

Master Thesis Project

New input methods for blind

users on wide touch devices

Author: Andrii Krot

Supervisor: Dr. Ola Petersson

Reader: Dr. Narges Khakpour

Examiner: Prof. Welf Löwe

Semester: VT 2016

Course Code: 5DV01E

Subject: Computer Science

II

Abstract

Blind people cannot enter text on touch devices using common input methods.

They use special input methods that have lower performance (i.e. lower entry

rate and higher error rate). Most blind people have muscle memory from using

classic physical keyboards, but the potential of using this memory is not

utilized by existing input methods. The goal of the project is to take advantage

of this muscle memory to improve the typing performance of blind people on

wide touch panels. To this end, four input methods are designed, and a

prototype for each one is developed. These input methods are compared with

each other and with a standard input method. The results of the comparison

show that using input methods designed in this report improves typing

performance. The most promising and the least promising approaches are

specified.

Keywords: input method, touchscreen, muscle memory, touch-typing,

blind, text entry.

III

Publications

1. A. Krot and V. Kauk, "Засіб вводу тексту," UA Patent 90059, 2014.

IV

 Contents

1 Introduction ___ 1
1.1 Background ___ 1
1.2 Problem formulation ____________________________________ 2

1.3 Motivation __ 2
1.4 Purpose and research question _____________________________ 3
1.5 Limitation ___ 3
1.6 Target group ___ 4
1.7 Report Organization _____________________________________ 4

2 Background ___ 5
2.1 Braille-based input methods _______________________________ 5
2.2 Stroke-based input methods _______________________________ 7

2.3 Telephone-keypad-based input methods _____________________ 7
2.4 QWERTY-based input methods ____________________________ 8

3 Input Methods Design ______________________________________ 10

3.1 An overview of design __________________________________ 10
3.2 Input method Simple-Touch ______________________________ 14
3.3 Input method variants ___________________________________ 16

3.4 Input methods summary _________________________________ 20

4 Implementation ___ 23
4.1 Requirements ___ 23
4.2 Architecture __ 23

4.3 Algorithms ___ 26
4.4 Implementation __ 27

5 Evaluation ___ 29
5.1 Method __ 29
5.2 Results/Analysis _______________________________________ 31
5.3 Discussion ___ 39

6 Conclusions __ 42

References ___ 43

A Appendix “Results sheet” ___________________________________ 46

1

1 Introduction
This chapter describes problems of using input methods by blind people, lists

existing solutions and points to the shortcomings of existing approaches.

Blind people cannot enter text on touch devices using common input

methods. They use special input methods that have lower performance (lower

entry rate and higher error rate) [1]. However, they can use a classic QWERTY

physical keyboard [2], because it gives a tactile feedback, which is utilized by

muscle memory.

Bringing advantage of muscle memory from using classic physical

QWERTY keyboards by blind users to wide touch panels (especially tablets)

is the main goal of the project. The typing performance could be improved by

using a dynamic keyboard layout, which adapts to a user by changing the

position and the size of buttons according to user’s touches, instead of static

one.

1.1 Background

This section describes the background needed to understand input methods and

an evaluation of them.

WPM (words per minute) is a measure of words typed in a minute. The

word equals 5 characters [3], including spaces and punctuation, so, for

example, “I’m writing a report” counts as 4 words. Error rate is a ratio of

incorrect characters to total characters. Error rate could be represented as an

uncorrected error rate (measures errors remaining in the transcribed string) or

a corrected error rate (measures errors during entry) [3]. The project is

concentrated on the uncorrected error rate because the corrected error rate is

already measured as part of WPM (it takes time to correct an error). Muscle

memory is a physiological adaptation of fingers (and some other parts of a

body) to the repetition of specific movements [4].

It is important to split an input method to an abstract description, which

is platform- and details-independent, and a software implementation. The first

one is called input method. It describes how a text is entered using an informal

description, algorithms, flowcharts or diagrams. The second one is called input

method editor (IME) [5]. It is software which implements the input method.

Touch-typing is typing without using a sight contact with keys. The

muscle memory is used to know their locations instead. The workflow of the

most common style of touch-typing:

1. A user places eight fingers (no thumbs) on the home row keys. It is

usually keys “A”, “S”, “D”, “F” for fingers of the left hand and “J”,

“K”, “L”, “;” for fingers of the right hand for a classic QWERTY

keyboard. Some users place thumbs on the “Space” key. Notches on

“F” and “J” keys help users to place fingers on the home row keys

without the visual contact.

2

2. The user makes movement by a finger to a key and press it. One key is

related to exactly one finger, but one finger is related to a few keys.

Mapping of keys to fingers is represented in Figure 1.1.1

3. The user returns all fingers to the basic position on the home row keys

– step 1.

Figure 1.1.1: Typing zones for touch-typing on a classic QWERTY

keyboard [6]. Keys, which are pressed by the same finger, have the same color.

1.2 Problem formulation

Default accessible keyboards for iOS (VoiceOver) and Android (TalkBack)

are QWERTY-based input methods, so they use the user’s knowledge of the

QWERTY layout (order of buttons), but not the muscle memory from using

QWERTY keyboards. The most probable reason is that using such skills

requires wide touch panels, but tablets got popularity just a few years ago.

Scientific papers do not have enough information about taking advantage

of this muscle memory to improve the typing performance of blind people on

wide touch panels. Therefore, there are no prototypes for such input methods,

no evaluation of them and no comparison to existing input methods for blind

people.

1.3 Motivation

Since the number of old visually impaired people is much bigger than the

number of young ones [7], most blind people was sighted before blindness.

3

Therefore, most blind people were working with standard QWERTY

keyboards, and they have the skill of using such keyboards so that they can use

a part of this skill even without the visual contact with the keyboard. It is

especially actual for the touch-typing skill because touch-typing implies typing

without the visual contact.

The average typing speed with the standard physical keyboard is 40

WPM [8], while a standard Apple touch input method for blind users gives just

0.66 WPM [1]. Therefore, usage even part of the skill of using physical

keyboards could improve the typing speed palpably and make such input

method demanded among bind users’ society. Blind users’ society is not the

only one group that could be interested in the stated research problem; other

groups are pointed in Section 1.6.

1.4 Purpose and research question

The purpose of the project is to develop an input method for blind users to type

on touch devices utilizing the muscle memory from using physical QWERTY

keyboards. The input method should be described as a normative knowledge;

it should answer the question: “How to improve typing performance of blind

people on wide touch panels utilizing the muscle memory from using physical

QWERTY keyboards?”

Since the muscle memory can be utilized in many different ways, the

solution is to design several input methods, develop a prototype for each one

and compare them with each other and with the standard input method. The

analysis of processed results of comparison answers the stated research

question.

1.5 Limitation

The project is limited in order to be focused on the stated research problem and

to avoid scattering over additional features. The purpose of the project is to

develop the input method and the prototype with basic functionality: it should

be possible to type lowercase characters of the Latin alphabet (a..z) and space,

but not specific symbols, punctuation marks, numbers, uppercase symbols or

symbols of other alphabets. It refers to evaluation as well: sentences for

experiments should contain just lowercase symbols of the Latin alphabet and

spaces. The reason for this limitation: since the width of the touch panel of the

average tablet is less than the width of the classic QWERTY keyboard, the

input method can contain the full-sized QWERTY layout, but not numerical

keys, modifiers (like “Shift”) and other keys. Nevertheless, the input method

could implement special functionality for entering these buttons (for example,

gestures), but this feature is not directly related to the muscle memory from

using physical QWERTY keyboards, so it could distract evaluation results

from the main idea (evaluation of additional functionality would be mixed with

evaluation of basic functionality). Therefore, the project is concentrated on the

4

basic functionality. However, the possibility of implementing modifiers

(buttons like “Shift”) should be considered, because it significantly expands

abilities of an input method (even one modifier can double the number of

supported characters).

Using the input method by deaf users is out of scope. Input methods that

do not use an audio feedback and support blind users are possible (for example,

using vibration), but it significantly decreases the performance. Since other

input methods for blind users use audio feedback [1], [9], [10], [11], [12],

comparing input method for deaf users with them would be unfair.

1.6 Target group

Researchers of input methods for both blind and sighted users could use this

project to improve their own input methods or to create new input method

based on the one from this project. Researchers of input methods for sighted

users could be interested in using this project to apply the skill of touch-typing

to touch devices.

Individual software developers and software development companies

could develop software that implements input method of the project.

Tablets manufacturers (like Samsung) and OS developers (like Google

and Apple) could integrate input method of the project with a default keyboard

applications to improve the performance of using it by people with the skill of

touch-typing.

1.7 Report Organization

The report is organized as follows. Chapter 2 gives an overview of the existing

input methods. Input Methods are developed and described in Chapter 3.

Software prototypes for developed Input Methods are developed in terms of

Chapter 4. The evaluation of developed prototypes is performed by comparing

them with each other and with a standard IME in Chapter 5. The conclusion is

made in Chapter 6 based on evaluation outcomes.

5

2 Background
This chapter discusses previous input methods for blind users to type on touch

devices and previous evaluations of them. The most popular input methods that

are mentioned in scientific papers are listed in this chapter.

2.1 Braille-based input methods

Braille-based input methods require a user to know the braille writing system.

Input methods of this type have six buttons; each button is related to one dot

of the braille writing system. Figure 2.1.1 contains a sample of a character in

the braille writing system. Some input methods have additional buttons that are

mapped to actions like moving a cursor or characters removal.

Figure 2.1.1: Representation of the character ‘r’ in the braille writing system

[9].

The methods are divided into two subtypes: chorded and non-chorded.

Chorded ones require a user to press buttons simultaneously to produce a

character; non-chorded ones allow the user to press buttons of the character

with some time interval.

Typing speed of chorded input methods is low during first sessions, but

it grows up after training. Perkinput is a chorded braille-based input method; it

requires a user to make two touches to type a character. The first touch inputs

left three dots of the character’s representation in the braille writing system;

the second touch inputs right dots. An example of typing a character with

Perkinput is represented in Figure 2.1.2. Perkinput’s entry rate is 4 WPM for

the first session (it is a low rate, it almost equals the VoiceOver rate), but entry

rate becomes nearly 10 WPM after 13 sessions, which is twice faster than

VoiceOver [9].

6

Figure 2.1.2: Process of typing character ‘r’ with Perkinput [9]. The user

performs the touch “(a)” first and then the touch “(b)”.

Non-chorded input methods have opposite learning curve because the

user does not have to learn it. Therefore, non-chorded input methods give high

typing speed even during the first session. BrailleType is an example of the

non-chorded input method. The touch panel is divided into six areas according

to the template of the braille writing system (2 columns, 3 rows) for this input

method. The user touches required areas with a single finger, so the amount of

touches needed to type a character equals to the amount of dots in the

representation of the character in the braille writing system. Figure 2.1.3

represents the process of typing a character with BrailleType. BrailleType’s

entry rate is 2.11 WPM, which is faster than VoiceOver entry rate (1.45 WPM)

in the same experiment [10]. However, the entry rate does not grow up that

much after training.

Figure 2.1.3: The user of BrailleType has just typed character ‘r’ [10].

7

2.2 Stroke-based input methods

A user has to draw some figure using a touch panel to type a character by a

stroke-based input method. Stroke-based input methods are divided into two

subtypes.

Input methods like Unistrokes use strokes that differ from regular

handwritten letters (Figure 2.2.1), but trained users can draw these strokes

faster than normal handwritten letters (it leads to higher WPM). Moreover, it

is easier for software to recognized the strokes (it leads to lower error rate and

correction rate). The user draws a straight line to input frequent characters (e.g.,

E, A, T, I, R).

Input methods like Graffiti use strokes that are similar to regular

handwritten letters (Figure 2.2.1), so such input methods are usable even

during the first session. Nevertheless, some strokes are problematic for

recognition by software. For example, “character ‘O’, ‘T’, ‘E’ and ‘N’ faces

recognition problem” [1].

Figure 2.2.1: Graffiti alphabet (top) and Unistrokes alphabet (bottom) [13].

Therefore, input methods like Graffiti give better results (higher WPM

and lower error rate) for first sessions, but input methods like Unistrokes give

better results after training [13].

2.3 Telephone-keypad-based input methods

Telephone-keypad-based input methods were popular before the emergence of

touch devices because it was the only option for phones like Nokia 5110

(Figure 2.3.1). In comparison with touch panels, these keyboards give the

ability to feel a button’s shape (it is of particular importance for blind users),

but limit input to some number (usually, 12) of buttons. Telephone-keypad-

8

based input methods work on touch devices as well, but it leads to the problem

with buttons locating because buttons of touch panels do not have a three-

dimensional shape.

Figure 2.3.1: A keypad of Nokia 5110 [14].

Telephone-keypad-based input methods are divided into two subtypes.

Input methods like MultiTap require a user to tap one button for a few times to

type one character (for example, the user has to press button “5” twice to

produce ‘K’). It leads to low entry rate but allows typing any desired sequence

of characters.

Some input methods, for example, SVIFT, uses systems like T9, so to

type a word with N characters a user has to press N buttons and a delimiter

button and select the desired word from the list of predicted words [15]. For

example, to enter the word “bet” a user presses buttons 2, 3, 8 and selects the

desired word (“bet”) from the list of “bet” and “aft” (“aft” can also be made

out of letters of 2, 3 and 8) words. This approach allows typing common words

easily because they will likely be first in the list. However, this approach leads

to problems with typing rare words: a user presses buttons in T9-style, try to

find the desired word in the list of suggested words, cancel it and type it again

using an input method like MultiTap.

2.4 QWERTY-based input methods

QWERTY-based input methods use the standard QWERTY keyboard layout.

Since the number of old visually impaired people is much bigger than the

number of young visually impaired people [7], most blind people was sighted

before blindness. Therefore, most blind people were working with the standard

QWERTY keyboards, and they have the skill of using such keyboards, so

QWERTY-based input methods work especially well (in terms of higher WPM

and lower error rate) for this group of people.

9

An example of a common scenario of using an existing accessible

QWERTY-based input method: if a user slides a finger around a touch panel,

the system pronounces each hovered key; the user makes some special action

when the desired character is pronounced.

VoiceOver is the default iOS accessible keyboard. An example of the

scenario of using VoiceOver (iOS 8): if a user touches a button, the system

pronounces the character of the button; to type the character the user has to

double-tap related button [13]. Therefore, if the user hovered a wrong button,

he (or she) just has to slide the finger to another button or lift the finger up.

TalkBack is the default Android accessible keyboard. It is similar to

VoiceOver, but to type a character a user just has to lift up the finger.

Therefore, if the user does not want to type the character, he (or she) has to

move the finger outside the keyboard.

SpatialTouch is similar to described QWERTY-based input methods (it

is especially similar to TalkBack: a character is inserted by lifting the finger on

the button), but it uses the left audio channel to pronounce characters of the left

half of the keyboard and the right audio channel to pronounce characters of the

right half of the keyboard. Different voice genders are used to enhance speech

intelligibility. It allows the user typing by two fingers simultaneously.

However, the evaluation has shown that this input method does not improve

performance palpably [12].

10

3 Input Methods Design
This project is not just about the research of existing input methods, but also

about developing new input method and researching of it. This chapter

describes the process of the input method design. This chapter states an

overview of input methods design, formalizes four different input methods and

makes a summary of them.

3.1 An overview of design

Input methods described in Chapter 2 do not use the muscle memory from

using physical classic QWERTY keyboards. Since blind people use such

keyboards to type on PC [2], this potential is not utilized for typing on touch

devices.

Users use the home row keys for orientation during touch-typing. Each

finger lies on the personal key of the home row (space button is exception – it

is covered by both thumbs) and responsible for striking a certain set of buttons

[16]. The process of touch-typing could be simplistically described by the

Figure 3.1.1.

Figure 3.1.1: UML Activity Diagram of touch-typing.

11

Considering Figure 3.1.1, the user performs following actions during

touch-typing:

 Decision “Is typing required” is made in user’s mind, so it does not

depend on a keyboard.

 Action “Place fingers on home row keys” depends on the keyboard,

because the user uses the shape of buttons for orientation.

 Action “Use muscle memory to select finger and movement” is made

in user’s mind, so it does not depend on the keyboard.

 Action “Make selected movement by selected finger” depends on the

keyboard in a unobvious way, so it is researched below.

Simple, informal experiment is performed to understand how much

action “Make selected movement by selected finger” depends on the keyboard.

A classic QWERTY layout was printed on A4 paper, the distance between

centers of keys was standard (19.05 mm [17]). A camera was directed to the

paper and was recording 60 fps video. Three subjects (all of them have the skill

of touch-typing) were asked to put fingers on the home row keys, close eyes

and type a simple sentence. Recorded video was manually processed so that

ratio of correct touches to total touches is measured. The process of the

experiment is shown in Figure 3.1.2. The experiment has demonstrated that

subjects were touching right keys in most cases, so the action “Make selected

movement by selected finger” depends on the keyboard, but not much, and it

is possible to use a flat surface instead of a keyboard. Process and results of the

experiment are not officially documented, because of two reasons:

 The experiment was performed as the first step of the project, because

if the experiment showed opposite results, the project would have much

less practical and scientific usage and it would be abandoned.

 The enhanced experiment will be performed when the prototype of the

input method will be ready. Software prototype allows calculating

parameters like WPM and error rate automatically, instead of manually

video processing. Automatic processing is more precise and less time-

consuming.

12

Figure 3.1.2: Process of the initial, informal experiment.

Therefore, a keyboard just has to help a user with the action “Place

fingers on home row keys”. Users can be divided into two types: the ones who

keep fingers laying on the home row keys between strokes and the ones who

hold fingers in the air above the home row keys. Different kinds of behavior

require different input methods because the muscle memory automatically

returns fingers to the accustomed position.

Since most touch panels do not support differentiation of the “resting”

touch from the “tapping” touch by default, the second style of touch-typing

(holding fingers in the air above buttons during rest) is selected for the first

input method, because this style does not have a “resting” touch and all touches

should be recognized as “tapping” ones. Therefore, the main task of the

developed input method is to assign fingers positions to buttons positions. In

other words, the system has two objects (a finger and a button), and the system

wants to be sure that the finger is located on top of the button. It could be done

in two ways: “move” the finger or move the button.

To “move” the finger the system can give feedback to the user so that the

user knows that the finger should be relocated. Common ways for a tablet to

provide feedback to a user are a visual way (displaying some information on a

screen) and a sound way (producing some sound). A tactile way (using

vibration) is not taken into account, because some tablets, especially cheap

13

ones, do not have the vibration feature. The visual way is not suitable for this

case because the target audience of the developed input method is blind users.

The sound way is already patented [18]. Therefore, the input method should

move the button, but not the finger.

To move the home row buttons relative to user’s fingers system has to

make three decisions:

 All buttons should be static relative to each other or the keyboard

should be divided into few independent blocks? A block contains

buttons, which are static relative to each other, but blocks can be moved

and scaled independently. Therefore, the question sounds more like

“What is the optimal number of independent keyboard blocks?”

 Which fingers should be used as points of orientation for keyboard

blocks?

 When keyboard blocks should be moved according to fingers position?

According to David Rempel [19], users prefer the Microsoft Natural Elite

keyboard among keyboards with different split and different split angle. The

layout of Microsoft Natural Elite (Figure 3.1.3) is divided into two blocks, each

block is related to one hand, buttons in a block are fixed relative to each other,

so the developed input method should contain two blocks. Since home row

keys of each block of the keyboard lie on a line, the developed input method

should use pointer and little fingers of each hand to specify the position of each

block (if middle and ring fingers will be utilized as well, the home row buttons

will be located higher).

Figure 3.1.3: Microsoft Natural Elite keyboard.

14

Keyboard blocks can be assigned to fingers position under different

circumstances, depending on user’s touch-typing style:

 If the user holds fingers in the air above the home row keys during

typing, then keyboard blocks should be assigned when all 10 fingers

touch the panel. If the number of touch points is less than 8 (number of

fingers on the home row), then all touches should be recognized as key

pressing and should lead to characters entry.

 If the user keeps fingers laying on the home row keys between strokes,

then keyboard blocks should be assigned when all 10 fingers touch the

panel or 8 fingers (without thumbs) touch the home row keys, but not

any other keys.

Therefore, different modifications of the input method could lead to

different results depending on the user’s touch-typing style, so the

development of one input method is not enough – at least two input method

should be developed.

3.2 Input method Simple-Touch

The first designed input method is Simple-Touch. In this input method, users

hold fingers in the air above the home row keys. A description of this input

method is given as follows:

 The keyboard contains two blocks.

 A block contains buttons, which are fixed relative to each other.

 Blocks can be moved and scaled independently to each other.

 The left block contains buttons that are related to the left hand (the ones

that the user should press by fingers of the left hand in the ideology of

classic touch-typing), the right block – buttons that are related to the

right hand.

 The input method pronounces character that is typed.

 Initialization of blocks requires 10 touch points. Two lowermost points

(points with largest Y value) are ignored since they are related to space

button. Remaining points are sorted by the distance to the left side of

the touch panel (the first point is the point with least X value). The first

point is used as the left point of orientation of the left block, fourth

point – the right point of orientation of the left block, fifth – the left

point of orientation of the right block, eighth – the right point of

orientation of the right block. Buttons of orientation are buttons that lay

under pointer and little fingers of each hand. Therefore, the button

under little finger of the left hand (‘A’ key) is used as the left button of

orientation of the left block, the button under pointer finger of the left

hand (‘F’ key) – the right button of orientation of the left block, the

button under pointer finger of the right hand (‘J’ key) – the left button

of orientation of the right block, the button under little finger of the

15

right hand (‘;’ key) – the right button of orientation of the right block.

Initialization is the process of adjustment of position, scale and tilt

angle of each block to make center of each button of orientation

matches related point of orientation.

 If the number of touch points is 10, the input method performs the

initialization of blocks.

 A touch is ignored if it occurs between a touch with 10 touch points

and a touch with 0 touch points. Therefore, the user can safely lift

fingers up after the initialization of blocks without invocation of

characters entry.

 In other cases, the input method types character if related button was

touched and released.

The above input method allows pressing two buttons simultaneously, so

modifier buttons (like “Shift”) could be implemented in a classic way, and it is

active while the user is holding it.

Since blind users cannot see the position of blocks, they do not know if

the blocks are overlapping each other or partially gone out of the touch panel.

Some of tablets do not have vibration function, so a possible solution to give

the feedback is a sound. The idea of using stereo sound as the feedback for a

blind user, where the left channel is related to the left part of the keyboard and

the right channel is related to the right part of the keyboard, is inspired by the

publication “TabLETS Get Physical: Non-Visual Text Entry on Tablet

Devices” [12]. Therefore, the left audio channel of the developed input method

should give information about the position of the left block, same to right one.

Simple beep sound is selected as the sound for feedback, because it is

informative enough, simple enough not to distract user’s mind and it makes the

user feel that something goes wrong, and it should be fixed. It is not sufficient

just to play the beep sound of the same volume when a block is located at a

wrong place, because it does not give information to the user about how to fix

the position. Therefore, the volume of the sound is directly proportional to the

size of overlapped or gone part of the block. Additional advantage: it is logical

for the user, because the volume is 0 (no sound) if the block is located at the

correct position. Therefore, the description is extended by following statements

to supply the user with information about position of blocks:

 If the left block is overlapped or gone out of the touch panel, the input

method produces the beep sound from the left audio channel. The

volume of the sound is directly proportional to the size of overlapped

or gone part of the block. Same to the right block and the right audio

channel.

 The input method pronounces entered characters.

16

3.3 Input method variants

Simple, informal evaluation of the input method Simple-Touch has shown that

subjects feel uncomfortable during typing, because, since eyes of subjects are

closed, they do not know about the position of fingers after initialization (when

the fingers are raised up). Therefore, the subjects are afraid to acidentelly move

the fingers during typing. This problem is not critical according to the

evaluations (see Section 5.2), because users can understand if fingers are still

located at a right position after typing a character using sound feedback, and

they can fix the position by reinitializing blocks. However, feedback from

subjects led the project to the idea of another input method, which considers

these comments.

3.3.1 Input method Vary-Touches

Input method Vary-Touches is an input method that allows users to keep

fingers laying on the home row keys between strokes. Therefore, the user keeps

all 10 fingers on the screen for initialization of blocks; the user presses the

button by the finger, keeping another 9 fingers touched, for character entry.

This way the user does not afraid that fingers do not match buttons, because

the input method always has access to the position of the fingers and it can

correct the position of the blocks according to the fingers.

Described scenario does not allow pressing two buttons simultaneously,

so modifier buttons (like “Shift”) should be implemented like switches: the

first press activates a modifier and the second one deactivates it. For example,

“Shift” works like a “Caps Lock” in this way.

The general scenario of touch-typing with this style:

 To type a character of the home row, a user increases pressure on

related button until a keyboard gives feedback. Then the user returns

the finger to the original position by decreasing pressure.

 To type a character of a non-home row, the user lifts a related finger,

moves it to related button, puts the finger down and increases pressure

on the button until the keyboard gives feedback. Then the user returns

the finger to the original position by lifting it up, moving it and placing

to the home row key.

The second statement can be implemented on a touch panel just as it is.

The first statement requires adaptation, because the ability of pressure

determination is not precise enough on most modern tablets, so the input

method cannot be sure if the user is pressing the button or just having a rest on

the button. One possible solution is using accelerometer or gyroscope, but this

approach is already patented by Dryft [20]. Therefore, the following solution

is selected: to type a character of the home row, a user lifts the finger up and

places it down again.

17

Therefore, the normative description of the input method Vary-Touches

is same as the normative description of the input method Simple-Touch, but

last three statements (the ones related to touch processing) are changed to

following ones:

 The input method has a state.

 When the input method comes to a new state, it checks if any of

outgoing transitions are possible. If so, it immediately goes to the next

state.

 “Typing the character” is a sub-state. When the input method comes to

this state, it types the character of the last untouched button and

immediately goes to the next state.

 The input method performs blocks initialization while the state is

“Initialization”.

 The transition “N touches” requires a touch with N touch points. If none

of outgoing transitions is possible, the input method waits for next

touch (when the set of touch points or their coordinates is changed) and

checks again.

 The transition “all touches are on home row” requires all eight home

row keys to be touched.

 Possible states: Non-initialized, Initialization, Releasing, Tapping,

Typing the character.

 UML state diagram of the input method is shown in Figure 3.3.1.

18

Figure 3.3.1: UML State Diagram of the input method Vary-Touches.

Simple evaluation has shown that subjects fell confused sometimes

because of the inconstancy of typing, because a user has to make one tap to

type a character of the home row, but two taps to type a character of a non-

home row. Therefore, two other input methods are designed to overcome this

problem: (1) the input method One-Touch that requires one touch to type a

character, and (2) the input method Two-Touches that requires two touches to

type a character.

3.3.2 Input method One-Touch

Input method One-Touch performs initialization whenever the number of touch

points is 10. If the number of touch points drops from 10 to 9 and then returns

19

to 10, the input method types character of the last touched button. Therefore,

the normative description of the input method One-Touch is same as the

normative description of the input method Vary-Touches, but the input method

is driven by UML State Diagram that is shown in Figure 3.3.2 and has four

possible states: “Non-initialized”, “Initialization”, “Releasing”, “Typing the

character”.

Figure 3.3.2: UML State Diagram of the input method One-Touch.

3.3.3 Input method Two-Touches

Input method Two-Touches stores a history of numbers of touch points. It waits

for the pattern “10-9-10-9” (numbers are numbers of touch points). The input

method types a character whenever the last step (last “9” of the pattern) occurs.

It is initializing blocks during the first step (first “10” of the pattern). In other

words, it is same as the input method Vary-Touches, but without direct

20

transition from the state “Releasing” to the state “Typing the character”. The

normative description of the input method Two-Touches is same as the

normative description of the input method Vary-Touches, but the input method

is driven by UML State Diagram that is shown in Figure 3.3.3 and has five

possible states: “Non-initialized”, “Initialization”, “Releasing”, “Tapping”,

“Typing the character”.

Figure 3.3.3: UML State Diagram of the input method Two-Touches.

3.4 Input methods summary

A brief summary of developed input methods is provided in Table 3.4.1.

21

Input

method

How to type a character Reason for the

name

Simple-

Touch

0. Place 10 fingers on a touch panel and

move them until a beep sound disappear.

1. Lift all fingers up.

2. Place the finger on the button.

3. Lift the finger up.

The process of

typing is similar to

the process of

typing on classic

keyboards.

Vary-

Touches

0. Place 10 fingers on a touch panel and

move them until a beep sound disappear.

1. Lift the finger up.

2. Place the finger on the button.

3. If the button is not a home row one, lift

the finger up and place to the home row.

The user makes 1

touch for typing a

character of the

home row, but 2

touches for a non-

home row

character.

One-

Touch

0. Place 10 fingers on a touch panel and

move them until a beep sound disappear.

1. Lift the finger up.

2. Place the finger on the button.

3. If the button is not a home row one, move

the finger to the home row.

The user makes 1

touch for typing a

character.

Two-

Touches

0. Place 10 fingers on a touch panel and

move them until beep sound disappear.

1. Lift the finger up.

2. Place the finger on the button.

3. Lift the finger up and place to the home

row.

The user makes 2

touches for typing a

character.

Table 3.4.1: Brief summary of developed input methods.

Figure 3.4.1 shows the difference between developed input methods.

22

Figure 3.4.1: Difference between developed input methods.

23

4 Implementation
Software prototypes of the designed input methods need to be developed in

order to perform an evaluation. Each prototype can be called an input method

editor (IME) according to Section 1.1. This chapter discusses the development

of these prototypes. This chapter covers requirements, architecture and coding

of each prototype and describes the developed application.

4.1 Requirements

The prototypes should implement the normative description of input methods

described in Chapter 3. The prototypes should work in the same scope and

limitations as input methods.

Android is selected as a platform for prototypes, because of two reasons:

 Android allows using 3rd party keyboards so that users could use the

developed application in real life after some modifications. iOS allows

using 3rd party keyboards as well [21].

 As already mentioned, developed input methods require a wide screen.

iPad Pro has big enough screen of 12.9 inches [22], but it was not

available during the evaluation. Some Android tablets have wide

enough screen. It is calculated later in the section.

Moreover, selected device should be able to run the prototypes. The

device should work with Android OS, have a touch screen (because the input

methods are based on touches processing), allow working with 10 touches

simultaneously and have a wide enough touch screen. Tablets with 10 inches

screen and 16:10 screen ratio are suitable because the width of the screen for

this case is 21.5 cm. Since the standard distance between centers of keyboard

keys is 19.05 mm [17], the total width of 11 keys (keys that contain characters

of the Latin alphabet) is 20.955 cm. Therefore, 10 inches tablets have wide

enough screen. ASUS TF700T fits these requirements, so it is selected as the

device for experiments.

4.2 Architecture

The main requirement for the architecture is that it should allow using different

modifications of an input method without duplicating the code. Moreover, the

architecture is developed with taking into account additional features that are

out of the scope of this report, but will be most likely added if the application

will be used in real life.

The architecture of the developed prototype is shown in Figure 4.2.1.

The diagram is simplified; most entities are dropped to concentrate attention

on the most important solutions. Since the main goal of the diagram is showing

the architecture in a very abstract way, it is not a pure UML Class Diagram:

methods, fields, and package names are dropped; a class and an interface are

24

generalized to same entity; a package notation is used to describe external

libraries.

Figure 4.2.1: Overall architecture diagram.

25

Activity is an entry point to an Android application [23], so there are four

Activities (one for each input method): Blind1Activity, Blind21Activity,

Blind22Activity, and Blind23Activity. Since these Activities contain a lot of

same functionality and corresponding code, the superclass BlindActivity is

created, and common parts are moved to this superclass. Since the input

method Simple-Touch can be useful for sighted people as well, parts that are

not related to using by blind people are displaced to the superclass

MainActivity. This solution simplifies creating a keyboard for sighted users in

the future. Therefore: MainActivity contains common parts that are not related

to using by blind people (for example, setting up a graphical library);

BlindActivity contains parts that are related to using by blind people (for

example, initialization of the object for audio feedback – ToneHelper); rest of

Activities are lightweight, they are responsible for building objects (instances

of subclasses of LayoutManager) according to the Factory Method design

pattern [24]. Blind1Activity builds Blind1LayoutManager, which is responsible

for the logic that is specific for the input method Simple-Touch;

Blind21Activity builds Blind21LayoutManager (One-Touch); Blind22Activity

builds Blind22LayoutManager (Two-Touches); Blind23Activity builds

Blind23LayoutManager (Vary-Touches). Since last three input methods are

similar, Blind2LayoutManager is introduced as a base class for their

LayoutManagers to avoid code duplication.

LayoutManager (objects of subclasses of it) processes touch events to

generate events for Layout, initializes keyboard blocks and selects Layout. In

the current version of the input methods, just one Layout (alphabetical one)

exists, but the application can be extended by additional layouts to support

numeric and navigation buttons.

Layout is responsible for adjusting audio feedback via ToneHelper based

on the position of blocks, sending events to KeyboardListener, building a

graphical user interface using the aRender library.

ToneHelper holds logic of audio feedback and provides a simple

interface for controlling that feedback (i.e. play, stop and set the volume for

each channel individually).

BlindView is responsible for UI. It renders the graphical interface of the

keyboard from LayoutManager and sends touch events from a system to

LayoutManager.

KeyboardListener is an interface for events callback, which contains

methods like onCharacterTyped() and onBackspace(). An Activity

implements this interface and reacts to these events. Events can be raised by

LayoutManager, Layout or RenderableButton.

aRender library is used for rendering graphic. This library is developed

by the author of this thesis project. It uses the same way of rendering as

standard Android components (Views) but provides a large set of utilities,

26

helpers, and classes for drawing common objects like text, bitmaps, groups,

etc. That is why aRender is selected as the graphical library.

Core classes of aRender are RenderView and Renderable. RenderView is

based on the system class View, which is the base class for widgets (so any UI

made with aRender behaves like an Android component), and renders given

Renderable. Renderable holds logic of rendering and measuring width and

height of a UI component.

RenderableGroup is a Renderable that contains other Renderables; it is

responsible for their positioning and rendering. RenderableGroup is developed

according to the Composite design pattern [24].

RenderableBlock is a RenderableGroup that contains and renders

RenderableButtons. RenderableButton holds UI and UX logic for buttons in

general. It is extended by RenderableSpaceButton and

RenderableModifierButton to support specific buttons.

4.3 Algorithms

This section describes the core algorithm of the adaptation logic – setting

position, scale and rotation of a block relative to two touch points.

A keyboard block adapts to the position of a hand. As already stated, the

adaptation means the transformation of the block to make two buttons of it to

be exactly below two selected fingers. In other words, two points of the block

(centers of related buttons) should have the same position as two touch points.

Accent point (auxiliary term) is a point that has same coordinates as a point of

a block if the block has 1:1 scale, 0 degrees tilt angle and is located at the point

(0,0). Therefore, the accent point is not changed even after transformation of

the block. Schematic image of the problem is shown in Figure 4.3.1. Accent

points are white circles in the “original block” rectangle.

Figure 4.3.1: Schematic image of setting position, scale and rotation of a

block relative to two touch points.

27

The problem can be described as a mathematical model that has 2 accent

points and 2 touch points as input, and position, scale and tilt angle of the block

as output. The problem-solving algorithm is developed and implemented using

Java-like pseudocode. It is shown in Figure 4.3.2.

Figure 4.3.2: Java-like pseudocode for setting position, scale and rotation of a

block relative to two touch points.

4.4 Implementation

The application is developed based on the described architecture and

algorithm. The application implements normative description of each input

method according to the described scope and limitations for ASUS TF700T.

Screenshot of the application is shown in Figure 4.4.1.

28

Figure 4.4.1: Screenshot of the developed application.

Moreover, additional features are implemented in the application to

make it more useful for evaluation, experiments, and real-life usage:

 Areas of blocks are highlighted in green color, edges of the touch area

– by blue color. Lines of overlapping of these areas are highlighted in

red color. This feature allows detecting borders of areas and if areas are

intercepted or not. This information is useful for a developer during

development and debugging, and a supervisor during experiments.

 Typed text is displayed in a line at the top of the screen. It allows

observing typed characters.

 The input method Simple-Touch can be initialized using not just 10

touches, but using 8 or 9 touches as well. It is implemented without

significant changes to the input method because the input method does

not use 2 lowermost touches.

 The input method Simple-Touch has an additional way to invoke the

“Backspace” action – using gesture over any of space buttons. A user

has to slide left over a “Space” button.

29

5 Evaluation
This chapter describes the evaluation of the developed input methods.

5.1 Method

This section describes an approach that is used to research the developed input

methods. The developed input methods are compared with each other and with

a standard accessible input method. It gave descriptive knowledge about

advantages and disadvantaged of the developed input methods.

5.1.1 Approach

Inductive approach is selected because research papers do not contain enough

information about input methods for touch panels that use the muscle memory

from using a classic physical keyboard by blind people. Therefore, the research

question is stated in Section 1.4 to be answered as a result of analysis of

experiments.

Qualitative approach and observations are selected for input methods

research, because the research requires a deep analysis, including WPM and

error rate measurement during several sessions. It allows comparing the input

methods with each other and understanding the learning effect of the input

methods. Most research papers use same approach for input methods

evaluation [1], [9], [10], [13], [14], [12].

The developed input methods are compared with an existing input

method – TalkBack by Google. It is the default input method for blind people

for Android devices (including ASUS TF700T).

5.1.2 Subjects selection

The main idea of the research is related to using the muscle memory. Users

with more developed muscle memory from typing show the difference between

the developed input methods and the existing input method better. Users,

which use touch-typing, have more developed muscle memory than ones,

which use 2-fingers typing. Therefore, users with the touch-typing skill are

selected for experiments.

Users, which hold fingers on the home row keys between strokes, and

users, which hold fingers in the air above the home row keys between strokes,

can differ in the supreme input method as a result of the experiment. Therefore,

the selection should contain people of different touch-typing styles.

Users with the skill of using TalkBack are not participating in the

experiment since it could affect WPM and error rate of using TalkBack

comparing with the developed input methods. Moreover, it could have an

impact on the measurement of learning rate of TalkBack.

30

5.1.3 Procedure

All experiments are performed using the same device (ASUS TF700T), so all

hardware-specific issues are the same for all input methods.

Fixed sentences are used instead of a phrases generator because using

different phrases could affect results in a various and hard-predictable way.

Three sentences from James & Reischel (2001) [25] are used for the

experiments:

 hi joe how are you want to meet tonight

 want to go to the movies with sue and me

 what show do you want to see

Subjects are asked to type "as quickly and accurately as possible" [9].

MSD uncorrected error rate is measured instead of corrected error rate because

corrected error rate is already measured as part of WPM and it is a time-

consuming task to correct an error. The problem with this approach is that users

have a different understanding of ”as accurately”; for example, some users

want to correct any typo, but some users do not correct simple typos at all. This

approach shows ”real-life usage” error rate.

The protocol of the experiment is as follow:

1. Ask a subject to practice with the input method “TalkBack” until the

subject felt comfortable with it [14]. Users have different learning

skills, so results of this step are not measured. Time for the adaptation

is limited to 5 minutes for TalkBack, 5 minutes for the input method

Simple-Touch, 3 minutes for the input method One-Touch and 2

minutes for rest of input methods. Time for the adaptation is not same,

because input methods One-Touch, Two-Touches, and Vary-Touches

are very similar to each other and similar to the input method Simple-

Touch.

2. Ask the subject to look at the screen, which is located higher than

subject’s eyes. The first sentence is displayed on the screen.

3. Ask the subject to type the sentence with the tablet, which is located on

a table. The subject is not allowed to look at the tablet’s screen during

this step.

4. Allow the subject having a rest after typing the sentence.

5. Repeat steps 2-4 with second and third sentences.

6. Repeat steps 1-5 with input methods Simple-Touch, One-Touch, Two-

Touches and Vary-Touches.

Time of typing each sentence is measured instead of the total time of

typing five sentences so that users could have a rest between typing sentences.

Users are asked to type 5 sentences in a row with the same input method to

measure learning effect.

31

The application makes a report that can be represented as a table or a

sheet. Columns of the report table: input method name, time of action, and

action. Action is the text ”onPositionUpdate” if input method blocks were

changed (not related to TalkBack) or current text of the text field. Therefore,

the application makes a new row in the report each time the user modifies the

text of the text field (types something or uses ”Backspace”) or initializes the

blocks. Time of any action is represented in milliseconds from midnight,

January 1, 1970 UTC [26].

The report allows calculating WPM, MSD error rate and time for

initialization. Since the report represents raw data, additional useful data can

be extracted later on.

All the experiments were observed to get additional knowledge like:

 What are common mistakes and typos?

 Which problems do subjects have with initialization and typing?

The report gives knowledge “a typo has occurred”, but an observation

gives knowledge “why the typo has occurred”. These questions and

observation accent points are not fixed because probable mistakes could not be

defined precisely enough before the experiment. Generally, the observer is

matching any finger touch to desired button position, because it is the most

common reason for mistakes.

All subjects were asked about touch-typing style (“Do you keep fingers

lying on the home row between strokes or you hold fingers in the air above?”).

The observer was also checking that a subject was not trying to cheat and look

at the tablet’s screen.

For reliability purpose, subjects was not personally interested in success

or fail of the project. The experiments was watched by the observer to avoid

any cheating. If a subject cheated once – he (or she) was excluded from the

experiment.

All verbal output from the subjects is briefly noted and processed to be

included in Section 5.2. For ethical considerations, the output from the subjects

(verbal one and typing results) is anonymized; the subjects got personal

numbers to be referenced in the project. The subjects are not referred as “he”

or “she” to avoid identification by a gender

During analysis, reports, which have been made by the application, are

converted to the sheet with fields for an input method analysis, like WPM and

error rate. Graphs and diagrams are made of this sheet. The observed behavior

of using input methods and verbal feedback from subjects are searched for

patterns.

5.2 Results/Analysis

The experiments are performed on four subjects. They are called Subject 1, …,

Subject 4 to keep results anonymous. The results of the experiments are

32

divided into two subsections: formal and empirical ones. The formal results are

about reports generated by the application and any data derived directly from

them. The empirical data contains results of observation and verbal output from

the subjects.

5.2.1 Formal results

Report files are generated by prototype applications and imported into a

spreadsheet to simplify further processing. A sample of such raw results is

represented in Table 5.2.1.

Action

Input method

name

Time of action,

milliseconds

Action

1 Blind1Activity 0 onPositionUpdate

2 Blind1Activity 114 onPositionUpdate

…

29 Blind1Activity 2958 onPositionUpdate

30 Blind1Activity 4355 h

31 Blind1Activity 4906 hi

32 Blind1Activity 5525 hi

33 Blind1Activity 6472 hi j

34 Blind1Activity 7082 hi jp

35 Blind1Activity 8679 hi j

36 Blind1Activity 9670 hi jp

37 Blind1Activity 10661 hi j

38 Blind1Activity 11403 hi jo

39 Blind1Activity 12486 hi joe

…

91 Blind1Activity 65880 hi joe how aree you want to meet

tonu ight

Table 5.2.1: A sample of a raw report that is generated by a prototype

application and imported into a spreadsheet.

The algorithm that is used to extract data from raw reports:

1. Recognize the resulting sentence in the list of actions and find the first

action that happened with the final text. It is the message “hi joe how

aree you want to meet tonu ight”, action #91.

2. Recognize the action that started the latest initialization before the first

action of typing the sentence. It is action #1.

3. Use the following formula to calculate WPM:

WPM =
(W − 1) 5⁄

M

33

where: W is a number of characters (including spaces), M is a time in

minutes [3].

Since all measurements are represented in milliseconds, formula is

transformed to:

WPM =
((W − 1) ∗ 60 ∗ 1000) 5⁄

S
 =

(W − 1) ∗ 12000

S

where: S is a time in milliseconds.

S equals the time between the action from the first step and the action

from the second step, so S=65880-0=65880. The desired text is “hi joe

how are you want to meet tonight”, so W=39. Therefore:

WPM =
(39 − 1) ∗ 12000

65880
 = 6.92 (approx.)

4. Calculate MSDER (MSD error rate) using the following formula:

MSDER =
MSD(P, T)

MAX(|P|, |T|)

where: P is an original text, T is a typed text [3].

Levenshtein function is used for MSD calculation. MSD equals 3 for

this case. Therefore, MSDER = 3/42 = 0.07 (aprox.)

Therefore, the output is WPM and MSD error rate; it is suitable for

comparison with existing input methods like TalkBack. Sometimes the

subjects were warming-up fingers between typing of sentences. It leads to

typing random characters. These situations are considered manually, and they

do not affect WPM and error rate.

The subjects were supposed to have exactly one initialization before each

sentence, but some of them were doing the initialization for a few times in a

row or just do not do reinitialization between sentences at all. Therefore, the

initialization affects WPM of typing different sentences in a various way, so

comparison WPM of typing sentences of the same subject and input method

between each other is not reliable. Therefore, the measurement of learning

effect does not give a reliable result for these experiments. However, the input

methods can still be compared by calculating average WPM and error rate

across all three sentences. The learning effect can be investigated in a further

research of the results by splitting typing time to initialization time and time of

typing itself. In this case, the learning effect can be measured for initialization

and typing independently in order to find bottlenecks (“Is the bottleneck related

34

to initialization or typing?”). Time of hand lifting (the time between the last

action of initialization and first typed character) should be ignored, because it

does not depend on initialization or typing process.

For example, the calculation of the time for initialization of blocks t and

WPM of typing itself for sample from Table 5.2.1:

𝑡 = 2958 − 0 = 2958 (milliseconds)

𝑊𝑃𝑀 =
(39 − 1) ∗ 12000

65880 − 4355
= 7.41 (aprox.)

Raw results are converted into a sheet. Each row of it represents

information on typing one sentence by specific subject using specific input

method. Sheet has following columns:

 “Subject”: a number of a subject.

 “Touch-typing style”: represents subject’s answer to the question “Do

you keep fingers lying on the home row between strokes or you hold

fingers in the air above?”. The column takes one of three values: “keep

fingers on the home row”, “keep fingers in the air”, “mixed” (the

behavior is different depending on the situation). The answer of each

subject is checked by observing subject’s way of using a physical

keyboard.

 “Input method”: which input method is used to type a sentence.

 “Start time”: time of start of initialization before typing the sentence

(or just time of start typing for the case of TalkBack).

 “End time”: time of typing the last character of the sentence.

 “Time”: time of typing the sentence including time of the initialization

for non-TalkBack cases. This column is calculated automatically by the

spreadsheet as the difference between “Start time” and “End time”.

 “Typed sentence”: a sequence of characters that the user has typed.

 “Target sentence”: a sequence of characters that the user was asked to

type.

 “Target sentence length”: length of “Target sentence”.

 “WPM”: words per minute. Calculated automatically by the

spreadsheet using the described algorithm and columns “Time” and

“Target sentence length”.

 “MSD”: Levenshtein distance between “Typed sentence” and “Target

sentence”, calculated automatically by the spreadsheet.

 “MSDER”: MSD error rate; calculated automatically by the

spreadsheet using the described algorithm and columns “MSD”, the

length of “Typed sentence” and “Target sentence”.

35

The perfect number of rows (number of experiments) would be S*I*T,

where S is a number of the subjects, I is a number of the input methods, T is a

number of the sentences. Therefore, the expected number of rows was

4*5*3=60, but some of the experiments were canceled or rejected.

Subject 1 was too stressed during typing the first sentence using the

developed input method One-Touch, so further experiments with this subject

were cancelled. Subject 1 pointed the following reason of the stress: “The input

method One-Touch requires too unaccustomed movements to type characters”.

Experiments with second and third sentences were cancelled after an

experiment with the first sentence because of too high error rate (over 0.4) for

following cases: subject 2, the input method One-Touch; subject 2, the input

method Two-Touches; subject 2, the input method Vary-Touches; subject 4,

the input method Two-Touches. Following experiments were going to be

cancelled because of the same reason, but subjects asked to continue with it

because they believed that they can type last two sentences better: subject 2,

the input method “TalkBack”; subject 4, the input method Vary-Touches. The

assumption was valid for both cases (the subjects have shown lower error rate

for last two sentences). The resulting sheet is provided in Appendix A.

Mean and standard deviation of WPM and MSD error rate (MSDER) are

calculated automatically using the spreadsheet. These values calculated for

each sentence (Table 5.2.2), and input method in general (Table 5.2.3).

Input method Sentence

WPM

mean

WPM standard

deviation

MSDER

mean

MSDER

standard

deviation

TalkBack 1 3,77 2,01 0,19 0,24

TalkBack 2 3,59 1,19 0,06 0,07

TalkBack 3 3,41 1,19 0,02 0,02

Simple-Touch 1 6,00 2,60 0,13 0,06

Simple-Touch 2 4,53 2,29 0,12 0,10

Simple-Touch 3 5,81 1,41 0,06 0,06

One-Touch 1 3,84 0,14 0,47 0,33

One-Touch 2 5,71 - 0,40 -

One-Touch 3 4,31 - 0,43 -

Two-Touches 1 3,39 0,90 0,43 0,03

Two-Touches 2 - - - -

Two-Touches 3 - - - -

Vary-Touches 1 6,46 4,31 0,52 0,06

Vary-Touches 2 8,77 - 0,31 -

Vary-Touches 3 7,56 - 0,19 -

Table 5.2.2: Performance of typing per each sentence.

36

Input method

WPM

mean

WPM standard

deviation

MSDER

mean

MSDER

standard

deviation

TalkBack 3,59 1,38 0,09 0,15

Simple-Touch 5,45 2,07 0,10 0,08

One-Touch 4,43 0,89 0,45 0,19

Two-Touches 3,39 0,90 0,43 0,03

Vary-Touches 7,31 2,72 0,39 0,17

Table 5.2.3: Performance of typing per each input method.

As already mentioned, the learning effect is not reliable for these

measurements of the developed input methods because of initialization time,

but the graph of Figure 5.2.1 shows that three sentences are not enough to

measure the learning effect, even for TalkBack, because the WPM is

decreasing that is not expected.

Figure 5.2.1: WPM over sentences.

Additionally, the experiment is performed on the developer (subject 5)

of the input methods and the prototypes, because this person was practicing a

lot with the input methods during the development. The experiment was

simplified by excluding TalkBack, because the person has spent much less time

with TalkBack than with the developed input methods, so the comparison

would be unfair. Since the time of learning was not measured and it is scattered

across around one year, WPM and error rate are not used for calculating

average WPM and error rate of subjects 1-4 (experiments with the subject 5 do

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1 2 3

W
P

M

Sentence

TalkBack

Simple-Touch

One-Touch

Vary-Touches

37

not affect Table 5.2.2, Table 5.2.3 and Figure 5.2.1). Important to mention that

the person has just the basic skill of touch-typing, so the picture of the standard

QWERTY keyboard layout was shown to the person during the experiment.

The goal of this experiment is to roughly measure possible learning effect of

the developed input methods. Performance (WPM and error rate) of each input

method is visualized in Figure 5.2.2 and Figure 5.2.3.

Figure 5.2.2: WPM over input methods.

Figure 5.2.3: MSD error rate over input methods.

3,59

5,45

4,43

3,39

7,31

0,00

7,27

4,95

6,48

5,80

0,00 2,00 4,00 6,00 8,00

TalkBack

Simple-Touch

One-Touch

Two-Touches

Vary-Touches

Subject 5

Subjects 1-4

0,09

0,10

0,45

0,43

0,39

0,00

0,01

0,10

0,21

0,12

0,00 0,10 0,20 0,30 0,40 0,50

TalkBack

Simple-Touch

One-Touch

Two-Touches

Vary-Touches

Subject 5

Subjects 1-4

38

Generally, the performance of the developed input method Simple-Touch is

better than the performance of the standard input method, but input methods

One-Touch, Two-Touches, and Vary-Touches give much higher error rate than

the standard input method.

5.2.2 Empirical results

Each subject was participating an experiment for about 50 minutes, including

time for education, evaluation of the input methods and giving verbal feedback.

All subjects agreed that the developed input method Simple-Touch is less

stressful than input methods One-Touch, Two-Touches, and Vary-Touches

because the typing style of it is most similar to a standard physical keyboard.

During typing the second sentence using TalkBack, subject 1 mentioned

that it would be very hard to type using TalkBack without the skill of touch-

typing skill because the direction of a finger movement is determined by the

knowledge of the keyboard layout.

After experiments, subject 2 has mentioned that it would be useful to feel

a vibration when notched keys (“F” and “J”) are touched and have audio

feedback on a key touch before the character is typed (same as TalkBack).

The followings were discovered during observation of experiments with

1-4 subjects:

1. All subjects do not use to hold thumbs on space button, neither during

initialization nor typing. Therefore, they were intuitively lifting the

thumbs. It leads to mistakes, in particular for input methods One-

Touch, Two-Touches, and Vary-Touches because they require holding

the thumbs on the space button for most of the time. Similar problem

with the position of the thumbs: all subjects were placing the thumbs

above the space button. The problem is not relevant for the input

method Simple-Touch because this input method does not require

thumbs touches.

2. Subject 2 has tried to type “H” key right after “Y” key without returning

to the base position during typing with the input method Two-Touches

because the subject uses the same finger to type these two buttons and

he does same for physical keyboards. However, it led to a mistake,

because the input method requires the fingers to be returned to the base

position before typing next character.

3. During experiments with input methods One-Touch, Two-Touches,

and Vary-Touches, a touch panel was not receiving all required touches

sometimes. The most common reasons for it: subjects lift up fingers

instinctively (especially thumbs, as mentioned in the first recognized

pattern); the touch panel does not recognize touches because of lack of

sensitivity (especially thumbs touches, because contact area of a thumb

and the touch panel is small in the case of the natural position of wrists).

39

4. All subjects had problems with switching between input methods One-

Touch, Two-Touches, and Vary-Touches because each variant requires

different movements for typing character. Subjects were trying to use

movements of previous input method for first words of a sentence, but

this effect becomes weaker with each typed character.

5.3 Discussion

This section discusses results and the implementation of the study. Main

sources of knowledge are Figure 5.2.2 and Figure 5.2.3. The developed input

method Simple-Touch gives better results than TalkBack even during typing

three sentences. It is reflected on WPM, error rate and feedback by subjects

about the level of stress of using the input method. Moreover, all four

recognized patterns affect the experience of using an input method in a

negative way, and none of them is about the input method Simple-Touch. An

additional reason for the input method success is that it does not require the

panel to be touched by thumbs.

5.3.1 Input methods One-Touch, Two-Touches, Vary-Touches

Three sentences are not enough to make a subject learn an input method to

keep error rate lower than 0.3 for input methods One-Touch, Two-Touches,

and Vary-Touches. An input method with error rate that is higher than 0.3 is

barely usable for everyday usage, but the experiment with the subject 5 has

shown that it is possible to lower error rate to 0.21, so these input methods can

be evaluated more detailed with large quantity of sentences to prove that the

average user could lower error rate to the satisfactory level.

Priority in the research should be given to the input method Vary-

Touches because it has shown generally better WPM and error rate. The need

to decrease the number of researched input methods is also confirmed by the

fourth recognized pattern.

5.3.2 Method reflection

Subjects need more than three sentences to start getting used to an input

method. It is proven by Figure 5.2.1 and the fourth recognized pattern.

Investigation of the learning effect of the developed input methods can be

improved by splitting typing time to initialization time and time of typing itself.

In this case, the learning effect can be measured independently for initialization

and typing in order to find bottlenecks.

In the performed research WPM has been calculated with taking into

account time for initialization, but this time is directly proportional to the size

of the touch panel. Therefore, the same experiment could give a greater

superiority of the developed input methods over TalkBack for the case of wider

touch screens.

40

5.3.3 Comparison the developed input methods with existing ones

Comparison the developed input method with existing ones requires additional

experiments with the existing input methods, because all experiments should

be performed in the same conditions (same subjects, same texts, same devices,

etc). For example, long sentences with complex words are most likely typed

with lower WPM than short sentences with simple words. Therefore, it is not

correct just to compare WPM and error rate of the developed input methods

with the same metrics of the existing methods that are measured under other

conditions in terms of experiments of another research papers.

WPM and error rate of the developed input methods are compared with

the input methods that are evaluated in the paper “Survey of Eye-Free Text

Entry Techniques of Touch Screen Mobile Devices Designed for Visually

Impaired Users” [1]. Results of the comparison are represented in Table 5.3.1,

Figure 5.3.1 and Figure 5.3.2 to give a rough understanding of the developed

input methods relatively to existing ones.

Input method WPM MSD error rate, %

TalkBack 3,59 9,00

Simple-Touch 5,45 10,00

One-Touch 4,43 45,00

Two-Touches 3,39 43,00

Vary-Touches 7,31 39,00

MultiTap 0,88 15,28

SVIFT 4,75 -

Unisroke 32 -

Graffiti 7,6 0,40

Slide Rule 27 14,10

VoiceOver 0,66 9,70

QWERTY 2,11 5,20

BrailleType 1,45 9,70

Table 5.3.1: Performance of typing of the developed input methods and the

existing input methods.

41

Figure 5.3.1: WPM over the input methods of Table 5.3.1.

Figure 5.3.2: MSD error rate over the input methods of Table 5.3.1.

3,59

5,45

4,43

3,39

7,31

0,88

4,75

32

7,6

27

0,66

2,11

1,45

0 5 10 15 20 25 30 35

TalkBack

Simple-Touch

One-Touch

Two-Touches

Vary-Touches

MultiTap

SVIFT

Unisroke

Graffiti

Slide Rule

VoiceOver

QWERTY

Braille Type

9,00

10,00

45,00

43,00

39,00

15,28

0,40

14,10

9,70

5,20

9,70

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00

TalkBack

Simple-Touch

One-Touch

Two-Touches

Vary-Touches

MultiTap

Graffiti

Slide Rule

VoiceOver

QWERTY

Braille Type

42

6 Conclusions
In this project, existing input methods for blind people were analyzed to find a

method to improve the typing performance of blind people on wide touch

panels. One solution to this problem is to take the advantage of muscle memory

from using classic physical keyboards. To this end, four input methods Simple-

Touch, One-Touch, Two-Touches, and Vary-Touch are designed, and a

prototype for each one is developed. These input methods are compared with

each other and with a standard input method.

The project has shown that performance of typing by blind people on

wide touch panels can be improved by using the muscle memory from using

physical QWERTY keyboards. The experiment showed the effectiveness of

each approach and discussed their advantages and disadvantages. The

developed input method Simple-Touch has a better WPM than TalkBack and

has the same error rate. The developed input method Vary-Touch gives

critically high error rate, but its WPM is promising. Input methods One-Touch

and Two-Touches give higher error rate and lower WPM than Vary-Touch.

For further evaluation of the input methods developed in this project,

extensive experiments with more subjects are planned to be carried out in the

future. Since input methods One-Touch and Two-Touches did not perform

well, subjects would have more time to participate experiments with the rest of

the input methods, so it makes sense to repeat the experiment for just three

input methods (TalkBack, Simple-Touch, and Vary-Touches). The following

modifications will be made in the future experiments:

 Use more sentences to improve the visibility of learning effect.

 Measure time of initialization and time of typing itself independently.

 Make some experiments with wider touch panels to estimate the

dependence of input method performance on the width of the touch

panel.

 Improve the input method Vary-Touches according to the recognized

patterns.

As another future work, one can modify the input method Simple-Touch

for use by sighted people to increase their typing speed comparing to a standard

touch input method for sighted users.

The findings of the project show that the performance of typing is

decreased due to the low sensitivity of touch panels. Software that will

recognize the pattern of touch actions in runtime to recover missed touches will

be used to solve this problem partially.

43

References

[1] S. Banubakode and C. Dhawale, "Survey of Eye-Free Text Entry

Techniques of Touch Screen Mobile Devices Designed for Visually Impaired

Users," Covenant Journal of Informatics and Communication Technology

(CJICT) Vol, vol. 1, 2013.

[2] Evengrounds.com. (2013) Do Blind People Use a Special Keyboard?.

[Online]. Available: http://evengrounds.com/blog/do-blind-people-use-

special-keyboard

[3] I. S. MacKenzie and K. Tanaka-Ishii, Text entry systems: Mobility,

accessibility, universality: Morgan Kaufmann, 2010.

[4] Wiktionary. (2016) muscle memory. [Online] Available:

https://en.wiktionary.org/wiki/muscle_memory

[5] Google Inc. (2016) Creating an Input Method | Android Developers.

[Online] Available:

http://developer.android.com/intl/ru/guide/topics/text/creating-input-

method.html

[6] Besttyping.com. (2015) What is Touch Typing_Touch Typing. [Online]

Available: http://www.besttyping.com/

[7] S. P. Mariotti, "Global data on visual impairments 2010," World Health

Organization, vol. 20, 2012.

[8] T. R. Ostrach, "Typing speed: How fast is average: 4,000 typing scores

statistically analyzed and interpreted," Orlando, FL: Five Star Staffing, 1997.

[9] S. Azenkot, "Eyes-Free Input on Mobile Devices," University of

Washington, 2014.

[10] J. Oliveira, T. Guerreiro, H. Nicolau, J. Jorge, and D. Gonçalves,

"BrailleType: unleashing braille over touch screen mobile phones," in Human-

Computer Interaction–INTERACT 2011, ed: Springer, 2011, pp. 100-107.

[11] Apple Inc. (2016) Accessibility - iOS - VoiceOver - Apple. [Online]

Available: http://www.apple.com/accessibility/ios/voiceover/

[12] J. Guerreiro, A. Rodrigues, K. Montague, T. Guerreiro, H. Nicolau, and

D. Gonçalves, "TabLETS Get Physical: Non-Visual Text Entry on Tablet

44

Devices," in Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems, 2015, pp. 39-42.

[13] S. J. Castellucci and I. S. MacKenzie, "Graffiti vs. unistrokes: an

empirical comparison," in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2008, pp. 305-308.

[14] L. Butts and A. Cockburn, "An evaluation of mobile phone text input

methods," Australian Computer Science Communications, vol. 24, pp. 55-59,

2002.

[15] M. Silfverberg, I. S. MacKenzie, and P. Korhonen, "Predicting text entry

speed on mobile phones," in Proceedings of the SIGCHI conference on Human

Factors in Computing Systems, 2000, pp. 9-16.

[16] W. C. Westerman, "System and method for recognizing touch typing

under limited tactile feedback conditions," ed: Google Patents, 2004.

[17] S. Sameer, Complete Computer Hardware Only, PediaPress, 2011.

[18] M. Shetter, "Virtual keyboard for touch-typing using audio feedback," ed:

Google Patents, 2005.

[19] D. Rempel, A. Barr, D. Brafman, and E. Young, "The effect of six

keyboard designs on wrist and forearm postures," Applied ergonomics, vol. 38,

pp. 293-298, 2007.

[20] Crunchbase.com. (2015) Dryft | CrunchBase. [Online] Available:

https://www.crunchbase.com/organization/dryft

[21] Apple Inc. (2015) Use third-party keyboards on your iPhone, iPad, and

iPod touch - Apple Support. [Online] Available: https://support.apple.com/en-

us/HT204340

[22] Apple Inc. (2016) iPad Pro - Apple. [Online todo] Available:

http://www.apple.com/se/ipad-pro/

[23] Google Inc. (2016) Activities | Android Developers. [Online] Available:

http://developer.android.com/guide/components/activities.html

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software: Pearson Education, 1994.

45

[25] C. L. James and K. M. Reischel, "Text input for mobile devices:

comparing model prediction to actual performance," in Proceedings of the

SIGCHI conference on Human factors in computing systems, 2001, pp. 365-

371.

[26] Oracle. (2016) System (Java Platform SE 7). [Online] Available:

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTime

Millis%28%29

A Appendix “Results sheet”
The results sheet is simplified by excluding columns “Start time”, “End time”, “Target sentence length” and “MSD” to decrease

the size of it.

Sub-
ject

Touch-
typing style

Input
method Time Typed sentence Target sentence WPM MSDER

1 mixed TalkBack 167407
hi joe how are uou want to
meet tionight

hi joe how are you want to meet
tonight 2,723900434 0,05

1 mixed TalkBack 130433
want to go to the movies with
sue and me

want to go to the movies with sue and
me 3,588049037 0

1 mixed TalkBack 143709 what show do you ant to see what show do you want to see 2,254556082 0,035714286

1 mixed
Simple-
Touch 65880

hi joe how aree you want to
meet tonu ight

hi joe how are you want to meet
tonight 6,921675774 0,071428571

1 mixed
Simple-
Touch 100817

wamt to g to the mof vies e
with sue a d me

want to go to the movies with sue and
me 4,642074253 0,181818182

1 mixed
Simple-
Touch 65583 what shoe do uou wz ant to see what show do you want to see 4,940304652 0,133333333

2 mixed TalkBack 76197 hijoehowareyouwant
hi joe how are you want to meet
tonight 5,984487578 0,538461538

2 mixed TalkBack 125623
want to go to the mobies with
sue and me

want to go to the movies with sue and
me 3,725432445 0,025

2 mixed TalkBack 96225 what show do you want to see what show do you want to see 3,36710834 0

2 mixed
Simple-
Touch 194841

hi joe how are uouwamrctto
neet tomight

hi joe how are you want to meet
tonight 2,34036984 0,205128205

2 mixed
Simple-
Touch 142256

want to ho to the mobies with
sue and me

want to go to the movies with sue and
me 3,289843662 0,05

351 95 Växjö / 391 82 Kalmar

Tel 0772-28 80 00

dfm@lnu.se

Lnu.se

2 mixed
Simple-
Touch 75245 what show do you want to see what show do you want to see 4,305933949 0

2 mixed
One-
Touch 121769

hijoe j-mhlow ffsadfgxxxxre u
oi eamg fffo ,utf

hi joe how are you want to meet
tonight 3,744795473 0,708333333

2 mixed
Two-
Touches 165493

hi joe jjjj, how at hjoo wamt
to mrwseet tfaaom,ihj

hi joe how are you want to meet
tonight 2,755403552 0,454545455

2 mixed
Vary-
Touch 133823

go jjoe jows aafrde uoi
wsabfm fftoo mrbeef ffoon
mmjmoiggft

hi joe how are you want to meet
tonight 3,407486008 0,560606061

3

keep fingers
on the home
row TalkBack 296732

hi joe how are you wantto mt
tonight

hi joe how are you want to meet
tonight 1,536740224 0,076923077

3

keep fingers
on the home
row TalkBack 226022

want to tgoto the mobies ith
sue and mn

want to go to the movies with sue and
me 2,070594898 0,15

3

keep fingers
on the home
row TalkBack 109675 what show do uou want to see what show do you want to see 2,954182813 0,035714286

3

keep fingers
on the home
row

Simple-
Touch 54004

ji joe how are you want tk neet
tonighewt

hi joe how are you want to meet
tonight 8,443818976 0,12195122

3

keep fingers
on the home
row

Simple-
Touch 187218

wang to glo to to tnphrmiobies
with sue and me

want to go to the movies with sue and
me 2,499759638 0,239130435

351 95 Växjö / 391 82 Kalmar

Tel 0772-28 80 00

dfm@lnu.se

Lnu.se

3

keep fingers
on the home
row

Simple-
Touch 47219 what shjow do you want to see what show do you want to see 6,861644677 0,034482759

4
keep fingers
in the air TalkBack 94444

hi joe how sare youwant
tomeet tonight

hi joe how are you want to meet
tonight 4,828258015 0,076923077

4
keep fingers
in the air TalkBack 93818

wantto go to the mmo ies with
sue and me

want to go to the movies with sue and
me 4,98838176 0,075

4
keep fingers
in the air TalkBack 64225 what show do you want to see what show do you want to see 5,0447645 0

4
keep fingers
in the air

Simple-
Touch 72566

hi s how are oyou want to meet
tonight

hi joe how are you want to meet
tonight 6,283934625 0,102564103

4
keep fingers
in the air

Simple-
Touch 60839

want to go to the movies with
sue and me

want to go to the movies with sue and
me 7,692434129 0,024390244

4
keep fingers
in the air

Simple-
Touch 45305 what show do uofu want to see what show do you want to see 7,151528529 0,068965517

4
keep fingers
in the air

One-
Touch 115643

hi joe how fFare uou want too
.n meet tonomight

hi joe how are you want to meet
tonight 3,943169928 0,24

4
keep fingers
in the air

One-
Touch 81971

wa.frrdml rdto ho the movies
with sime amjkk,ke

want to go to the movies with sue and
me 5,709336229 0,404255319

4
keep fingers
in the air

One-
Touch 75136

wantshow ssddimm uoi swant
to to see what show do you want to see 4,312180579 0,432432432

4
keep fingers
in the air

Two-
Touches 113109

jhi j-loe howare uok wammiitf
c co mreset tomigjuu

hi joe how are you want to meet
tonight 4,031509429 0,411764706

351 95 Växjö / 391 82 Kalmar

Tel 0772-28 80 00

dfm@lnu.se

Lnu.se

4
keep fingers
in the air

Vary-
Touch 47969

hi jj olj jd hjofm fwaan f to
meet tomigjjt

hi joe how are you want to meet
tonight 9,506139382 0,479166667

4
keep fingers
in the air

Vary-
Touch 53362

waa jt to go to the movirs
witjj siose aanf me

want to go to the movies with sue and
me 8,770285971 0,31372549

4
keep fingers
in the air

Vary-
Touch 42842

what show do uoi wanyt to
see what show do you want to see 7,562672144 0,1875

5
keep fingers
in the air

Simple-
Touch 58467

hi joe how are you want to
meet tonight

hi joe how are you want to meet
tonight 7,799271384 0

5
keep fingers
in the air

Simple-
Touch 68696

want to go to the movies with
sue and mme

want to go to the movies with sue and
me 6,812623734 0,024390244

5
keep fingers
in the air

Simple-
Touch 45053 what show do you want to see what show do you want to see 7,191529976 0

5
keep fingers
in the air

One-
Touch 66847

hi joe how are uou wamt meet
tonighr

hi joe how are you want to meet
tonight 6,821547713 0,153846154

5
keep fingers
in the air

One-
Touch 112567

want fo go the movies with sue
and me

want to go to the movies with sue and
me 4,157523964 0,1

5
keep fingers
in the air

One-
Touch 83525 what show do uou want to see what show do you want to see 3,87907812 0,035714286

5
keep fingers
in the air

Two-
Touches 85151

hi joe hjl-ow are uou want me
meet tonight

hi joe how are you want to meet
tonight 5,35519254 0,142857143

5
keep fingers
in the air

Two-
Touches 96894

want to go the movies wupith
sue amnd kddnd me

want to go to the movies with sue and
me 4,830020435 0,260869565

5
keep fingers
in the air

Two-
Touches 34965 what show dou want see what show do you want to see 9,266409266 0,214285714

351 95 Växjö / 391 82 Kalmar

Tel 0772-28 80 00

dfm@lnu.se

Lnu.se

5
keep fingers
in the air

Vary-
Touch 81153

hi joe ho ared juojj want to
meet tonigjjt

hi joe how are you want to meet
tonight 5,619015933 0,227272727

5
keep fingers
in the air

Vary-
Touch 77270

want togo to tje movies with
sue amd kme

want to go to the movies with sue and
me 6,056684354 0,1

5
keep fingers
in the air

Vary-
Touch 56456 what show do uou want to see what show do you want to see 5,73898257 0,035714286

