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Abstract

In the context of an increasingly networked world, the availability of high quality transla-
tions is critical for success in the context of the growing international competition. Large
international companies as well as medium sized companies are required to provide well
translated, high quality technical documentation for their customers not only to be suc-
cessful in the market but also to meet legal regulations and to avoid lawsuits.
Therefore, this thesis focuses on the evaluation of translation quality, specifically con-
cerning technical documentation, and answers two central questions:

• How can the translation quality of technical documents be evaluated, given the
original document is available?

• How can the translation quality of technical documents be evaluated, given the
original document is not available?

These questions are answered using state-of-the-art machine learning algorithms and
translation evaluation metrics in the context of a knowledge discovery process. The eval-
uations are done on a sentence level and recombined on a document level by binarily clas-
sifying sentences as automated translation and professional translation. The research is
based on a database containing 22, 327 sentences and 32 translation evaluation attributes,
which are used for optimizations of five different machine learning approaches. An op-
timization process consisting of 795, 000 evaluations shows a prediction accuracy of up
to 72.24% for the binary classification. Based on the developed sentence-based classifi-
cation systems, documents are classified using recombination of the affiliated sentences
and a framework for rating document quality is introduced. Therefore, the taken approach
successfully creates a classification and evaluation system.
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Chapter 1

Introduction

1.1 Motivation

Being able to overcome language barriers is a topic of interest since the beginning of the
17th century. Since then, devices and ideas have been developed to ease the understand-
ing between people who speak different languages, such as mechanical dictionaries or
universal languages. Due to highly internationalized companies and the overall global-
ization, the ability to automatically translate texts from one language to another without
human assistance is a subject that has been addressed for roughly 60 years and has gained
more interest throughout the last decade. To be successful in an international market,
companies must provide well translated documentation for their products. As complex
products often have more than one user group, e.g. administrators, users and developers,
the number of different documents for a single product can be very high. Especially for
export oriented companies, it is hard to find professional translators with an appropriate
technical background to create properly translated technical documentation for reasonable
costs. Therefore, machine translation solutions obtain increasing interest affected firms.
It is of great interest, to provide automated, high quality translations of texts to ensure
equal access to information regardless of their source language. In particular, accurate
translations of technical documentation is a high priority for companies, since they are
essential for a smooth workflow, customer satisfactions and describe the handling, func-
tionality as well as security features of products. In this field, misunderstandings can be
very severe. In addition, cooperation among companies can suffer from misunderstand-
ings that are caused by bad translations.
Since natural language processing is a very complex issue, the output generated by ma-
chine translation software still needs to be approved in order to ensure the required quality.
Thereby, the simple use of software to translate business documents moves the problem
from the creation of the document to the evaluation and correction, but does not solve it.
Consequently, the evaluation of translated technical documentation is an important step
for companies to reduce time and costs as well as to create an effective way of translating
critical documents. Additionally, this ensures a certain level of quality. The difficulty
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in evaluating translation quality is due to the subjective nature and different aspects con-
cerning the term quality, such as grammatical correctness, style improvements or semantic
correctness.
Having access to computerized systems that perform correct translations of any sentence
is still visionary, especially due to the problem of translating the meaning of a sentence
to the system. Concerning this problem, it is essential to be able to rank the quality
of a given translation - otherwise it is not possible to ensure that a document has been
well translated. A focus on technical documentation is especially interesting, due to their
high quantity in every product selling company which further increases the motivation
of automatically translating these types of documents. Nowadays, companies deal with
the given translation problem of technical documents by outsourcing this task to external
translators. Since the person requesting these translations does not necessarily speak the
translated language, it is important to ensure that the work has been done properly and
professionally by a human as ordered and not by an automated translation system.
Based on this background, the aim of this thesis is to select and implement a machine
learning process that produces an algorithm, which is able to detect whether documents
have been translated by humans or computerized systems. This algorithm builds the basic
structure for an approach to evaluate these documents.

1.2 Related Work

As mentioned above, the idea of automatically rating machine translations is not new.
One of the basic methods discussed in the literature is the “round-trip translation”, which
works by translating a text fragment into a foreign language and back. Afterwards, the
original text and the newly generated text are compared [1]. On this basis, the “bilingual
evaluation understudy” (BLEU) algorithm was developed and presented by Kishore Pa-
pineni et al. in 2002. BLEU defines document quality as a strong correlation between
machine translations and the work of professional human translators. It is based on the
idea that in addition to word-accuracy, the length of a translated text is important. Accord-
ing to Papineni et al., human translations have the tendency to be of higher quality and
shorter than computerized translations [2]. This idea was further developed in the United
States forming the NIST algorithm for machine translation evaluation by the National
Institute of Standards and Technology. This algorithm weights matching words accord-
ing to their frequency in the respective reference translation [3]. A second evolution of
the BLEU metric, is the Metric for Evaluation of Translation with Explicit Ordering,
called Meteor, which was developed by Lavie et al. in 2005. The main difference is
Meteor’s ability to detect synonyms of words which results in potentially less erroneous
translations [4]. Furthermore, Kulesza and Shieber (2004) propose the use of Support
Vector Machines for classifying machine translations on a sentence level [5]. Extending
on sentence level evaluation, there has been additional research on substituting the use
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of human-produced reference translations, which often come with high resource require-
ments for the evaluation of machine translation systems. Popović et al. propose the use of
lexicon probabilities [6], while Gamon et al. suggest the use of pseudo references replac-
ing the commonly used human reference translations with multiple automated translation
systems as references and combining calculated perplexity scores with a machine learn-
ing classifier to evaluate sentence quality [7]. Finally, Albrecht and Hwa successfully use
regression learning in combination with pseudo references [8, 9]. As shown above, a lot
of research has been done on the topic of machine translation evaluation.
However, the focus on a specific domain of documents in order to gain implicit additional
knowledge by using machine learning techniques is not sufficiently addressed and neither
is the comparison of different machine learning approaches in order to classify whether
documents have been translated professionally or automatically. This work sets out to
answer these questions.

1.3 Purpose and Research Question

In this thesis, a machine learning technique will be used in a knowledge discovery pro-
cess to classify documents by their translation type (professional translation, automated

translation). Further, an approach on how to evaluate the quality of translated techni-
cal documents will be proposed. Concerning this issue, we address two main research
questions:

• How can the translation quality of technical documents be evaluated, given the
original document is available?

• How can the translation quality of technical documents be evaluated, given the
original document is not available?

1.4 Approach and Methodology

This work focuses on using machine learning methods and algorithms in order to evalu-
ate translations of technical documentation. There are two different problems that will be
solved within this thesis. First, translations of technical documents will be classified and
evaluated with the machine learning algorithm having access to the original document.
In the second attempt, an algorithm will be optimized on the same task without having
knowledge of the original.

The planned procedure for our master thesis is the following:
Based on research on existing methods and metrics, an iterative knowledge discovery
process will be started to answer the given research questions. This process includes the
determination of quality criteria for translated documents, the implementation of needed
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metrics and algorithms as well as the optimization of the machine learning approaches
to solve the given task optimally. It is important to note that this process is of iterative
nature, since the criteria and attributes as well as their impact on translation quality and
classification possibilities will be determined by evaluating the algorithms’ results using a
database of technical documents and their translations. The used data set will range from
automated translations of technical documents using computerized translation systems
to manual and professional translations. Furthermore, during this iterative process, the
methods and algorithms used will be continually changed and optimized to achieve the
best possible results. Finally, the process and results will be critically reviewed, evaluated
and compared to one another. The limits of automated translations with the current state
of the art will be pointed out and a prospect for possible further developments and studies
on this topic will be given.

1.5 Scope and Limitation

Due to the fixed time frame, some limitations have to be set on this research to ensure the
work can be finished in time.

• The document classification and evaluation will focus on syntactic aspects of tech-
nical documentation, while the semantic parts will be left out.

• This work focuses specifically on technical documents. This focus has the potential
to implicitly generate knowledge during the machine learning process, due to a
smaller sized vocabulary compared to having no limitations on text domains. Other
document domains will not be included in this thesis.

• Since the examined technical documents did not provide multiple professional trans-
lations, there will be no human references used for an evaluation of technical doc-
uments. Instead, pseudo references, as described in section 3.2 will be used to
circumvent the lack of human translations.

• This work focuses on evaluations based on the results of machine learning ap-
proaches. Other techniques, such as the creation of a new metric comparable to
the BLEU or Meteor metric will not be taken into account.

• This work will focus on translations between German and English.

1.6 Target group

First, this work is especially interesting for researches in the area of machine translation
and machine translation evaluation by using combinations of different machine translation
metrics and machine learning approaches. As mentioned in 1.1 the private interest group
for this research are international companies, especially export oriented ones. This is
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due to the fact that finding technically versed translators on a limited budget is clearly
problematic. Second, this work is of interest for all kinds of customers, since it can
lead to long-term improvement of available information for certain products. This can
be of additional interest for customers and companies that are active in lesser populated
languages.

1.7 Outline

The following chapter 2 will address the theoretical background concerning this work, fo-
cusing on the knowledge discovery process, machine learning approaches, machine trans-
lation and technical documentation. After describing the taken methodology in chapter 3,
the empirical data and the respective results of the experiments will be shown in chapter
4. Chapter 5 will discuss the results, critically review the taken approaches and methods
as well as examine the validity and reliability of presented results. Finally, chapter 6 will
summarize the work and give an outlook for possible future research and expansion on
this topic.
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Chapter 2

Theoretical Background

This section gives an overview of the relevant theoretical foundations. In the context of
the experiment’s framework, the following questions are answered:

• What is the data knowledge discovery in databases process?

• What are the advantages of data mining and which algorithms are promising in the
field of machine translation evaluation?

• How does machine translation work and which different approaches are available?

• Which metrics are commonly used to measure machine translation quality?

• What characterizes technical documentation?

To answer these questions, the first section deals with the knowledge discovery in databases

process, followed by a definition of data mining as well as a detailed elaboration on ma-
chine learning in general and relevant algorithms. Afterwards, the current state of the art
in the field of machine translation and its quality evaluation is presented. The section is
closed by characterizing technical documentation and outlining the special characteristics
of these kind of documents.

2.1 Knowledge Discovery in Databases

The knowledge discovery in database process (KDD) describes the overall step of discov-
ering useful knowledge from data. Although there exist numerous definitions of the KDD
process [10, 11, 12], most of them agree on the essential parts. Fayyad et al. define the
KDD as an interactive and iterative process. They outline nine main steps [10, p.42 et
seq.]:

1. Identify the goal of the process and gather prior needed knowledge about the appli-
cation domain.

2. Choose an appropriate data set to extract knowledge from.
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3. Preprocess the data. This includes removing noise or harmful data records and
deciding on certain settings, such as how missing attribute values are handled in the
data set.

4. Reduce the data to a representable format, for instance, removing not helpful vari-
ables or parameters in terms of the task’s objective.

5. Decide on a data mining approach for the defined objective of the KDD process.

6. After deciding on a general data mining approach, the next step is to choose the data
mining algorithm. It is important to note that this choice often depends on the end
user’s preference, for instance, whether an understandable format or the maximum
amount of prediction quality is favored.

7. This is the main data mining step. It consists of applying the algorithm to the
preprocessed data set. The algorithm then searches for valuable knowledge within
the data.

8. Interpret the patterns found by the algorithm and possibly return to one of the pre-
vious steps in order to readjust the setup of the KDD process.

9. The final step of the knowledge discovery in databases is using the interpreted re-
sults for further actions, for instance, using them for further research or applying a
system to a real-world scenario.

As mentioned in step 8, the KDD process can consist of many iterations and loops. For
instance, after interpreting the results of an algorithm, one might conclude that the chosen
algorithm was a wrong choice and go back to step 5 or after reducing the data to a repre-
sentable format in step 4 that the preprocessing has been done wrongly and return to step
3.

2.2 Data Mining

Data mining is often used as a synonym for the KDD. In fact, data mining represents the
part of the KDD-process, in which the appropriate approach and algorithm is chosen and
applied to the data set [10, p.39]. Therefore, it is a central part of the knowledge discovery
in databases process [13, p.2]. Data mining consists of taking any form of data and
applying analysis algorithms to it in order to reveal patterns or models within the data set
and using these structures to classify the data into different classes (labels). It comprises
a number of research fields such as database systems, statistics and pattern recognition.
Data mining tasks are differentiated depending on the knowledge the algorithm has about
the existing classes in the data set [14, p.51]:
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• Supervised learning includes every task in which the algorithm has access to input
and output values. Input values are defined as the external information that the
algorithm is allowed to use, such as attribute values and meta data, while output
values, are the specific labels of the class attribute. This means that the structure of
the data is already known and the goal of these programs is to assign new data to
the correct classes.

• In contrast to supervised learning, unsupervised learning includes all tasks that
have no access to output values and therefore try to find structures within the data
by creating classes on their own.

Since the proposed task is a binary classification problem, concerning the two known
classes professional translation and automated translation, this work will focus on super-
vised learning methods.
Furthermore, data mining can be differentiated into two main objectives: verification and
discovery. While verification tries to prove the user’s hypothesis, discovery looks for yet
unknown patterns within the data. The discovery step splits up into description, where
the system finds patterns in order to present the data in an understandable format and pre-
diction, where the system tries to predict the future outcomes of data from patterns. The
subgroup prediction can further be distinguished into classification and regression tasks.
While classification tasks have fixed labels and each data record has one of these labels
as its class attribute value, regression tasks have continuous values as output [13]. This
work focuses on algorithms that try to predict whether a given technical documentation
has been translated professionally or automatically. Therefore, the problem consists of
two fixed labels (professional translation and automated translation) and belongs to the
discovery-prediction sector of data mining. Figure 2.1 shows a general view of the data
mining taxonomy.

Data Mining

DiscoveryVerification

DescriptionPrediction

Classification Regression

Neural Networks Bayesian NetworksDecision TreesSVM

Figure 2.1: Data mining taxonomy based on [13].
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2.3 Machine Learning

In context of the data mining step, it is important to choose the correct approach for tack-
ling the task appropriately. This is often done using machine learning methods. A major
difference between humans and computers has been for a long time that a human beings
tend to automatically improve their way of tackling a problem. Humans learn from previ-
ous mistakes and try to solve them by correcting them or looking for new approaches to
address the problem. Traditional computer programs do not look at the outcome of their
tasks and are therefore unable to improve their behavior. The field of machine learning
addresses this exact problem and involves the creation of computer programs that are able
to learn and therefore improve their performances by gathering more data and experience.
The first scientist to create a self-learning program was A. Samuel in 1952, who created
a program that became better at playing the game checkers with the number of games
played [15, p.881]. In 1967, the first pattern recognition program was able to detect pat-
terns in data by comparing new data to known data and finding similarities between them.
Since the 1990’s machine learning is used in data mining areas, adaptive software systems
as well as text and language learning fields. As an example: A computer program that
gathers data concerning the customers of an e-commerce shop and creates better person-
alized advertisements out of these pieces of information has the ability to acquire new
knowledge and comes close to being artificial intelligence.
Furthermore, machine learning systems are normally classified by their underlying learn-
ing strategies, which are often identified by the amount of inference the computer program
is able to perform [16, p.84 et seq.]:

• Rote Learning describes the strategy that all traditional computer programs use.
They do not perform any kind of inference and all their knowledge has to be di-
rectly implemented by the programmer, since the application is not able to draw
any conclusions or transformations from the given information.

• Learning from Instruction encompasses all computer programs that are able to
transform information from the given input language to an internal language. Al-
though the knowledge on how to effectively perform this transformation is still
given by the programmer, this requires little forms of inference from the side of
the computer program. Therefore, this defines a separate level of learning system
compared to rote learning.

• In contrast to Learning from Instruction, Learning by Analogy tries to develop
new skills that are almost similar to existing skills and therefore easy to adopt, by
performing transformations on known information. This system requires the ability
of creating mutations and combinations of a dynamic knowledge set. It creates
new functionalities, which were unknown to the original computer program and
therefore requires a lot of inference.
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• Learning from Examples is nowadays one of the most commonly used learning
strategies as it provides the most flexibility and enables computer programs to de-
velop completely unknown skills or find unknown structures and patterns in data
[17]. Learning from examples is a technique that is often used in classification and
data mining tasks to predict the class label of new data entries based on a dynamic
set of known examples. In this work, the proposed research questions will be tack-
led with strategies and algorithms that belong to this category.

Following, the most common machine learning systems will be briefly described:

2.3.1 Decision Tree

A Decision Tree is a classification technique that focuses on an easily understandable
representation form and is one of the most common learning methods. Decision Trees
use data sets that consist of attribute vectors, which in turn contain a set of classification
attributes describing the vector and a class attribute assigning the data entry to a certain
class. A Decision Tree is built by iteratively splitting the data set on the attribute that
separates the data as well as possible into the different existing classes until a certain stop
criterion is reached. The representation form enables users to get a quick overview of the
data, since Decision Trees can easily be visualized in a tree structured format, which is
easy to understand for humans.

One of the first algorithms concerning Decision Tree training were the Iterative Dichotomiser
3 (ID3) and its successor the C4.5 algorithm, both developed by Ross Quinlan in 1986
and 1993 [18, 19]. These algorithms formed the basis for many further developments.
Decision trees are directed trees, which are used as a decision support tool. They repre-
sent decision rules and illustrate successive decisions.
In Decision Trees, nodes can be separated into the root node, inner nodes, and end nodes,
also called leafs. The root node represents the start of the decision support process and
has no incoming edges. The inner nodes have exactly one incoming edge and have at least
two outgoing edges. They contain a test based on an attribute of the data set [20, p.769].
For instance, such a test might ask: “Is the customer older than 35 for the attribute age?”.
Leaf nodes consist of an answer to the decision problem, which is mostly represented by
a class prediction. As an example, a decision problem might be the question whether a
customer in an online shop will make a purchase or not, with the class predictions being
yes and no. Leaf nodes have no outgoing and exactly one incoming edge. Edges represent
the decision taken from the previous node.

Given a node n, all following nodes that are separated by exactly one edge to n are called
children of n, while n is called parent of all its child nodes. Figure 2.2 shows an example
of a Decision Tree. For instance, a data record, having the attributes cold, polarBear
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would be passed down to the left subtree, since his temperature attribute is cold and then
down to the leaf “North Pole” being classified with the corresponding label.

Temperature

animal

South
Pole

penguin

North
Pole

polarBear

cold

animal

Africa

lion

Australia

kangaroo

hot

Figure 2.2: Example of a Decision Tree.

Training a Decision Tree is a common data mining method that is mainly used for classi-
fication purposes. Its goal is to predict the value of a target attribute, based on a number
of input attributes. Training a Decision Tree in a supervised scenario is done by using a
training set to find patterns within the data and build the Decision Tree. Afterwards, a set
of previously unseen examples can be used to predict their target attribute’s value. The
training set contains data records in the form of:(

~x, Y
)
=
(
x1, x2, x3, ..., xn, Y

)
with Y being the target attribute value and ~x being a vector containing n input values,
where n is the number of attributes in the data set [20, p.765 et seq.].

In order to train a Decision Tree and thereby create a classifier, a training set is needed
containing a target attribute, input attributes, a split criterion and a stop criterion. At a
given node, the split criterion calculates a value for all attributes. This value represents
a measure of the amount of information that is gained by splitting the node using this
attribute. Afterwards, the best value from all attributes is taken and the node is split into
the different outcomes of the respective attribute. At this point, the process of finding the
best split among the attributes is applied recursively to all generated sub trees until a stop
criterion is reached.
Common stop criteria are:

• The maximum height of the tree has been reached.

• The number of records in the node is less than the allowed minimum.
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• The best split criterion does not overcome a certain threshold in terms of gained
information.

If the splitting attribute is of numeric type there is no possibility to split the records into
all outcomes of the attribute. This is one of the main upgrades of the C4.5 Decision Tree
compared to the ID3. The C4.5 is additionally able to calculate the best splitting points
for numeric attributes as well and split them by using greater than or equal and smaller

than operators.

Training a Decision Tree with this automated process can result in large Decision Trees
with sections of very little power in terms of classification. Additionally, trees tend to be
overfitted, which means that they fit the training instances too closely. This results in bad
performances when these trees are applied to unseen data. Therefore, a technique called
pruning has been developed. Its objective is to remove the less or non-productive parts
from the Decision Tree, such as parts based on noisy or erroneous data or parts that are
overfitted. This often results in further improvements in terms of accuracy and shrinks
down the tree size. This process is especially important, due to the fact that every real-
world data set contains erroneous or noisy data.

Computation Time
The time complexity of the original tree-growing algorithm that considers only nominal
attributes, is O (m ∗ n2) with m being the size of the training data set and n being the
number of attributes. The most time consuming part of the tree-growing algorithm is
the calculation of the gained information for each attribute [21, p.500 et seq.]. In order to
calculate the information gain the values of the corresponding attribute for all data records
in the current training subset is needed. In worst case scenarios the union of all subsets
at all levels of the Decision Tree is the same size as the original training set. Therefore,
the complexity for computing the information gains for each level of the tree is already
O (m ∗ n). Since the number of levels of the tree is n for the worst case the overall
complexity for training a Decision Tree is O (m ∗ n2).
After training a Decision Tree, the following process is to use the tree in order to predict
the class labels for unseen data records. To do so, the record is passed down from the root
node to a leaf testing the corresponding attribute at each node and following the edges to
the appropriate leaf.
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Algorithm Decision Tree Training Process

1. training set = S;
2. attribute set: A;
3. target Attribute = C;
4. split criterion = sC;
5. stop criterion = stop;
6. Grow(S,A,C, sC, stop)
7. if stop(S) = false
8. then
9. for all ai ∈ A
10. do find ai with the best sc(S);
11. label current Node with a;
12. for all values vi ∈ a
13. do label outgoing edge with vi
14. Ssub = S where a = vi;
15. create subNode = Grow(Ssub, A,C, sC, stop);
16. else currentNode = leaf;
17. label currentNode with ci where ci is most common value of C ∈ S;

Figure 2.3: Pseudo code of training a Decision Tree [13, p.131].

Figure 2.3 shows the process of training a Decision Tree in pseudo code, not taking nu-
meric attributes into account. The algorithm starts by testing whether the stop criterion
has been reached or not. If so, the current Node is labeled with the most common value of
all existing class labels for the training set. If the stop criterion is not true, the algorithm
calculates the split value for all attributes and labels the node with the attribute corre-
sponding to the best split value. Afterwards, it splits the node into multiple nodes, one for
each value of the chosen attribute. The algorithm calls the same process recursively for
all training subsets, containing all data records with the corresponding value of the chosen
attribute.

2.3.2 Artificial Neural Networks

Singh and Chauhan define Artificial Neural Networks as “a mathematical model that is
based on biological neural networks and therefore is an emulation of a biological neural
system” [22, p.37 et seq.]. Compared to conventional algorithms, neural networks can
solve problems that are rather complex, on a substantially easier level in terms of algo-
rithm complexity. Therefore, the main reason to use Artificial Neural Networks is their
simple structure and self-organizing nature which allows them to address a wide range of
problems without any further interference by the programmer. Example given, a neural
network could be trained on customer behavior data in an online shop and predict whether
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the person will make a purchase or not.

An Artificial Neural Network consists of nodes, also called neurons, weighted connec-
tions between these neurons that can be adapted during the learning process of the net-
work and an activation function that defines the output value of each node depending on
its input values. Every neural network consists of different layers. The input layer re-
ceives information from external sources, such as attribute values of the corresponding
data entry, the output layer produces the output of the network and hidden layers connect
the input and the output layer with one another. The input value of each node in every
layer is calculated by the sum of all incoming nodes multiplied with the respective weight
of the interconnection between the nodes [23, p. 165]. Furthermore, neural networks can
be divided into two main types [22, p.38 et seq.]:

• Feedforward Networks are defined as all networks that do not gain feedback from
the network itself. This means that the input data flows in one direction, from
the input nodes through 0 to n hidden nodes to the output nodes. There is no
information given backwards to readapt the system.

• Recurrent Networks are defined as all networks that contain a feedback option and
therefore are able to reuse data from later stages for the learning process in earlier
stages.

The output value of each node is calculated by using all input values on a predefined
function that is the same for every node in the network. The most commonly used function
is the sigmoid function(oj), which is defined as follows [23, p.167]:

oj =
1

1 + e−ij

where ij is the sum of the input nodes of j.
According to Erb, the two main advantages of this function are its normalization to values
between 0 and 1 and its nonlinear nature, which results in easier rapid network learning
and prevention of overload and domination effects. A domination effect occurs, when
a single or a few attributes get a very high influence on the predicted target attribute,
rendering other attributes meaningless and therefore dominating them [23, p.167].
Figure 2.4 shows an Feedforward Neural Network with three input nodes in the input
layer, a single hidden layer and two output nodes.
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Figure 2.4: Example of an Artificial Neural Network.

In a supervised learning scenario, Artificial Neural Networks can be trained using the
backpropagation algorithm, which readjusts the weights of the interconnections in the
neural network based on local error rates.

Backpropagation
Backpropagation in neural networks describes the process of using a local error of the
network to readjust the weights of the interconnections backwards through the neural net.
Explicitly, this means that after a prediction for a set of input values has been made, the
actual output value is compared to the prediction value and an error is calculated. This
error is then used to readjust the weights of the connections starting at the edges that are
directly connected to the output nodes of the network and then proceeding further into it.
In order to train a neural network, it is important to understand the main parameters that
can be used to optimize the learning process:

• The learning rate specifies how fast the learning process is performed. The pa-
rameter’s value lies between 0 and 1 and is multiplied with the local error for every
output value. Therefore, a learning rate of 0 would result in no adaptation at all.
The correct setting for the learning rate is crucial to the success of the learning pro-
cess. If the value is set too high the weights can oscillate and complicate the finding
of the optimal values. However, if the value is set too low, found errors will not
have enough weight to push the network into a new optimization and the weights
can get stuck in local maxima [23, p.167]. In order to find the correct settings, a
decay parameter can be added. This parameter ensures a high learning rate value in
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the earlier cycles of the training process to avoid getting stuck in local maxima and
forces its reduction during the learning process to avoid oscillation.

• Another important parameter for neural networks is called momentum. It is used
to smooth out the optimization process by using a fraction of the last weight change
and adding it to the new weight change.

• The minimal error is a stop criterion for the learning process similar to the stop
criterion for Decision Trees described in subsection 2.3.1. Once the combined error
of the network falls below this threshold, the learning process is stopped.

Combining these parameters, the formula for computing a new weight for a connection is
the following[23, p.167]:

W = l ∗ ε+m ∗Wp

where

• W is the new weight change.

• l is the learning rate.

• ε is the minimal error.

• m is the momentum.

• Wp is the weight change of the previous cycle.

2.3.3 Bayesian Networks

Bayesian networks consist of nodes and directed connections between these nodes that
symbolize dependencies between them. They are probabilistic directed acyclic graphical
models. Each node represents an attribute of interest for the given task, such as pollution
values in cities for the likelihood estimation of developing lung cancer. The most basic
Bayesian network is called Naive Bayes and the reason for it being called Naive is that this
network assumes that there are no dependencies between attributes. This is almost never
the case in practical data mining tasks and therefore this method tends to achieve worse
results than more detailed algorithms. Normal Bayesian networks use known data to
estimate the dependencies between attributes and the class label and use this information
to calculate probabilities of possible different outcomes of future events. It automatically
applies the Bayes’ theorem to complex problems and is therefore able to gain knowledge
about the state of attributes and their dependencies.

P (A|B) =
P (B|A) ∗ P (A)

P (B)

where
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• A and B are events.

• P (X) is the probability that event X occurs.

• P (X|Y ) is the conditional probability that event X occurs if event Y is known to
be true [24, p.30-31].

Each node of the graph is labeled with a probability distribution that defines the effects of
a parent node on the child node [25, p.166 et seq.].

2.3.4 Instance-Based Learning (kNN)

Instance-based learning describes the process of solving problems based on solutions
for similar already known problems, also known as nearest neighbor learning. Every
instance-based learning system requires a set of parameters:

• A distance function that measure the similarity between problems or data entries.
This is needed to measure which are the closest neighbors to the new problem.

• A number of neighbors that are considered when addressing the new problem

• A weighting function that enables further quantification of found neighbors to in-
crease prediction and learning quality

• An evaluation method that describes a function on how to use the found neighbors
to solve the given problem.

Instance-based learning methods are part of the lazy learning methods, which means that
no computation is performed on the data before a query is given to the system. These
methods stand in contrast to eager learning methods such as Decision Trees, which try to
structure the data before receiving queries [15, p.549-550].

2.3.5 Support Vector Machines

Support Vector Machines belong to the area of supervised learning methods and therefore
need labeled, known data to classify new unseen data. The basic approach to classify the
data, starts by trying to create a function that splits the data points into the corresponding
labels with (a) the least possible amount of errors or (b) with the largest possible margin.
This is due to the fact that larger empty areas next to the splitting function result in fewer
errors, because the labels are better distinguished from one another.
Figure 2.5 demonstrates that a data set may very well be separable by multiple functions
without any errors. Therefore, the margin around a separating function is being used as an
additional parameter to evaluate the quality of the separation. In this case the separation
A is the better one, since it distinguishes the two classes in a more precise manner.
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Figure 2.5: Visualization of a Support Vector Machine splitting a data set into two classes,
by using two different linear separations resulting in differently sized margins around the
splitting functions [26].

Formally, Support Vector Machines create one or multiple hyperplanes in an n-dimensional
space. The first attempt in the process of splitting the data is always, to try to linearly sep-
arate the data into the corresponding labels. Example given, for a task of predicting the
probability of a purchase of a customer in an online shop uses a data set with n data
points, where each data point consists of a label y ∈ {purchase, nopurchase} and an
attribute vector ~x containing the data values for that specific session. The Support Vector
Machine now tries to find a function that separates all data points (~x, y) with y = yes

from all data points of the form (~x, y) with y = no. If the data is completely separable in
linear fashion, the resulting function can be used to classify future events. Steinwart and
Christmann mention two main concerns, concerning this approach [27, p.14]:

• The data may not be well linearly separable or not linearly separable at all, which
is often the case for real world data. In the example given above, it can happen for
example that two customers are acting completely similar in an online shop, with
only one of them making a purchase. This would result in not separable data, due
to the same attribute vector having different labels.

• The second concern is the possibility of overfitting the SVM. To avoid this, data
has to be preprocessed to identify noise and accept some misclassifications. Other-
wise, the accuracy values of the SVM will be flawed and result in more erroneous
classification for future events.

The first problem can be resolved by using the kernel trick, mapping the n-dimensional
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input data to a higher dimensional space, where the data can be separated linearly.

2.3.6 Evaluation of Machine Learning

Another very important part in machine learning, is the problem of how a computer pro-
gram notices which of its results were appropriate and which contained mistakes. An
example where this poses no problems to the algorithm would be a computer program
that tries to predict whether a customer in an e-commerce shop will perform a purchase
or not. The data entry will afterwards be logged with the given information whether the
customer bought articles or not and can then be used to evaluate the performance of the
algorithm. More difficult scenarios come up in research areas with limited or no access
to real-world data, such as the evaluation of document translations. This requires an ad-
ditional human effort to rank given translations into classes to be able to compare the
computer program results in the end. As described in subsection 2.3.1 the evaluation of
classification tasks is normally done by splitting the data set into a training data set and
a test data set. The machine learning algorithm is then trained on the first one, while the
test data set is used to calculate performance indicators in order to evaluate the quality
of the algorithm. A common problem for machine learning algorithms lies in the access
to limited test and training data. Therefore, overfitting can be a serious problem when
evaluating these programs. In order to address this problem, a common approach is, to
use an X-Fold Cross Validation. Cross Validation describes the process of splitting the
whole data set into X parts and using each one of them sequentially as the test data set
while combining the others to the training data. Afterwards, the performance indicators
are averaged over all validation processes. There is no perfect indicator for every sub-
ject concerning evaluation of machine learning algorithms, since everyone has its flaws
and advantages. The most important factors for evaluating the performance of a machine
learning program are the following:

• The misclassification rate describes the relative amount of falsely classified data
in a data set. If ŷi is the prediction for the data point i and yi is the actual label, the
misclassification is defined as

miscn =
1

n
∗
∑
i

(yi 6= ŷi)

The main problem for misclassification is that its results depend highly on the
amount of labels or the data distribution among the class labels. Example given,
achieving a misclassification rate of 0.03 may look very promising without further
context, but in an example where 97% of the data set are labeled with class a and
3% with class b it is not hard to achieve. The same applies for differences in the
amount of classes available. A misclassification rate of 20% or lower symbolizes
a clearly better machine learning system for a data set of three classes than for one
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with two. To avoid this issue, benchmarking is used.

• Benchmarking describes the process of comparing the value of an indicator to a
reference value, to strengthen its statement. Example given, for a binary classifi-
cation task in a supervised learning scenario the benchmarking algorithm could be
a classifier that always predicts the most common class. The misclassification rate
could then be described in reference to the benchmark. A misclassification rate of
20% in this case, would result for equal class distribution in a relative improvement
compared to the benchmark of 30 percentage points.

• The precision value, also called positive prediction value, is defined as the relative
amount of correctly as true classified instances among all as true classified instances
[28, p.2]. This can be illustrated by using the e-commerce example mentioned
earlier. A precision value of 1 signifies that every as customer classified with the
label purchase, truly makes a purchase. However, it is important to note that this
has no influence on the amount of as customer classified with the label no purchase

that make purchases as well.

• The recall value also called sensitivity is defined as the relative amount of as true
classified instances among all true instances [28, p.2]. For the proposed example,
this means that a recall value of 1 signifies that every single purchasing customer
has been labeled with purchase. It is important to note that a recall value of 1 can
be easily achieved by classifying every instance of the data set with purchase.

• The F-Measure aims to combine the statements of recall and precision by using the
harmonic mean between the two:

F1 = 2 ∗ precision ∗ recall
precision+ recall

• One of the best approaches to illustrate the performance of machine learning pro-
grams is the confusion matrix, also called contingency table, which distinguishes
between true positive, false positive, true negative and false negative predictions
[28, p.1 et seq.]:
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Table 2.1: Example of a confusion matrix.

The main disadvantage of a confusion matrix is that it requires human interpretation.
In this work, machine learning methods will be used in the context of machine translation
problems, which will be explained in section 2.4.

2.4 Machine Translation

The subject of overcoming language barriers by using devices has a long history starting
in the 17th century. In that time the idea for a universal language emerged to ease un-
derstanding among people from all over the world. Examples in that time, consisted of
symbols and logical principles. The automation of the translation task however came up
as a topic in the middle of the 20th century and the first machine translation (MT) confer-
ences for knowledge and research exchange in this specific field started in 1952. Today,
machine translation is defined as

“the translation from one natural language (source language) to another
language (target language) using computerized systems, with or without hu-
man assistance” [29, 30].

According to Hutchins and Somers, machine translation includes the areas of Human-
Aided Machine Translation and Machine-Aided Human Translation, which are defined
as the production of translations by systems with assistance by human translators. How-
ever, computerized systems that provide dictionaries or other top level assistance tools to
human translators are not included [29, p.3]. With the current state of the art, machine
translation is still far from being able to perfectly translate any given text from any source
language to any target language. Nevertheless, after more than five decades of develop-
ment on this topic, computerized systems are able to create “raw” translations, which are
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normally still revised by humans to validate them. Additionally, these translation ma-
chines are often focused on a specific domain, vocabulary or text type to further improve
their translation quality [29, p.1 et seq.]. Today, there are two different approaches to
machine translations, which will be explained below.

2.4.1 Rule-Based Machine Translation

Rule-based translation covers all translation processes that are based on rules concerning
syntactic, semantic and direct word aspects of the text. Using rule-based translation is al-
ways a trade-off between complexity and quality of the translations. This is, because one
of the main advantages of rule-based systems is the missing quality ceiling for transla-
tions. In theory, every error can be corrected by implementing a rule for that specific case
and since there is no limit to the amount of rules used, every error can be corrected. This
is a theoretical point of view, since the amount of possible word or sentence combinations
and their different meanings is generally too large. Therefore, a certain amount of errors
has to be expected when practically applied. According to Hutchins and Somers, there
are three types of rule-based translations:

• Direct Translation was the first type of machine translation and it describes all
systems that are developed for a single specific translation direction. This means
that the systems is only capable of translating texts from a specific source to one
specific target language, which is usually done using a word-based translation dic-
tionary with no attempt of understanding the context or meaning of the sentence or
text. There is very little morphological analysis performed, such as identification
of word ending and conjugation [29, p.72 et seq.]. Figure 2.6 shows the general
process of the direct machine translation type.

Source
Language
Input

Morphologic
Analysis

Bilingual
Dictionary
Look-Up

Local
Renderings

Target
Language
Output

Figure 2.6: Direct translation process[29, p.72].

• Due to the grave lack of syntax and context understanding of the direct translation
method, new approaches were taken to tackle the challenge of machine translation.
The second type of rule-based translations is called Transfer translation, because
it uses a transfer step to analyze source as well as target language and identifies
word relations and possible meanings to create higher quality translations. A com-
mon approach to find out dependencies and correlations of words is the parts of

speech tagging method, which labels every word with its corresponding part of
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speech, such as verb, noun, adjective or adverb. Today, transfer-based approaches
are the most commonly used method, due to its clear advantages over direct trans-
lation and their comparably simple structure. One main disadvantage, the language
dependency, of the transfer structure is shown in Figure 2.7. In order to support
multiple languages and bidirectional tasks, a large amount of transfer processes is
needed. Specifically, in order to add the n+1st language to a system, an additional
2 ∗ n transfer steps are needed [29, p.75-76]. This led to the development of the
third type of rule-based translations: Interlingua translation.

English Analysis

French Analysis

German Analysis

English-German
Transfer

French-German
Transfer

English-French
Transfer

German-French
Transfer

French-English
Transfer

German-English
Transfer

German
Generation

French Generation

English Generation

Figure 2.7: Visualization of the language and direction translation dependency of the
transfer step in the Transfer translation process [29, p.76].

• Interlingua Translation was a second approach to solve the lack of syntactical and
semantical understanding of the direct translation approach. The main difference
to the transfer translation type is the use of an international auxiliary language as a
separate step in the translation process. The use of such an auxiliary language that
is easily compatible with a very wide range of different natural languages would
reduce the amount of needed translation steps drastically, since the needed trans-
formation steps are a transformation from each source language into the auxiliary
language and vice versa. In conclusion, supporting a total of n languages, results
in the need of 2n translation steps. The addition of a language would add two ad-
ditional steps, an analysis step to produce a projection from the new language to
the auxiliary language and a generation step to create sentences in the newly added
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language. This stands in contrast to 2n additional steps in the transfer translation
process. Figure 2.8 visualizes an Interlingua translation process for two languages.
The main problem concerning this approach, lies in the fact that the creation of
such an auxiliary language is not trivial and the support of every existing language
is close to impossible [29, p.74]. Furthermore, since the generation of the sentence
in the target language is strictly independent from the original source sentence, it is
not possible to optimize the source text analysis according to the target language.
This imposes a hard to solve requirement to the auxiliary language, because it has
to provide every possible analyzable aspect of the source text, since it might be
needed for the generation step. To provide every piece of information, the auxil-
iary language has to understand the meaning of the sentence. This transforms the
translation problem to a natural language processing task on semantic level, which
is still in its early stages of research [29, p.118].

English Analysis

German Analysis

Auxiliary
Language

German Generation

English Generation

Figure 2.8: Interlingua translation process for two supported languages.

A proper way to visualize the different approaches to rule-based machine translation is
the use of the Vauquois Pyramid as shown in Figure 2.9. The translation process starts
at the bottom left corner of the triangle. Depending on the translation approach a certain
amount of analysis is performed, before the transfer step is carried out to generate the
output sentence by using the target language analysis. Since the direct translation uses
close to no analysis at all, it transfers directly from the source language to the target
language. The Interlingua approach on the other hand, performs as much analysis as
possible to transform the input text into a neutral independent form and use this form to
generate the output text.
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Figure 2.9: Visualization of the amount of analysis performed in a rule-based machine
translation process.

2.4.2 Example-Based Machine Translation

The second large area of machine translation types is called example-based machine trans-
lation (EBMT). It was first proposed by Nagao in 1981 (published 1984) [31]. There are
many types of machine translation approaches that fit in the area of example-based trans-
lation, but the main defining part of this field, is the use of a database containing already
translated sentences or text parts. The translation process for EBMT systems consists
of comparing fragments of new, untranslated text parts to the database, matching them
with corresponding similar text fragments and combining these to a newly translated text
[32, p.116]. The matching of new data points to the most similar ones in the database
is mostly done by calculating distance measures between the fragments and choosing the
“closest” among the examples. These matching algorithms will be further described in
section 2.5. In order to point out the similarities between traditional (rule-based) machine
translation and EBMT, Somers proposes an adapted version of the vauquois triangle as
shown in Figure 2.10. The matching part replaces the analysis step, the selection of the
corresponding text parts in the target language replaces the transfer step and instead of
generating a new sentence based on the analysis results, these fragments are combined to
the translated sentence [32, p.117].
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Figure 2.10: Adapted version of the Vauquois Triangle [32, p.117].

The main challenge that EBMT systems face, is the need of a suitable database containing
a bilingual example set. Somers notes that choosing a sublanguage corpus that is specified
on a certain domain for example, can greatly benefit the translation quality. Furthermore,
the central points of concern about the example set are the text fragment length and the
data set size. Nirenburg et al. state that the choice on the example length is always a trade-
off. The longer the data point, the lower the probability of finding a match, thus rendering
the data point useless, but the shorter the entry the higher the risk of falsely assigning it
to not actually matching fragments [33, p.48]. The most commonly used fragment length
is the sentence level. This is not necessarily due to that being the best length, but rather
because sentence endings are easy to determine and split a text on. The size of the ex-
ample set is a more straightforward problem. It is generally agreed that more examples
lead to better results, although, as mentioned above the focus on a specific domain can
still be advantageous even compared to a bigger example set. Furthermore, it is assumed
that at some point the benefit by adding new examples to the data set stagnates [32, p.119].

Statistical Approach
The statistical machine learning approach is part of the EBMT, since it uses a data set
of already translated fragments. It was first proposed by Peter Brown at the second TMI
conference at Carnegie Mellon University, where he presented the “purely statistical”
approach for translating text from a source language to a target language. The difference
to other EBMT methods lies in the fact that statistical approaches try to find patterns in
the data set, calculate probabilities and make intelligent conclusions based on the results
[32, p.126].
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2.5 Evaluation of Machine Translation

With the emergence of the field of machine translation, the problem of evaluating MT
systems appeared as well. Without a proper approach to determine the quality of a trans-
lation machine, there was no point for further research. The first evaluation attempts were
human-based, manual metrics. Dorr et al. note that the first two most common approaches
were the evaluation of fluency and adequacy. Fluency is measured by a person fluent in
the target language and measures whether the sentence is fluently readable with no regard
to the translation correctness. Adequacy on the other hand, evaluates whether the essen-
tial information has been translated with no regard to grammatical correctness or fluency.
Both metrics are normally measured on a scale of five to seven points [34, p.748]. Al-
though it has been proven multiple times that these metrics are neither sufficient nor of
high correlation, human evaluation is still being used as a benchmark or baseline to rate
other automated translation metrics [35, 36]. There were mainly two problems with hu-
man judgement on fluency and adequacy. The first one was the high amount of human
assistance needed for evaluations of translation, which made the point of automatically
translating texts meaningless. Second, the evaluation of a text could differ a lot between
two different evaluating persons. In order to solve these problems, the development of
mathematical and automated metrics began at the end of the 20th century. These auto-
mated processes normally consist of comparing the translation output to a set of reference
translations and calculating distance or similarity measures between them [34, p.815].
Following, we give an overview over the currently existing algorithms for the most im-
portant translation evaluations.

2.5.1 Round-Trip Translation

The round-trip translation approach (RTT) was one of the first techniques used to evaluate
the quality of machine translation systems. In order to evaluate the performance of a
translation program, it was given a text fragment, which was first translated into another
language and then back into the original one. The results could easily be compared to the
original text fragment. However, according to Somers, 2005, it is widely agreed that RTT
translation is an inappropriate approach to evaluate the quality of a sentence. This is due to
the fact that round-trip translation requires two well working translation systems (from the
original to the foreign language and vice versa) and as a result normally produces a high
amount of errors [1]. Additionally, if there would be no errors in the resulting document,
it could still mean that errors occurred during the first half of the round-trip translation
process, which got corrected on the way back. Therefore, research has developed multiple
additional metrics to evaluate translation quality, which will be discussed in the following
subsections.
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2.5.2 Word Error Rate

The word error rate (WER) was one of the first metrics used to evaluate translations and
is still the standard technique for Automatic Speech Recognition evaluation [34, p.816].
The key aspect of the word error rate is the use of the Levenshtein distance as a measure-
ment for the similarity between two sentences. This is done by identifying, which words
cannot be found in the new translation (deletions(D)), which words cannot be found in
the reference translation (insertions(I)), which words have been substituted by another
(substitutions(S)) and which words match each other. All these edits are calculated in
reference to an existing professional translation of the same text fragment, which is called
reference translation. The word error rate is then computed by the sum of the substitu-

tions, the insertions and the deletions divided by the word count of the given text fragment
(N):

WER =
S + I ∗D

N

As proposed by Nießen in 2000, the word error rate can be extended to be used with
multiple reference translations (MWER) by calculating all individual word error rates
and using the closest reference as a result [34, p.817]. However, this is an approach that
only aims to include WER in multi-reference tasks, since the calculated result does not
gain any additional information of the use of multiple references. The main shortcoming
of the word error rate for text translation lies in the fact that there can be multiple correct
translations of the same sentence that neither use the same word order nor even the same
words, which would both result in worse WER scores.

2.5.3 Translation Error Rate

The translation error rate, also called translation edit rate (TER), was developed in 2005
by the GALE research program. It was used to calculate the number of edits needed to
convert an automated translation into a correct text fragment concerning its fluency and
adequacy. In order to normalize the TER metric, the number of edits is put into context
of the length of the reference text, or, for multiple references, the average length of the
references. The resulting formula for the TER score is defined as follows [37, p.3]:

TER =
number of edits

average number of words in the references

It is important to note that punctuation marks are considered as full words for the TER
score and the following actions are considered edits:

• Inserting of words that are missing in the translated text fragment.

• Deleting words that do not exist in the reference text.

• Substituting of words in the translated text.
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• Shifting 1 to n sequential words for 0 to n steps in any direction in the fragment.

An example for the TER score is given below:

Reference: Tsai Ing-wen has been elected Taiwan’s first female president

Translation Candidate: Taiwan’s first feminine president Tsai has been elected

Although the hypothesis has almost the exact same meaning as the reference text and is
correct in its fluency, the TER score will not result in a value of 0. In order to convert the
translation candidate into an exact match, the following steps are needed:

1. Insert the word Ing-wen behind the word Tsai.

2. Substitute the word feminine with the word female.

3. Shift the word sequence Taiwan’s first female president four times to the right.

According to the formula presented, this would result in a TER score of 3
9
= 33, 33%

(1 insertion, 1 substitution, 1 Shift). This illustrates the main weakness of the automated
TER score. Since it has no access to the semantic meaning of the translation, the calcu-
lated result has to be interpreted with respect to this aspect. As proven by Shapira and
Storer, the calculation of minimal edit distances is an NP-Complete problem and is nor-
mally approximated by using greedy search or dynamic programming approaches [38].
In order to overcome the lack of semantic recognition by the TER score, an extension has
been proposed by Snover and Dorr called HTER (human-annotated translation edit rate)
[37]. This approach includes the creation of a targeted reference that has been created by
a human annotator.

2.5.4 BLEU

The bilingual evaluation understudy algorithm (BLEU) was presented in 2002 by Pap-
ineni et al. It aims to establish a fast and inexpensive method for evaluating the quality
of machine translations without active human interaction. Papineni et al. define quality
as the closeness of a candidate text to professionally, human translated references. BLEU
achieves high correlations between automatic and human text ratings and therefore be-
came the basic algorithm to rate and improve machine translation systems. The algorithm
is language independent and mostly used to rate complete documents due to shortcomings
on sentence level evaluations [2, p.311 et seq.].
The BLEU metric is based on a precision measurement, counting the amount of simi-
lar words in a candidate and a human translated reference translation. Afterwards, the
matches are divided by the total amount of words used in the candidate translation.
The following example shows a candidate sentence that produces a score of 5/6, which
would indicate a good translation.
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• Candidate 1: The bird sits on the tree.

• Reference 1: On the tree sits a bird.

• Reference 2: A bird sits on the tree.

To address the problem, that low quality candidate sentences, such as (the the the the

the the) would produce a higher score (in this case 6/6), Papineni et al. introduced the
Modified Unigram Precision, which limits the score of a single word by considering a
reference word exhausted after a matching candidate word is identified. Therefore, the
Modified Unigram Precision of (the the the the the the) is 1/6.
To take the fluency of a candidate translation into account, the modified precision is calcu-
lated on blocks of words, also called n-grams, where n is the amount of sequential words
in the text fragment block. Papineni et al. show high correlations between automated
ratings on blocks of 3, 4 or 5 words and human ratings.
To take the different lengths of candidate and reference translations into account and en-
sure that very short candidates do not produce comparably high scores, a brevity penalty is
added to the Modified N-gram Precision. As candidate translations that are longer than the
references are already penalized by the Modified N-gram Precision, the implicit penalty
factor for long sentences is 1. Shorter translations are penalized by a brevity penalty (BP).
The complete formula for the BLEU metric on a corpus level is [2, p.311 et seq.]:

BLEU = BP ∗ exp(
n∑
i=1

wi log pi)

and

BP =

1 if c > r

exp(1− r
c
) if c ≤ r

where

• wi are the positive weights for each used n-gram setting, which is computed by
using geometric mean of co-occurrences over n,

• n is the maximal n-gram length,

• i is the n-gram, block length,

• pi is the modified n-gram precision,

• c is the total length of the candidate translation corpus,

• and r is the total length of the best matching reference corpus.

The presented BLEU metric combines fast computations and language independency with
high human judgement correlations and is therefore widely used for machine translation
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evaluations. However, the algorithm ignores several language specific characteristics such
as synonym handling and is therefore most productive on a document level. Additionally,
the importance and information value of the rated text is not taken into account and com-
mon words and phrases are overrated. Variations such as the NIST metric or Meteor
score are attempting to address these shortcomings and will be discussed in the following
subsections.

2.5.5 NIST

The NIST metric is named after the US National Institute of Standards and Technology. It
extends the basic BLEU metric and takes some shortcomings into account. It introduces
n-gram weighting according to their information value and therefore relatively reduces
the weight of common n-grams [3, p.3]. It also substitutes the geometric mean of co-
occurrences over N used in the BLEU algorithm (N being the number of words in the
given text) by using an arithmetic average of n-gram counts. The NIST formula is com-
posed as follows [3, p.141]:

NIST =
5∑

n=1

(∑(
Info(co-occuring n-grams)

)
Number of n-grams in candidate

)
∗ p

where p is a penalty factor, which is calculated as the following [3, p.140]:

p = exp

(
β ∗ log2

(
min

( Scored Candidate Words

Average Number of Words in Reference
, 1
)))

and Info(x) is the individual n-gram information weight for the n-gram x, defined as
follows [3, p.140]:

Info
(
w1, w2, . . . , wn

)
= log2

(
number of occurrences of w1, . . . , wn−1
number of occurrences of w1, . . . , wn

)
The NIST metric is an adjustment to the earlier described BLEU score and also focuses on
document rating rather than sentence level evaluation. Compared to BLEU, NIST allows
more precise translation evaluations and prefers rare n-grams to common ones, based on
the idea that rarer n-grams contain more information than common ones. While NIST
achieves better scoring results as BLEU, when it comes to similarities to human ratings
of translations, it requires multiple references to calculate the n-gram information weight.

2.5.6 METEOR

Meteor (Metric for Evaluation of Translation with Explicit Ordering) is another BLEU-
based algorithm for evaluating machine translations. The metric was designed to fix com-
mon problems of the BLEU algorithm and achieves better results on a sentence level.
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Meteor is based on the harmonic mean of unigram precision and recall, with recall being
weighted higher than precision [39]. First, the algorithm creates an alignment between
two sentences, the candidate and a reference sentence. The alignment is a unigram-based
mapping and tries to bind each candidate unigram to a matching reference unigram. Every
unigram in the candidate can map a maximum of one reference word. Meteor considers
four different kinds of matches:

• Exact: The matching words are identical, they share the same surface.

• Stem: The aligned words share a word stem and are therefore matching.

• Synonym: The word meanings are equal; they are synonyms of each other.

• Paraphrase: Entire paraphrases are considered matching, if they share the same
meaning.

For the final alignment the number of covered words across the sentences is maximized,
while the number of chunks is minimized. Chunks are defined as chains of matches that
are contiguous and identically ordered in the compared sentences. The initial setup is
transformed into a formula using the harmonic mean, which is calculated using unigram
precision and recall. The unigram precision P is calculated as:

P =
m

wt

where m represents the number of matches and wt the number of words in the candidate
text.
The unigram recall R is computed as:

R =
m

wr

Where m remains unchanged and wr is the number of words in the reference.
Both scores are combined to the harmonic mean in the following fashion:

F −mean =
P ∗R

α ∗ P + (1− α) ∗R

In order to penalize short sentences and multiple chunks, Meteor introduces a penalty p,
computed as:

p = γ ∗
( c

um

β)
where c is the number of chunks and um is the number of mapped unigrams.
The final Meteor score is composed of F − mean and the penalty p in the following
manner:

Meteor = F −mean ∗ (1− p)
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To tune the Meteor results, Denkowski and Alon Lavie suggest to weight unigrams ac-
cording to their concurrency in the target language and recommend a tuning of the α,β
and γ parameter. Common values are [39]

• α = 0.9

• β = 3

• γ = 0.5

The main advantage of the Meteor metric is the use of paraphrase tables and synonyms
and therefore the ability to recognize similarities on smaller text bodies with a higher
precision. However, due to its large use of external data, such as paraphrase and synonym
tables as well as the extensive method of finding matches in general, the metric requires
not only language specific preparations but also extensive computing time to calculate
compared to the BLEU score. Additionally, following the suggestions to optimize the
alpha, beta and gamma individually would increase the effort even further. Still, besides
the high preparation and calculation effort, Meteor is currently acknowledged to be the
best metric for sentence level evaluation.
In this work, machine learning methods are used in the context of machine translation
problems with a focus on the specific domain of technical documentation. These will be
described in section 2.6.

2.6 Technical Documentation

Technical documentation is a generic term for every kind of product-related document,
aiming to reveal information about a product or service. Technical documents are grouped
into internal and external documentation. Internal documentation is understood to repre-
sent technical drawings, part lists, work lists, work instructions and others. It is fundamen-
tal for the development, construction and maintenance of products. External documenta-
tion, includes data sheets, spare parts catalogs and manuals, address existing customers
and are partially used to acquire them. External documentation also verifies product spec-
ifications to government authorities [40, p.2 et seq.]. The different kinds and several func-
tions require technical documentation to fulfill certain requirements, such as [40, p.37 et
seq.]:

• The audience has to be known and appropriately addressed.

• The linguistic style has to focus on the understanding of the described matter.

• The documentation has to be complete and structured according to the users’ needs.

• Laws and standards have to be met.

• An adequate balance between pictures and text has to be found.
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• The document should be appealing and as short as possible.

All technical documents emphasize understandability as a key aspect of their structure.
The central goal of technical documentation is that end users as well as employees of
different company departments can understand it without lots of additional research. This
point ensures that texts are mostly written in a clear, simple and concise way and do not
contain too many abbreviations or internal corporate terminology. Furthermore, technical
documents are normally reviewed multiple times before being published either to ensure
their quality by using proof readers or to ensure their understandability through audience
analysis [40, p.58 et seq.]. Nevertheless, the analysis of technical documentation comes
with many challenges for machine translation systems, since the used language will be
highly technical and not every abbreviation can be avoided.
To ensure compliance with high quality requirements and to be legally safeguarded, sev-
eral product specific standards must be met to achieve compliance with relevant laws and
avoid possible compensations claims. Within the European Community, multiple binding
directives are adopted into national law and are often complemented by common industry
standards [40, p.5 et seq.]. Concluding, the extensive requirements of technical docu-
mentation is expected to offer high quality text passages in a complex environment and
therefore build a solid but challenging ground for machine translation systems.
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Chapter 3

Method

In this chapter we address the different steps taken to perform the creation of a machine
translation evaluation system with focus on technical documentation. The following ques-
tions are answered over the course of this chapter:

• How can new knowledge be discovered?

• What goals and limitations influence the chosen method?

• What method provides the possibility to answer the research questions and how is
it composed?

• What data attributes are required to apply the method?

• How can discovered knowledge be further applied?

In order to answer these questions, the structure of this chapter reflects an adaption of
the earlier presented knowledge discovery process. The performed process is illustrated
in the following figure: The first step of the KDD process is discussed in section 3.1.
It defines the data mining task and outlines the restriction it is performed under. After-
wards, the choice of an appropriate data set and the preparation of the raw, gathered data
is presented. Section 3.3 describes the phase of choosing the most suitable attributes for
the given task, calculating and gathering the values for each data entry and preprocessing
the data by finding outliers, noise or erroneous data. Section 3.4 describes the choice of
a data mining approach, the considered algorithms and techniques as well as the actual
data mining. The interpretation of the calculated results is described in section 3.5. This
section also considers how the algorithm results were analyzed, which measures were
used to compare different result to one another and how the algorithm parameters were
optimized. The final KDD-step consists of using the results for future research or other
actions. As further described in section 3.1, the evaluation of documents is done using
results of the classification task. Therefore, the taken approach for the evaluation of tech-
nical documentation is described in section 3.6. Additionally, this section deals with the
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Figure 3.1: Adapted knowledge discovery process, containing the taken steps from gath-
ering the data to interpreting the results and using them for further tasks.

recombination of classified sentences to documents in order to gain additional informa-
tion concerning the classification quality on a document level of the presented algorithms.
Due to the characteristics of the used data sets, not all initial KDD steps are required. For
example, reducing the data and replacing missing values, a common step in the theoretical
KDD-process, are unnecessary as missing values and unneeded attributes do not occur.
Given the iterative nature of knowledge discovery processes, our work is split into two
main loops:

• The first loop includes the KDD-Steps 2 and 3. In contrast to common knowledge
discovery processes, the data set was created and suitable attributes were chosen
manually. This resulted in a high dependency between the preprocessing step and
the data gathering step, because the optimization of the data set by removing er-
roneous data entries or improving the overall data point quality, can change the
suitability of chosen attributes or increase the required amount of data. Further-
more, with the configuration of a data set comes the decision about sizes of each
data entry. After choosing suitably looking attributes, the length might have to be
readjusted in order to fit the attributes more precisely. This creates the need for an
iterative process between the choice or creation of an appropriate data set, contain-
ing the translated text fragments, and the choice of attributes.

• The second loop includes the KDD-steps 2−8, which allows the readjustment of the
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data set, the preprocessing, the attribute choice or the machine learning algorithm.
This loop is even more essential to our work, since the main goal is the optimization
of prediction qualities. In order to do so, we use the presented process iteratively,
testing multiple algorithms to compare them to one another. Furthermore, the algo-
rithms’ results can indicate a badly chosen database and therefore create the need
for readjustments in the steps 2 and 3.

3.1 Identification of the Data Mining Goal

The predefined goal of this thesis was to evaluate the quality of technical documents and
their translations using machine learning methods with a focus on detecting the differ-
ence between automated translations and professional translations done by humans. As
mentioned in 1.3, the thesis addresses two research questions:

1. How can the translation quality of technical documents be evaluated, given the
original document is available?

2. How can the translation quality of technical documents be evaluated, given the
original document is not available?

To answer these questions, they were broken down into these practical working steps:

1. Provide a machine learning algorithm with optimal prediction quality for identify-
ing professional and automated translations of technical documents with and with-
out access to the original document.

2. Introduce a proper framework for ranking the quality of technical documents and
fragments of technical documents regardless of their translation type.

This splitting was chosen, because the first steps including the data creation and pre-
processing are rather similar among the two research questions. Therefore, it is more
efficient to build a setup for providing a machine learning algorithm that solves the given
data mining task with and without knowledge of the original document at once. The main
difference between the two variants lies in the choice of attributes, with substantially more
variables being allowed for the setup with knowledge. The creation of a new framework
for ranking the quality of technical documents will then be built on the outcome of our
first working step. Therefore, the knowledge discovery process focuses on the first work-
ing step and the second one is solved by using the achieved results.
An important limitation, as mentioned in section 1.5, is that this work focuses on the
evaluation of syntax and does not take the semantic parts of a text into account, since this
would go beyond the purpose of this thesis.
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3.2 Translation Data

In order to evaluate machine translations and start a new knowledge discovery process,
it is indispensable to gather a sufficient amount of raw data and to assign a basic data
structure. Given the setup of the present task, the following questions will be answered in
this section:

• What kind of data is required?

• What structure fulfills the requirements for the present study?

• Where does the data come from?

• Which data needs to be generated?

• How can data be gained and how is it possible to achieve a sufficient quality?

• How many data sets are required to make creditable statements?

Classic data mining tasks require the following kinds of data: A training data set, used
to train the algorithm on the problem specific data and a test data set to evaluate the
algorithm’s quality. As mentioned in section 3.1, the given task is aiming for a binary
classification of technical documents with the classes being automated and professional

translation. Therefore, during the data gathering step it was required to generate at least a
professional, human translation and an automated translation for each German text of the
database. Due to the fact that many of the presented metrics require a reference translation
in order to evaluate a candidate text fragment, it is necessary to provide an additional
translation that can be treated as a reference to compare the candidates to. In conclusion,
the final translation data set contains the following parts for each entry:

• The original, German text.

• A professional or automated translation as a candidate to be evaluated.

• One or multiple reference translations of the same original text, used to calculate
scores. Classic machine translation evaluation algorithms often require high quality
reference texts. The references are then used by the algorithms, such as BLEU or
Meteor, to calculate quality scores.

Consequently, the documents to gather should already be available in an original German
version and one or more matching professional translated English versions, since the gen-
eration of additional professional translations of texts would go beyond the purpose of
this work.
The first attempts of gathering data showed a lack of freely accessible data to perform
evaluations on a document level. Due to the discrepancy between the small amount of
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available documents and the high amount of required data for effective data mining, the
documents were broken down into sentences and the data set was built on this smaller
logical unit, the sentence level. This extends the purpose of this work, to provide an ad-
ditional classification system that is able to binary classify sentences into the two labels
mentioned above. By recombining sentences into the original documents, evaluation of
document quality is still possible. This break down enlarges the data set significantly,
but creates the additional challenge of gathering sentence by sentence translations of the
documents.1

Text Extraction and Sentence Splitting
After thorough research, it was found out that an appropriate number of freely accessi-
ble technical documents, including a professional translation, are only available in PDF
format. Due to PDF being a visualization focused document format, extracting single
sentences from it is not a straight forward task. Following, the steps performed to extract
and match sentences from a German document and its English translation are presented
in detail.
First, the available PDF files are converted into plain text files. Due to the characteristics
of the PDF format, the resulting text file is highly erroneous and not logically ordered,
such as footnotes being integrated into sentences and sentences or words being split and
separated. A helpful characteristic of the used documents were easily distinguishable
paragraphs.
Therefore, the plain text files were divided into their respective paragraphs, where para-
graphs are defined as a set of multiple consecutive text containing lines without inter-
rupting empty lines. In order to find and remove paragraphs that do not contain actual
sentences, research showed that the existing paragraphs could be filtered by three require-
ments. They needed to consist of at least 15 characters, three blanks and one punctuation
mark. Otherwise, they contained most likely not actual text but rather not usable text,
such as footnote entries, headlines and figure captions.
After ensuring that the remaining paragraphs contained nothing but usable content, they
were divided into single sentences using part of speech tagging algorithms. Determining
the parts of speech tags in a sentence, allows punctuation independent sentence splitting,
which is very beneficial in the context of technical documentation. This is because of
their technical nature, resulting in multiple technical punctuations within the documents,
which makes the splitting of sentences at punctuation marks ineffective.
Afterwards, the extracted sentences were analyzed further, in order to remove final chunks
and to ensure, that the extracted lines actually form complete sentences. Therefore, the
sentences were filtered on having more than two blanks, to end with a punctuation and to

1The used documents were a set of manuals from VMWare Inc., concerning their product VSphere, a
virtual machine for x86-64-based hardware and their operating systems. The technical documents are acces-
sible via: https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.doc%2FGUID-
1B959D6B-41CA-4E23-A7DB-E9165D5A0E80.html, last accessed: January 19, 2016
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contain at least seven characters. Further requirements, such as verb existence and capi-
talized sentence starts proved to be ineffective, due to the processed documents containing
multiple lists and trademarks that interfered with those rules.
To finalize the raw data gathering, the extracted sentences needed to be associated with
the proper translation. However, it was not possible to set up a sentence extraction and
splitting process that guaranteed to build the exact same number of extracted sentences
the German and English version. Therefore, the German sentences were translated by au-
tomatic translation systems into English ones, which were in turn used to build a process
that detects whether two translated sentences could result from the same original docu-
ment. This allowed a sorting of the data set, matching the respective sentences to one
another and removing sentences with no match on either side.
Finally, for every German sentence three independent machine translations were gener-
ated to create a sufficient amount of automated translations and resolve the problem of
a missing professional reference translation. Since it was not possible to create an addi-
tional professional translation for the given data set, we used two approaches to address
this problem:

• First, one of the automated translation sets was used as a reference. Most transla-
tion evaluation metrics expect a high quality reference to compare the sentence to.
Example given, the BLEU score calculates a similarity value, with a higher value
meaning a higher similarity to the given reference. This means that if the reference
is not of high quality, the similarity of low quality sentences can actually be higher
to the reference than the one of high quality sentences. Due to the fact that the first
research question tackles the problem of binary classification and not of evaluating
the quality of the given texts, the reference does not need to be of high quality. The
expected result would be that by using an automated translation as reference, au-
tomated candidate texts will achieve higher similarity scores than the professional
ones.

• The second approach is based on the findings by Albrecht and Hwa from 2007.
They state that the combination of multiple pseudo references can result in a high
quality reference, similar to a human-created translation. Hereby, a pseudo refer-
ence is a reference that has not been created by a human, in this case a machine
translation program [8, p.298 et seq.]. Therefore, two automated translations were
used in combination to form the reference translation. In this case, the expected re-
sults were higher similarity scores for professional translations than for automated
translations, since the combination was expected to generate a reference of higher
quality.

Furthermore, to create additional attributes that do not need any knowledge of the original
document, a round-trip translation approach was used to create a second version of the
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candidate sentence, which will be referred to as round-trip reference. This was done by
translating the given candidate sentence into a foreign language and back to English. By
doing so, the sentence was clearly altered, since round-trip translations are generally pro-
ducing erroneous data as mentioned in 2.5.1. But this allowed the creation of a reference
text fragment that could be used as a comparison for the candidate translation without
knowledge of the original document. Therefore, the algorithms that normally require a
reference translation could be calculated for the research question that does not allow the
use of the original document as well. In order to create a sufficient amount of automated
translations the following machine translation systems were used:

• SDL’s freetranslations.com2

• Google’s GoogleTranslate3

• Microsoft’s Bing Translator4

To reduce possible dependencies from chosen automatic translators, the further steps use
nine different kinds of data combinations, where each machine translation is once used
as candidate with the other two each being used individually and in combination as a
reference translation. However, due to the need of a round-trip reference, a third of the
data sets, containing the Freetranslation system as a candidate, was removed in the early
stages of the optimization process. The following figure illustrates a data set, which will
be referred to as the preprocessed translation set:

German Sentence Candidate Sentence Reference 1 Reference 2

German Sentence 1 Prof. Trans.1
Auto. Trans. 1

Google Translate
Auto. Trans. 1
Freetranslation

German Sentence 1
Auto. Trans.1

Bing Translator
Auto. Trans. 1

Google Translate
Auto. Trans. 1
Freetranslation

German Sentence 2 Prof. Trans.2
Auto. Trans. 2

Google Translate
Auto. Trans. 2
Freetranslation

German Sentence 2
Auto. Trans.2

Bing Translator
Auto. Trans. 2

Google Translate
Auto. Trans. 2
Freetranslation

... ... ... ...

Table 3.1: General setup of a data set.

2accessible via: http://www.freetranslation.com/de/
3accessible via: https://translate.google.com/
4accessible via: https://www.bing.com/translator
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3.3 Choice of Attributes

This section deals with the selection, creation and preprocessing of the attributes in the
data set. Thereby, the following questions will be answered:

• Which attributes where chosen for the given task and what is their main information
contribution?

• How can these attributes deal with multiple reference translations?

• What were the main problems encountered during this phase?

The choice of attributes is an essential part of knowledge discovery. The aim of an at-
tribute is to generate some form of knowledge concerning each data entry. Normally, an
attribute is a variable which has a value for each data entry of the data set and can be
calculated or accessed in some form. Furthermore, the chosen attribute type is an impor-
tant factor, since not every algorithm can deal with any type of attribute. The two main
types are nominal and numerical attributes. Nominal attributes consist of a fixed set of
normally not sortable values, while numeric ones are of continuous and infinite nature. To
gain additional knowledge of the used metrics, such as the Meteor score, the intermediate
steps of the calculation process were added as well. Following, the chosen attributes will
be shortly described:

• Modified Unigram BLEU Score
As mentioned in subsection 2.5.4, the bilingual evaluation understudy algorithm is
a fast and inexpensive method for evaluating the quality of machine translations in
a fully automated manner, by calculating a value between 0 and 1 depending on
“closeness” of reference and candidate. The unigram BLEU score uses 1-grams,
meaning that no sequences of words are taken into consideration, but only single
words for calculating the modified BLEU score.

• Modified Bigram and Trigram BLEU Score
In order examine the difference between single word BLEU scores and word se-
quence BLEU scores for the given data set, the BLEU scores for 2-grams and 3-

grams were calculated and added as attributes.

• Meteor Score
As described in subsection 2.5.6, the Meteor score is a version of the BLEU score
that has been optimized to work on sentence level.

• Meteor Recall
The Meteor recall score describes the amount of similar unigrams in candidate and
reference translation, relative to the unigram count in the candidate fragment.
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• Meteor Precision
The Meteor precision score describes the amount of similar unigrams in candidate
and reference translation, relative to the unigram count in the reference fragment.

• Meteor Chunks
The Meteor Chunk score counts the minimally needed amount of chunks for each
sentence.

• Meteor Fragmentation Penalty
The fragmentation penalty calculates penalties to give more weight to longer n-

gram matches. This means that a sentence with large amounts of longer n-grams in
candidate and reference translation, requires fewer chunks, which in turn results in
a lower penalty score.

• Meteor F1
The F1 score calculates the harmonic mean between precision and recall.

• Meteor Mean
The Meteor Mean score computes the harmonic mean between precision and recall,
with recall being weighted nine times more than precision.

• Meteor Total Matches
The total matches score counts the total matches found between reference and can-
didate translation on a unigram basis.

• Reference Length
The reference length score compares the candidate translation length to the refer-
ence translation length, by generating the difference between two text fragments
and storing it as the attribute value. This results in negative values for shorter can-
didates and in positive ones for longer candidates.

• Parts of Speech Score
The parts of speech score is a boolean value for describing whether the candidate
translation matches a given minimal pattern of needed parts of speech tags to form
a grammatically correct English sentence.

• Flesch Reading Ease
The Flesch reading ease algorithm calculates a score that measure the readability of
sentences and documents.

• TER Score
As described in subsection 2.5.3, the Translation Edit Rate measures the amount of
needed edits to transform the candidate text to the reference translation, relative to
the text length.
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• TER Total Edits
The intermediate step of calculating the total edit count was implemented to gen-
erate information on the amount of edits with no regard to the reference length.
By not using a relative score, the lengths of candidate and reference translation are
taken into account, which results in additional knowledge for the machine learning
algorithm.

• Used References
As described in section 3.2, for parts of the experiment, multiple reference transla-
tions were used to generate a more standardized reference version. Most metrics,
such as the Meteor and BLEU score are able to cope with multiple reference trans-
lations, by calculating scores for all references and choosing the best score. We
monitored, which reference translation was used more often during the calculation
of all metrics to generate additional knowledge that could ease the classification
process for the given machine learning algorithm.

• Mistake Count
A style word and grammar checking system was used to analyze the candidate text
fragments on their word and grammatical correctness (language tool). The program
counts all found mistakes and separates them into different categories. In addition
to the total mistake count, the individual categories were added, resulting in an
additional 94 attributes.

One of the main problems that appeared during this phase, was finding an appropriate
number of attributes that fit the requirement of having no knowledge of the original docu-
ment. The removal of the original document as a resource, transforms the problem from a
machine translation task to a text quality analysis task, since there is no more information
available to the algorithms that the given text is a translation of any kind. Therefore, the
field of machine translation is not directly applicable for solving this part of the research
question. The main properties for good text quality are grammatical correctness, word
correctness, semantic correctness and style. As mentioned in section 1.5, the semantical
correctness of a sentence is going beyond the purposes of this thesis and therefore cannot
be taken into account. This leaves the part of the research question without knowledge of
the original document with three types of problems to address:

• The grammatical correctness of a sentence or text can be validated or evaluated.
This is normally done by rule-based programs that check the sentence on violations
of these rules and report the corresponding errors.

• The word correctness is harder to evaluate than the grammatical correctness for the
given task. The focus on technical documentation results in some properties of the
documents that complicate these evaluations. First, the used language is of highly
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technical nature, resulting in many unknown words for common dictionaries and
second, technical documentation often focuses on a specific product in a company
and therefore contain many proper nouns that would not even be detected by dic-
tionaries that are specialized for technical documents.

• The style of a sentence is in general not applicable for detecting false sentences,
however metrics, such as the readability algorithm can still help to generate infor-
mation about the document quality.

As described above, the possibilities for document quality evaluation without knowledge
of the original text, are limited. In contrast to that, the performance and prediction quality
of a machine learning algorithm highly depend on the available attributes to train and test
on. This is a problem for solving this part of the research question that could endanger
its success. In order to address this problem, a round-trip reference was created as men-
tioned in section 3.2. This allowed the additional creation of the attributes mentioned
above without usage of the original document, resulting in an additional 14 attributes that
could be used by the machine learning algorithms.

For the preprocessing step of the attributes, the main concern for the presented task is the
detection of outliers among the attribute values. A value is considered to be an outlier, if it
deviates by a significant margin from the average of its nearest values. For the given task,
the outliers were calculated using the Class Outlier Factors (COF). The COF is calculated
by ranking each instance of the data set using the following formula [41]:

COF = PCL(T,K)− norm(deviation(T )) + norm(kDist(T ))

• PCL(T,K) is the probability of the class label of the instance T with respect to
the class labels of its K nearest neighbors.

• norm(Deviation(T )) and norm(KDist(T )) are the normalized values ofDeviation(T )
and KDist(T ) respectively and their values fall in the range [0− 1].

• Deviation(T ) is how much the instance T deviates from instances of the same
class. It is computed by summing the distances between the instance T and every
instance belonging to the same class.

• KDist(T ) is the summation of the distance between the instance T and its K near-
est neighbors.

Other important parts of the preprocessing step are the handling of missing values, the
removal of duplicates, normalization and the detection of correlating attributes. Since the
data set has been created and the attributes were chosen and calculated manually, there
are no missing values in the data set after calculating the metrics for the preprocessed
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translations. Therefore, missing value treatment is not necessary for the given task.
The main benefit of normalization is comparability, which is mainly a concern for ma-
chine translation metrics, such as BLEU, Meteor and TER, which are all normalized by
default. However, in order to perform outlier detection, it is important to have compara-
bility among all existing attributes and therefore a range transformation is performed
for the given data set, mapping the data to values between 0 and 1.

3.4 Specification of a Data Mining Approach

This section deals with the KDD-steps 5− 7, which includes the choice of a data mining
approach, the choice of an algorithm and the actual data mining step. The following
questions will be answered in this section:

• Which and how many data mining techniques were considered suitable for the given
task?

• How were the algorithms optimized for the data set?

• What were the main problems encountered during this phase?

Choosing the most suitable machine learning technique comes with a trade-off between
the different advantages and disadvantages that each approach possesses. Therefore, mul-
tiple approaches were tested for the given task, the results analyzed and the algorithms’
parameters optimized. The following techniques were considered suitable for the given
task:

• Decision Trees As mentioned in subsection 2.3.1, the main advantage of Decision
Trees is the understandability of the resulting model and the analysis results, since
the relevance of the respective attributes is easily accessible by humans. Addition-
ally, the robustness of Decision Trees when it comes to outliers and missing values
is a huge benefit for data mining tasks. In contrast to that, the main disadvantages
of Decision Trees are their unreliability and their challenging setup to be used ef-
ficiently. Unreliability means that the splitting attribute in a high-level node can
change by only adding a few additional data entries, changing the structure of the
whole tree and the corresponding predictions. Furthermore, the setup to use a De-
cision Tree effectively is rather complex due to the amount of parameters to adapt
the machine learning process.
Used Algorithm: C4.5 (Quinlan)5

• Artificial Neural Networks The main advantages of neural networks are their abil-
ity to implicitly detect nonlinear relationships between attributes and the detection
of interactions between input variables due to their hidden layer structure, resulting

5Similar to an implementation accessible via: https://github.com/scottjulian/C4.5
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in generally high prediction accuracies. These have to be put in contrast to their
high demand of computational resources, resulting in high computation times and
their proneness to overfitting the model [42].
Used Algorithm: Feedforward Neural Network with Backpropagation

• Bayesian Network For the Bayesian Network, the Naive Bayes algorithm will be
used. As explained in subsection 2.3.3, the Naive Bayes algorithm is rarely relevant
in terms of prediction quality, due to its approach of assuming independency of all
input attributes. Nevertheless, since the required resources are very low it has been
included in the examined algorithms.
Used Algorithm: Naive Bayes

• Instance-Based Learning The k-NN algorithm is a lazy learner, which means that
no learning or computation is done during the learning phase of the algorithm. In-
stead, the computation of the k nearest neighbors is done, when the corresponding
query is made. The main advantages are highly correlated with the lazy nature of
the algorithm, being that the training set is easily scalable, since there is no learning
process involved and it is very robust to outliers by classifying new instances based
on a distance metric to its most similar data entries. The main disadvantages are the
high computation time during the classification phase, especially for large data sets
and the sensitivity towards meaningless attributes and uneven class distributions.
Used Algorithm: k-Nearest Neighbor

• Support Vector Machines Support Vector Machines are flexible due to their ability
of mapping data to a higher dimensional space for enabling an easier separation be-
tween the labels (2.3.5) and are defined by the use of quadratic programming which
avoids local minima in the learning process. In contrast to this, Support Vector Ma-
chines require an in-depth understanding of the kernel techniques and the learning
and test process to be used efficiently. Furthermore, the setting of parameters, such
as the kernel type and SVM type can result in substantially deviating classifications.
Used Algorithm: mySVM (Rüping)6

For each of the approaches mentioned above, one particular implementation of an algo-
rithm was chosen and used to predict the outcomes of the given data set. An important
aspect, when it comes to building a classifier, is the tuning of the different parameters for
every algorithm. The parameters were optimized using a combination of grid-based eval-
uation and evolutionary evaluation. First, a tournament-based, evolutionary optimization
was performed, by building the respective algorithm a certain amount of times, while evo-
lutionary adapting its parameters, until a certain number of generations had been created
or no improval in terms of prediction quality was monitored for more than a fixed amount
of generations. The used prediction quality to validate the performance of the algorithm

6accessible via: http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
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was prediction accuracy. After determining the general area, where the best possible val-
ues for each parameter lie, had been found, a grid-based optimization followed, testing
multiple values in range of the evolutionary result to affirm the optimal value had been
found. (E.g., if the maximal depth of the Decision Tree was optimized towards a value of
25, the grid-based approach tested an additional 10 values between 10 and 40 to further
optimize the Decision Tree.)
Since there were nine available data sets, this process was done for all of them to examine
the significance of the different reference translations in correlation with the used can-
didates. The results of these experiments will be presented in section 4.2. There were
several challenges that appeared during this phase. First, the computation times for algo-
rithms, such as neural networks that require a lot of CPU and RAM resources, posed a
problem for the given optimization setup. This is, because the optimization process builds
many models, which in turn require a full recalculation of the classification approach for
every new parameter setting. This challenge could partly be solved by allocating more
resources in terms of time and CPU to the respective algorithm, but still set a certain
amount of limitations to the given setup. Second, due to the fact that multiple algorithms,
such as neural networks can only handle a certain type of variables (in this case numeric
attributes), some transformation steps had to be included in order to convert nominal to
numerical attributes and vice versa.

3.5 Interpretation

In order to determine, if and which iterative loops have to be done after performing the
data mining step, certain metrics are needed to evaluate the results of the different algo-
rithms. These metrics have been described in subsection 2.3.6 and were used to determine
the needed adjustments in the preprocessing and data mining steps. The first and most sig-
nificant metric is the misclassification rate. Since the label distribution is exactly even for
the given data set, a low misclassification rate or respectively a high accuracy rate can
be treated as an algorithm result of very high quality. To improve the validity of algo-
rithm accuracy, the results were put into context with the results of a dummy classifier
as a corresponding benchmark. The dummy classifier always predicts the most common
class for the whole data set, resulting in a classification accuracy of 50%. By calculating
the difference between the algorithms’ results and the dummy classifier, an accuracy gain
was calculated to generate a more explicit insight on the additionally gained knowledge
by using the algorithms. Although the class distribution is equal for the given data set, it is
still of great interest to determine, if an algorithm is considerably better at detecting auto-
mated translations or is considerably better at detecting professional translations. This can
be done by monitoring the achieved precision and recall of each algorithm. Only calculat-
ing the precision is not sufficient, since, although precision gives the amount of correctly
classified instances for a single instance relative to all instances classified with that label,
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a high precision could also be achieved, by only classifying the respective label in very
specific scenarios and thereby missing out on many instances that actually belong to that
label. In order to counteract that, the recall can be taken into account in combination with
the precision score. Since the recall measures the correctly classified instances relative to
all instances that actually belong to that class, the strategy described above would receive
a substantially lower recall score. In order to combine both values, the F-Measure is used,
calculating the harmonic mean between the two scores, resulting in a score to evaluate the
ability of an algorithm for classifying a certain class. To take both classes into account,
the F-Measure was calculated for both labels and the most promising results regarding
F-Measure and Accuracy-Gain were further examined.

3.6 Further Use of the Results

The last step of every knowledge discovery process is the application of the obtained
results for further use. In the proposed task, this is especially important, since the main
focus of this thesis was the classification of document level translations and additionally
the evaluation of translations. This section explains, how the KDD-process results are
used to perform document level classification and how to create a framework for the
evaluation of translated sentences and documents.

3.6.1 Document-Based Analysis

In order to predict original documents, the single sentences have to be recombined to
their respective technical documents. This results in a professional and an automated ver-
sion for each technical document. In order to classify a document with a certain label,
all sentences belonging to that specific document were used as holdout, while combining
the remaining documents to the training data set for the algorithm. (E.g., a profession-
ally translated document called installation setup is held back as the holdout set and the
remaining documents are combined to build the training set for the algorithm.) The algo-
rithm then classifies each sentence of the holdout set with a certain label and the document
is classified with the most common label among its sentences. This process is repeated
for every version of every technical document and the misclassification rate is calculated
by putting the amount of correctly classified documents in relation to all documents.

Due to the small amount of available documents, a second step was taken to prove the
results’ validity. We created an additional database of technical documents, by randomly
combining sentences to fictive documents. Figure 3.2 illustrates the process of creating
additional fictive documents.
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Figure 3.2: Technical document creation.

Additionally, this approach allowed the examination of the required size of technical doc-
uments. By creating documents of substantially differing sizes, it was possible to deter-
mine a minimal length of technical documents in order to have a high probability of clas-
sifying them correctly. Furthermore, this approach allowed the detection of the needed
distribution rate of the document’s sentences depending on the document’s size in order
to classify them with a certain label.

3.6.2 Proposal of an Evaluation Framework

The second practical working step to answer the given research questions, was the pro-
posal of a framework for evaluating technical documentation with no regard to their type
of translation. By using the results from the knowledge discovery process, it was possi-
ble to generate classes that allow the subdivision of sentences and therefore documents,
according to their quality of translation. The three used properties of the classification
process for the evaluation were the predicted label for the two best performing algorithms
and the amount of mistakes monitored for the sentence. To get a more appropriate repre-
sentation of the predicted label and the monitored mistakes, the mistake count was split
down into a more fine-grained attribute, while the class predictions for the two algorithms
remained unchanged. The resulting 94 categories were analyzed concerning their impact
on the quality decrease of a sentence. Each category was weighted depending on their
severeness, giving high impact mistakes additional weight and low impact ones less or
even no weight if the mistake was not relevant for the quality of a sentence.
The prediction of a sentence being professionally translated was treated as a high indica-
tor for a high quality sentence, due to the fact that in general, a human translation is of
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higher quality than an automated translation.
Therefore, the three resulting properties for the quality evaluation of a sentence were the
two data mining predictions and the weighted score of its mistakes. A sentence was la-
beled with a quality class depending on the values of the three mentioned attributes. The
exact classes will be shown in section 4.2.
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Chapter 4

Results / Empirical data

This chapter will give an overview over the achieved results, the used data and the ex-
periment process to solve the given research questions. The following questions will be
answered in detail, with section 4.1 focusing on the setup of the data set and the experi-
ments and section 4.2 presenting the achieved results:

• How many sentences and documents were used for training, testing and analyzing
the algorithms?

• Which tools were used to calculate the metrics, create the data set and perform the
experiments?

• Which algorithm parameters were the most influential?

• Which algorithm optimizations were done?

• What were the achieved results on sentence level analysis?

• What was the setup of the best performing algorithm on sentence level?

• What were the achieved results on document level?

4.1 Empirical Data

The following section gives the numbers to the approach described in chapter 3. Table
4.1 gives an overview over the amount of sentences, attributes and documents used for
the given tasks.
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Number of Automated Translation Systems 3

Number of Technical Documents 14

Original Number of Sentences in all Documents 30, 000

Number of Sentences used per Translation System for the Data Sets 22, 327

Approximate Number of Sentences in the Data Sets 44, 654

Total Number of Data Sets 9

Number of Attributes needing a Reference Translation 14

Number of Attributes needing no Reference Translation 18

Total Number of Attributes 32

Maximum Amount of Available Attribute Values 1, 428, 928

Number of Created Fictitious Documents 19, 190

Table 4.1: Statistics of used data sets.

The sentence extraction of technical documents resulted in 30000 lines containing text
fragments. Since sentence extraction is not a straight forward task, 8000 of these lines
had not been extracted correctly, resulting in erroneous text fragments that did not form
valid sentences. Therefore, each final data set that was used to train and test the machine
learning algorithms, consisted of 22327 sentences per translation system. To ensure an
even distribution between the labels professional translation and automated translation,
each data set was combined out of two sets of sentences, one being translated profession-
ally and the other automatically. This resulted in each data set containing a total amount
of 44654 sentences. These sentences were extracted out of 14 technical manuals regard-
ing the handling of a virtual machine program.
To further examine the algorithm’s validity on different sizes of technical documents, the
manufactured documents were varied in sizes of 5 to 3000 sentences per documentation.
It is important to note that the creation of larger sized documents was more challenging,
due to the limited amount of sentences and the needed amount of training data to generate
a meaningful classification model. Furthermore, the information gained by the smaller
sized documents is more valuable, since the needed amount of sentences in order to cor-
rectly classify a document, was expected to range between 60 and 300 sentences.
Table 4.2 shows the nine used data sets, created by using the three machine translation
systems as candidates and references respectively and creating a round-trip translation for
six of the nine data sets using the Freetranslation program.
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Candidate Reference1 Reference2 Round-Trip Reference

Google Translate Bing — Google RTT via Freetranslation

Google Translate Freetranslation — Google RTT via Freetranslation

Google Translate Bing Freetranslation Google RTT via Freetranslation

Bing Translator Google — Bing RTT via Freetranslation

Bing Translator Freetranslation — Bing RTT via Freetranslation

Bing Translator Google Freetranslation Bing RTT via Freetranslation

Freetranslation Google — —

Freetranslation Bing — —

Freetranslation Google Bing —

Table 4.2: Used combinations of references and candidates.

The attribute calculation and the generation of the database in combination with the setup
from section 3.2, was done in Java, using Eclipse as a development environment. The
described metrics were integrated using open-source packages, such as the Stanford NLP

Package and the Language Tool Core Package. Most of the metrics were adapted to fit the
requirements of the given machine learning task and calculated to form the final database
used to train and validate the machine learning algorithm on.

Before the optimization of each algorithm was performed, the data set was further pre-
pared to convert it into an optimal setting for the algorithm to train on. These steps includ-
ing the optimization process were done using the RapidMiner software and are shown in
detail in figure 4.1.
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Figure 4.1: Preprocessing of the data set and optimization of the machine learning algo-
rithm using RapidMiner.

After the input data set has been read and the attribute types have been set, the first prepro-
cessing step, Remove Duplicates is run. This step removes all but one of similar entries
in the data set, which is important to limit the influence of multiple identical data entries.
Next up, the data is normalized using the range transformation. This maps all attributes to
the same value range, which allows for an easier comparison between them and enables
the next step, the detection of outliers. Outliers are detected using class outlier factors
as described in section 3.3 by comparing data entries to one another using the euclidean
distance metric. The 5% most deviating data entries are identified as outlying values and
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are not considered for the machine learning task. Furthermore, depending on the research
question, the attributes that are allowed for the given task are selected, which includes the
removal of 14 attributes for the second research question. The final preprocessing step, to
further decrease computation times and remove redundancies among the attributes, is the
identification of highly correlating attributes and their removal if the correlation is higher
than 90%.
To evaluate the influence of the steps mentioned above, the optimization process was per-
formed for different setups by enabling and disabling certain steps, example given, Re-

move Duplicates = true, Normalize Data = false, Detect Outlier = true, Remove Related

Attributes = false. An optimization iteration consists of setting the algorithm’s param-
eters, building a model, applying the holdout set to the built model and evaluating the
results. The holdout set was randomly selected as 30% of the data set. As mentioned in
3.4, this process was integrated into an automated setup, to perform multiple evolutionary-
based optimization processes. The first step for each algorithm consisted of a minor opti-
mization step to examine the influence of different data preparation setups and the general
suitability of the algorithm for the given task. The experiments were performed on all nine
data sets and it turned out that data preparation was useful for every setup and therefore
normalization, duplicate removal, outlier detection and correlated attribute removal were
applied for the next optimization steps. Furthermore, Support Vector Machines and the
Naive Bayes classifier were removed from the further optimization process, since SVM
achieved substantially worse results than the remaining algorithms and Naive Bayes had
no further optimization possibilities due to the lack of adaptable parameters. The next
step consisted of a more in depth optimization, by generating a larger amount of models
per algorithm and testing bigger ranges of parameter settings. Table 4.3 gives an overview
of the generated models for both research questions and the corresponding optimizations.

Research Question 1 Research Question 2 Total
Built Decision Trees 480, 000 300, 000 780, 000

Built Neural Networks 6, 000 2, 000 8, 000

Built k-Nearest Neighbors 3, 500 1, 500 5, 000

Built Support Vector Machines 2, 500 1, 000 3, 500

Total Number of Optimizations 492, 000 304, 500 796, 500

Table 4.3: Overview over the created models and optimizations.

4.2 Results

This section will present the results of the experiments. Subsection 4.2.1 will deal with
the results concerning the algorithm having access to the original documents, while 4.2.2
will show the achievements for the same task with the algorithm having no access to the
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documents. Each subsection will present the best and most notable results for the tested
algorithms and the resulting document-based analysis.

4.2.1 Research Question 1

The first research question focuses on the evaluation of translations with the knowledge of
the original document. Following, the best results for each tested setup will be presented,
ordered by the used algorithm. The exact ranges used for optimizing the models are listed
in appendix A.

In order to provide a brief overview, table 4.4 shows an aggregation of the afterwards more
detailed presented results and illustrates the general performance of the used algorithms.

Algorithm Accuracy Standard Deviation

Decision Tree 68.69% 0.014

Artificial Neural Network 70.33% 0.014

k-Nearest Neighbor 69.74% 0.009
Naive Bayes 65.84% 0.019

Support Vector Machines 61.31% 0.017

Table 4.4: Averages and standard deviations of the tested algorithms.

Table 4.5 shows the results with the highest accuracies for sentence predictions using
Decision Trees including the respective F1-scores. For each candidate-reference combi-
nation shown in the table, 50, 000 Decision Trees were built and evaluated. The used data
included all available attributes in normalized fashion, reduced by up to 5% by an outlier
detection and further due to the removal of duplicates.
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Decision Tree
Candidate Reference 1 Reference 2 Accuracy F1-Automated F1-Professional

Google Bing — 69.09% 0.724 0.649

Google Freetranslation — 67.91% 0.706 0.646

Google Bing Freetranslation 70.48% 0.744 0.651

Bing Google — 70.18% 0.706 0.698

Bing Freetranslation — 68.75% 0.692 0.683

Bing Google Freetranslation 70.23% 0.715 0.689

Freetranslation Bing — 66.22% 0.689 0.629

Freetranslation Google — 67.85% 0.687 0.669

Freetranslation Bing Google 67.52% 0.676 0.675

Table 4.5: Overview over the best Decision Tree results for the respective candidate-
reference combinations.

The following table presents the highest results for artificial Neural Networks. Each
candidate-reference combination was optimized 150 times. The data preparation is similar
to the previous Decision Tree optimization. Each lineup contains all available attributes.
The attributes are normalized and the data set is reduced by up to 5% outliers. Duplicates
are not considered.

Artificial Neural Network
Candidate Reference 1 Reference 2 Accuracy F1-Automated F1-Professional

Google Bing — 69.93% 0.731 0.659

Google Freetranslation — 68.08% 0.709 0.647

Google Bing Freetranslation 70.93% 0.744 0.663

Bing Google — 72.24% 0.729 0.715

Bing Freetranslation — 69.14% 0.696 0.687

Bing Google Freetranslation 71.67% 0.723 0.711

Table 4.6: Overview over the best Artificial Neural Network results for the respective
candidate-reference combinations.

The results for the used k-Nearest Neighbor algorithm is shown in table 4.7. For each
candidate-reference combination, 50 models were built and evaluated. The results repre-
sent the respective models with the highest achieved accuracies. The data preparation is
similar to the earlier mentioned setups and the data set is reduced by up to 5% outlier and
due to the removal of duplicates, while the attributes are normalized to perform the outlier
detection.
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k-Nearest Neighbor
Candidate Reference 1 Reference 2 Accuracy F1-Automated F1-Professional

Google Bing — 68.41% 0.692 0.683

Google Freetranslation — 68.71% 0.706 0.698

Google Bing Freetranslation 71.21% 0.715 0.689

Bing Google — 70.23% 0.712 0.692

Bing Freetranslation — 69.55% 0.701 0.689

Bing Google Freetranslation 70.33% 0.718 0.694

Table 4.7: Overview over the best k-Nearest Neighbor results for the respective candidate-
reference combinations.

The following table displays the results for evaluations using the Naive Bayes algorithm.
Given the nature of the algorithm, the results are final for the used data set and are not
further optimizable. The data set is similar to the earlier results: All available attributes
are normalized and used. The data set is reduced by up to 5% outliers and does not contain
duplicates.

Naive Bayes
Candidate Reference 1 Reference 2 Accuracy F1-Automated F1-Professional

Google Bing — 67.76% 0.697 0.655

Google Freetranslation — 66.08% 0.681 0.638

Google Bing Freetranslation 68.76% 0.717 0.651

Bing Google — 63.21% 0.671 0.582

Bing Freetranslation — 65.15% 0.689 0.604

Bing Google Freetranslation 64.10% 0.688 0.577

Table 4.8: Overview over the Naive Bayes results for the respective candidate-reference
combinations.

The highest accuracies achieved for Support Vector Machines are shown in table 4.9. The
used data set and attributes are similar to the earlier shown sentence-based algorithms.
Support Vector Machines have been optimized 50 times.

59



Support Vector Machines
Candidate Reference 1 Reference 2 Accuracy F1-Automated F1-Professional

Google Bing — 63.25% 0.605 0.656

Google Freetranslation — 60.00% 0.578 0.619

Google Bing Freetranslation 62.56% 0.629 0.622

Bing Google — 59.42% 0.639 0.535

Bing Freetranslation — 59.47% 0.571 0.616

Bing Google Freetranslation 63.14% 0.664 0.591

Table 4.9: Overview over the best Support Vector Machine results for the respective
candidate-reference combinations.

Recall and Precision
Candidate Google Candidate Bing

Average Recall Automated 79.90% 72.46%

Average Recall Professional 58.73% 68.06%

Recall Difference 21.18% 4.40%

Average Precision Professional 74.28% 71.11%

Average Precision Automated 66.31% 69.51%

Precision Difference 7.97% 1.60%

Table 4.10: Overview over the most notable results for the first research question.

Table 4.10 shows additional notable results that appeared during the optimization process
of the first research question and will be further discussed in subsection 5.1.1.

Document-Based Results
To evaluate not only sentences but entire documents, the sentence-based approach is ap-
plied on the document level. As mentioned in section 4.1, the complete data set was
extracted from 14 technical documents. The classification results for these 14 original
documents have been created by an individually optimized Decision Tree and are shown
in the following table.

60



Professionally Translated Documents Automatically Translated Documents
Document

Length
% Prediction
Professional

Predicted Class
% Prediction
Automated

Predicted Class

213 65.73% 1 62.05% 0

360 66.94% 1 68.89% 0

722 67.87% 1 75, 67% 0

790 65.32% 1 72.93% 0

903 71.10% 1 73.71% 0

1081 66.05% 1 72.72% 0

1175 66.30% 1 75.13% 0

1387 59.63% 1 74.53% 0

1607 72.56% 1 66.15% 0

1973 69.54% 1 71.91% 0

2461 63.71% 1 66.74% 0

3065 59.38% 1 72.15% 0

3076 69.15% 1 71.80% 0

3514 73.76% 1 67.69% 0

Table 4.11: Classification of the original documents with knowledge of the German trans-
lation.

The more generalized approach, based on randomly manufactured documents used for
the evaluations, support the initial findings. The evaluation uses a separately optimized
Decision Tree model for each document length. Every used model represents the optimal
result out of a set of 729 tested Decision Trees. The more detailed results are presented in
table 4.12.
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Document Evaluations
Document

Length
Number of
Documents

Class
Average %

Automated
Average %

Professional
Misclassifi-

cations
% Misclas-
sification

5 5000 1 32.55% 67.45% 969 19.38%

10 2500 1 31.85% 68.15% 153 6.12%

20 1250 1 31.34% 68.66% 23 1.84%

50 500 1 31.88% 68.12% 4 0.80%

100 250 1 31.78% 68.22% 0 0.00%

250 50 1 31.62% 68.38% 0 0.00%

500 25 1 31.75% 68.25% 0 0.00%

1000 10 1 31.30% 68.70% 0 0.00%

3000 10 1 31.12% 68.88% 0 0.00%

5 5000 0 71.04% 28.96% 1345 26.90%

10 2500 0 69.92% 30.08% 404 16.16%

20 1250 0 69.98% 30.02% 63 5.04%

50 500 0 70.56% 29.44% 1 0.20%

100 250 0 71.01% 28.99% 0 0.00%

250 50 0 70.20% 29.80% 0 0.00%

500 25 0 70.70% 29.30% 0 0.00%

1000 10 0 70.45% 29.55% 0 0.00%

3000 10 0 69.57% 30.43% 0 0.00%

Table 4.12: Document classification results considering all attributes for research question
1.

4.2.2 Research Question 2

While the previous subsection presents the results related to research question 1, the re-
sults for research question 2 are shown in the following section.
Each data-set used to compute the shown results in this subsection uses all available at-
tributes that do not require reference translations. The attributes are normalized and the
used data set contains no duplicate entries and is additionally shortened by up to 5% due
to outlier detection.
Given the smaller amount of available attributes and the non-consideration of reference-
based attributes, the number of different evaluations is shortened. The following table
contains the results with the highest accuracies for each tested candidate and algorithm.
Table 4.13 shows the highest achieved results for each algorithm.
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Candidate Accuracy F1-Automated F1-Professional

Decision Tree
Google 56.79% 0.562 0.574

Bing 60.50% 0.593 0.612

Artificial Neural Network
Google 55.77% 0.539 0.574

Bing 60.00% 0.564 0.630

k-Nearest Neighbor
Google 59.27% 0.625 0.555

Bing 62.93% 0.654 0.601

Naive Bayes
Google 52.92% 0.617 0.389

Bing 55.99% 0.608 0.496

Support Vector Machines
Google 52.87% 0.563 0.489

Bing 52.45% 0.637 0.310

Table 4.13: Overview over the best achieved results for research question 2.

The presented numbers result of 50.000 optimizations for Decision Trees, 150 for Artifi-
cial Neural Networks, 50 for k-Nearest Neighbor and 50 for Support Vector Machines.

Notable Results
SVM: Average Recall for Automated 84.56%

SVM: Average Recall for Professional 19.51%

Table 4.14: Overview over the most notable results for the second research question.

Table 4.14 shows notable results that appeared during the optimization process and will
be further discussed in subsection 5.1.3.

Document-Based Results
Following, the results of applying the sentence-based approach on the original and man-
ufactured documents are presented. Each candidate document length uses an individually
optimized Decision Tree model. Each used model is the result of 729 individual optimiza-
tions.
Evaluating the original technical documents lead to the results presented in the following
table 4.15.
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Professionally Translated Documents Automatically Translated Documents
Document

Length
% Prediction
Professional

Predicted Class
% Prediction
Automated

Predicted Class

213 49.30% 0 62.44% 0

360 66.94% 1 56.39% 0

722 49.31% 0 54, 02% 0

790 53.92% 1 61.39% 0

903 64.23% 1 56.37% 0

1081 58.09% 1 60.41% 0

1175 64.17% 1 56.77% 0

1387 60.27% 1 51.12% 0

1607 59.61% 1 60.61% 0

1973 56.61% 1 60.52% 0

2461 52.95% 1 59.37% 0

3065 58.30% 1 51.48% 0

3076 61.35% 1 58.06% 0

3514 69.24% 1 50.88% 0

Table 4.15: Classification of the original documents without knowledge of the German
translation.

Applying the Decision Tree-based document evaluation on the manufactured documents
yields in the following data.
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Document Evaluations
Document

Length
Number of
Documents

Class
Average %

Automated
Average %

Professional
Misclassifi-

cations
% Misclas-
sification

5 5000 1 39.54% 60.46% 1561 31.22%

10 2500 1 37.95% 62.05% 765 30.60%

20 1250 1 39.89% 60.11% 316 25.28%

50 500 1 37.45% 62.55% 55 11.00%

100 250 1 38.00% 62.00% 7 2.80%

250 50 1 35.86% 64.14% 0 0.00%

500 25 1 36.99% 63.01% 0 0.00%

1000 10 1 39.63% 60.37% 0 0.00%

3000 10 1 40.36% 59.64% 0 0.00%

5 5000 0 58.66% 41.34% 1720 34.40%

10 2500 0 57.23% 42.77% 534 21.36%

20 1250 0 58.43% 41.57% 216 17.28%

50 500 0 56.54% 43.46% 72 14.40%

100 250 0 56.81% 43.19% 13 5.20%

250 50 0 55.47% 44.53% 0 0.00%

500 25 0 56.77% 43.23% 0 0.00%

1000 10 0 58.54% 41.46% 0 0.00%

3000 10 0 58.43% 41.57% 0 0.00%

Table 4.16: Document classification results considering all attributes for the second re-
search question.

4.2.3 Quality Ranking of Technical Documentation

Additionally to the classification systems described above, we propose an evaluation pat-
tern to rank technical documents. This is done by combining the classification results of
a Decision Tree and an Artificial Neural Network with a weighted mistake score as de-
scribed in subsection 3.6.2. The four quality classes have been tested with sample checks
and will be shown in table 4.17. A detailed discussion concerning the chosen classes will
be given in subsection 5.1.6.
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Classes for Evaluation of Translation Quality
Class Prediction Decision Tree Prediction Neural Network Weighted Mistake Count

1 1 1 0

2 1 0 0

0 1 0

1 1 < 2.5

3 0 0 0

4 1 0 > 0

0 1 > 0

0 0 > 0

1 1 ≥ 2.5

Table 4.17: Overview over the different quality classes for the evaluation of technical
documents.

4.2.4 Deliverables

The following deliverables will be handed in with this thesis:

• This work produced two classification systems. The first one, having access to the
original document, is able to predict whether a text has been translated automati-
cally or professionally, with an accuracy of 72.24% on a sentence level and with
correct predictions on a document level given a size of more than 100 sentences.

• The second classification system with no access to the original document, achieves
correct classification rate of 62.93% on a sentence level and correct predictions on
a document level, given a size of 500 or more sentences per document.

• A framework is handed in that allows the ranking of translated text fragments into
four classes, based on a combination of two algorithms and a weighted mistake
score.

• For future research, a translation database is provided, containing 22327 sentences
including context information and their professional translations.
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Chapter 5

Discussion

This chapter will address the evaluation and discussion of the achieved results, the cho-
sen methodology and the validity as well as reliability of the experiments. Section 5.1
will reflect on the results and outline what has been achieved as well as pointing out
the main problems concerning the experiments. Furthermore, an answer to the two re-
search questions will be given as well as an evaluation and interpretation of the results
will be performed. Section 5.2 will reflect on the taken approach towards the research
tasks, point out its benefits and flaws as well as address whether the right method was
chosen to solve the given problem. Finally, section 5.3 evaluates the validity of the used
data sets, the calculated attributes as well as the chosen algorithms and the overall ex-
periment setup. Considering these validity points, a conclusion on the reliability of the
experiments’ results will be drawn. Therefore, this chapter will focus on answering the
following questions:

• What conclusions can be drawn out of the presented results?

• Was the applied method a suitable solution for the given task?

• Which benefits and shortcomings exist concerning the presented work?

• How valid and reliable are the used data sets and the presented results?

5.1 Results Interpretation

5.1.1 Sentence-Based Classification with Knowledge of the Original Document

The best results among all algorithms for the first research questions were achieved by
Artificial Neural Networks with an accuracy of 72.24% and 71.67%. However, three of
the five tested algorithms do not deviate substantially from one another when it comes
to accuracy. The average accuracies among the three algorithms differ by less than two
percentage points over all tested data sets, with the Neural Network achieving the highest
average accuracy of 70.33%. Concerning fluctuations from the mean values, Decision

67



Trees and Artificial Neural Networks deviate with the same amount (σ = 0.014) from
their averages with k-Nearest Neighbor classifier achieving the minimal deviation among
all algorithms with σ = 0.009.

This contrasts with the other two algorithms, the Naive Bayes classifier and Support Vec-
tor Machines. The latter achieved a maximum accuracy of 63.25% losing almost nine
percentage points in terms of accuracy compared to the Neural Network and had sub-
stantially worse computation times, which led to its removal from the experiments early
in the optimization cycles. The Naive Bayes classifier achieved a maximum accuracy of
68.76%. However, it is important to note that its average accuracy is only at 65.84%, re-
sulting in the highest standard deviation among the algorithms. The reason for this might
be the simple structure of the Naive Bayes classifier, not allowing for any optimization
processes to be done and the ignoring of dependencies between attributes, which defi-
nitely exist in the present case. Example given, since multiple intermediate results of the
Meteor metric are used as individual attributes, it is impossible that no dependencies exist
among some attributes.

An additional subject of interest is the comparison of results using one reference and re-
sults using multiple references. The main point of concern is that an additional reference
does not necessarily lead to improvement of the algorithms’ accuracies. This is proven by
the shown results, since the best Neural Network uses a single machine translation system
as a reference. On the other hand, the second best algorithm uses two algorithms, which
leads to the assumption that the achieved accuracy of an algorithm is in part independent
from the number of references used. The reason for this is the aim of the machine learning
approach for the given task. In contrast to many evaluation approaches concerning ma-
chine translation systems, the presented approach tries to classify the given text fragments
into two classes instead of rating its quality. Therefore, the use of a single pseudo refer-
ence serves a different goal as the use of multiple pseudo references. Since many of the
used attributes calculate similarity scores between the reference and the candidate trans-
lation, a machine translated reference can be used to identify automated translations due
to high similarities with the given reference, while professional translations might deviate
more strongly from it. In contrast to that, the use of multiple pseudo references aims to
generate a high quality translation reference by combining the given machine translation
systems [8, 9, 7]. For the present task, the use of multiple references seems to increase the
accuracy slightly, especially compared to using only one of the two references. Example
given, the addition of Freetranslation as a second reference to a data set having Google
as candidate and Bing as a reference, tends to lead to an improvement in terms of accuracy.

Furthermore, the question, which metrics have the most influence to solve the given prob-
lem is an important topic to address. An analysis has been done on the results of the built

68



Decision Trees during the experiments. This is, due to the easy interpretability of Deci-
sion Tree models, including an easy extraction of the most important attributes. Since,
Decision Trees look for the most influential attribute at every splitting point as described
in subsection 2.3.1, the most significant attribute is always placed as the root node of the
given Decision Tree. Figure 5.1 gives an example of an optimized Decision Tree using
Google Translate as the candidate translation and Freetranslation as a reference.

METEOR-
Score

METEOR-
Mean

Automated

>0.864

METEOR-
Chunks

Automated

>0.106

TER-Score
RTT

Unigram-
BLEU-Score

Automated

>0.647

Professional

≤0.647

>0.015

Professional

≤0.015

≤0.106

≤0.864

>0.411

METEOR-
Score

Unigram-
BLEU-Score

Professional

>0.588

TER-
Score-RTT

Automated

>0.06

Professional

≤0.06

≤0.588

>0.347

Professional

≤0.347

≤0.411

Figure 5.1: Optimized Decision Tree.

This example has been chosen, since it represents the most commonly used attributes for
the upper levels of the Decision Tree. The most used attributes by a substantial margin
were the Meteor score and its intermediate results, such as Meteor Mean and Meteor
Chunks. The next most important attributes, showing up the most frequently in the top
levels of the Decision Tree, are the BLEU score and the difference in translation lengths.
It is clearly observable that attributes using reference translations are more influential,
than metrics having no access to them.

Furthermore, as shown in table 4.10, using Google Translate as a candidate, results in
substantially higher recall values for automated translation and therefore higher preci-
sion values for professional translation. This is due to the fact that Google Translate
seems to possess a treat that makes the algorithm predict text fragments more often as
automated translation. A first estimated reasoning could be, that Google’s translating
machine produces output that partially shares characteristics of professional translations.
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Assuming, that all Google produced sentences share a characteristic A, while manually
translated sentences show either characteristic A or B. Since the higher percentage of
sentences with characteristic A are produced by Google, new sentences containing the
characteristic A are assumed to belong more likely to automatic translations and are in
conclusion classified as Google translations. On the other hand, this would normally
result in Google Translate achieving worse results in terms of accuracy, since the clas-
sification is harder to do for the given algorithm. This does not show in the presented
results, however this might be caused by an insufficient sample size or different features
of the machine translation systems that equalize this flaw. In contrast to Google Translate,
Bing Translator stands out for its very equal results in terms of predicting automated as
well as professional translations. Bing Translator achieves an average difference of 1.60
percentage points compared to the 7.97 of the Google Translate system, resulting in better
precision values for automated translations and worse values for professional ones.

The addition of a round-trip translation to be used as an additional reference, led to fur-
ther improvements in terms of accuracy. The results without round-trip translations are
shown in appendix B. Adding additional attributes to a database, is generally helpful for
the algorithm and therefore the observed results were expected, but the main advantage
using the round-trip translation shows in its use for the second research question.
The Freetranslation system was used as a round-trip reference, since using the round-trip
translation system as a candidate would bias the algorithm and Freetranslation achieved
the lowest accuracies in the first stages of optimizations. The average of Freetranslation
accuracies records a loss of 1.96 and 2.52 percentage points respectively compared to the
other candidates. However, it is important to note that the addition of the Freetransla-
tion system as a reference to an existing “one-reference setup” almost always leads to
improvements in terms of accuracy. This is most likely due to the fact that the Free-
translation system provides different and supposedly worse translations than the systems
provided by Google and Bing. Therefore, the combination of two stronger differing trans-
lation systems leads to better results.

Summarizing, the best achieved results show a classification accuracy of 72.24%, result-
ing in a gain over a random classifier of 22.24% using Bing Translator as a candidate and
Google Translate as a pseudo reference.

5.1.2 Document-Based Classification with Knowledge of the Original Document

Due to the lack of a sufficient amount of technical documents to train machine learning
algorithms on a document level, the approach to classify documents into the classes pro-

fessional translation and automated translation consisted of recombining the documents’
respective sentences and aggregating the sentence-based classification results. We chose
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Bing Translator as the candidate, since the result showed fewer deviations for the Bing
Translator experiments and a Decision Tree as an algorithm, due to the more efficient
optimization process without a substantial loss in terms of accuracy. The final splitting
value to decide whether a document belongs to the automated or the professional class,
was calculated by averaging the respective distributions of the two labels. This was done
for the original 14 manuals that were used as a database by training a model on all but one
document and testing the left out documentation on the built model. Building a model
on the complete data set was not possible due to the algorithm being biased by having
trained on the test data. The classification results of the original documents are shown
in table 4.11. It clearly shows that by having knowledge of the original document, the
correct classification of documents works well for real world data, since all documents
are classified correctly.

To increase the significance of the document-based approach, an additional 19190 manu-
factured documents were taken into account to evaluate the classification possibilities for
different sizes of documents. Due to the limited data set, it was impossible to train a single
model for all the documents and therefore different models were trained and optimized
for the different sizes of documents ranging from five to 3000 sentences.
As expected, the results show that a higher amount of sentences in a document leads to
fewer misclassifications by the algorithm. While the average error for documents consist-
ing of five sentences is relatively high with 23.14%, the average percentage of incorrect
classifications drops to 0.50% for documents with 100 sentences. Having knowledge of
the original document, leads to no misclassifications for documents containing 250 or
more sentences.
An important fact concerning the original document, are the clearly visible differences in
prediction distributions. On a percentage basis, the distributions range between 59.38%

and 75.13%. This shows that real-world documents can differ substantially in terms of
ease of classification for the algorithms. Especially compared to the manufactured doc-
ument database where sentences are combined randomly out of all documents, the clas-
sification of real-world documents has clearly higher deviations. By combining sentence
randomly from a set of partly easy to classify documents and partly hard to classify doc-
uments, the classification deviates less from the average correct classification rate. The
difference between maximal and minimal prediction percentage for the respective class
is 15.75 percentage points for the original documents and substantially lower with 3.59

percentage points.

Another important point of concern, is the question of the percentage share distribution
of the respective labels. To give an extended view on this concern, figure 5.2 shows the
range containing 95% of the classification distributions for each of the two labels based
on the document size.
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Figure 5.2: Classification distribution for research question 1.

It is clearly visible that longer documents deviate less in terms of classification distribu-
tions than shorter documents. Since the algorithm achieves an appropriate accuracy of
70%, the distributions converge towards 0.3 and 0.7 respectively. The figure shows four
different areas of interest:

• A: The first area of interest, is the overlapping part of the two distributions. Since
both distributions signify that this area belongs to 95% of their classification distri-
butions, no conclusion can be drawn for documents belonging in that area. There-
fore, the proposed approach has no sufficient certainty about documents with 20 or
fewer sentences and a percentage share for class automated translation between 0.3

and 0.7. This is an expected result, since the smallest documents with the most even
distributions are the hardest to classify correctly.

• B: The second area of interest, is area B, which does not belong to either of the two
funnel-shaped distributions. This area emerges inevitably for every algorithm that
produces any additional accuracy gain. Since this means that the used algorithm
has a better performance than a random classifier, even an accuracy gain of 1%

would be sufficient to create a gap between the two distributions at a certain docu-
ment size. This is because the larger the documents become, the more the standard
deviation decreases and the distributions approximate the accuracy of the used al-
gorithm. Therefore, the creation of documents with an even distribution for both
labels, becomes more unlikely with increasing document sizes. For the presented
algorithm, the described gap starts at a document size of 20, containing a small
amount of the manufactured documents that do not meet the 95% requirements.
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• C1 & C2: These areas fit the 95% requirement and contain the majority of docu-
ment entries. If a new documentation would be classified with a distribution and
size fitting into one of the funnels, the likelihood of it belonging to that class is
significantly higher, than for the other class.

• D1 & D2: The final areas are extreme distributions for mostly high-size documents.
Similar to area B, it is highly unlikely that these documents appear, due to the given
accuracy of the used algorithm on a sentence level. However, if that would be
that case, the probability of the document belonging to the class with the smaller
percentage share distance is substantially higher.

Concluding, although the algorithm classifies every document with one of the two given
classes, the results cannot always be taken for certain, since the resulting percentage share
of sentence level classification plays an important role for determining the certainty of
the classification. The present approach proposes a classification with certainty, if the
classified document fits into one of the following areas:

• C1, D1 for a classification with professional translation or

• C2, D2 for a classification with automated translation.

5.1.3 Sentence-Based Classification without Knowledge of the Original Document

As mentioned in section 3.3 there was reasonable concern that the amount of existing at-
tributes using no reference translations was insufficient to create a useful classifier for the
given problem. This concern was backed up by first results using the few attributes that do
not require a reference translation, achieving accuracies between 51 and 54%. This would
mean close to no gain compared to a random classifier. Therefore, the round-trip trans-
lation was introduced to create a fictive computerized reference translation by translating
the candidate sentence with an unknown machine translation system to foreign language
and back to the candidate language. The expected result was that the sentence would be
more similar to the candidate sentence, if it belonged to class automated translation than
for the other class. This is due to the observation of machine translation system translat-
ing words and phrases in the same manner, resulting in better round-trip translations than
for professionally translated sentences. This resulted in a maximum achieved accuracy of
62.93% by a k-Nearest Neighbor classifier using Bing Translator as a candidate. On av-
erage, the k-Nearest Neighbor achieved the highest results as well with a score of 61.1%
compared to the next highest by the Decision Trees with 58, 65% and the lowest aver-
age by Support Vector Machines with 52.66%. Similar to research question 1, the three
algorithms with that highest accuracy were the k-Nearest Neighbor classifier, Artificial
Neural Networks and Decision Trees. The results are a clear improvement compared to
the achieved accuracies without the round-trip translation reference and allows attempts
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on a document-based approach. The Support Vector Machine achieves the lowest accu-
racy by a substantial margin and the results show that even with an optimization process,
it was not possible to generate significant accuracy gains compared to a random classifier.
This is well illustrated by the unequally distributed recall values. As shown in table 4.14,
the average recall for automated translation is 84.56%, while professional translation

lies at 19.51%. This is a typical value distribution for classifiers that predict a very high
amount of data entries with one of two labels, while almost ignoring the second label. It
is important to note that the use of Bing Translator as a candidate seems more promising
for the approach without knowledge of the original document, since, especially for the
better performing algorithms, Bing Translator achieves clearly better results than Google
Translate with an average accuracy of 61.14% compared to 57.28%.

5.1.4 Document-Based Classification without Knowledge of the Original Document

The results discussed above, were used to create a document-based classification system
similar to the one discussed in subsection 5.1.2. The results for the original documents are
shown in table 4.15. The first apparent fact is that in this case, not every document was
classified correctly, having two documents containing 213 and 722 sentences respectively
falsely classified as automated translation, predicting 49% of the document’s sentences
correctly. This goes hand in hand with the observed recall values for close to all results of
the done experiments. The recall values for automated translations is constantly slightly
higher and the automated class is predicted slightly more often. Furthermore, having an
algorithm with half the accuracy gain over a random classifier, compared to approaches
having access to the original document, clearly leads to higher misclassifications. Al-
though the algorithm correctly classifies about 60% of the given instances and for larger
documents there should be no misclassifications, a real-world document can be an outlier
and therefore hard to classify for the given algorithms compared to the manufactured doc-
uments. This is clearly visible for the given documents, ranging from percentage shares
for the document class of 49.30% to 69.24%. This leads to significantly more deviating
values for the real-world data with a range of 19.94 percentage points than for manufac-
tured values with a range of 8.67 percentage points. The documents containing 722 and
213 sentences are one of the described outliers, since they do not fit the observed misclas-
sification patterns for the manufactured database shown in table 4.16

The evaluation shows an average misclassification rate of 32.81% for the shortest docu-
ments, 25.98% for documents containing ten sentences and an average error of 4% for
document length 250 before dropping to 0% for larger test files.
As for Research Question 1, the sentence level classification distributions of the docu-
ments were analyzed and are illustrated in figure 5.3.
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Figure 5.3: Classification distribution for research question 2.

The areas of interest are the same as described in subsection 5.1.2. The deviations in the
areas of larger documents are due to the comparably small amount of created documents
for lengths of 1000 sentences and more. The present approach proposes a certain classifi-
cation, if the classified document fits into one of the following areas:
C1, D1 for a classification with professional translation or
C2, D2 for a classification with automated translation.

5.1.5 Comparison of the two Research Questions

Concerning the setup of the two research questions, research question 1 was a more
straight forward task. Allowing the use of reference translations made the creation of
a valid attribute base easier and the results were more promising in the first optimization
runs. In contrast to that, the second research question created the problem of having to
solve a document quality problem without access to semantics of the document, since the
use of reference translations was not allowed. The addition of round-trip translations as
a reference allowed the creation of a sufficient attribute base to perform the experiments.
The expected results were that algorithms trained and tested on research question 1 would
outperform the algorithms for research question 2 by a substantial margin, since the in-
formation of the original document is a highly valuable, additional piece of information.
These expectations were confirmed by the experiments, showing a maximum accuracy of
72.24% compared to the 62.93% of research question 2 for the sentence-based approach.
This is an increase in accuracy of 9.31 percentage points and an accuracy gain increase
over the used benchmark of a random classifier by 172%. The respective results for the
different algorithms were comparably equal, resulting in Decision Trees, Neural Net-
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works and the k-Nearest Neighbor classifier achieving the best results, and Naive Bayes
as well as Support Vector Machines falling off in terms of accuracy. On a document level,
the classification system with knowledge of the original document was able to classify all
14 documents correctly for both, its professional and its automated translation, while the
system without the additional knowledge failed the correct classification for two profes-
sionally translated documents.

Furthermore, the misclassification rate is clearly higher for research question 2, with a
total number of 5259 misclassification for the complete data set of 19190 documents,
while the system for research question 1 classifies 2962 entries falsely. This results in a
total accuracy of 72.59% for the system with no knowledge of the original document and
an accuracy of 84.56% for the system with this knowledge. This accuracy has to be taken
with caution, since the results are highly dependent on the length of the given document,
such as documents containing five sentences having misclassification rates of 19% to 34%

and documents containing 1000 and more having no misclassifications at all. Figure 5.4
compares the development of misclassification rates based on the respective document
sizes for both systems.

Figure 5.4: Development of the misclassification rate for the manufactured documents
with relative to the document size.

The figure above shows that misclassifications are strictly lower for every document size
when using the system developed for research question 1 and furthermore, the required
document length to avoid any misclassifications is significantly lower.

To further examine the performance between the two systems, it is important to look at
the percentage share of the different distributions relative to the given document sizes
as shown in figures 5.2 and 5.3. The main difference between the two figures is clearly
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the larger overlapping part, resulting in more documents that cannot be classified with
certainty. Example given, a document containing 50 sentences with 40% being classi-
fied as automated translation, could not be classified with certainty using the system for
research question 2, since the respective point still belongs to the overlapping part and
therefore to area A from which no conclusions can be drawn. However, since area A is
smaller in the system used for research question 1, if the document would be classified
similarly, it can safely be labeled as a professionally translated document. This is due to
the distribution belonging to area C, which contains 95% of the professionally translated
documents. If the sentence level algorithm has a lower accuracy, the average distributions
for the two classes are closer to one another (compare 0.3 and 0.7 to 0.4 and 0.6 respec-
tively). This results in less certainty for classified documents, since the distance between
the two funnel-shaped distributions is smaller and errors are more likely.

Concluding, the results of the experiments confirmed the expectations with research ques-
tion 1 being easier to solve using classification techniques, than research question 2, due
to higher overall and averaged accuracies on a sentence level, smaller misclassification
rates and more certain classifications for all sizes of documents.

5.1.6 Evaluation Framework

The proposed framework uses the results of the classification system described in sub-
section 5.1.1 and therefore assumes that knowledge of the original document is available.
The framework works on a sentence level and the evaluation process consists of classify-
ing the given sentence with two well performing algorithms, an Artificial Neural Network
and a Decision Tree. The reason the k-Nearest Neighbor classifier has not been used for
the evaluation of translation quality, is due to the structure of this classifier. Since the main
computational effort in the k-Nearest Neighbor approach is needed for the classification
of new entries, by calculating the k nearest neighbors to given data point. Therefore, a
use of k-NN as a classification system is not reasonable for the given task.

Additionally, a weighted mistake count is added as additional context information. These
three attributes (a boolean value for the classification using the Decision Tree, a boolean
value for the classification using the neural network and a floating point number for
the weighted mistake count) are used to classify the sentence into one of the four ex-
isting classes. Class 1 represents the best and class 4 the worst document quality. It
was observed and literature agrees on the fact that professional translations are gener-
ally of higher quality than automated translations. Therefore, a sentence classified with
professional translation has to be ranked higher than a sentence classified as automated

translation. In this case, the classification results of Decision Tree and neural network
are treated equally, which means that it is distinguished between an algorithm having 0,
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1, or 2 classifications as professional translation. As described in section 3.3, the mis-
take count is a value calculated by using a rule-based dictionary for identifying different
categories of grammatical mistakes. The present database showed a total of 94 mistake
categories and each of these categories are weighted with a score depending on their influ-
ence concerning the correctness of the given sentence. Example given, certain mistakes
categories include suggestions for style improvements and cannot be treated equally with
actual grammatical mistakes. Additionally, the majority of the found categories were re-
moved, due to them having no impact on the correctness of the sentence. The categories
were separated into eight severeness categories ranging from 0.1 to 7.5. Figure 5.5 shows
the distribution of the different mistake categories over the severeness categories.
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Figure 5.5: Overview over the distribution of the different mistake categories relative to
their weights.

The mistake count had more influence on the sentence quality than the classification sys-
tem, resulting in most sentences with a mistake score being classified with the worst
class. This is due to the fact that the mistake count has a high relevance when mistakes
occur. The amount of sentences containing mistakes relative to the overall sentence count
is comparably high at a rate of 51.61%. This means that 48.39% of the sentences do not
contain mistakes that can be identified with the given metric. However, due to the removal
of many mistake categories that do not influence the text quality in a meaningful manner,
the remaining categories are represented in 10% of the given used sentences. In order
to evaluate the quality of a document, its sentences are binary classified and the docu-
ment quality is calculated using a weighted average over all sentences, with lower quality
classes receiving higher weights. A weighting of the classes relative to their quality level
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proved to be appropriate, resulting in sentences belonging to class 2 being weighted two
times higher, than sentences from class 1. The same applies for class 3 (weighted three
times higher) and class 4 (weighted four times higher). Figure 5.6 gives an overview over
the document distribution among the quality classes, using the proposed framework.
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Figure 5.6: Illustrated sentence evaluation by ranking them into their respective classes.

Concerning figure 5.6, it is clearly observable that Category 1 and 3 are the most frequent
classes, which is due to them containing the entries in which the machine learning algo-
rithms agree in their classification and the mistake count is 0. It is important to note that
category 4 has the least entries by a substantial margin, however sample-based tests show
that sentences classified as category 4 seem to be clearly of the worst quality compared to
the other classes. Furthermore, although it is not relevant for the evaluation of document
qualities, mistake counts have been further weighted with weights above 2.5, to allow
further examinations of the classified sentences through analysis of their overall mistake
score.
Figure 5.7 shows the evaluation of the different documents using the proposed framework.
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Figure 5.7: Illustrated document evaluation by ranking them using the averages of the
respective sentences.

It is clearly visible that the professionally translated documents are rated higher than the
respective automated documents. The reason for the professional documents being rated
with an average score of 2.00 is mostly due to sentence extraction problems in the pre-
processing step, resulting in additional mistakes that have not been caused by erroneous
translations. The clear difference to the average score of 3.05 for automated transla-
tions shows the quality difference between professionally and automatically translated
sentences. It is important to note that this is a proposed framework that has been validated
by sample-based tests and seems to produce reasonable results. It still remains to be veri-
fied by professionally qualified institutions.

5.2 Method reflection

The used KDD process proved to be suitable for finding a solution to the two research
questions. The standardized procedure allowed for the flexibility of studying different ex-
periment setups without neglecting the initial goal. Beginning with the data extraction and
preprocessing, the presented method proved to be able to generate a functioning, sentence-
based data set in a sufficient quantity and quality for further use on different algorithms.
The choice of several evaluation metrics allowed combining individual strengths of the at-
tributes and therefore built the groundwork for the computation of valid results. To meet
the requirements of some scoring metrics concerning reference translations, the use of
machine translations as pseudo references proved to be reasonable. Additionally, the use
of pseudo references provided the opportunity to answer both research questions properly
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and eliminated the need for professionally translated references. Furthermore, the used
attributes were distributed well between the purpose of both research tasks resulting in 18

attributes usable for having no knowledge of the original document and an additional 14
attributes for having knowledge of the original document. The preprocessing of the used
data set and the respective attributes consisted of outlier removal, the detection of highly
correlating attributes and the normalization of the calculated attribute values, resulting in
a well set up database for classification purposes.

To address possible translation system specific characteristics, three different machine
translation systems were used. The results show that machine translated references can
be sufficient for the evaluation of technical document translations. However, it is of inter-
est to compare the differences between the use of professional and automated references
and therefore advised to repeat the experiments with the use of professional references,
as this was not possible due to the restricted resources for this work.

Using different machine learning algorithms to evaluate the quality of sentences and even
documents, proves to be effective and the results show the adequacy for the task at hand.
The most known algorithms were tested with sufficient optimizations to generate signif-
icant gain over a random classifier benchmark. While the results allowed an adequate
judgement on the evaluation of technical documents and their translations, more detailed
studies and optimizations remain to be done, as the experiments were limited by the avail-
able computation resources. Especially concerning the elaboration on algorithms such as
the k-Nearest Neighbor classifier and the Artificial Neural Network, the relatively small
number of optimizations suggest that the presented results do not represent the achievable
optimum. Nevertheless, they present valid results for the given task of classifying sen-
tences and documents.

Focusing on the initial document quality evaluation on a sentence level ensured the signif-
icance of the approach, since the used data set consisted of over 20.000 different sentences
in contrast to the original 14 documents. Besides the increased significance, the focus on
smaller text parts extends the usability for the quality evaluation, since the classification
system can be used on single phrases as well as on large documents by recombining the
calculated scores. However, the taken approach has a clear shortcoming. By not clas-
sifying on a document level, but instead recombining respective sentences to create a
document classification leads to a focus on a very specific training set, since the initial
experiment setup uses a small amount of 14 documents. Furthermore, by manufacturing
random documents out of the existing sentences, the validation of the systems’ perfor-
mances on a document level was underpinned. However, the created files are not entirely
comparable to original documents. The randomized combination of sentences to doc-
uments builds largely unified documents and in combination with the classification on
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sentence level, limits the standard deviation of the classification task, consequently re-
sulting in fewer misclassifications. This assumption is supported by the evaluation of the
14 original documents, which show stronger fluctuating classification percentages, than
the generalized document evaluation. Nevertheless, the general validity of the document
classification is supported by the classification results for the original data and still gener-
ally reliable.

Combining the binary classification with a reference independent spell and grammar
check allowed final quality statements on a sentence and document level. Although first
evaluations of the proposed framework for quality estimation seems promising, a more
detailed ranking of documents is a challenge that has not been addressed in the presented
work, because the building and verification of a more in-depth document evaluation would
have gone beyond the scope of this thesis. Concerning the advantages of focusing on tech-
nical documents, it is assumed that the focus on a field that uses a specific and smaller
vocabulary results in additional gain compared to a more general approach on a not speci-
fied domain. In order to verify this assumption, future research on this topic should apply
the presented approach on different data sets and evaluate the differences in terms of clas-
sification results. Finally, it is noteworthy that the presented approach is based on the
implicit quality advantages of professional translations and therefore, the better comput-
erized translation systems become, the harder the distinction between professional and
automated translations will be. This is due to the fact that more similar translations are
expected to reduce the effect of machine learning algorithms on this type of classification
problem and therefore complicate future research on this topic.

In conclusion, the proposed method led to a successful attempt on classifying technical
document translations and evaluating translation quality with and without knowledge of
the original document, without requiring additional high quality references as used in
common translation evaluations.

5.3 Reliability

This final section aims to examine the validity and reliability of the shown results in sec-
tion 4.2.
The achieved results show substantial improvement over a given benchmark on a sentence
level for both research questions. Recombining the labeled sentences to classify on a doc-
ument level is a valid strategy, since the same information is used that would have been
taken into account by an algorithm classifying directly on a document corpus. None of
the presented machine learning algorithms has been trained on data entries, which have
been used for testing purposes in the same process iteration, which underpins the validity
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of the presented classification accuracies. As mentioned in section 5.2, the break down
of the document database onto sentence level created a large enough database to generate
reliable results, with sufficiently large testing and training data sets. Furthermore, the pre-
cise preprocessing removed redundant data, detected erroneous data and further improved
the applied data set. Using the general structure of the knowledge discovery process al-
lowed an iterative setup using multiple iterations concerning the database creation, the
attribute and metric selection as well as the algorithm optimization, leading continuously
improving the classification results.

In contrast to that, a few shortcomings concerning the presented results have to be men-
tioned. First, the results were supposed to focus on a technical documentation domain
and therefore no statement can be made concerning the classification of documents not
belonging to the domain. Second, as noted in section 1.5, only syntactical translation
aspects are taken into account, which means that the classification of a text as a high
quality document says nothing about the actual meaning of the translation compared to
the original document. Third, to further evaluate the classification accuracies, an in-depth
comparison to related experiments using machine learning algorithms on different do-
mains should be done to set the achieved results into the scientific context of machine
translation evaluation on a more general methodology.

Concerning the proposed evaluation approach, the presented framework has been vali-
dated using sample-based verifications. However, the system still has to be verified by
professionally qualified institutions to further validate and possibly adapt the proposed
evaluation classes. In conclusion, the presented approaches answer both research ques-
tions with success, being able to classify and evaluate technical documents and their trans-
lations.
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Chapter 6

Conclusion

6.1 Conclusions

This work answered the following research questions:

• How can the translation quality of technical documents be evaluated, given the
original document is available?

• How can the translation quality of technical documents be evaluated, given the
original document is not available?

This was done by using a knowledge discovery process consisting of the phases, gathering
data, preprocessing data, choosing an appropriate data mining approach to find patterns
among the data and interpreting them. Finally, the results were used for further research.
The document database was broken down into a sentence level, producing nine data sets
each containing 22, 327 data entries for each of two translation types (automated trans-

lation and professional translation). 32 metrics and attributes were chosen and imple-
mented, of which 18 needed a reference translation for the calculation process and 14 did
not. To create a reference translation, one or two computerized translation systems were
used respectively to translate the original document and generate a reference for the given
candidate texts. The described data set was preprocessed, removing 5% outliers, and at-
tributes correlating to one another with more than 90% as well as normalizing the data
to generate comparable attribute values. The preprocessed data was used in multiple iter-
ations for five machine learning algorithms, Decision Trees, Artificial Neural Networks,
k-Nearest Neighbor, Naive Bayes and Support Vector Machines. The algorithms were op-
timized on their parameters and tested on a holdout set that was split up from the database
before training the models. The maximum results were achieved by the k-Nearest Neigh-
bor classifier, scoring 72.24% while having access to the original document and 62.93%

without access to it. To make a statement on document level classifications, the optimized
algorithms were used on the sentences of each original document and the results were re-
combined to classify the respective documentation. Having access to the original text, re-
sulted in no classification errors for the 14 documents, while having no access to it showed
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a misclassification rate of 14.29%. To further validate the document-based results, a set of
19, 190 manufactured documents was created by randomly combining sentences to fictive
documents of sizes varying from five to 3000 sentences. The observed misclassifications
ranged from 34.40% for the smallest documents to no misclassifications for documents
containing 250 or more sentences for algorithms trained without knowledge of the orig-
inal document and from 26.90% for the smallest documents to no misclassifications for
documents containing 100 or more sentences for algorithms trained with knowledge of
the original document.

Furthermore, an evaluation framework was constructed to rank sentences and documents
based on their quality regardless of their translation type. The proposed model consists
of four classes using two optimized machine learning models for classifying the sen-
tences and an additional reference independent grammar and spell check tool to generate
a weighted mistake count for each sentence. In order to evaluate document quality, the
quality classes of the respective sentences are averaged with additional weight for higher
mistake counts.
Additionally, a translation database has been developed, containing 22000 professionally
translated sentences. Their translation to German and further context information can be
used for future research in the area of machine translation evaluation.

6.2 Further research

This work presents a classification system for technical documents using machine learn-
ing methods and an evaluation approach for document quality rankings. Extending the
work on this topic, an attempt to further improve classification quality on a document
level could be made by aggregating sentences to document level based on calculated con-
fidences of the resulting classification models. This approach would result in a more fine-
grained document classification, since the algorithm’s certainty for the sentence-based
classifications is taken into account. Example given, a sentence with the predicted label
professional translation could have its prediction value converted to a confidence score of
0.873, while the value of a sentence with the predicted label automated translation could
be converted to 0.421. These confidences would represent the calculated probability of
the algorithm that the given candidate translation was a professionally translated sentence.

As mentioned in chapter 5 some used machine learning approaches could not be op-
timized as extensively as it would be desirable due to computation resource limitations.
Therefore, especially concerning k-Nearest Neighbor classifiers and Artificial Neural Net-
works, a more in-depth optimization process would be desirable to come closer to a global
optimum in terms of classification results. An additional point of interest is the prepro-
cessing step for generating a sentence-based data set. As described in section 3.2, the data
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set is extracted out of PDF documents, which are focused on visualization. This compli-
cates the extraction process and leads to erroneous data entries in the resulting data set.
An improvement in the extraction process could further improve classification and evalu-
ation results. Another option would be the use of documents in XML format, allowing for
a standardized extraction process without mistakes. To further improve the evaluation of
document quality, the mistake count metric can be upgraded. In areas of highly technical
vocabulary, attempts such as the use of neutral nouns as a replacement for technical terms
or proper nouns has been introduced. Additionally, a more fine-grained examination of
different mistake categories can be done to further elaborate on their different influences
on text quality and correctness.
Concerning the suggested evaluation framework, an in-depth analysis of the proposed
classes is necessary to verify and optimize them, since the recommended method has
only been validated using sample-based testing. In order to put the proposed approach
into context with different approaches on machine learning methods for evaluation of ma-
chine translation, a second database could be created using domain independent data to
compare the results on a non-specific data set with the results of a domain focused one.
This would allow drawing conclusions concerning the implicit additional knowledge that
is gained by focusing on the domain of technical documentation. Extending further, com-
parisons could be made to different approaches for machine translation evaluations, such
as the development of new metrics for similarity calculations between candidate and ref-
erence translation. Such comparisons would put the use of machine learning approaches
for machine translation evaluation tasks into the context of different methodologies.
In conclusion, the presented work extends the related research on this topic by combining
multiple machine translation evaluation metrics with the use of machine learning methods
focusing on domain-specific documents.
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Appendix A

Optimization Ranges

Minimum Maximum
Decision Tree Parameter
Maximal Depth 1 50
Minimal Gain 0.01 0.3
Minimal Leaf Size 50 500
Number of Prepruning Alternatives 0 100
Minimal Size for Split 50 5000
Confidence 0.001 0.5
Neural Net Parameter
Learning Rate 0.1 0.9
Momentum 0.001 0.7
Epsilon 0.0001 0.1
Training Cycles 50
Local Random Seed false
k-Nearest Neighbor
k 1 100
Support Vector Machine
Maximal Iterations 10 1000
Convergenz Epsilon 0 1
C −1 1
Kernel Cache 0 100
Kernel A −0.9 0.9
Kernel B −0.9 0.9
Kernel Degree 0.001 0.9
Kernel Shift 0.01 0.9
Sigma (1-3) 0.01 0.9
Kernel Gamma 0.01 0.9

Table 1.1: Overview over the evaluated parameter optimization ranges
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Appendix B

Additional Results

Decision Tree
Candidate Reference 1 Reference 2 Accuracy F1-Automated F1-Professional

Google Bing — 67.82% 0.691 0.664

Google Freetranslation — 66.37% 0.678 0.648

Google Bing Freetranslation 69.44% 0.725 0.655

Bing Google — 68.44% 0.684 0.685

Bing Freetranslation — 66.88% 0.677 0.660

Bing Google Freetranslation 69.69% 0.690 0.704

Freetranslation Bing — 67.33% 0.684 0.662

Freetranslation Google — 67.15% 0.689 0.652

Freetranslation Bing Google 67.99% 0.704 0.652

Table 2.1: Overview over the best Decision Tree results for the respective candidate-
reference combinations, without round-trip attributes.
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Appendix C

Detailed Working Steps

The following part describes the detailed procedure on a technical level that has been
taken to solve the given task.

Data gathering:

The first step after setting the goals for the task at hand, was to find technical documents
existing both in English and German versions. Both versions needed to be professionally
created and exactly translated in order to be suitable for the given task. The first approach
to extract usable sentences from existing PDF files used a very raw punctuation based ap-
proach. Sentences were split at common punctuations, such as . : ! ?. Due to the technical
nature of the used documents, this proved to be very ineffective. Therefore, the second
approach aimed to improve this initial, simple Regex-based approach by taking different
scenarios into account, for example the need for an ending punctuation to be followed by
a blank. The second approach resulted in an improved dataset, which was used for the
first evaluations. However, because of existing text extraction problems due to the given
PDF format there were still lots of erroneous sentences in the dataset. After conducting
the first evaluations and determining how the input data quality influences the results, a
third iteration used a part of speech tagging approach to identify and split sentences more
precisely. It showed that part of speech tagging allowed a more precise sentence detec-
tion. However, difficulties resulting from the initial text extraction from the visualization
based PDF format to a plain text format remained. Therefore, we conducted several more
improvement steps, such as identifying paragraphs first and extracting sentences from
paragraphs. This allowed a removal of the most footnote entries and picture titles as well
as several headlines. To produce a high quality data set, the resulting sentences were
reevaluated using a second set of Regex rules similar to the ones used for the first two
approaches. Data entries, which did not match the Regex-criteria were excluded from
the experiments as they were mostly erroneous due to text extraction difficulties. After
extracting correct sentences, it was necessary to match the gained English sentence to its
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German translation. As the sentence extractions above did not result in the same amount
of sentences for both languages, an exact matching was not possible. Therefore, we de-
veloped an algorithm in which the German sentences were automatically translated into
English and afterwards the sentences were aligned by using the BLEU algorithm with a
low similarity score limit. The following figure illustrates the sentence matching process:
First, each file has an offset counter indicating the sentence number that is currently
checked. Given sentence 1 in the candidate file does not match sentence 1 in the refer-
ence file, the algorithm raises the offset counter for the reference file by one and compares
the first candidate sentence with the second reference sentence. The reference counter is
raised up to a threshold for each candidate row. If no match was found, the candidate
sentence is assumed to be unmatchable and removed from the data set. The reference
counter is reset and the process starts with candidate row 2 again. If a match is found,
the candidate and reference counters are raised by one, and the process starts with the
next sentence pair. The limit of compared reference sentences is necessary to ensure that
only the real matches are found and not similar sentences from a different position of the
document are matched. This approach lead to the first initial dataset, consisting of around
22,000 sentences in a professional German version with a matching, professional English
translation. Afterwards more automated translations were generated and added, which
resulted in the dataset presented in section 3.2.

Implementation:

The approaches described above are implemented using oracles java 1.8. The initial two
sentence splitting methods are self-programmed. Given the complexity of state of the art
parts of speech tagging, we decided to avoid programming a custom parts of speech tag-
ger and utilize the java based Stanford core NLP packages to implement the final sentence
splitting method.1 In order to ensure the sentence splitting produced valid sentences, we
implemented several requirements as rules, the sentences had to meet. After splitting the
documents into sentences, we implemented the sentence matching algorithm described
above. The unigram BLEU similarity is calculated using the Stanford core NLP suite.

Attribute calculation:

The calculation of the attributes presented in this thesis consisted of multiple iterations.
The initial calculations included mainly the uni-, 2- and 3-gram BLEU scores and the ref-
erence length. Afterwards more complex metrics, such as Meteor or TER were added. As
the calculation of scores like Meteor produces several steps, we added the intermediate
results to the dataset to evaluate the impact of interim steps compared to the complete
score. Covering the most common metrics for machine translation evaluation, resulted in

1http://nlp.stanford.edu/software/ , 22.02.2016
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the first significant evaluation results. To address both research questions, non-reference
metrics like the Flesch Reading Ease were implemented. This first attempt to answer re-
search question 2, the quality evaluation of a technical documentation without knowledge
of the original, proved to be ineffective. Therefore, we implemented a round-trip based
approach and added the attributes mentioned in section 3.3, leading to the final dataset
used to run evaluations.

Implementation:

The calculation of the used attributes are implemented into the Java project handed in
with this thesis. The metrics are all implemented in Java. To reduce the complexity in
validating the correct implementation of all metrics, the Translation Edit Rate and Me-
teor were implemented using the Java implementations provided by the University of
Maryland (http://www.cs.umd.edu/ snover/tercom/, 22.02.2016) and the Carnegie Mellon
University (http://www.cs.cmu.edu/ alavie/METEOR/, 22.02.2016).

Evaluation

As already mentioned, the experiments presented in this thesis are of highly iterative na-
ture. Therefore, we conducted several evaluations with different subsets of the finally
implemented attributes. In the early stages of our work, we ran the first evaluations using
only reference based metrics such as the calculated BLEU scores. The following itera-
tions considered also the Translation Edit Rate and Meteor scores, as well as Reference
Length. Further different setups with the first reference-free metrics were tested. The
final evaluation step started after the final round-trip attributes were added. With this final
status, we started to conduct extensive evaluations, considering all different data mining
algorithms and multiple optimization scenarios, leading to the results presented in section
4.2.

Implementation:

Due to the iterative nature and the complexity that would come along with the implemen-
tation and optimization of several data mining algorithms, the evaluations in this thesis
are conducted by using Rapidminer Studio 62 as it allows effectively optimizing data min-
ing parameter setups and efficient evaluations. The processes used to calculate the results
presented in this work are handed in with this thesis.

2http://www.rapidminer.com, 22.02.2016
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