

i

Evaluating Stream Protocol for a
Data Stream Center

Master Thesis Project

Author: Mahdi Mohammadnezhad
Supervisor: Jonas Lundberg
Examiner: Welf Löwe
Reader: Morgan Ericsson
Semester: VT/HT 2016
Course Code: 4DV50E
Subject: Computer Science

ii

Abstract

Linnaeus University is aiming at implementing a Data Stream Centre to provide
streaming of accumulated data from the websites’ newspapers and articles in order
to help its scientists of University to have faster and easier access to the mentioned
data. This mentioned project consists of multiple parts and the part we are
responsible to research about is first nominating some text streaming protocols
based on the criteria that are important for Linnaeus University and then evaluating
them. Those protocols are responsible to transfer text stream from the robots (that
read articles from the websites) to the data stream center and from them to the
scientists. Some KPIs (Key Performance Indicators) are defined and the protocols
are evaluated based on those KPIs. In this study we address evaluation of network
streaming protocol by starting to read about the protocol’s specifications and
nominating four protocols including TCP, HTTP1.1, Server-Sent Events and
Websocket. Then, fake robot and server are implemented by each protocol to
simulate the functionality of real robots, servers and scientists in LNU data stream
center project. Later, the evaluation is done in the mentioned simulated environment
using RawCAP, Wireshark and Message Analyzer. The results of this study
indicated that the best suited protocols for transferring text stream data from robot
to data stream center and from data stream center to scientist are TCP and Server-
Sent Events, respectively. In the concluding part, other protocols are also suggested
in the order of priority.

Keywords: Network protocols, Streaming protocols, Evaluation, HTTP1.1, TCP,
Server-Sent Events, Websocket.

iii

Preface

First of all, I would like to sincerely thank my supervisor, Professor Jonas
Lundberg, for his brilliant pieces of advice, his constructive suggestions and the
fruitful discussions and meetings we had for this thesis.

I would like to express my appreciations to my course manager Professor Narges
Khakpour and my examiner Professor Welf Löwe, for helping me with my
problems in this course and guiding me through my thesis improvements.

I also express my gratitude to Professor Morgan Ericsson as the reader, who read
my thesis and commented for better result.

Naturally, I would like to thank my wife who has always been helping and
supporting me through my life, especially during the busy days of my studies.

iv

Contents
 ___ i	

1	 Introduction ___ 1	
1.1	 Background ___ 1	
1.2	 Motivation __ 1	
1.3	 Problem Statement ___ 4	
1.4	 Research Questions ___ 4	
1.5	 Contributions __ 4	
1.6	 Report Structure ___ 5	

2	 Background ___ 6	
2.1	 Protocol Search __ 6	
2.2	 Protocols ___ 7	

2.2.1	 TCP ___ 8	

2.2.2	 HTTP1.1 __ 10	

2.2.3	 Server-Sent Events ____________________________________ 12	

2.2.4	 Websocket ___ 14	

3	 Method __ 17	
3.1	 Scientific Approach __ 17	
3.2	 Method Description __ 17	
3.3	 Reliability and Validity _____________________________________ 20	

4	 Implementation ___ 22	
4.1	 Tools Used __ 22	
4.2	 Implementation ___ 23	

4.2.1	 Client and Server Using TCP Protocol _____________________ 24	

4.2.2	 Client and Server Using HTTP1.1 Protocol _________________ 24	

4.2.3	 Client and Server Using Server-Sent Events Protocol _________ 25	

4.2.4	 Client and Server Using Websocket Protocol ________________ 26	

5	 Evaluation ___ 27	
5.1	 Evaluation Scenario _______________________________________ 27	
5.2	 First Experiment: Single Message Transfer _____________________ 27	
5.3	 First Experiment’s Summary ________________________________ 30	

5.3.1	 First Experiment’s Conclusion ___________________________ 30	

5.4	 Second Experiment: Stream Message Transfer __________________ 30	
5.4.1	 Sending Messages as Stream ____________________________ 31	

5.4.2	 Increased Message Size ________________________________ 33	

5.4.3	 Decreased Time-Interval ________________________________ 34	

5.5	 Second Experiment’s Summary ______________________________ 36	

	

v

6	 Conclusion and Future Work _____________________________________ 38	
6.1	 Conclusion ___ 38	
6.2	 Future work __ 39	

References __ 41	
A 	 Appendix 1 ___ 46	

A.1	 FakeRobot Class ______________________________________ 46	

A.2	 Client and Server Using TCP Protocol _____________________ 46	

A.3	 Client and Server Using HTTP1.1 Protocol _________________ 47	

A.4 	 Client and Server Using Server-Sent Events Protocol __________ 49	

A.5 	 Client and Server Using Websocket Protocol ________________ 50	

1

1 Introduction

This chapter presents an introduction to this thesis. It starts with some
background information in Section 1.1 and continues with motivation for this thesis
in Section 1.2. Section 1.3 and 1.4 explain about problem statement and research
questions, respectively. Contribution is discussed in Section 1.5 and an outline of
the report structure is explained in Section 1.6.

1.1 Background

Currently, the amount of information available on websites in different
formats is increasing constantly. Part of this vast amount of information can be
accessed and fetched as text. Some texts on the websites are articles with different
subjects which are of interest for a large number of people. Among them, some are
restricted and available for internal use only. However, most of them are globally
available and the interested people can access them easily. The exponential growth
of the mentioned texts and data has caused increase in access request by interested
users, scientist, organizations and companies. It is really important and sometimes
vital for them to have live and fast access to the mentioned data to remain
competitive through monitoring and analyzing the data. For example, a scientist can
analyze the data to find interesting relationships between them. Also, in businesses,
the companies try to maintain their reputation by analyzing their customers’ data,
finding out about customers’ complaints and solving the users’ problems. This way,
they can keep their customers happy and satisfied [35]. On the other hand, reputable
companies like Twitter are getting more popular and can help businesses to acquire
big amount of information (tweets) about specific subjects in which they are
interested, through fast streaming. During the last few years, the topic of streaming
has become fascinating to the researchers as streaming is about transfer of big
amount of data which is increasing day by day. In order to transfer the mentioned
data, it is needed to engage the streaming technology. For the same purpose, an
appropriate protocol is needed to make this live stream happen. In fact, to govern
the manner of data communication and to determine how to handle the errors, how
to authenticate and assess elements such as syntax of data and headers, there are
rules called communication protocols.

This thesis is aiming to help text-streaming transmission for Linnaeus
University data stream center by evaluating four network protocol candidates
selected based on project criteria including Websocket, TCP, Server-Sent Events
and HTTP1.1 to find the most appropriate one.

1.2 Motivation

LNU Data Stream Center project is an ongoing project by Linnaeus
University. This project is aimed to implement a data stream center to provide
streaming of accumulated data from the websites’ newspapers and articles in order

2

to help its scientists to have faster and easier access to the mentioned data. A
datacenter is considered as a virtual or physical centralized repository for
computation, management, storage and dissemination of information and data and
normally includes computers, servers’ racks, cooling system, switch/routers and
other related equipment [47]. This project consists of multiple parts such as
implementation of robots (website-robots), implementation of infrastructure and
implementation and use of an appropriate network protocol in order to transfer the
data as text-stream from robots to the data stream center and deliver them from data
stream center to the scientists (as our clients). This study concerns the last part of
the project which is implementation and use of appropriate network protocol.

Robot is responsible to monitor a website continuously and send the stream of data
in text format or with JSON -JavaScript Object Notation- structure to the server
(publisher side) through a channel (Figure 1). Before transferring the data from
publisher to the broker, data preprocessing will be done by Apache storm [38]
which includes sorting the data based on its language, filtering and adding extra
information. After processing the data, it will be pushed to the broker and database.
Broker will be implemented by Redis (Nosql database) [39] which enables us to
categorize processed data that will be received from Apache storm. Also, the same
processed data will permanently be stored in a database in order enable us to have
future access to them. Scientist can subscribe to several different channels on broker

Figure 1: LNU Data Stream Center

3

to identify interesting correlations or can ask to have the oldest data from the
database. But a problem may happen in this part which is called stall problem and
happens when the destination side of text-streaming is slower than the source side.
Handling stall problem is not part of this study so we will not further discuss it here.

Since we would like to preprocess the data, it is not possible to use message
queue oriented protocols or connect the robots directly to the broker. We must have
client-server relation in order to transfer the data from robots to the data stream
center and some kind of channel to transfer the data from robot the server (Publisher
side). In order to implement a channel, a protocol is needed to provide text-stream
data between robot and server –the publisher-side. In the same way, an appropriate
protocol is needed to be identified to stream data from server -subscriber side- to
scientists. Data transmission between robots and data stream center (publisher-side)
is trusted and we don’t have any firewall in that side. But the communication
between data stream center and the scientists (subscriber side) is untrusted and we
are not able to open any certain port for data transmission. Another issue is that we
do not have any information about the implementation type of client that will
receive data from data stream center (on subscribers’ side) and therefore we are not
sure if it will be implemented by a browser or application. TCP as a transport layer
protocol can not interact directly with a browser and most of the browsers are
supporting application level protocols like HTTP. In fact, client implementation for
scientists is not part of LNU Data Stream Center Project.

It is noteworthy that the criteria for selecting protocols are decided based on the
requirements of the LNU project by the project manager and are to be: guarantee of
packet delivery, compatibility with text-streaming in client-server implementation
relation and using HTTP capabilities as an advantage (more explanation about the
criteria and KPIs will be given in Subsection 3.2).

Communication network has significant impact on performance of data centers
[46], [47] and in this thesis, we are primarily concerned with nominating some text
streaming protocols to govern data communication with LNU data stream center.
In the next step fake robot and fake server will be implemented by each protocol in
our experimental environment which is a localhost machine, in order to simulate
the functionality of actual ones. Finally, the selected protocols will be evaluated
based on some KPIs such as: payload length, bandwidth usage, delta-time and
interruption in data transmission. However, it is important to note that utilizing each
approach to transfer text stream has some pros and cons and it is not true to say
which protocol is the best and which one is the worst, since they are not fully
alternative for each other.

We have emphasized on text format in this study since the data that is generated
by robot in LNU data stream project is in text format with JSON structure.
Therefore, other formats are not concern of this study.

As it explained earlier, we don’t have access to the scientist’s side and we don’t
have necessary information about client implementation in that side but we will do
the same experiment for both, publisher and scientist sides since they are doing the
same thing and text streaming should be transferred in both sides. The difference is
in interpretation of experimental results that the lack of information has caused.

4

1.3 Problem Statement

In today’s world of information and communication, the data on the internet
increases extraordinarily. “On Wall Street and other global exchanges, electronic
trading volumes are growing exponentially. Market data feeds can generate tens of
thousands of messages per second” [36]. In order to provide fast access to the
mentioned information in an organization, it is needed to engage streaming
technology.

 Moreover, in order to utilize streaming technology, we should find the most
appropriate protocol to govern the data stream based on the organizational needs
(e.g. in order to transfer the data event handling is needed or not), specifications
(e.g. the client side is a browser or application) and criteria (e.g. how much the
bandwidth usage of a specific protocol is important in order for text-streaming) to
help the scientists in different sectors to have fast access to the data and information
they need. By this thesis we aim to nominate some protocols that better meet the
LNU project’s defined criteria (in subsection 1.2) and are able to transfer text as
stream. The criteria as defined by the project manager are: guarantee of packet
delivery, compatibility with text-streaming in client-server implementation relation
and using HTTP capabilities as an advantage. Then we evaluate the protocols based
on some KPIs to identify the best suited one for our purpose. These KPIs include:
payload length, bandwidth usage, delta-time and interruption in data transmission.

1.4 Research Questions

Having the mentioned aim, his thesis is going to find the answer to the following
questions:

RQ1: Which protocols better fulfill the criteria of LNU Data Stream Center
Project for text streaming?

RQ2: Among the selected protocols, which one is the best to be used for the
text-streaming from the robots to the LNU data stream center?

RQ3: Among the selected protocols, which one is the best to be used for the
text-streaming from the LNU data stream center to the scientist?

1.5 Contributions

In this thesis we first nominate and then evaluate Websocket, Server-Sent
Events, Http1.1 and TCP protocols to understand their behavior and how they
perform with regard to transfer of text-stream. Adding new technology is always
challenging and the results of this thesis can help organizations which intend to
utilize one of the mentioned protocols, to govern text-stream data communication.
This would be especially helpful with Server-Sent Events and Websocket which
both are new compared to HTTP1.1 and the traditional TCP protocol. Hence, we
believe that the results of this thesis can be useful for network developers, who
decide to transfer text-stream over the wired network with similar plan as that of
Linnaeus University (from the robots to the data stream center and from the data
stream center to the clients) or for any other client and server data communication.

5

1.6 Report Structure

This thesis is organized as follows:

The thesis starts with chapter 1, the present chapter, which is an introduction
of the research topic. This chapter starts with covering the background and
motivation for this thesis. Also, the problem statement and research questions are
explained and contribution of the research to the domain is included.

The second chapter concerns how and why the nominated protocols are
identified. Moreover, each protocol is explained to provide a background for the
topic under research.

Methodology and data collection methods and justification for the use of the
chosen methods are discussed in chapter 3.
Chapter 4 is called implementation which starts with explaining about the tools that
are used during the experiment. Later it continues with necessary explanation about
the experimental environment and explanation about main the part of our
implementation.

Chapter 5 is devoted to evaluation. Firstly, the evaluation metrics will be
clarified and then the collected data will be visualized and analyzed. Later the result
will be evaluated in two part. This chapter is divided into two experimental parts
and a summary is included at the end of each part.

In Chapter 6 the final conclusion from this study is summarized and
suggestion for further research is presented.

6

2 Background

In this chapter the necessary information about the candidate protocols will
be presented. Section 2.1 explains about the protocol search and selection process.
Section 2.2 reviews the necessary information about each candidate protocol and is
divided into four subsections. This section is devoted to TCP as Subsection 2.2.1,
HTTP1.1 as Subsection 2.2.2, Server-Sent Events as Subsection 2.2.3 and
Websocket as Subsection 2.2.4.

2.1 Protocol Search

As the main goal of this thesis is evaluating text-stream protocols, we decided
to find our candidates among those that are able to transfer text data as stream. In
fact, there exists quite a large number of protocols over the internet that are involved
in transmitting the data. The limitations of such a project does not provide us with
the conditions to test and evaluate all the existing protocols. Therefore, we needed
to limit our list of protocols to be evaluated in this project. For the same purpose
we used LNU project requirements that define a set of criteria to select our
candidate protocols. To find out which protocols among this large number of
existing protocols meet our project criteria we did a literature review. Selection of
a list of protocols as part of this study needed a review of different sources about
the existing protocols to justify a list for our evaluation. In our literature review we
looked for the protocols which are being more commonly used for similar purposes.
We also searched about famous companies that have streaming APIs like Twitter,
to understand the approach and the protocol they are using. Our review of literature
indicated that HTTP is the protocol being used by Twitter for text streaming [50].
Similar studies have been done in the related fields for some protocols, but for
different infrastructures and with different goals. For example, some researches
have been done in order to understand about the performance of a specific protocol
[3] and some others are devoted to a specific infrastructure [16].

It is an advantage for a network protocol to be able to send and receive data
in two direction (bidirectional) and at the same time (full-duplex). However, there
are some protocols that are not bidirectional but can be used as stream protocol, for
instance HTTP is not bidirectional, but it is the basis of some other protocols. Some
protocols are using HTTP for handshaking (like Websocket) and some other
protocols have been created by changing the structure of HTTP (like Server-Sent
Events). HTTP-based protocols (which can use HTTP both for data transmission or
handshaking) are more effective on delivering streams since they can be used with
the standard web servers.

After these review of the protocols specifications in the related literature, a
list protocols are nominated based on the LNU Project criteria which are as follows:

- The text-stream protocol must be appropriate to be implemented in stand-
alone client-server relation (explained in Section 1.2);
- The protocol must guarantee packet delivery;
- Being able to use HTTP protocol’s capabilities during the communication is
an advantage.

7

We exclude those protocols which are used for video streaming or audio

streaming. Using TCP in video and audio streaming causes some delay due to
routing selection and error control of this protocol [44]. For the same reason audio
and video streaming protocols are generally using UDP [40,45] to transfer the data
and this may lead to packet loss since there is no mechanism in UDP to guarantee
to deliver the packets. Moreover, these days RTP (Real-Time transport Protocol)
and RTMP (Real Time Message Protocol) are two basic popular protocols that are
being used for media streaming [48]. RTP is designed for audio streaming and video
streaming like video teleconference which is based on UDP protocol [49]. RTMP
(made by Adobe) is another streaming protocol but does not use caching
mechanism like HTTP that causes increase both in data transmission speed and in
compatibility with most of the existing firewalls. Also RTMP is designed for
streaming data between a Flash player and a server [48]. Consequently, we exclude
RTP and RTMP. Also for the same reason we exclude some other protocols like
WebRTC (Web Real Time Communications) and UDT (UDP-based data transfer
protocol). This is because WebRTC is made mainly for video and voice streaming
rather than text streaming and both protocols are UDP based and cannot guarantee
packet delivery [51] [52]. Message queue protocols are also excluded since based
on the criteria and because of data preprocessing in data stream center we need to
implement protocol in client and server relation. Therefore, it is not possible to
directly transfer data from robots to the broker (Figure 1), while message queue
protocols can be used to transfer data from robot to broker directly without need to
any client server relation implementation.
 Based on the aforementioned criteria, and according to what explained in
Subsection 1.2 about trusted and untrusted side, our qualified protocol for trusted
side (robot to data stream center) are TCP, HTTP1.1 and Websocket. Also our
qualified protocols for untrusted side (data stream center to scientist) are HTTP1.1,
Server-Sent Events and Websocket. Therefore, all our qualified protocols are listed
as below:

- Websocket: It is bidirectional and full duplex protocol, and has HTTP level
handshaking and guarantees the packet delivery.
- TCP: It is bidirectional and full duplex protocol which guarantees the packet
delivery.
- HTTP1.1: It is a new version of HTTP protocol which can be used as text-
stream with delivery guarantee.
- Server-Sent Events: It is a unidirectional protocol from server to the client
only. HTTP based which can guarantee delivery of text data as stream.

2.2 Protocols

As discussed earlier in this chapter, we decided and chose our protocols based on
some criteria. In this section we are going to discuss the candidate protocols in more
details. All the four chosen protocols are explained and the required information
about them are provided under the four sub-sections below.

8

2.2.1 TCP

It is really important to understand the Transmission Control Protocol (TCP)
since it is the main protocol in the internet protocol suites [15]. TCP is working with
Internet Protocol (IP) and is making a bi-directional connection which means the
client and server can send and receive data simultaneously. The TCP connection is
maintaining a communication until client or server sends the message in order to
finish transmission. For the same reason TCP is called a connection-oriented
protocol. TCP is a transport layer protocol which ensures packet delivery over the
internet and makes reliable connection between client and the server over an
unreliable network [17].

There is a conceptual and logical network model that divides the network
communication to seven layers in OSI model or four layers in TCP/IP model
(Figure 2.1). Each layer builds upon the previous layer and performs a specific task
to complete the communication. To transmit the data via TCP, data encapsulation
is needed and for the same purpose the data have to pass to TCP from upper layer
protocol (Figure 2.1) [18]. After encapsulation of the data to a segment, it is time
to encapsulate the given segment to datagram and send it via point-to-point
transmission over IP in physical layer.

To Establish a TCP connection from client to the server, which is called three-

way handshaking, first client sends SYN (Sync request) to the server and lets the
server know about its sequence number (for example X). Then the server responds
with ACK (Acknowledge response) that means it has received the sequence number
X and will send SYN and its sequence number (for example Y) to the client [18].
Finally, the client will send its ACK to the server [18] and the data transmission
will begin (Figure 2.2).

On the other hand, in terminating a connection, the scenario is slightly
different from establishing the connection. One point can start the terminating
scenario with sending the FIN (Finish) to another point. To be more specific,
assume that client sends FIN to the server, then server will respond with ACK, that
it has received the message, and FIN to terminate the connection. In the final step,
the client will send the ACK to the server to say that it has received the server’s
message and the connection will be close as soon as the mentioned message is
received by the server [18] (Figure 2.2).

Application
Application Presentation

Session
Transport Transport
Network Network

Data Link
Physical

Physical
a) OSI model b) TCP/IP Mode

Figure 2.1: (a) OSI model and (b) TCP/IP model [18]

9

These days it is hard to pass through the internet via TCP port since most of

the firewalls block TCP ports and HTTP (80) and HTTPS (443) ports became the
standard port to communicate over the internet. Also all modern browsers are using
HTTP1.1 persistence connection [41] and its plain request and response.
Explanation about this type of connection will be presented in the next subsection.

Figure 2.2: Establishing a TCP connection (up) and terminating a
TCP connection (down)

10

2.2.2 HTTP1.1

This traditional communication protocol for the World Wide Web has been
announced in early 1990[8]. HTTP uses a synchronous way to send and receive the
data between web client and web server as the client sends the request to the server
and waits for the response from the server [2]. This process is sufficient for some
of the web clients which need to load the webpages and post the request to the server
and then wait for the results [2].
 This scenario which is used by HTTP1.0 protocol, is used in about 75% of
internet backbone traffic and has been improved by adding and updating its features
in HTTP 1.1 [1]. In fact, HTTP1.1 is an enhanced version on HTTP1.0 that transfers
the data in a more secure way [4]; but one of the biggest differences between
HTTP1.0 and HTTP1.1 is in their implementation that causes different packet
transmission structures through the network.

Figure 2.3: Request and response steps in HTTP 1.0

11

As Figure 2.3 indicates in HTTP1.0, the client has to send request per each
data transfer and after the data transmission, the connection will be closed [1]. The
same scenario must be implemented for each request and response. This is while
HTTP1.1 uses a persistent connection [6] to have more than one request/response

Figure 2.3.1: Request and response steps in HTTP 1.1(up) persistent
connection, (down) pipeline in persistent connection

12

per each HTTP connection and due to this feature, HTTP1.1 can be used to fetch
data as a stream [1]. HTTP1.1 runs on top of TCP (like HTTP1.0) and allows
multiple request to be pipelined (Figure 2.3.1) in buffer in order to transfer the data
faster and consequently reduce the web traffic. It should be mentioned that in some
cases of implementation of HTTP1.0, using the keep-alive header can make a
connection similar to persistent connection in HTTP1.1, but it makes some proxy-
server issues. This is while HTTP1.1 and its persistent connection [11] provide
better request handling via proxy servers. Persistent connection increases the
performance through many ways such as reducing the network overhead, reducing
the IO calls and as a result reducing the system resource usage [3]. Lack of
persistence-connection feature by itself is convincing enough to continue with
HTTP1.1 and omit HTTP1.0 from the candidate protocols list, as it is not possible
to transmit the data as stream without persistence-connection. From now on, we
will continue with HTTP1.1 and will not get in more detail about the older HTTP1.0
protocol.

It should also be mentioned that HTTP1.1 uses both polling and long polling
[5] techniques to receive data (or notification/event) from server. In polling, the
client has to send request for each notification (even if there is not any notification
ready) while in long polling the server will keep the connection alive until an event
becomes available to be sent to the client [12].

 Moreover, HTTP1.1 uses caching mechanism that can improve distribution
efficiency and quality of the service by reducing the redundant information-request
that causes decrease in both CPU load and network load [3]. It should be noted that
only static resources should be cached and caching the dynamic resource will
prevent the user from receiving up-to-date data, which is not recommended [3].

2.2.3 Server-Sent Events

As mentioned in HTTP section, there are some approaches to receive event
from the server such as polling and long polling. However, polling will use more
network resources since it needs to send request (GET) to the server for each
notification [11]. The mentioned notification may not be ready in the same time, so
the client has to send the request again [11]. For the long polling, it is true that
server keeps the connection open and will not reply to the request immediately, but
server will close the connection once the new message becomes ready and be sent
to the client [11].

Another approach to transfer data between the client and server is Server-Sent
Events which originally has been developed by Opera (2006) [21]. In fact, Server-
Sent Events is an API which keeps open an HTTP connection for a long time, to
receive push notification from the server in a special form [22]. This form can be
registered on different event handlers by programming languages [22].

 However, Server-Sent Events is a JavaScript API with support within all
HTML5-complaint browsers [23]. Server-Sent Events is similar to HTTP streaming
connection and uses regular HTTP technique (like push technique). It is an
advantage to make unlimited (in time) persistent connection between the client and
the server to send the events to the client while the mentioned event (messages) can
have optional event-name [11]. Server-Sent Events is not a substitution for polling
and long-polling [23]. However, depending on the purpose for which Server-Sent

13

Events is used, it may serve as an optimized version of them [23]. Server-Sent
Events is designed to standardize and decrease complexity in HTTP’s Comet-based
(Long-held HTTP request) strategy for future web-application [24].

Figure 2.5 portrays establishing a connection in Server-Sent Events. As it is
indicated in Figure 2.5, the client sends a regular HTTP request to the Server-Sent
Events’ server. The only difference between regular HTTP request and Server-Sent
Events client’s request is the content type of request message.

The client must specify text/event-stream to let the server know the content

type needed. If the server supports event streaming, it will respond with the same
content type (text/event-stream) and from that point, inside an unlimited (time)
streaming connection, the events will be sent (in the format of text) to the client
whenever it is ready on the server.

This protocol uses a subscribe-publish model which means when the client
subscribes to a channel, it will receive updates from the server (real-time) without
needing any request from the client [23]. Also in case of any disconnection, the
client can leverage the Last-Event-ID header which leads to let the server know
about the missed events and the server will resend all the missed events [23]. In
fact, the server restarts streaming events from the point the client left off [20].

Figure 2.5: Server-Sent events diagram

14

2.2.4 Websocket

What HTTP does is acceptable for most of the network infrastructures. These
days HTTP (and HTTP based) technology is used more by companies as it is more
firewall friendly and also more ISP (Internet Service Provider) and organizations
support its features. But HTTP, as a synchronous technology can not completely
satisfy the new services like steaming data transfer, which needs to be more
compatible and flexible with asynchronous data inside the web. In fact, the
applications which need real-time data, have to use different protocols according to
their criteria to meet their needs and that is the reason why different protocols are
defined in Internet Protocol Suite [9]. The User Diagram Protocol (UPD) and
Transmission Control Protocol (TCP) are two well-known protocols that are used
in real-time communication. While UDP does not guarantee the packet delivery of
the same sequence of data, TCP guarantees that. For instance, VOIP technology is
over UDP and most of the web applications use application layer protocol over
TCP. However, as it was mentioned earlier, among the application layer protocols
that transmit the data over TCP, HTTP is used more frequently. But, considering
the restriction of HTTP regarding its header overhead and synchronous structure,
we introduce another protocol in this subsection.

The protocol that was recently introduced as part of HTML5 standard is called
Websocket which can be claimed to be the main upgrade in web communications
history [10]. Websocket is an application level, bi-directional and full duplex
communication protocol which means it can send and receive the data at the same
time simultaneously on top of TCP by bringing the flexibility of TCP to the web
applications. Websocket can be used by any client and server as long as they are
implementing the Websocket protocol. Also all the modern browsers are
compatible with Websocket [43].

 Figure 2.6: Websocket diagram

15

In fact, the bi-directional technique in Websocket performs as an alternative
for polling technique in HTTP [12]. Websocket is similar to TCP not only in
functionality, but also in handshakes with HTTP 1.1 and also it inherits all the
benefits of existing web infrastructure such as: native web browser support,
firewall/proxy compatibility, URL-based endpoint and omitting the length limit
[13]. Websocket uses an asynchronous way to transmit the data (Figure 2.6).

Websocket starts with TCP handshaking that contains three messages and
starts from the client to the server (three-way handshaking). Later, to establish a
Websocket session, two messages will be exchanged starting from client to the
server. For the same purpose, Websocket is using HTTP handshaking level (by
using the benefit of HTTP protocol) that starts by sending upgrade request from the
client.

The client sends Websocket Upgrade Request via HTTP GET request. HTTP
header contains the information that are needed to be upgraded to the Websocket
connection (Figure 2.7).

If the server supports the Websocket protocol, it will answer the Websocket

Upgrade Response (Figure 2.8).

From this point, the data between client and server will be transmitted in

asynchronous and full-duplex mode and client and server can send application-
specific payload to each other [13]. Websocket is a message-oriented protocol.
Based on Websocket API, Websocket protocol has a feature called Event-Handling
which handles the events efficiently. The client and the server are able to
communicate with each other at the specific time when connection is established,
message is received, connection is closed and any error occurs. Websocket Event-

Figure 2.7: Websocket upgrade request [14]

Figure 2.8: Websocket upgrade response [14]

16

Handling makes it easier to communicate between client and server asynchronously
[30].

When a Websocket connection is established, the server will push the updates
to the client in an asynchronous way [31]. Moreover, the client will receive message
about OnOpen (when connection is established) and for each message it will receive
message about OnMessage from the server (Figure 14.2). Also the client will
receive message, in case of any error or when connection is closed due to OnError
and OnClose methods, respectively.

It is worth mentioning that by using Websocket protocol, clients and servers
are allowed to convert their HTTP connection to completely different protocols in
the format that they agree on [20]. Utilizing the Websocket protocol will create a
persistent connection that reduces the number of transmitting packets by
eliminating the HTTP overhead and request [14]. Considering these features of
Websocket, we selected it as another candidate protocol to be evaluated in this
research.

Figure 2.9: Websocket Event-Handling

17

3 Method

The Method chapter explains about the method we used to solve the problem
under this study. This Chapter consists of three sections. In Section 3.1 we will
explain about the research method that we used. Section 3.2 will clarify why we
selected and used our specific research method. Section 3.3 explains about how we
collected our data and increased their validity.

3.1 Scientific Approach

In this thesis we will nominate some appropriate protocols for text-streaming
according to project criteria and evaluate them in our simulated environment based
on some KPIs. In a number of previous studies with the similar subject [13, 16] a
simulated environment was created and quantitative method was used to answer the
research question. Quantitative method is investigating observable phenomena via
statistical, computational or mathematical technique in a systematic empirical way
[42]. Any numerical form of data can be quantitative data and can be analyzed in
quantitative method [42].

In this study we will evaluate our nominated protocols through numerical data
we collected using a set of tools. Therefore, in this thesis a quantitative method will
be used and a set of experiments will be conducted in order to collect the required
data to find the answer to the research questions.

We started by reading about each protocol’s specification to collect some
information about them and prepare our list. In the next step we will build our
experiments environment by implementing client and server by each protocol and
simulate the functionality of real robots and real servers. The quantitative and main
data for this study will be collected through experiments and the mentioned data
will be analyzed in the next step. For the same purpose we will use some standard
analysis tools such as RawCap to collect the data, and Wireshark and Message
Analyzer in order to visualize our data. Later we will interpret the results based on
the visualized data. More explanation about the tools used for the experiments are
given in Chapter 4.

3.2 Method Description

After our literature review and reading articles with the similar subjects, we

decided that the standard way to compare different protocols is to generate the
results from experiments. As it was explained in Chapter 2, some criteria are
defined based on the project requirements in order to select our protocols. By
reading about each protocol’s specifications we could gather the information and
decide which protocols meet our criteria.

We also defined some KPIs to evaluate protocols in experimental
environment. The mentioned KPIs can not be measured by reading protocols’
specifications since it is not a trustable way to measure them by comparing their
structure and specification.

18

Table 3.1 illustrates a summary of all the requirements that we specified to
select our candidates. The first three requirements (in Table 3.1) that are explained
in Chapter 2 are those criteria about which we collected information by reading
each protocol’s specification:

- Being able to implement in client-server relation to transfer text stream
- Packet delivery guarantee
- Being able to use HTTP protocol advantages

Based on the information in Table 3.1, our nominated protocols met most of the
requirements. The last four KPIs in Table 3.1 are those which should be measured
through experiments in order to evaluate the protocols. For instance, some
evaluation metrics like bandwidth usage can only be measured through experiment
and by using experimental method. In our experiments, the following KPIs will be
measured for the protocols:

1- Delta-time: Which is the time passed to receive one message from source
to the destination. A low delta-time means the given message has been
received to the destination faster.

2- Payload length: Which is the size of packet (normally is shown in bytes)
that contains the necessary data (given message) and may be different for
each protocol because of differences in architecture of each protocol.
Payload length can affect the amount of generated network traffic.

3- Bandwidth usage: Which more depends on payload length (packets with
bigger payload length need more bandwidth to be transferred) and the
number of packets which are exchanged between client and server to

Candidates

Requirements

T
ext-stream

ing
in client server
relation

P
acket delivery

guarantee

U
se

H
T

T
P

advantages

D
elta-T

im
e

P
ayload length

for
one

m
essage

B
andw

idth
usage

Interruption
and num

ber of
T

C
P

packet

transm
ission

TCP

  - - - - -

HTTP1.1

   - - - -

Server-Sent
Events

   - - - -

Websocket

   - - - -

Table 3.1: protocols’ requirement

19

transmit message from the source to the destination. It is worth mentioning
that more bandwidth usage needs more hardware resources to transfer the
data.

4- Interruption in data transmission: Interruption can be generated by
duplicate ACKs, application glitch and lost segments [32].

In order to measure these KPIs, a simulated lab will be used to put the

protocols under stress. Also we will get help from a number of standard network
tools including RawCap, Wireshark and Message Analyzer in order to monitor and
visualize the data. The mentioned tools will also be used to collect the data that are
needed to evaluate the nominated protocols.

Java programming language will be used to implement fake robot by each
protocol to simulate the functionality of robots and generate fake data, similar to
the data which will be generated by real robots. Also, we will use some external
library in order to implement fake robots. In the next step, we will implement four
different servers by each protocol to receive fake data from each mentioned robot.
In the implementation of servers, we will use Java programming language and the
necessary external libraries. In the program that we will develop for each protocol,
it is possible to echo the messages in a specific size and specific delta-time interval
between client and the server. It means that it is possible to increase or decrease the
size of message. Also the speed of generating the messages can be changed. As it
was explained earlier, in LNU Data Stream Center project, the data will be
transferred from the servers to the scientist-clients and the same condition applies
there.

At the beginning the idea was to use LNU’s server to perform experiments, but
it was not agreed by the University and we will use one machine to do our
experiments. Our client and server implementation will be done on a same host
machine and they will be connected to each other on a localhost network. The
hardware and software specifications of mentioned machine is given in Table 4.1.

In our implementation, we will use the following external library and

framework:

Table 4.1: Experimental environment configuration

20

- com.googlecode.json-simple (json-simple 1.1.1) in order to generate message
in json format. This library will be used in implementation of fake robots for
TCP, Websocket and HTTP1.1 protocols. Also this library will be used in
Server-Sent Events’ server.
- Spring framework (3.2.5) to configure and setup Websocket’s fake robot and
server.

Also, REST (Representational State Transfer) architecture will be used in

implementation of HTTP and Server-Sent Events in order to facilitate
communication with the server. REST is a software architecture style that counts
on a stateless client-server communication and tries to reduce network
communication and latency, while at the same time increases the independency and
scalability of server [33]. To communicate with a REST server, these four basic
actions are needed: Create, read, update and delete which are all together called
CRUD [34].

Then, data transmission will be started in our simulated environment and by
using our network analysis tools we will collect the required data, visualize the data
and evaluate them based on experiment’s results. For the purpose of this thesis,
given the limited time, resources and facilities, we settled with the mentioned
approach; otherwise, we preferred to do our experiments in a real infrastructure (for
example in Linnaeus University’s IT department, over its network and on real
servers).

3.3 Reliability and Validity

A research can be considered as valid when it uses an appropriate tool for

measurement and it is reliable when the result and the experiment can be repeated
in other environments and situations [37]. In this study we will use standard
network monitoring tools to collect our data. At the beginning, we will implement
the fake robots and servers for each protocol separately in order to transmit text-
stream. During the streaming we will use our candidate protocols to govern the
mentioned data transmission. In order to increase internal validity, we will disable
all the possible processes on localhost traffic that may affect the setup except those
which are needed for the experiments. Therefore, a network mapping method like
NAT will not have effect on the result. Also we will repeat the experiments to make
sure about the internal validity of the results. It should be mentioned that the result
of this research will not affect learning and habituation since the client and server
that are implemented in this thesis are not able to learn or experience.

In order to increase the external validity, we will generate the messages in
JSON format in data transmission since the message format in real project is JSON.
Afterwards, the protocols will be put under stress by increasing the message size
and decreasing the time interval for sending the messages. This is because the size
of article that will be read by real robot may be bigger than what is expected. This
way we will increase external validity and understand each protocol’s behavior and
how they handle big size message transmission.

Another factor that we suppose may increase the external validity is to
implement clients and servers in a way to be able to decrease the interval time

21

between generating the messages. The reason is that in real LNU project, the
number of robots may be increased based on the scientists request and by increasing
the number of robots, the interval time between generating the messages will be
decreased.

 In order to increase the reliability of the research we will do the experiments
in the same environment for each protocol. Also we will transfer the same message
by each protocol to ensure the consistency of this study. Moreover, we do
experiments with reliable and standard tools and we will repeat our experiment
several times in some cases where the results are a bit fluctuated. Then we will
calculate the average from our experimental results. It is important to note that this
experiment is to be conducted on wired network and the results of the same
experiments on wireless network can be different as the condition for wireless
network is different. For example, wireless network is more affected by
environmental noises and bit error while wired network is more affected by wire
related problems like congestions [19]. Therefore, the result from the present
experiment can not be generalized for the wireless network.

22

4 Implementation

This chapter explains about our implementation scenario. Section 4.1 clarifies
more about the tools we used during the experiments. In Section 4.2 the
experimental environment is described and section 4.3 is devoted to implementation
codes, but only the main parts of implementation codes are explained. Subsection
4.3.1 to 4.3.4 are dedicated to implementation of fake robot and server for TCP,
HTTP1.1, Server-Sent Events and Websocket respectively.

4.1 Tools Used

Our review of related literature indicated that in other similar studies, tools like
WireShark Network Protocol Analyzer [25], NetBeans [26] HTTP Server Monitor
and the like have been used [17]. However, during this project we need to monitor
and analyses packets in more detail. So we will disregard tools like NetBeans HTTP
Server Monitor and Eclipse TCP/IP monitor and will continue with tools that have
more features to get information about packets payload content, size, creation time
and so on.

Also in order to more easily collect information about the packets, we decided
to use the analysis tools which have features showing the packets as stack; these
features are called Stack-View. To elaborate more on Stack-View, assume that 3
packets are involved in transmitting a message, Stack-view will show this message
as a stack with three layers; each layer shows one of the mentioned packets.

 In this study, for observing and analyzing the network traffic, the following
tools will be used:

1- RawCap: A free command-line tool that can be used to monitor network
traffics on windows and is using raw sockets [28]. Also it can create log file
to be used in WireShark and Message Analyzer. During this project,
RawCap is used to collect the localhost-traffic logs and make file with pcap
suffix which can be opened and analyzed in Wireshark and Message
Analyzer.

2- Wireshark: This tool helps to analyze network protocols and understand
what happens inside network in depth [25] and generate statistic for network
traffic. Wireshark is used in this project to help in analyzing the given pcap
file and generate the bandwidth usage graph.

3- Message Analyzer: This tool has the same functionality as WireShark, but
contains more features (like Stack-View) to analyze packets in detail.
Message Analyzer is used to capture the packets in detail and help in
analyzing network traffic [29]. During this project, Message Analyzer is
used in order to help us to find delta-time data and generate the graph to
analyze data interruption.

23

4.2 Implementation

As it was discussed in Section 3.2, we implemented fake robot to simulate the
functionality of real robots. In all of our implementations, we used a class called
FakeRobot to create the customized messages in the desired size and in JSON
format. This class contains a big text message by default, the size of which is
customizable and can be increased to double, triple and more, based on requested
size.

From now on, in this section we will call the fake robots as “clients” to make
it easier to follow. Clients replace the real robots in order to generate text message.
The size of such messages is customizable and the time interval between sending
the messages can be changed.

As our implementation shows in Figure 4.1, transmission of Websocket,

HTTP1.1 and TCP protocols is from client to the server side, while transmission of
Server-Sent Events is from the server to the client. This is because Server-Sent
Events is a unidirectional protocol that transmit the data only form server to the
client. In this thesis we implemented a simple version of client and server, using
each protocol in order to do our experiments. In the next sections of this chapter,
we will present only the main part of our implementation’s code that is important
to understand the process of this study. Further detailed explanations and
implementation codes can be found in References list [53].

Figure 4.1: Transmitting fake text (in JSON format) from client to the
server by Websocket, HTTP1.1 and TCP protocols

24

4.2.1 Client and Server Using TCP Protocol

As the summary shows in Figure 4.2, our client implementation consists of

two classes, FakeRobot and Robot. Robot plays the role of the main class and
FakeRobot is used in order to create a big message with the desired size. Then we
created TCP socket on desired IP and port and transferred the message to the server
within the desired time intervals. When the server starts, it will listen to the defined
port (serverPort) and allows the client to establish the connection. The connection
will shut-down when the client sends a line that contains closeConnection only.

4.2.2 Client and Server Using HTTP1.1 Protocol

As Figure 4.3 above indicates, in implementation of HTTP1.1 the direction

of text streaming is from client to the server. Client implementation consists of two
classes. We avoid repeated explanation about FakeRobot. We named the main

Figure 4.3: HTTP1.1 implementation summary

Figure 4.2: TCP implementation summary

25

client class as Robot. In this class TimerTask has been used to manage time interval
and the FakeRobot creates the messages. As it is shown in Table 4.1, we used Jersey
to create our HTTP client and send messages by post request to the REST server.

In the server side we used Jetty library to implement the server which contains
two classes. We named the first class DataCenterServer and it is the main class
which creates, configures and runs the server. The second class is named
MessageHandler that uses @POST annotation to handle post request from the
client and to receive the message. In the DataCenterServer we setup server on a
port that we want to start data transmission on.

4.2.3 Client and Server Using Server-Sent Events Protocol

We used Jersey in order to implement Server-Sent events’ client and server.

In our implementation, the client can send get-request to the server and a while-
loop gets event from the server as long as the events are available; otherwise, the
connection will be closed.

As the summary indicates in Figure 4.4, the server side that answers the
client’s get-request consists of three classes. Apart from FakeRobot that was
explained earlier, DataCenterServer is responsible to configure and run the server
on the given port and IP address. Another class named MessageHandler is
responsible to generate text and handle the Get request from the client. In this class
we used FakeRobot like our other implementations to generate the customized text
that is saved in fakeMessage. Then we used a thread to manage generating messages
by sending fakeMessage within a desired time interval.

Figure 4.4: Server-Sent Events implementation summary

26

4.2.4 Client and Server Using Websocket Protocol

As the summary presents in Figure 4.5, our client consists of four classes.

Apart from FakeRobot, Robot is the main class that creates and configures
Websocket client. Here, like our previous implementations, fakeRobot is used in
order to generate the customized message with the desired size. It is worth
mentioning that Java.Thread is used to manage time interval of generating
messages. As it was explained earlier in Section 2.2.4, (according to Websocket
API) this protocol is handling the events by some annotations and EventHandler
plays the role of event handler. This class uses MessageHandler to create
appropriate messages and handle @OnOpen and @OnMessage events.
MessageHandler is used in EventHandler in order to create messages. In fact,
MessageHandler is responsible to increase the security of data transmission by
encoding and decoding the desired messages.

Our server implementation consists of four classes. Two of them have almost
the same functionality as client’s classes. DataCenterServer is the main class that
contains the configuration of Spring framework and setup the server. EventHandler
is using annotations to handle the events and MessageHandler creates the
appropriate message for EventHandler. Moreover, we used Spring framework
annotations in ServerConfiguration in order to configure the server.

Figure 4.5: W implementation summary

27

5 Evaluation

This chapter is devoted to our experiments and evaluation. We divided this
chapter into five sections. In Section 5.1 we will explain about our evaluation
metrics. The first experiments will be presented in Sections 5.2 where we will start
to understand protocol’s behavior in detail by sending one message using each
protocol. A summary and conclusion of the first experiment will be discussed in
Section 5.3 and subsection 5.3.1, respectively. Later in subsection 5.4 we will
continue our experiment by changing the size of messages and time-interval of
generating messages, respectively. Finally, Section 5.5 will present a summary of
our experiments in Section 5.4.

5.1 Evaluation Scenario

Our evaluation scenario was to primarily focus on each protocol individually
by sending one message using each protocol. Later on, we checked the protocols
behavior under stress by sending a large number of messages (as stream) through
these protocols. Also we increased the size of messages and decreased the interval
time of sending-message, respectively. Then we measured our defined KPIs for
each protocol under mentioned conditions to find which protocol behaves better at
message transfer considering time, bandwidth usage and interruption during the
data transmission. The results that will be analyzed later in this chapter have been
generated by a number of standard network monitoring and analysis tools.

It is noteworthy that our message is a text (the result is the same as that of
JSON format) with the average size of newspaper articles which equals to 1592
bytes (calculated by java.lang.String.lenght). The logic behind this is that the typical
message size of the robot application that Linnaeus University is planning to build
is 1592 bytes and we used the same message size in our experiments.

5.2 First Experiment: Single Message Transfer

In this experiment we evaluate the result for sending one message. We start
with describing the experiment in detail for Websocket and then present a summary
of the same experiment for other protocols in next sections.

At the beginning we sent one message by Websocket protocol to check the
results regarding delta-time and payload length. In order to calculate the payload
length and delta-time we needed to do calculations. This is because the size of
message is a bit big and also more than one packet of data is involved in transferring
one message (the relation is demonstrated Table 5.1). The payload length was the
same during all of our five experiments. However, regarding the delta-time
calculation, we repeated this experiment five times because the results of delta-time
were slightly fluctuating (Figure 5.3) in milliseconds and we decided to conclude
based on the average of the figures.

According to Figure 5.1 which has been generated by Message Analyzer, the
payload length for sending one message is the product of sum of 1460 bytes and
185 bytes which equals 1645 bytes (the relation is shown in Table 5.1 and based on
Figure 5.1 the flag A is ACK and AP is ACK-PUSH which respectively mean the

28

Figure 5.1: payload length to Send one message by Websocket Connection

Figure 5.2: Websocket upgrade-protocol message (Stack view) –
generated by Message Analyzer

Table 5.2: Overhead calculation

Table 5.1: payload length calculation

traffic is accepted and push data). This is because those two packets contain the
messages that are transmitted by Websocket and also the standard maximum
transmission unit (MTU) is 1500 bytes [27].

It should be mentioned that all four protocols are the same as Websocket and
use TCP packets in transport layer to transfer the message. The results indicate an
overhead size of 3.2% for one message that is generated by Websocket protocol
(the relation is shown in Table 5.2).

In order to calculate delta-time (Figure 5.2) we should sum up the time needed

for HTTP handshaking (Switch the protocol that contains request and response
between client and server as Explained in Subsection 2.2.4) and the time spent to
transfer actual message (the relation is shown in Table 5.3 – generated by Message
Analyzer).

Payload length first
message

Payload length
second message

Payload length to send one
message in Websocket

Variable Value Variable Value Variable Formula Value
Pf 1460

bytes
Ps 185

bytes
PWS PWS = Pf

+ Ps
1645
bytes

Actual message
size

Payload length to
send one message
in Websocket

Overhead of Websocket for one message

Variable Value Variable Value Variable Formula Value Value
percentage

Ms 1592
byte

PWS 1645
byte

Ows Ows =
PWS - Ms

53
byte

3.22 %

29

Figure 5.4: Bandwidth usage for 1 text message by Websocket (per 1sec)-
Generated by WireShark

Table 5.3: Delta-time calculation

To convince ourselves that the above results is repeatable, we performed the

same experiment five times. Then we calculated the average from the results
(Figure 5.3).

First
experiment

Second
experiment

Third
experiment

Fourth
experiment

Fifth
experiment

Average

0.087 0.105 0.101 0.099 0.09 0.0964

As it is illustrated, the average is close to ∆TWS that is calculated in (4). It is

worth mentioning that the switch protocol transaction is happening once during a
Websocket connection and it can be neglected during data streaming [13].
However, we decided to include this part to more clarify the delta-time for one
message transmission. Moreover, we tried to check the bandwidth usage of this
transmission and the results is shown in Figure. 5.4. This figure has been generated
by Wireshark and the X-axis in it, shows the time in the scale of one second. The
Y-axis shows the number of TCP packets that are involved in transmitting the
message. The result demonstrates that about 10 TCP packets have been exchanged
in order to transfer one message from the client to the server.

Delta-time to switch
protocol

Delta time to transfer
message

Delta time to send one
message by Websocket

Variable Value Variable Value Formula Value
∆TSwitch-protocol 0.063 ∆Tpayload-transfer 0.027 ∆TSwitch-protocol

+

∆Tpayload-transfer

0.09

Figure 5.3: Average Delta-time of five-times experiment

30

It should be mentioned that the only part that we are interested in, for
bandwidth usage’s graph, is the height of graph which represents the number of
packets that are used. According to Websocket API, our client will receive event
handler’s messages in OnMessage and OnOpen conditions. We ignored OnError,
since we had not any error. OnClose has also been ignored because it happens after
receiving the message.

 In the next step we followed the same scenario for other candidate protocols
but since the process details are the same, we only present the results. We sent one
message by TCP socket, HTTP1.1 and Server-Sent Events protocols and the results
and summary of bandwidth usage, delta-time and payload length are presented in
Section 5.3.

5.3 First Experiment’s Summary

5.3.1 First Experiment’s Conclusion

The results demonstrate (Table 5.4) that since TCP is an underlying protocol
for HTTP1.1, Websocket and Server-Sent Events [13,2,3], the payload size,
bandwidth usage and Delta-time to receive the message for TCP were less than
other protocols and therefore it performs better compared to other candidates. It
should be mentioned that Websocket header in handshake procedures is only two
bytes which is smaller than HTTP1.1[31]. Also the size of header in Websocket
protocol affected its payload size and bandwidth usage, just as in HTTP1.1 and
Server-Sent Events. Since we could find about protocols performance by
transferring one message in previous experiment and this thesis concentrates more
on data streaming, we continued our experiments as detailed in section 5.4, by
transferring text-stream using each candidate.

5.4 Second Experiment: Stream Message Transfer

Previously, in the first experiment we checked the protocols’ behavior for
each message to understand how each protocol structure affect data transmission
when transferring one message. This part will present the experiment’s result of

Protocols

Time to receive one
message(s)

Payload size (byte) –
Overhead size
(percentage)

Bandwidth usage
(packets/s

Server-Sent
Events

0.10082 1732 – 8.08% 13

Websocket 0.0964 1645 – 3.22% 10

HTTP1.1 0.0093 1807 – 11.89% 11

TCP 0.0016 1597 – 0.31% 6

Table 5.4: Experiment results of transferring one message

31

sending text message continuously as stream. We divided this experiment to three
sub-sections. We continued the experiments by using the candidates to send text-
stream while increasing the size by 10 times and decreasing the time-interval of
sending messages. In fact, in this part we put the protocols under stress of text-
streaming to check the results and understand about the performance of each
protocol.
 In all three sections we visualized the bandwidth usage and interruption
during the data transmission by Stevens-graph. Via Stevens-graph we can analyze
and find the interruptions clearer. A flat area in Stevens-graph (Figure. 5.5) means
an interruption which can be generated by ACK or double ACK. A gap in graph
means an interruption that may happen because of data loss or lack of data to
transmit and Stevens-graph will grow faster if the number of data transmissions
increases. In Stevens-graph, X-axis shows time and Y-axis is TCP sequence number
that represents bytes sent and increases by each one byte of TCP data sent [25].

5.4.1 Sending Messages as Stream

In this section we started to send messages as stream. First we visualized
Stevens-graph for Websocket as in Figure. 5.5 in which X-axis shows the time in
seconds and Y-axis shows the TCP sequence number.

We start to show the result for Websocket to become more familiar with

Stevens-graph and what we can understand from this graph (Figure. 5.5). In
generated Stevens-graph for Websocket (Figure. 5.5) we noticed the interruptions
in transmission. However, there is not any gap during the transmission and it means
we did not have any data loss. To compare the amount of messages transmitted by

Figure 5.5: Interruption during the stream-data transmission by Websocket – Generated
by Message Analyzer

32

each protocol we generated Figure 5.6 through which we can indicate and compare
the growth rate for each protocol.

Server-Sent Events grows a bit faster than other protocols and as it was
explained earlier, it means that the number of TCP packets that are transmitted via
Server-Sent Events is more than other protocols.

HTTP1.1 uses request and response to transmit the data. Based on the Figure.

5.6, the interruption for HTTP1.1 is more than other protocols because a time period
should be spent to send request to the server and receive the answer. However, the
amount of bytes that is sent via HTTP1.1 is greater compared to Websocket and
TCP.

33

Figure 5.6 illustrates that the interruption for the TCP protocol is less than

other protocols and Websocket is the one which is a bit similar to TCP, interruption
wise. Exchange request and response in HTTP1.1 per each message not only
increased the interruptions in data transmission, but also affected bandwidth usage
(Figure. 5.7) by using more bandwidth resources compared to other protocols. In
Figure 5.7, Y-axis shows the number of packets that are exchanged to transmit the
messages and X-axis shows the time in seconds. It is worth mentioning that in all
of bandwidth usage’s figures in this study we limited the time to ten seconds to be
more focused on details. As it is mentioned in Chapter 2, Websocket API uses
massage in full-duplex manner to update client about the condition of data
transmission (Event handling), but the bandwidth usage of Websocket is not as
much as HTTP1.1 which needs request and response per each message
transmission.

 On the other hand, Server-Sent Events needs at least one HTTP request from
the client to start data transmission [23] and that is the reason why the bandwidth
usage of Server-Sent Events is less than Websocket and HTTP1.1, but not less than
TCP which needs only a three-way handshaking to start data transmission [18].
Actually, Websocket, Server-Sent Events and HTTP1.1 are not real transport
protocols and use TCP to transfer the data which leads them to have additional high
level handshaking compared to TCP [13].

5.4.2 Increased Message Size

In next step of experiment, we increased the stress level by increasing the size
of each message by ten-times. In fact, we transferred big size of text-stream using
those protocols and concentrated on their performance regarding bandwidth usage
and interruption during the transmission. Since the size of article on website can be
big and the text which will be generated by robots can be different, so we should
check the protocols to understand their behavior in case of transferring big size text-
stream.

34

The results of bandwidth usage visualization are presented in Figure. 5.8. The

X-axis illustrates the time in seconds while the Y-axis shows the packets that use
bandwidth and are exchanged to transfer the messages. Figure. 5.8 demonstrates
that increase in the message size has affected Websocket more than other protocols.
Websocket, with its event handling mechanism, exchanges more packets in order
to transfer a big text streaming while TCP, due to the three-way handshaking
mechanism, still has the minimum bandwidth usage. To get more detail about the
relation between bandwidth usage and number of transmitted TCP packets we
visualized Stevens-graph.

The Stevens-graph is presented in Figure. 5.9 in which the X-axis shows time

in seconds, and the Y-axis shows the number of TCP packets that are exchanged to
transfer the messages. The interruption during the transmission in Server-Sent
Events is still less than other protocols and its graph grows faster which means more
messages are transferred via Server-Sent Events protocol (Fig. 5.9).

On the other hand, HTTP1.1 still has more interruptions compared to other
protocols. Websocket and TCP are two protocols that interact in a rather similar
way towards increasing the message size. Also, as it is shown in Figure. 5.9, TCP
and Websocket transferred the messages a bit faster than HTTP1.1 because their
graph grew a little faster compared to HTTP1.1.

5.4.3 Decreased Time-Interval

In the final step of the experiment, we decreased the send-message interval to 1
millisecond (Figure. 5.10) and visualized the bandwidth usage and Stevens-graph,
respectively. Figure. 5.10 illustrates the bandwidth usage of protocols in which the

35

X-axis shows the time in seconds, and the Y-axis represents the number of TCP
packets that are exchanged by each protocol.

Figure. 5.9 shows the generated Stevens-graph. As it is explained at the

beginning of this chapter, the X-axis represents the time in seconds and the Y-axis
represents TCP sequence number.

In Figure 5.10 we noticed that bandwidth usage of Server-Sent Events is
significantly more than that of other candidates. Stevens-graph (Figure. 5.11)
proved that the Server- Sent Events transferred more TCP packet of data (messages)
compared to other candidates since the generated Stevens-graph by Server-Sent-
Events grew noticeably.

36

By using Server-Sent Events protocol, the server needs only one request from

client to start unidirectional streaming from the server [23]. The results prove the
efficiency of this protocol in transmitting fast unidirectional text-stream. The
traditional TCP protocol that only needs three-way handshaking to start data
transmission [18], still has minimum bandwidth usage (Fig. 5.10) while interruption
during data transmission is not much and is almost the same as Websocket (Figure.
5.11). It has also almost the same number of TCP packet transmission (message)
(Fig. 5.11) as Websocket. Bandwidth usage of Websocket is a bit more than
HTTP1.1 and TCP protocols (Figure. 5.10) because of event handling mechanism
in Websocket API [30], but since its Stevens-graph grew with the same rate as TCP,
the number of messages that are transmitted by Websocket is almost close to that
of TCP protocol (Figure. 5.11). HTTP1.1 request and response mechanism proved
inappropriate in case of transmitting fast text-stream. The bandwidth usage of
HTTP1.1 is more than TCP protocol since its Stevens-graph grew slower than that
of other protocols and it means the number of messages transferred using this
protocol is less compared to other candidates (Figure. 5.11).

As it is explained earlier in Subsection 5.4.2, we limited the time in bandwidth

usage figures to ten seconds and in order to present the results in one second (Table
2), we divided the bandwidth values by 10. Below is an example:

Bandwidth usage of HTTP1.1 in Figure 14.6 in ten second: 70
Bandwidth usage of HTTP1.1 in one second = 70/10 = 7

The same scenario was used for all other protocols and the result is presented
in Table 5.4. Also Table 5.5 indicates the results of Stevens-graph for one second.
In order to produce the average for one second (Table 5.5) we divided the results of
30 second by 30. In the coming section we provide a summary about the protocols
behavior in this experiment.

5.5 Second Experiment’s Summary

Table 5.4 indicates that HTTP1.1 used more bandwidth in Scenario 1, also it
had less Stevens-graph’s value is Scenario 2 and 3 (Table 5.5) which means more
interruption during the data transmission in the mentioned scenarios. On the other
hand, TCP, as the traditional full duplex protocol to transfer the bi-directional data
streaming, behaved acceptably in our experiments. The bandwidth usage of TCP in
all stages was less than other protocols, also its Stevens-graph’s value was low
which means the data interruption for TCP was close to Server-Sent Events and had
the minimum amount of interruption. Websocket exchanges the messages further
to actual data to increase the control on transmission and handle the events [17].
However, the Stevens-graph’s value for Websocket is close to TCP. As it is
illustrated in Table 5.4, the bandwidth usage by Websocket is influenced by the size
of the message. Based on Table 5.5 and summary of part 1 of the experiment,
Server-Sent Events showed a better behavior compared to Websocket and
HTTP1.1. This is because HTTP1.1 needs to handshake and send request for every

37

new message and Server-sent Events is using only one handshake and request
during the data transmission.

In Scenario 3 (Table 5.4) where the interval time is decreased to 1
millisecond, Server-Sent Events generated appropriate result.

Protocol

Bandwidth Usage (packet/second)

Scenario 1
Message size: Normal -
Interval: 1sec.

Scenario 2
Message size: 10
times - Interval:
1sec.

Scenario 3
Message size:
Normal Interval:
1milisec.

TCP 3 13 203

Server-Sent
Events

3.9 17 2,700

Websocket 6 24 367.5
HTTP1.1 7 16 327.5

Protocol

Stevens-graph (TCP-sequence-number/second)

Scenario 1
Message size:
Normal - Interval:
1sec.

Scenario 2
Message size: 10
times - Interval:
1sec.

Scenario 3
Message size:
Normal
Interval:
1milisec.

TCP 1592 14,882 148,783

Server-Sent Events 1739 19,008 1,488,044

Websocket 1385 14,664 146,964

HTTP1.1 1556 14,166 88,633

Table 5.5: Stevens-graph results (TCP-sequence-number/second for one second)
for each protocol.

Table 5.4: summary of bandwidth usage (packet/second for one second) by each
protocol.

38

6 Conclusion and Future Work

This chapter is the concluding chapter and is divided to two sub-sections. The
conclusion of this study will be explained in Sub-section 6.1. Also a table that
summarizes the results of this thesis and suggests the best suited protocol will be
included in the same Sub-section. Sub-section 6.2 is dedicated to future work and
the prototype plan about this thesis.

6.1 Conclusion

In this study we selected to use and focused on Websocket, TCP, Server-Sent
Events and HTTP1.1 protocols that can be used to transfer text-streams based on
the criteria defined by the project requirements. We divided our experiment process
into two parts. In the first part, we got information about how the protocols’
structure affect their behavior to transfer one message. For the same purpose we
compared protocols in terms of delta-time, payload length and bandwidth usage.
The results illustrated that TCP protocol performs slightly better than others. As the
main purpose of this thesis is evaluating protocols for text-streaming, we continued
the experiment process and in the second set of experiments we put the protocols
under stress by transferring large number of texts, increasing the size of texts and
decreasing the time interval (to force to transmit the data faster). Then we used
RawCAP, Wireshark and Message Analyzer to monitor the network traffic and
analyze the result of experiment.

Lack of access and information about implementation of scientist’s clients in
subscriber side that we discussed in Sub-section 1.2, and the specification of some
protocols convinced us not to consider the experiment results for TCP in scientist
sides and Server-Sent Events in publisher side. Because we don’t have access to
open any port for TCP in scientist side, the information about the client
implementation in that side is not given as well (e.g. is a browser or standalone
application). Furthermore, Server-Sent Events is a unidirectional protocol from
server to client, only. Hence it is not possible to use this protocol in subscriber side.
Based on the results of the experiments done in this research we are suggesting that
the protocols be as follows:

Suggestion for publisher side in the order of priority (Trusted side):

1- TCP
2- Websocket
3- HTTP1.1

Based on the results of the experiments, TCP protocol as a traditional bi-

directional and full duplex protocol behaved better than other protocols. It used less
bandwidth while its interruption during the data transmission was also less than
others. As it was explained earlier, publisher side is trusted and there is no firewall
and restriction with regard to implementation information in this side. So TCP
protocol is our first suggestion to be used in publisher side.

39

Websocket is our second suggestion for publisher side. One of its strengths is
that it can use HTTP handshake and its advantages (Explained in Subsection 2.2.4).
However, it is using protocol’s information overhead (compared to TCP protocol).
Also Websocket sends some extra messages (according to Websocket API) to
increase control over data transmission. Such extra messages affect bandwidth
usage and cause interruption in data transmission.

Our third suggestion for publisher side is HTTP1.1. Its request and response
structure and larger header size (compared to Websocket) causes more bandwidth
usage and less data transmission by this protocol.

Suggestion for subscriber side in the order of priority (Untrusted side):

1- Server-Sent Events
2- Websocket
3- HTTP1.1

The first suggestion for subscriber side is Server-Sent Event since its

bandwidth usage and interruption in data transmission was less than other protocols
and it means it could transfer more messages compared to Websocket and
HTTP1.1. Server-Sent Events only needs one request and one handshake from the
client to start the data transmission and that is the reason it behaved better,
especially compared to HTTP1.1.

The second suggestion is Websocket because the experiment results indicate
that its bandwidth usage and interruption in data transmission is more than Server-
Sent Event. Especially when the size of message is increased and interval time is
decreased.

HTTP1.1 is our third suggestion for subscriber side since its bandwidth usage
and interruption during the data transmission was more than Server-Sent Events
and Websocket. Table 6.1 summarizes the protocols in the order of priority as
suggested in this thesis:

Part 1
Scientist side (Trusted side)

Part 2
Subscriber side (Untrusted side)

TCP Server-Sent Event
Websocket Websocket
HTTP1.1 HTTP1.1

6.2 Future work

Further studies will be needed to make first prototype of entire scenario based
on Figure 1. If we had more time we could setup our version of Data Stream Centre
and we would follow our suggestion and use TCP in part 1 and Server-Sent Events
in part 2 (Table 6.1). Apart from the mentioned approach, future research can
address stall problem which may happen when the speed of sending and receiving

Table 6.1: Protocol suggestion. The highest priority is on top.

40

data in the source and destination are not the same. Also the experiments can be
extended to clarify more about each protocol’s behavior. It would be really useful
if we had information about resource usage (for example CPU and RAM) for each
protocol in order to help organizations about the hardware resources that need to be
allocated to each protocol.

By increasing the use of satellite links it would be appropriate to have
evaluations of wireless network to increase the information about the network’s
behavior on wireless network and understand how each protocol manage data
transmission on that type of network.
These are all the limitation of this study which can be considered in the future and
more comprehensive studies.

41

References

[1] B. Krishnamurthy, J. C. Mogul and D. Kristol, "Key differences between
HTTP/1.0 and HTTP/1.1", Computer Networks, vol. 31, no. 11-16, pp. 1737-1751,
1999.

[2] S. Vinoski, "Server-Sent Events with Yaws", IEEE Internet Computing, vol. 16,
no. 5, pp. 98-102, 2012.

[3] C. Toft, H. Persson, “HTTP/1.1 performance from an embedded perspective”
M.S. thesis, Dept. Computer Science, BTH Univ., Stockholm, Sweden, 2004.

[4] H. Klevjer, K. Varmedal, A. Jøsang,” 'Extended HTTP Digest Access
Authentication” M.S thesis, Dept. Informatics, Oslo Univ., Oslo, Norway, 2013.

[5] D. Gourley and B. Totty, HTTP: The Definitive Guide. Beijing: O'Reilly, 2002.

[6] R. Fielding, J. Gettys, J. Mogul, L. Masinter, P. Leach, T. Berners-Lee and H.
Frysyk, W3.org, 1999. [Online]. Available:
https://www.w3.org/Protocols/rfc2616/rfc2616.txt. [Accessed: 15- Mar- 2016].

 [7] R. Fielding, "RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1",
Tools.ietf.org, 1999. [Online]. Available: https://tools.ietf.org/search/rfc2616.
[Accessed: 03- Mar- 2016].

 [8]"OSI", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/OSI. [Accessed: 18- Feb- 2016].

[9] G. Muller, “HTML5 WebSocket protocol and its application to distributed
computing” M.S. thesis, Dept. Engineering, Creanfield Univ., Cranfield, England,
2014.

 [10] V. Wang, F. Salim and P. Moskovits, The definitive guide to HTML5
WebSocket. Berkeley, Calif.: Apress, 2013.

42

 [11] S. Loreto, P. Saint-Andre, S. Salsano and G. Wilkins, "RFC 6202 - Known
Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional
HTTP", Tools.ietf.org, 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6202. [Accessed: 04- Feb- 2016].

 [12] D. Skvorc, M. Horvat and S. Srbljic, "Performance evaluation of Websocket
protocol for implementation of full-duplex web streams", 2014 37Th International
Convention On Information & Communication Technology, Electronics &
Microelectronics (MIPRO), p. 1003, 2014.

 [13] I. Fette and A. Melkinov, "RFC 6455 - The WebSocket protocol",
Tools.ietf.org, 2011. [Online]. Available: http://tools.ietf.org/html/rfc6455.
[Accessed: 21- Jan- 2016].

 [14] P. Lubbers, B. Albers and F. Salim, Pro HTML5 programming. New York:
Apress, 2010.

 [15] M. Allman and A. Falk, "On the effective evaluation of TCP", ACM
SIGCOMM Computer Communication Review, vol. 29, no. 5, p. 59, 1999.

[16] A. Almasi, Y, Kuma, “Evaluation of WebSocket Communication in Enterprise
Architecture” Bsc. thesis, Dept. Computer Science, Göteborgs Univ., Göteborg,
Sweden, 2013.

 [17] J. Hamerski, E. Reckziegel and F. Kastensmidt, "'Evaluating memory sharing
data size and TCP connections in the performance of a reconfigurable hardware-
based architecture for TCP/IP stack", 2007 IFIP International Conference On Very
Large Scale Integration, 2007.

 [18] M. Del Rey, "TRANSMISSION CONTROL PROTOCOL", Ietf.org, 1981.
[Online]. Available: https://www.ietf.org/rfc/rfc793.txt. [Accessed: 18- July-
2016].

 [19] A. Anzaloni and M. Listanti, "TCP performance over satellite networks",
Aerospace Conference, 2003. Proceedings. 2003 IEEE, vol. 1, pp. 1 - 449, 2003.

 [20] S. Vinoski, "Server-Sent Events with Yaws", IEEE Internet Computing, vol.
16, no. 5, pp. 98-102, 2012.

43

 [21] A. Bersvendsen, "Dev.Opera — Event Streaming to Web Browsers",
Dev.opera.com, 2006. [Online]. Available: https://dev.opera.com/blog/event-
streaming-to-web-browsers/. [Accessed: 18- Mar- 2016].

 [22] L. Hickson, "Server-Sent Events", W3.org, 2012. [Online]. Available:
https://www.w3.org/TR/eventsource/. [Accessed: 18- Apr- 2016].

 [23] E. Estep, "Mobile HTML5: Efficiency and Performance of webSockets and
Server-Sent Events", Nordsecmob.aalto.fi, 2013. [Online]. Available:
http://nordsecmob.aalto.fi/en/publications/theses2013/thesis_estep/. [Accessed:
04- Mar- 2016].

 [24] R. Gregor, "HTML5 Server-Push Technologies, Part 1 Blog | Oracle
Community", Today.java.net, 2010. [Online]. Available:
https://today.java.net/article/2010/03/31/html5-server-push-technologies-part-1.
[Accessed: 18- Feb- 2016].

[25]"Wireshark · Go Deep.", Wireshark.org, 2016. [Online]. Available:
http://www.wireshark.org/. [Accessed: 01- May- 2016].

[26] R. STROBL, "NetBeans IDE", Oracle.com, 2016. [Online]. Available:
http://www.oracle.com/technetwork/developer-
tools/netbeans/overview/index.html. [Accessed: 02- Feb- 2016].

 [27] M. Behnam, R. Marau and P. Pedreiras, "Analysis and optimization of the
MTU in real-time communications over Switched Ethernet", IEEE Symposium On
Emerging Technologies And Factory Automation, ETFA, no. 6059021, pp. 1 - 7,
2016.

 [28]"RawCap - A raw socket sniffer for Windows", Netresec.com, 2015. [Online].
Available: http://www.netresec.com/?page=RawCap. [Accessed: 18- Jan- 2016].

 [29]"Download Microsoft Message Analyzer from Official Microsoft Download
Center", Microsoft.com, 2016. [Online]. Available: https://www.microsoft.com/en-
us/download/details.aspx?id=44226. [Accessed: 04- Feb- 2016].

 [30] L. Hickson, "The WebSocket API", W3.org, 2012. [Online]. Available:
https://www.w3.org/TR/websockets/. [Accessed: 18- Jan- 2016].

 [31] Z. Lijing and S. Xiaoxiao, "Research and development of real-time monitoring
system based on WebSocket technology", Mechatronic Sciences, Electric

44

Engineering and Computer (MEC), Proceedings 2013 International Conference
on, pp. 1955 - 1958, 2013.

[32] [1]"TCP Stevens Graph", Technet.microsoft.com, 2016. [Online]. Available:
https://technet.microsoft.com/en-us/library/dn799011.aspx. [Accessed: 03- Jun-
2016].

 [33] L. Li and C. Wu, "Design and Describe REST API without Violating REST:
A Petri Net Based Approach", Web Services (ICWS), 2011 IEEE International
Conference on, pp. 508 - 515, 2011.

[34] R. Esteller-Curto, E. Cervera, A. del Pobil, R. Marin, I. You, L. Barolli, A.
Gentile, H. Jeong, M. Ogiela and F. Xhafa, "Proposal of a REST-based architecture
server to control a robot", Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2012 Sixth International Conference on, pp. 708 - 710, 2012.

[35] D. Keim, M. Krstajic, C. Rohrdantz and T. Schreck, "Real-Time Visual
Analytics for Text Streams", Computer, vol. 46, no. 7, pp. 47-55, 2013.

[36] M. Stonebraker, U. Çetintemel and S. Zdonik, "The 8 requirements of real-
time stream processing", ACM SIGMOD Record, vol. 34, no. 4, pp. 42-47, 2005.

[37] J. Scotland, "Exploring the Philosophical Underpinnings of Research: Relating
Ontology and Epistemology to the Methodology and Methods of the Scientific,
Interpretive, and Critical Research Paradigms", English Language Teaching, vol.
5, no. 9, 2012.

[38]"Apache Storm", Storm.apache.org, 2016. [Online]. Available:
http://storm.apache.org/. [Accessed: 24- Jun- 2016].

[39]"Redis", Redis.io, 2016. [Online]. Available: http://redis.io/. [Accessed: 24-
Jun- 2016].

[40]"User Datagram Protocol", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/User_Datagram_Protocol. [Accessed: 24- Jun-
2016].

[41]"HTTP persistent connection", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/HTTP_persistent_connection. [Accessed: 25- Jun-
2016].

45

[42]"Quantitative research", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Quantitative_research. [Accessed: 26- Jun- 2016].

[43]"WebSocket", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/WebSocket. [Accessed: 28- Jun- 2016].

[44] Z. Li and Z. ZHANG, "25 - Real-time Streaming and Robust Streaming
H.264AVC Video", IEEE, vol. 2244-0, pp. 353 - 356, 2004.

[45] K. OBANA, T. SHIMIZU, T. MUROOKA, K. HAYASHI and K. OGUCHI,
"Evaluation of the MXQ Mechanism by Audio and Video Applications", IEEE, vol.
8601-9, pp. 514-518, 2004.

[46] T. Das and K. M. Sivalingam, "TCP improvements for Data Center Networks",
IEEE, vol. 4673-5329-8, pp. 1-10, 2013.

[47] Ting Wang, Zhiyang Su, Yu Xia and M. Hamdi, "Rethinking the Data Center
Networking: Architecture, Network Protocols, and Resource Sharing", IEEE
Access, vol. 2, pp. 1481-1496, 2014.

[48] P. Zhao, J. Li, J. Xi and X. Gou, "A Mobile Real-time Video System Using
RTMP", IEEE, vol. 4673-2981-1, pp. 61 - 64, 2012.

[49] U. Tos and T. Ayav, "Adaptive RTP Rate Control Method", IEEE, vol. 7695-
4459-5, pp. 7 - 12, 2011.

[50]"The Streaming APIs | Twitter Developers", Dev.twitter.com, 2016. [Online].
Available: https://dev.twitter.com/streaming/overview. [Accessed: 08- Feb- 2016].

[51] T. Sai Gopal, R. Jain, R. Lakshmi Eswari P, J. G and S. Reddy Kamatham,
"Securing UDT protocol: Experiences in integrating Transport Layer Security
Solutions with UDT", IEEE, vol. 4799-0047-3, pp. 87 - 91, 2013.

[52]"WebRTC Home | WebRTC", Webrtc.org, 2016. [Online]. Available:
https://webrtc.org/. [Accessed: 11- Mar- 2016].

[53] M. Mohammadnezhad, "powerofviva/mm222wn", GitHub, 2016. [Online].
Available: https://github.com/powerofviva/mm222wn. [Accessed: 25- Aug- 2016].

46

A Appendix 1

A.1 FakeRobot Class

We implemented fake robot to simulate the functionality of real robots. In all of our
implementations, we used a class called FakeRobot to create the custom messages
in the desired size. The mentioned class has a parameter that is taking the message
size as integer. The implementation of FakeRobot is shown in Figure 7.1:

public class FakeRobot {
 int textSize;
String customText = "…." ; // custom big text

 FakeRobot(int messageSize){
 textSize = messageSize;
 }

 String NextMessage() {
 String fakeMessage = message;
 for (int i = 0; i <textSize ‐1 ; i++) { // create message with desired
size
 fakeMessage = fakeMessage + message;
 }
JSONObject json = new JSONObject(); // create custom JSON
json.put("text: ", customText); //put the big‐text(our message)
in json
 …
String fakeMessage = json.toJSONString();
return fakeMessage;
 }

This class contains a big text message which is named customText by default. It
should be mentioned that the size of message can be increased to double, triple and
more based on the requested size (textSize of 1 means the default message size, 2
means double message size, 3 means triple message size and it will continue with
the same sequence). The desired message size will be stored in textSize and inside
NextMessage method a for-loop is responsible to increase the message size
according to the value that is specified in textSize. Then the message format will be
converted to json structure and at the end, NextMessage method will return the
message with the customized size.

A.2 Client and Server Using TCP Protocol
Our client implementation consists of two classes, FakeRobot and Robot.

Robot plays the role of main class; the main part of its code is presented in Figure
7.2:

Figure 7.1: FakeRobot class – Used in all protocol implementation

47

try{

FakeRobot fakeRobot = new FakeRobot(1); // create an object from FakeRobot class by default size
String fakeMessage = fakeRobot.NextMessage(); // put the desired message in fakeMessage
socket = new Socket(ServerURL,serverPort); // assign server URL and port to connect
 //setup an printwriter by using outputstream of socket object
PrintWriter printwriter = new PrintWriter(socket.getOutputStream(),true);
 while (true) {
 printwriter.println(fakeMessage); // sent data to the server
 try {
 Thread.sleep(…); // set custom interval
 }
}

As we explained earlier, we used FakeRobot class in order to create a big

message by default size (size 1) and put the mentioned message in fakeMessage.
Then we used java.net.Socket to create TCP socket with the desired IP and port.
The Printwriter has been configured in order to transfer the fakeMessage. Also we
used Thread.sleep() to manage the time intervals of message generation.

And the main part of our TCP server is shown in Figure 7.3:

try{

 serversocket = new ServerSocket(serverPort); //setup server port to listen on it
 socket = serversocket.accept(); // wait till a client connect to the port
 //set up communications to transmit text‐data
 InputStreamReader inputstreamreader = new InputStreamReader(socket.getInputStream());
 //use inputstream to establish a bufferreader
 BufferedReader bufferedreader = new BufferedReader(inputstreamreader);
 String readLine = "";
 boolean finished = false;
 while (((readLine = bufferedreader.readLine()) != null) && (!finished)){
 System.out.println("Received from Client: " + readLine);
 if (readLine.compareToIgnoreCase("CloseConnection") == 0) finished = true;
 }

When the server starts, it will listen to the defined port (serverPort) and allow

the client to establish the connection. Bufferedreade uses Inputstreamreader to
setup communication to receive the text (line by line) as long as the data is available
and the line of message is not equal to CloseConnection. In fact, the connection will
shut-down when the client sends a line that contains CloseConnection only. We
handled all the exceptions for the server as well.

A.3 Client and Server Using HTTP1.1 Protocol

The simple implementation of HTTP1.1 client is shown in Figure 7.4:

Figure 7.2: TCP-client’s Robot class (main class)

Figure 7.3: TCP-Server’s main class

48

 public static void main(String[] args) { // used TimerTask to manage time interval

TimerTask mytask = new JerseyClientPost();
Timer timer = new Timer();
timer.schedule(mytask, …, …); // time in milisecond
 }
@Override
public void run() {
try {
FakeRobot fakeRobot = new FakeRobot(1); // create an object from FakeRobot class by default size
String fakeMessage = fakeRobot.NextMessage(); // put the desired message in fakeMessage
Client client = Client.create(); // jersey HTTP client
 // specify server address,port and CRUD
WebResource webResource = client.resource("ServerURL:ServerPort");
 // post the data on HTTP REST server
ClientResponse response = webResource.type("application/json").post(ClientResponse.class,
fakeMessage);
 }
}

In implementation of HTTP1.1 the direction of text streaming is from client to the
server. Client implementation consists of two classes and we avoid repeating
explanation about FakeRobot. We named the main client class as Robot. In this
class TimerTask has been used to manage time interval and the FakeRobot creates
the messages. As it is shown in Table 4.1, we used Jersey to create our HTTP client
and send post request to the REST server. We specified the server’s address and
port to use post request which is sending the message to the server. At the end we
handled the exceptions as well.

The main part of HTTP1.1 server is demonstrated in Figure 7.5:

public class DataCenterServer {
public static void main(String[] args) throws Exception {
Server jettyServer = new Server(ServerPort); // Define server’s port
 // Create and manage serverlet
ServletContextHandler context = new ServletContextHandler(ServletContextHandler.SESSIONS);
context.setContextPath("/");
jettyServer.setHandler(context);
ServletHolder servletHolder = context.addServlet(org.glassfish.jersey.servlet.ServletContainer.class,
 "/*");
servletHolder.setInitOrder(0); // set initialize holder, parameter and value
 // get the canocical name of MessageHandler‐
class
servletHolder.setInitParameter("jersey.config.server.provider.classnames",
MessageHandler.class.getCanonicalName());
try {
 jettyServer.start(); // run the server
 }
 }
 }
}

In the server side we used Jetty library to implement the server with two

classes. First class is named DataCenterServer which is the main class that creates,
configures and runs the server. The second class is named MessageHandler that

Figure 7.4: HTTP1.1-client’s main class

Figure 7.5: HTTP1.1-server’s main class

49

uses @POST annotation to handle post request from the client and receive the
message. In the DataCenterServer we setup server on a port that we want to start
the data transmission. As it was mentioned earlier, we used Jetty to implement our
server. We created and managed the servlet to configure the jetty server, also we
set the initialize order to the default (0 means on used) and defined the canonical
name of MessageHandler to communicate to.

The main part of Post method inside Controller-class is as Figure 7.6:

public class MessageHandler {
…
@POST
@Path("/post") //in this thesis we are only using post action to post the message on the server
@Consumes(MediaType.APPLICATION_JSON)
public void createDataInJSON(String data) {
 …
 }
 }

This method is using @POST annotation to handle post requests from the

client.

A.4 Client and Server Using Server-Sent Events Protocol

We used Jersey in order to implement Server-Sent events’ client and server.

The client code to setup a connection to the server is as Figure 7.7:

Client client = ClientBuilder.newBuilder().register(SseFeature.SERVER_SENT_EVENTS).build();

 // set server information to connect

WebTarget target = client.target("http:// ServerIP: ServerPort /server‐path/");

 // request to get events from the server

EventInput eventInput = target.request().get(EventInput.class);

while (!eventInput.isClosed()) {

 //read events as long as there is event available

 final InboundEvent inboundEvent = eventInput.read();

 …

 }

In the codes above, the target is defined. By target we mean the server that

we want to connect to receive the message (in Server-Sent Events data that is
transferred is called event). target contains the necessary information that is needed
to establish connection to the server such as server’s IP and port. By knowing that
information, client can send get-request to the server and a while-loop gets event
from the server as long as the events are available; otherwise, the connection will
be closed (if events equals to null).

The server side that answers the client’s get-request consists of three classes
and is using REST architecture. Apart from FakeRobot that explained earlier,
DataCenterServer is responsible to configure and run the server on a given port and
IP address, also the exception has been handled as well. Our simple implementation
of Server-Sent Events in server side is as Figure 7.8:

Figure 7.7: Server-Sent Events’- client main class

Figure 7.6: HTTP1.1-server’s MessageHandler class

50

Figure 7.8: Server-Sent Events’- server main class

Figure 7.9: Server-Sent Events’- MessageHandler class

public class DataCenterServer {
public static void main(String[] args) {
try { //Configure Server‐Sent Events’
server
final ResourceConfig resourceConfig = new ResourceConfig(MessageHandler.class, SseFeature.class);
final HttpServer server = GrizzlyHttpServerFactory.createHttpServer(URI.create("http:// ServerIP:
ServerPort /"), resourceConfig, false);
server.start(); //start the server on given IP and given port
Thread.currentThread().join();
 }
 }
 }
}

Another class named MessageHandler is responsible to generate the text and

handle the Get request from the client. In this class we used FakeRobot like our
other implementations to generate the custom text that is saved in fakeMessage.
Then we used a thread to manage generating messages by sending fakeMessage
within the desired time intervals. MessageHandler is implemented as Figure 7.9:

@Path("server‐path ")
public class MessageHandler {
…
@GET
@Produces(SseFeature.SERVER_SENT_EVENTS)
public getMessageQueue() {
final EventOutput fakeMessage = new EventOutput();
FakeRobot fakeRobot = new FakeRobot(1);// create an object from FakeRobot class by default size
String fakeMessage = fakeRobot.NextMessage(); // put the desired message in fakeMessage
new Thread() { // send the message inside a thread
public void run() {
try {
while (true) {
fakeMessage.write(new OutboundEvent.Builder().name("SSE‐messages").data(String.class,
fakeMessage).build());
Thread.sleep(…); // manage time interval
 }
 }
 }
 }
}.start();
return fakeMessage;
}

A.5 Client and Server Using Websocket Protocol

Our client consists of four classes. Apart from FakeRobot, Robot is the main

class that creates and configures Websocket client. As it is shown in following
codes, a name for the client is defined, Also the necessary information to establish
connection to the server such as server port and IP address have been assigned.
Here, like our previous implementations, fakeRobot is used in order to generate the
custom message with the desired size inside a while-loop. It is worth mentioning

51

that Thread is used to manage time interval of generating messages. Main parts of
our client implementation is as presented in Figure 7.10:

public class Robot {
public static void main(final String[] args) {
String client = "WS_client"; // define client’s name
final WebSocketContainer container = ContainerProvider.getWebSocketContainer(); // setup the client
final String uri = "ws://ServerIP:ServerPort/broadcast";
try(Session session = container.connectToServer(EventHandler.class, URI.create(uri))) {
while (true) {
 FakeRobot fakeRobot = new FakeRobot(1); // create an object from FakeRobot class by default
size
 String fakeMessage = fakeRobot.NextMessage(); // put the desired message in
fakeMessage
 //send message with defined client’s
name
 session.getBasicRemote().sendObject(new Message(client, fakeMessage));
 Thread.sleep(…); //manage time interval
 }
 }
… //catch and handle exceptions
 }
}

According to Websocket API, this protocol handles the events by some

annotations and EventHandler plays the role of event handler. This class uses
MessageHandler to create appropriate messages and handles @OnOpen and
@OnMessage events. It is once more emphasized that we only show the important
parts of our implementation. Our EventHandler class is implemented as Figure
7.11:

@ClientEndpoint(encoders = {MessageHandler.MessageEncoder.class}, decoders =
{MessageHandler.MessageDecoder.class})
public class EventHandler {
@OnOpen
public void onOpen(final Session session) { … }
@OnMessage
public void onMessage(final Message message) { … }
}

MessageHandler is being used in EventHandler in order to create messages.
In fact, MessageHandler is responsible for increasing the security of data
transmission by encoding and decoding the desired messages. MessageHandler
code is implemented as Figure 7.12:

public class MessageHandler {
 //constructor, getter and setter
public static class MessageEncoder implements Encoder.Text< Message > { // serialize object to string
 … // define encoder
@Override
public String encode(final Message message) throws EncodeException {
 }

Figure 7.10: Websocket-client main class

Figure 7.11: Websocket-client EventHandler class

52

Figure 7.13: Websocket-server main class

 …
 }
public static class MessageDecoder implements Decoder.Text< Message > { // deserialize string to object
private JsonReaderFactory factory = Json.createReaderFactory(Collections.< String, Object >emptyMap());
 … // define dencoder
@Override
public Message decode(final String str) throws DecodeException {
 …
 }
 }
}

Our server implementation consists of four classes. Two of them have almost
the same functionality as client’s classes and we will not present their codes.
DataCenterServer is the main class that contains the configuration of Spring
framework and setup the server. First, we defined the server port, then sat up server
configurations by creating the root of Spring context and default servlet and at the
end we started the server.

The main part of our server implementation is as presented in Figure 7.13:

public class DataCenterServer {
public static void main(String[] args) throws Exception {
Server server = new Server(ServerPort); //define server port
final ServletContextHandler context = new ServletContextHandler();
 … //Create the ‘root’ Spring application context
final ServletHolder defaultHolder = new ServletHolder("default", DefaultServlet.class);
 … //create default servlet
 // create instance of Websocket container
WebSocketServerContainerInitializer.configureContext(context);
server.start(); // Start the server
 }
}

 EventHandler is using annotations to handle the events and MessageHandler

creates the appropriate message for EventHandler. Moreover, we used Spring
framework annotations in ServerConfiguration in order to configure the server. The
annotations include @inject and @Bean which manage the dependency injection
and backbone of application. Also @postContrust will be executed after
dependency injection is done to configure the server. The ServerConfiguration’s
main methods which should be implemented are as presented in Figure 7.14:

@Configuration
public class ServerConfiguration {
@Inject private WebApplicationContext context;
public class SpringServerEndpointConfigurator extends ServerEndpointConfig.Configurator {
@Override
public < T > T getEndpointInstance(Class< T > endpointClass) throws InstantiationException { … }
 }
@Bean
public ServerEndpointConfig.Configurator configurator() { … }
@PostConstruct

Figure 7.12: Websocket-client MessageHandler class

53

Figure 7.14: Websocket-client MessageHandler class

 public void init() throws DeploymentException { … }
}

The body of this methods can be different depending on the environment in which
the server is to be implemented. But the necessary methods are the same for
different environments and are similar to those we used in this thesis.

