lnu.sePublications
Change search
Link to record
Permanent link

Direct link
Al-Talibi, Haidar
Publications (7 of 7) Show all publications
Al-Talibi, H. (2013). Differentiable Approximation of Diffusion Equations Driven by α-Stable Lévy Noise. Brazilian Journal of Probability and Statistics, 27(4), 544-552
Open this publication in new window or tab >>Differentiable Approximation of Diffusion Equations Driven by α-Stable Lévy Noise
2013 (English)In: Brazilian Journal of Probability and Statistics, ISSN 0103-0752, E-ISSN 2317-6199, Vol. 27, no 4, p. 544-552Article in journal (Refereed) Published
Abstract [en]

Edward Nelson derived Brownian motion from Ornstein-Uhlenbeck theory by a scaling limit. Previously we extended the scaling limit to an Ornstein-Uhlenbeck process driven by an α-stable Lévy process. In this paper we extend the scaling result to α-stable Lévy processes in the presence of a nonlinear drift, an external field of force in physical terms.

Keywords
Ornstein-Uhlenbeck process, α-stable Lévy noise, scaling limits
National Category
Probability Theory and Statistics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-11415 (URN)10.1214/11-BJPS180 (DOI)000325443900007 ()2-s2.0-84884155208 (Scopus ID)
Available from: 2011-04-14 Created: 2011-04-14 Last updated: 2017-12-11Bibliographically approved
Al-Talibi, H. (2012). A Differentiable Approach to Stochastic Differential Equations: the Smoluchowski Limit Revisited. (Doctoral dissertation). Växjö, Kalmar: Linnaeus University Press
Open this publication in new window or tab >>A Differentiable Approach to Stochastic Differential Equations: the Smoluchowski Limit Revisited
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we generalize results by Smoluchowski [43], Chandrasekhar[6], Kramers, and Nelson [30]. Their aim is to construct Brownian motion as a limit of stochastic processes with differentiable sample paths by exploiting a scaling limit which is a particular type of averaging studied by Papanicolao [35]. Their construction of Brownian motion differs from the one given by Einstein since it constitutes a dynamical theory of Brownian motion. Nelson sets off by studying scaled standard Ornstein-Uhlenbeck processes. Physically these describe classical point particles subject to a deterministic friction and an external random force of White Noise type, which models perpetuous collisions with surrounding(water) molecules. Nelson also studies the case when the particles are subject to an additional deterministic nonlinear force. The present thesis generalizes the work of Chandrasekhar in that it deals with finite dimensional α-stable Lévy processes with 0 < α < 2, and Fractional Brownian motion as driving noises and mathematical techniques like deterministic time change and a Girsanov theorem. We consider uniform convergence almost everywhere and in -sense. In order to pursue the limit we multiply all vector fields in the cotangent space by the scaling parameter including the noise. For α-stable Lévy processes this correspondsto scaling the process in the tangent space, , , according to . Sending β to infinity means sending time to infinity. In doing so the noise evolves with a different speed in time compared to the component processes. For α≠2, α-stable Lévy processes are of pure jump type, therefore the approximation by processes having continuous sample paths constitutes a valuable mathematical tool. α-stable Lévy processes exceed the class studied by Zhang [46]. In another publication related to this thesis we elaborate on including a mean-field term into the globally Lipschitz continuous nonlinear part of the drift while the noise is Brownian motion, whereas Narita [28] studied a linear dissipation containing a mean-field term. Also the classical McKean-Vlasov model is linear in the mean-field. In a result not included in this thesis the scaling result of Narita [29], which concerns another scaling limit of the tangent space process (velocity) towards a stationary distribution, is generalized to α-stable Lévy processes. The stationary distribution derived by Narita is related to the Boltzmann distribution. In the last part of this thesis we study Fractional Brownian motion with a focus on deriving a scaling limit of Smoluchowski-Kramers type. Since Fractional Brownian motion is no semimartingale the underlying theory of stochastic differential equations is rather involved. We choose to use a Girsanov theorem to approach the scaling limit since the exponent in the Girsanov denvsity does not contain the scaling parameter explicitly. We prove that the Girsanov theorem holds with a linear growth condition alone on the drift for 0 < H < 1, where H is the Hurst parameterof the Fractional Brownian motion.

Place, publisher, year, edition, pages
Växjö, Kalmar: Linnaeus University Press, 2012. p. 23
Series
Linnaeus University Dissertations ; 103
Keywords
α-stable Lévy noise, Fractional Brownian motion, Girsanov theorem, Mean-field model, Nonlinear stochastic oscillator, Ornstein-Uhlenbeck process, Scaling limit, Second order Itô equation, Time change.
National Category
Mathematics Probability Theory and Statistics
Research subject
Mathematics, Mathematics
Identifiers
urn:nbn:se:lnu:diva-22233 (URN)9789186983857 (ISBN)
Public defence
2012-11-22, D1136, vejdes plats 7, Växjö, 10:15 (English)
Opponent
Supervisors
Available from: 2012-10-31 Created: 2012-10-29 Last updated: 2024-01-31Bibliographically approved
Al-Talibi, H., Hilbert, A. & Kolokoltsov, V. (2010). Nelson-type Limit for a Particular Class of Lévy Processes. In: Andrei Yu. Khrennikov (Ed.), AIP Conference Proceedings; 1232. Paper presented at Quantum Theory: Reconsideration of Foundations - 5, Växjö (Sweden), 14–18 June 2009 (pp. 189-193). AIP, 1232
Open this publication in new window or tab >>Nelson-type Limit for a Particular Class of Lévy Processes
2010 (English)In: AIP Conference Proceedings; 1232 / [ed] Andrei Yu. Khrennikov, AIP , 2010, Vol. 1232, p. 189-193Conference paper, Published paper (Other academic)
Abstract [en]

Brownian motion has been constructed in different ways. Einstein was the most outstanding physicists involved in its construction. From a physical point of view a dynamical theory of Brownian motion was favorable. The Ornstein-Uhlenbeck process models such a dynamical theory and E. Nelson amongst others derived Brownian motion from Ornstein-Uhlenbeck theory via a scaling limit. In this paper we extend the scaling result to α-stable Lévy processes.

Place, publisher, year, edition, pages
AIP, 2010
Series
AIP Conference Proceedings, ISSN 0094-243X ; 1232
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-5970 (URN)10.1063/1.3431487 (DOI)2-s2.0-77955376933 (Scopus ID)978-0-7354-0777-0 (ISBN)
Conference
Quantum Theory: Reconsideration of Foundations - 5, Växjö (Sweden), 14–18 June 2009
Available from: 2010-06-09 Created: 2010-06-09 Last updated: 2020-05-20Bibliographically approved
Al-Talibi, H. (2010). Nelson-type Limits for α-Stable Lévy Processes. (Licentiate dissertation). Linnéuniversitet
Open this publication in new window or tab >>Nelson-type Limits for α-Stable Lévy Processes
2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes.

In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms.

In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes.

In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.

Place, publisher, year, edition, pages
Linnéuniversitet, 2010. p. 50
Keywords
Ornstein-Uhlenbeck position process, α-stable Lévy noise, scaling limits, time change, stochastic Newton equations
National Category
Probability Theory and Statistics Computational Mathematics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-7043 (URN)
Presentation
2010-05-19, Weber, Universitetsplatsen 1, Växjö, 13:15 (English)
Opponent
Supervisors
Available from: 2010-08-11 Created: 2010-08-09 Last updated: 2010-08-23Bibliographically approved
Al-Talibi, H. & Hilbert, A. Differentiable Approximation by Solutions of Newton Equations Driven by Fractional Brownian Motion..
Open this publication in new window or tab >>Differentiable Approximation by Solutions of Newton Equations Driven by Fractional Brownian Motion.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We derive a Smoluchowski-Kramers type scaling limit for second order stochastic differential equations driven by Fractional Brownian motion.We show a Girsanov theorem for the solution processes with respect to corresponding Fractional Ornstein-Uhlenbeck processes which are Gaussian. This reveals existence of weak solutions as well as a weak scaling limit. Subsequently the results are strengthened.

Keywords
Fractional Ornstein-Uhlenbeck process, Fractional Brownian motion, Second order stochastic differential equation, scaling limit, Smoluchowski-Kramers limit
National Category
Probability Theory and Statistics
Research subject
Mathematics, Mathematics
Identifiers
urn:nbn:se:lnu:diva-16560 (URN)
Available from: 2012-01-04 Created: 2012-01-04 Last updated: 2020-05-20Bibliographically approved
Al-Talibi, H., Hilbert, A. & Kolokoltsov, V.Smoluchowski-Kramers Limit for a System Subject to a Mean-Field Drift.
Open this publication in new window or tab >>Smoluchowski-Kramers Limit for a System Subject to a Mean-Field Drift
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We establish a scaling limit for autonomous stochastic Newton equations, the solutions are often called nonlinear stochastic oscillators,where the nonlinear drift includes a mean field term of Mckean type and the driving noise is Gaussian. Uniform convergence in  sense is achieved by applying -type estimates and the Gronwall Theorem.The approximation is also called Smoluchowski-Kramers limit and is a particular averaging technique studied by Papanicolaou. It reveals an approximation of diffusions with a mean-field contribution in the drift by diffusions with differentiable trajectories.

Keywords
Averaging, McKean equation, Mean-field model, Nonlinear stochastic oscillator, Second order Itô equation, Smoluchowski- Kramers limit
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:lnu:diva-19216 (URN)
Available from: 2012-05-31 Created: 2012-05-31 Last updated: 2020-05-20Bibliographically approved
Johansson, K., Al-Talibi, H. & Nyman, P.Student's reasoning in the process of mathematical proofs.
Open this publication in new window or tab >>Student's reasoning in the process of mathematical proofs
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study focuses on students' way of reasoning about a proof in mathematics. The experiences of teaching students in the beginning of their studies at universities show that students have an obstacle in using deductive methods. The students' activity was designed specifically to investigate their deductive ability and to see if they can develop their way of reasoning. The group activities and interviews follow the students from the beginning where they, with great enthusiasm, begin colouring maps as a first sketch to a complete proof. The well-known statement to prove is chosen from a field in mathematics that the students are unfamiliar with, namely graph theory. More precisely it concerns the number of possible colourings of maps. Some university students have problems with constructing proofs, but in many cases the teacher can help them to reach a deductive reasoning.

National Category
Other Mathematics
Research subject
Mathematics, Mathematical Education
Identifiers
urn:nbn:se:lnu:diva-11312 (URN)
Available from: 2011-04-05 Created: 2011-04-05 Last updated: 2011-12-05Bibliographically approved
Organisations

Search in DiVA

Show all publications