measure of similarity xi j between
a pair of nodes (i, j). The basis for deciding the similarity measure is derived from the
underlying network. Commonly used measures are the the cosine similarity, the Ham-
ming distance between rows of the adjacency matrix and the Jaccard index. Once one
has such a measure then, starting with an empty network of n nodes and no edges, one
adds edges between pairs of nodes in order of decreasing similarity, starting with the pair
with strongest similarity [22]. It is important to note that the edges that are added in this
iterative computation have no influence on the original network and are only used for the
computation itself.

(a) Single linkage (nearest neighbor) method

(b) Complete linkage (furthest neighbor) method

(c) Average linkage method

Figure 3.5.: Comparison of hierarchical clustering methods.

There are several ways to perform the coalescing of groups defined by the hierarchical
clustering algorithm. By far, the most common are the single linkage method and the
complete linkage methods. Both of the methods are based on defining a concept called
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the "shortest distance". At the starting point of the computation, each node is considered
to be a cluster of it’s own.

In single-linkage clustering, the link between two clusters is a single element pair where
each of the elements in the pair is the closest to each other. At any step of the process,
the shortest of these links causes the clusters to be merged. Because of this, the method is
also known as the nearest neighbor method (figure 3.5a).

D(I,J) = min
i2I, j2J

I(i, j) (3.10)

where:

• I(i, j) is the distance between elements i 2 I, j 2 J;

• I and J are the two sets of elements (clusters);

In complete-linkage clustering, the link between two clusters contains all element pairs,
and the elements that are the furthest away are taken. Because of this, the method is also
known as the furthest neighbor (figure 3.5b) method.

D(I,J) = max
i2I, j2J

I(i, j) (3.11)

The results of both the methods can be visualized as a hierarchical tree, as in figure 3.6,
where each merge of the clusters and the distance at which this merge was performed is
illustrated as a step.

Figure 3.6.: An example of a small hierarchical clustering tree. The circles on the bottom
represent nodes in the network and the joins in the tree represent the order in
which the nodes form communities.

Girvan–Newman algorithm
The Girvan-Newman algorithm is a divisive method [23]. The motivation of the method
is to find bridges (also called "bottlenecks") between communities as the ones depicted in
figure 3.3. Thus, if the underlying system is modeled as a flow network (a directed graph
where each edge has a capacity and each edge receives a flow), finding these narrow
bridges connecting communities in the network allows to locate areas with the lowest
throughput and the highest traffic. Removing these edges should then divide the network
into its natural communities [22]. The algorithm defines three rules for edge removal:

1. Edges are progressively removed from the network.

2. The edges to be removed are decided on by computing the betweenness score.
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3. The betweenness score is recomputed each time an edge is removed.

The Girvan-Newman algorithm is a popular choice for network partitioning since it
has been implemented in many standard software packages. The main disadvantage of
the algorithm, however, is that it’s slow [24] and has a high computational demand, as
pointed out by the authors of the algorithm [23]. On a network of m edges and n nodes
there are overall m edges that need to be removed and each iteration takes O(mn) time.
In the worst case, the Girvan-Newman algorithm can take up to O(m2n) or O(n3) on a
sparse graph (one for which m scales with n in the limit of large n) [24]. Therefore, this
algorithm is not optimal for partitioning large-scale networks, in which large-cardinality
graphs are normally found.

Modularity maximization
Modularity maximization is based on defining the measure of the quality of a particular
division of a network, known as modularity [25]. Modularity maximization works by
going through all the possible divisions of the network and evaluating their modularity.
Since a simple iterative approach is often not possible, various alternative algorithms and
approaches have been proposed.

Modularity optimization may be inaccurate when applied to large-scale networks. When
evaluating modularity, the assumption is that each node has a fixed degree but can other-
wise get randomly attached to any other node in the network. As the size of the network
increases, the expected number of edges between two sets of nodes decreases. This effect
can reach up to the point when having a single connection between two clusters would
be considered sufficient to define a strong tie between them. For this reason, modularity
optimization would fail to detect communities in a large enough network [26].

Statistical inference
Methods of statistical inference are considered to be the most promising, as they are
based on solid mathematical foundations and return excellent results in practice [27]. As
this class of methods is based on generative models (models for randomly generating
observable-data values), they can be used not only for community detection, but also for
predicting missing links in the network [28]. Two of the most fundamental statistical
inference methods are based on the stochastic block model or its degree-corrected variant
[27]. Other variants of the algorithm include the mixed membership and hierarchical
structure approaches. Many efficient algorithms of statistical inference exist for stochastic
block models, including the Monte-Carlo method [29] and Belief propagation [30].

Clique-based methods
A clique is a subgraph where every node is connected to every other node in the network.
As illustrated in figure 3.7, a node can belong to more than one clique at a time, which is
why clique-based methods allow detection of an overlapping community structure. Due
to this overlapping structure of cliques, additional effort needs to be taken to assign a
node to a specific clique. Usually a node is assigned to one community or the other by
following some kind of rule, typically either just assigning it to a larger clique or random
assignment. The detection of maximum cliques or fixed-size cliques are an example of the
many existing clique-based methods.

In the maximum clique approach, the focus is to find cliques that are not contained
in any other clique. The Bron–Kerbosch algorithm [32] is an example of how this can
be done. Once the overlapping of cliques is found, it is up to the investigator how to
determine the communities. The simplest is to set a threshold x on the minimum size of
clique and to consider only the cliques exceeding the threshold. The union of these sets
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Figure 3.7.: Illustration of k-clique communities [31], where k = 4. Communities are
characterized in different colors, the overlapping structure of communities is
characterized by the red coloring.

can be considered to be a family of sets or a hypergraph, similar to the one illustrated in
figure 3.7. The sets in this resulting hypergraph are the detected communities.

In the fixed-sized clique approach, the focus is on using cliques of fixed size, k. The
overlapping of nodes between different cliques forms a new structure known as a clique
graph. In graph theory, a clique graph of an undirected graph G, is a graph K(G) which is
a graph intersection of the family of cliques of G. The nodes in the clique graph represent
the cliques in the original graph, while the edges of the clique graph represent the overlap
of cliques in the original graph. Any method of community structure detection can be
applied at this stage to assign each node of the clique graph to a community, taking into
account that a node can belong to multiple communities at the same time. There are
various approaches on how to define the communities in the clique graph, but a popular
approach is the clique percolation method which defines nodes as percolation clusters.
The choice of the approach responsible for node assignment is left up to the investigator.

3.2. Database theory

Since the problem in question involves retrieving and delivering data from producers to
consumers, it can be optimized both at the time of retrieval of data from the producers
and at the time of delivery of the data to the consumers. Database theory encapsulates a
broad range of topics related to databases and database management systems which can
be applied to optimizing the retrieval of social graph based data.
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3.2.1. Caching

Caching is the process of keeping relevant data in memory to reduce the number of re-
quests to the database. Caching has a couple of advantages when relating to enhancing
the scalability of a feed-based system. The key advantages of caching, compared to other
optimization approaches, is the flexibility of selection on what objects should be cached,
and the ability to specify for how long each of these objects should stay in the cache.
Therefore, by setting a specific time-to-live (TTL) for each object we can provide op-
timization on a per-object basis, meaning that it is possible to cache popular content to
offload the database. Furthermore, this approach seems promising due to the 80/20 rule:
80% of all queries can be satisfied by caching results for the 20% most popular unique
queries [33].

However, due to the nature of caches, this cannot be considered a viable optimization
technique in feed following systems. As noted in Feed Following [4], multiple potential
problems will arise when trying to use a caching system as a basis for feed following
optimization. Most notable cache-related problems mentioned in [4] are: lack of access
control and privacy settings on a per-user basis, lack of partial cache invalidation to cope
with the dynamic nature of feeds and lack of personalization which means that a user will
either always have good performance on her feed, or never, depending on how globally
popular her feed is.

3.2.2. Materialized views

A materialized view is a database object that contains the results of a query. In the con-
text of social graph based data, these materialized views can be consumer-pivoted query
results, producer-pivoted query results, which can be both on a per-producer basis or on
a per-producer-group basis. There is already a great amount of view materialization liter-
ature, so studying them in a more narrow context of feed following applications is more
applicable to the research area discussed in the paper.

In the area of large-scale feed following systems, however, view materialization has
some drawbacks, which means, in it’s pure implementation, it is not enough to completely
solve the problem of large-cardinality graphs [4]. One of the most notable drawbacks is
the static nature of materialized views. The way that materialized views work is, the
query workload is analyzed, a set of views is chosen and then maintained. This works
reasonably well in a standard environment, but in social graph based environments, the
workload changes dynamically, the number of views is extraordinary, and each view only
has a small subset of the total amount of events. Therefore, each materialized view may
be useful only for a small amount of queries. In a research done by Yahoo!, a sampling
of 1 million consumers has shown that 75% of consumers have a gap of more than a
day between feed requests, meaning that most views for individual consumers are useless
most of the time [4]. Another example is, that only 4 out of 10 Facebook users can be
considered active [34], meaning precomputation for all the users in the social network will
be a huge performance overhead. The high skew of the producer-consumer ratio is and
additional challenge, and leads a dynamically varying cardinality of the underlying social
graph. This is clearly demonstrated in Twitter, where 40% of the users don’t actually
tweet [35], meaning they are only consumers, not producers. To be able to address these
challenges, the problem of view materialization needs to be further separated into view
selection, scheduling, and view placement, which answer the questions of which views
should be materialized, and when and where they should be materialized.
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View selection
View selection is the question of which views to materialize and maintain to minimize
a given cost function (memory consumption, throughput, system resources, etc.). Here
various view types can be defined to pinpoint what views need to be materialize. In Feed-
ing Frenzy [5] two types of materialized views were proposed: consumer-pivoted views
and producer-pivoted views. More view types were latter proposed in Feed Following
[4], with the goal of more specific selection of materialized views and more performance
gains. The general conclusion is that all system resources and performance constraints
need to be considered when evaluating advantages of one approach over the other, as
performance in one area may be gained by sacrificing performance in another area.

View scheduling
View scheduling is the question of when to materialize the views into memory, when to
incrementally update them, and when to drop them from memory. While being untra-
ditional compared to standard view materialization approaches, which tend to be more
static, this approach is feasible in a feed-based application. This relates to the social and
psychological nature of social media applications, where users tend to have a predefined
pattern of how they use the application and consume the content and leads us to the ques-
tion of predicting user activity to gain maximum performance.

View placement
View placement is the question of where to materialize the views. In the practical sense,
this is a question of how to place the databases, which servers these databases should be
hosted on and how communication between them should be organized. The first solution
that comes to mind is the traditional approach of distributed data-centers with a fair degree
of randomness using hashing and/or sharding. However, this approach is suboptimal and
may even be inefficient since the distribution and duplication of views on many servers
can cause network latency and recomputation of the same set of data.

To avoid duplication of data and overlapping of events, a deeper analysis of the type of
data worked on is required. Existing research, such as [15]–[18], demonstrates that users
in social networks tend to form clusters and interact within those clusters, while having
fewer interactions with users outside the cluster. It is therefore possible to exploit this
fact and place all related views of a social cluster on one data-center to avoid the net-
work latency and increase the performance for the interactions within that cluster. These
considerations have already lead for experimental solutions, such as [8], to appear, and
hopefully more solutions will be developed in the future.
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4. Existing approaches

As should be clear at this point, building a large-scale application based on feeds is not a
trivial task. The importance of recency and relevance of the content that is aggregated in
users’ feeds and the high skew of the fan-out ratio depending on the social graph makes
feed delivery a challenging feat. Additionally, a low latency requirement and extremely
high query rates are a common service-level agreement (SLA) in modern feed-based
applications. Standard database-driven approaches, such as caching (discussed in sec-
tion 3.2.1), are not viable due to each feed request being a distinct query to the database.

Enterprise-level social networks already use various architectural approaches for build-
ing their feeds. These approaches include conceptual architecture designs discussed fur-
ther in this chapter, as well as multiple efforts in software solutions targeting the pro-
cessing and storing of social graphs. Notable examples of special-purpose social graph
storage systems are Facebook’s TAO [2] and Twitter’s FlockDB [7]. It is interesting to
note that, at the time of writing this report, there is no consensus on what the idiomatic ar-
chitectural approach for a feed-based application is. Following are the approaches used in
practice, with references to existing feed implementations in large-scale social networks,
as well as a theoretical approach that has not yet, to the knowledge of the author, been
tried in practice.

4.1. Pull-based approach

The pull-based approach, also known as the fan out on read, is illustrated in figure 4.1.
When an incoming event is processed it is stored only in the producer’s event stream.
At the time of reading the feed by the consumer, each producer that has relevance to
the consumer is queried for their k latest events and then the events are aggregated into an
event stream that is presented to the consumer. The value of k is defined by the application
at hand, and is usually either a business requirement or a value that is derived in practice
as being the best for system performance.

consumer

producers 1..n

Figure 4.1.: Consumer pulling from the producers, allowing the runtime aggregation of
feeds.

Pull-based architectures are intended for heavy write-based systems where a write op-
eration is relatively more expensive than a read operation. The major advantage of this
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approach is in the flexibility of processing events at read time. This means that advanced
filtering, ranking, privacy restrictions and user-specific business logic rules are easier to
apply if events are dependent on each other to form an aggregated event stream [2]. The
disadvantage of aggregating the event stream at read time is the lack of precomputation
and the very high requirement for low latency and fast processing time. Since most mod-
ern feed-based applications are real-time they require the users’ feeds to be computed as
quickly as possible. As a result, extra effort needs to be taken to perform as little disk
seeks as possible, or responses won’t be fast enough to satisfy the SLA. Additionally,
since the event stream is not precomputed for the user, and in case of failure the user
might not get a feed at all.

Frontend 
tier

Aggregator
LeafLeafLeaf

Figure 4.2.: Facebook’s pull-based feed architecture [36]. Node servers are clusters of
servers with a modified Linux kernel able to store feeds of multiple users in
memory and span multiple data centers.

One of the biggest, if not the biggest, social network feeds built using a pull-based
architecture is Facebook’s News Feed. Facebook needs to handle more than 10 billion
feed queries a day [36] and more than a billion queries per second in general [2]. Their
feed-related infrastructure is organized in clusters of "leaf nodes" (figure 4.2), servers with
a modified Linux kernel, spanning multiple data centers all over the world. It is interesting
to note that initially the News Feed was built using a push-based approach, but later was
switched to what Facebook calls a "Multifeed", a pull-based feed aggregation system.
Some of the reasons for the switch to a new architecture were the overall cheaper storage
costs, the absence of large fan-outs for high-rate producers and the need for flexible read-
time aggregation.

4.2. Push-based approach

The push-based approach, also known as fan out on write, is illustrated in figure 4.3.
When an incoming event is processed it is stored in the producer’s event stream and a
copy (or a pointer to the original) of the event is inserted into each of the consumers’
event streams. In contrast to the pull-based approach, which queries the producer’s event
streams at runtime, the events are inserted into the consumers’ event streams ahead of
time, at time of event creation. At runtime, when the consumer’s feed needs to be dis-
played, a very simple query is performed to receive the precomputed list of events.
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producer

consumers 1..n

Figure 4.3.: Producer pushing to the consumers at write-time, allowing the precomputa-
tion of feeds.

Push-based architectures are intended for heavy read-based systems where a read oper-
ation is relatively more expensive than a write operation. Since push-based event stream
aggregation is based on prior computation it is much easier to meet the latency and pro-
cessing time SLA at runtime. There is no concern about performing disk seeks and data
doesn’t have to be strictly in memory. Existing technologies such as Redis, Cassandra,
etc., allow to easily store and append lists of denormalized data representing the event
streams of the consumers. As feeds are usually ordered by time, it is possible to work in
an "append only" fashion most of the time, making fan-out writes cheap. For example, the
"right push" command (insert element at the tail of the list) in Redis has only amortized
time complexity of O(1) [37].

However, in contrast to the pull-based approach, the push-based approach is completely
exposed to the large-cardinality graph problem. This means that, as the size of the cluster
of consumers following one producer increases, so does the cost of fanning out the events.
This is common in large social networks that have popular producers, i.e., celebrities.
For example, at the time of writing, Lady Gaga has 46.6 million followers on Twitter.
Sequentially fanning out a tweet from a producer like this to 46 million consumers is just
not possible for Twitter’s infrastructure, which is already constantly under heavy load.
Therefore, in it’s simplest form, this approach will not work for a large-scale application
like Twitter.

As noted in section 4.1, compared to this approach, the pull-based approach is much
more flexible in how the events are aggregated. And even though push-based architectures
sacrifice flexibility, they definitely win in the possibility to gracefully degrade the feed
service in case of error. Due to users’ feeds being precomputed ahead of time, even if the
servers are under massive load and can not serve the requests properly, the latest available
version of the feed can always be returned. It has to be noted though, that the reverse is
also applicable in terms of data corruption. When performing a read at runtime any data
corruption will be alleviated when the feed is recomputed. Data corruption in a push-
based architecture is much more dangerous though, as it can lead to missing or duplicate
events in the consumers’ event streams. Therefore, in order to decide if this approach is
appropriate, all the advantages and disadvantages need to be carefully considered by the
system architect.

An example of a push-based architecture in practice would be Instagram’s Redis-based
feed architecture [38]. The feeds of users are represented as simple Redis lists (figure 4.4).
At the time of creation of an event by a producer, the list of relevant consumers is re-
trieved. The consumers are then iterated over and the new event is inserted into the event
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Figure 4.4.: Instagram’s push-based feed architecture [38]. When a user posts a new pic-
ture, the list of followers is fetched. In the system the followers’ feeds are
represented as Redis lists. A batched fan-out is then performed, where the
media id is appended to the Redis lists.

streams of each consumer in effect performing a write fan-out. Any time a picture appears
in the feed of a user on Instagram it goes through this write-out fan to get there. Since
the push-based approach has known limitations, which were discussed above, Instagram
engineers needed to improve the algorithm to handle high-rate producers and solve the
large-cardinality graph problem. The resulting solution is using asynchronous workers
and performing fan-outs in batches instead of trying to deliver the event to all the con-
sumers at once. When a popular producer creates an event that more than k consumers
are interested in, the consumers set is divided into subsets that contain no more than k con-
sumers in one set. The batched sets are then fanned out in parallel allowing for horizontal
scalability of the write-out fans.

4.3. Selective pull and push

Selective pull and push is a hybrid approach that combines the advantages of both the
pull-based approach discussed in section 4.1 and the push-based approach discussed in
section 4.2. Sometimes precomputation of the feed using the push strategy is necessary
to reduce the latency and system load when the user is requesting her feed. On the other
hand, there are times when consumers are passive compared to the rate of events produced
by producers, and constant precomputation is expensive and unnecessary. Recency of
events also needs to be taken into account - if the user logs in rarely, then the feed will be
constantly recomputed and old events invalidated when new events arrive without use for
the user.

In the approach proposed in Feeding Frenzy: Selectively Materializing Users’ Event
Feeds [5] the selection between a push set or a pull set of the user is made on producer-
consumer pair basis. Based on the ratio between the producer’s update rate (how often
content is created) and the consumer’s view rate (how often content is consumed) the
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global cost of the system can be minimized by making a local decision for each producer-
consumer pair. The theoretical contribution of the research in [5] has lead to great prac-
tical implications. It has shown an approach that overall scales better than the traditional
read-in fan (pull-based approach) or write-out fan (push-based approach) architectures. It
allows to minimize the overall cost of the system, alleviate unnecessary computation, as
well as adapt to mutations in the social graph and sudden bursts of producer activity.

Feeding Frenzy analyses the two types of feed queries a consumer can make. A con-
sumer can query for k recent events of all the producers he follows. This is defined as
global coherence. A consumer can also query the recent k events from a single producer.
This is defined as per-producer coherency. The aggregation of k recent events from a
single producer is defined as s .

Global coherence:
s(k most recent events)

[

8 j: fi j2F
PE j (4.1)

Per-producer coherence:
[

8 j: fi j2F
s(k most recent events) PE j (4.2)

Here each producer p j generates a stream of events, which are modeled as a producer
events relation PE j in a connection network where lookups by producer and consumer
are equally efficient. When an event is pushed from producer p j to the consumers, the set
of consumers following a producer needs to retrieved, which is {ci : fi j 2 F}. On the
opposite, when pulling the events the consumer is interested in, the set of producers that
the consumer is following {p j : fi j 2 F}, need to be retrieved.

Feeding Frenzy defines a set of rules for deciding when to perform a pull or a push
depending on the producer rate fp j and the consumer rate fci of each pair, where fp j is
the event frequency of producer p j and fci is the query frequency of consumer ci. The
decision is made by evaluating the cost of pushing an event H from the producer to the
consumer’s feed ci, and the cost of pulling a small constant number of events L j. It is as-
sumed that H and L j costs are constant as the system scales. Note that since the decision
of performing a pull or a push depends on producer/consumer rates, it only needs to be
made once for each producer-consumer pair.

Cost minimization under per-producer coherency:

I f (fci/fp j)� H/L j ) push for all events by p j

I f (fci/fp j)< H/L j ) pull for all events by p j
(4.3)

Cost minimization under global coherency:

I f (fci/ Â
p j2Fi

fp j)� H/L j ) push for all events by p j

I f (fci/ Â
p j2Fi

fp j)< H/L j ) pull for all events by p j
(4.4)

The result of the mathematic definition of cost minimization is defined in the lifetime
cost of an event. As concluded in Feeding Frenzy, the lifetime cost for an event for a
particular consumer is dependent on both consumer frequency and producer frequency
when in the context of per-producer coherency. Under global coherence, the lifetime cost
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for an event for a particular consumer is similarly dependent on consumer frequency, but
instead of single producer frequency, the aggregation of the frequencies of the producers
that the consumer follows is important.

The idea of adaptive selection between a pull/push architecture is already used by Tum-
blr [39]. In practice, Tumblr defines the following rules for adaptive selection:

• Distribution models are different for popular users and regular users.

• Posts from active users are not published, but selectively materialized.

• Users who follow millions of users are treated similarly to users who have millions
of followers.

4.4. Social piggybacking

Social piggybacking is a theoretical approach to architecture design of feed-based appli-
cations developed in Piggybacking on Social Networks [6]. It is a proposed O(logn)-time
approximation algorithm, intended to be used in large-scale networks with billions of
edges. Although no information has been found about the use of this algorithm in the
enterprise, a 2-factor increase in throughput has been claimed possible. The algorithm is
based on a system using materialized views discussed in section 3.2.2. The main idea of
the approach is the concept of social piggybacking: to process the requests of two mutual
contacts by querying and updating the view of a third common contact. This idea is made
possible by exploiting the high clustering nature of most social networks, discussed in
section 3.1.3 and section 3.1.4.

producer

consumers

(a) Push-based architecture

producer

consumers

(b) Social piggybacking

Figure 4.5.: Comparison of social-piggybacking to a push-based architecture [6, p. 3].
Solid lines are pushes, while dotted lines are pulls. Social piggybacking al-
lows to avoid the extra push.

As discussed in [6], existing social networks already have a number of approaches for
minimizing the request to their data-stores when processing user feeds. Since feeds are
user-specific, the computation of the feed is also user-specific. User-specific sets can be
grouped in two ways: in a push set (section 4.2) when the user’s feed is aggregated ahead
of time and the pull set (section 4.1) when the user’s feed is aggregated upon request.
The combination of these two user-specific sets in any given system is called the request
schedule. The standard types of request schedules are the push-all and pull-all request
schedules. Due to a typical social network usually having a read-dominated workload,
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where more people consume content than create it, a push-all request schedule will usually
be more efficient. A hybrid approach discussed in section 4.3 is also possible, when the
pull and push sets are selected depending on the concrete consumer-producer pair. Social
piggybacking will potentially generate fewer data-store requests than all the mentioned
approaches.

Social piggybacking is focused on efficiently propagating events through the social
graph. The problem of efficient propagation of events through the social graph is also
known as the social-dissemination problem. The main idea proposed in [6] is, that since
social networks typically have a high clustering nature, cluster-based request schedules
should prove very efficient. The strictly cheaper schedules are achieved through process-
ing the request of two nodes in a social graph by querying and updating the view of a third
common node, as illustrated in figure 4.5. A node in a social graph can represent a friend,
contact, etc., and can be either a producer or a consumer depending on the affiliation
network at hand.
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5. Discussion

5.1. Method reflection

Systematic literature review (SLR) was the chosen method of research. In the beginning,
the choice of method was between systematic literature review and systematic literature
mapping. The resulting choice of method was appropriate, as it provided a focused ap-
proach for qualitative analysis, compared to a broader quantitative analysis had the sys-
tematic literature mapping method been chosen.

The quality assessment section in [10] defines the validation criteria that should be
applied for evaluating the quality of systematic literature reviews:

1. Are the review’s inclusion and exclusion criteria described and appropriate?

2. Is the literature search likely to have covered all relevant studies?

3. Did the reviewers assess the quality/validity of the included studies?

4. Were the basic data/studies adequately described?

The quality assessment of the review is as follows:

1. Yes. The investigation was properly documented in a protocol.

2. Yes. The author has searched four or more digital libraries, included additional
search strategies and has identified and referenced all journals addressing the topic
of interest.

3. Yes. The author has explicitly defined quality criteria before approaching the study
and data extraction was conducted according to the defined protocol.

4. Yes. Information is presented about each paper.

The process of conducting a systematic literature specifically defines that at least two
investigators need to take part in the review [10] to reduce risk of bias. Due to the for-
mat of the report, only one investigator was responsible for conducting the review and
therefore some amount of personal bias is certainly possible. To avoid this, random sam-
pling of studies was performed by a second assessor (master thesis supervisor) at different
stages of the research.

5.2. Analysis of existing approaches

As discussed in chapter 4, there are multiple conceptual architectural designs that are pos-
sible when building a social graph based application. These architectures are already used
in industry by companies like Facebook, Twitter, Instagram, Tumblr and others. There are
many considerations that need to be taken into account by a system architect when eval-
uating different approaches. Following is an outline of the advantages and disadvantages
of each approach, as well as a discussion of what to consider in each specific case.

24



The pull-based and the push-based approaches discussed in section 4.1 and section 4.2
respectively are conceptually similar and therefore need to be discussed together. These
approaches can be considered inverses of one another, since the pull-based approach is
primarily intended for write-dominated workloads, while the push-based approach is a
good choice for read-dominated workloads [6]. But just knowing the primary workload
of the system is not enough to determine the needed architectural approach. This was
illustrated in practice by Facebook’s reimplementation of the News Feed [2].

While being computationally expensive, a pull-based architecture is more flexible and
versatile compared to a push-based one. As discussed in section 4.1, this is due to the
possibility of interacting with the entire stream of events. Since events are not delivered
in isolation, flexible filtering, aggregation and business logic can be applied at the time
of assembly of the stream. A major downside of this approach is complexity. At first
glance it can seem that performing an aggregation query is much simpler than precom-
puting users’ feeds each time an event is created. However, as discussed multiple times
by Facebook [2] and Twitter [40], such a simple strategy is not applicable in a large-scale
application and it requires extra engineering effort to implement in a robust manner.

The push-based approach is preferable when fault tolerance and fast response times are
critical to the application. Due to the event stream being assembled at the time of creation
of each event, the latest version of the feed is always available to the user. This means that
even if any of the intermediate operations of inserting a new event into the users’ event
stream fails, there is always at least an outdated version that can be returned to the user.
It turns out that at extra large scale (such as Facebook starting from 2013) it is possible
to reach a performance limit on how fast concurrent disk writes can be processed. While
this can be disregarded for most applications even in the domain of large scalability, it is
still an interesting limitation to be aware of.

The selective pull and push approach can be considered a compromise between per-
formance and flexibility. In the enterprise, Tumblr is an example of using a dynamic
selection and Twitter is an example of using static selection. Dynamic selection is a strat-
egy described in section 4.3, when the choice to use a pull or a push set of a consumer
is determined at runtime. Static selection is when the rules governing the selection are
defined beforehand. For each specific user Tumblr selects a pull/push strategy by evalu-
ating what will be less expensive for the operation at hand [39]. In the case of Twitter,
the write path and read path of the application (hence the pull and the push separation)
are completely separated, depending on the type of service. For example, the home feed
is powered by a push architecture, while the search API is powered by a pull architecture
[40].

As a theoretical approach, social piggybacking looks very promising. The idea of ex-
ploiting the structure of the social graph is not new. While it is not easy to draw parallels
between the practical implementations of special-purpose social graph storage systems,
such as TAO [2] and FlockDB [7], the problem they are trying to solve is the same. The
difference here being that social piggybacking views the problem from the angle of pro-
cessing the requests in an efficient manner, not optimizing the storage of the data.

Every approach comes with considerations regarding the possible impact on the system.
To properly evaluate which architectural design is appropriate, context-specific profiling is
needed. While there are recommendations in general on what request schedule to choose
depending on the dominating load type (pull set for write-dominated workload, push set
for read-dominated workload), this does not provide a definite choice of approach. Usu-
ally, more flexible, dynamic request schedules will prove more efficient than their static
counterparts, but they do so with a higher implementation and maintenance cost.
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5.3. Conclusion

The conclusion of the conducted study should be discussed in the context of the research
questions defined in section 1.4:

[SLRQ1] What problems do large-cardinality social graphs pose for existing large-scale
social network applications?

[SLRQ2] What is the current practice of dealing with large-cardinality social graphs in
the enterprise?

The following will therefore discuss the results of a qualitative analysis that provides
the answers to the initial research questions. Further research that is not covered by the
research questions is proposed in the next section. Taking into account the research pro-
vided in this paper, it is safe to conclude that large-cardinality social graphs actually do
pose a problem for existing social network applications. Multiple modern social networks
are dealing with large scale and have been forced to adapt, and in most cases completely
reimplement, their architecture because of the massive load that they need to withstand on
a daily basis. Examples of existing social graph based applications which have reported
the problem include, but are not limited to, Facebook [36], Twitter [40], Instagram [38]
and Tumblr [39]. The main bottleneck regarding large-cardinality graphs in all the appli-
cations is the feed aggregation system. All of these applications allow the user to follow
content in some form or another and aggregate the content into a feed or event stream.
It is the clustering of users into large communities regarding topics or other users that
causes the most problems when trying to build a scalable feed delivery system.

Since the mentioned companies have different goals, priorities and needs posed on the
architecture of their applications, they have chosen different approaches to addressing the
problem of data dissemination in large-cardinality social graphs. Facebook started off
with the push-based approach discussed in section 4.2, but later switched to a pull-based
approach discussed in section 4.1. Twitter uses the pull-based approach to process search
queries, but precomputes the home timeline for users by using a push-based approach.
Instagram, as of their last public release, has stayed with their push-based solution based
on Redis, Cassandra and asynchronous workers. Tumblr uses a dynamic selection ap-
proach discussed in section 4.3. As can be seen by multiple examples, there are many
ways that data dissemination in large-cardinality social graphs can be implemented. This
is, however, not the limit and further research is still possible in this area.

5.4. Further research

Due to lack of time, a majority of the practical aspects had to be overlooked. To support
the study in this area a series of controlled experiments is needed. This will allow us
to compare the existing approaches in equal environments, removing the context of each
particular case, and provide more valuable and creditable data. Additionally, this will
minimize both personal bias and subjectivity of the empirical data gathered by previous
investigators or shared by companies.

In the opinion of the author, further research will be most fruitful if it aims at bridging
the gap between three research areas regarding this topic: database theory, graph theory
and social network analysis. Most existing research is aimed at one or two areas and tries
to solve the problem through the methods of only a subset of these research areas. It is
the aggregation of all three research areas that will lead to the most interesting results.
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A valuable contribution to the field would be deepening the understanding of social
graphs and their behavioral characteristics. The social graph’s underlying structure is a
user-base, which has diurnal patterns and activity peaks which are possible to analyze and
exploit in terms of architecture. By using statistical and sociological methods it is possible
to predict the behavior of various users and communities in the social graph and will open
the possibility to a more adaptive architecture design of social graph based applications.

Taking into account that most partitioning algorithms are not incremental (offline) [15],
[17] standard community structure detection algorithms might not be applicable to highly
dynamic social graphs. Community detection algorithms are also sensitive to input condi-
tions, meaning that runtime mutations of the social graph will cause expensive recomputa-
tion and might not produce a stable result. Further research is needed to fully evaluate the
impact of these factors on the applicability of classical community detection algorithms
to partition social graphs.
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A. Systematic literature review process

Figure A.1.: Diagram demonstrating the systematic literature review procedure [41]
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