lnu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 90) Visa alla publikationer
Delgadillo-Nuno, E., Teira, E., Pontiller, B., Lundin, D., Joglar, V., Pedros-Alio, C., . . . Martinez-Garcia, S. (2024). Coastal upwelling systems as dynamic mosaics of bacterioplankton functional specialization. Frontiers in Marine Science, 10, Article ID 1259783.
Öppna denna publikation i ny flik eller fönster >>Coastal upwelling systems as dynamic mosaics of bacterioplankton functional specialization
Visa övriga...
2024 (Engelska)Ingår i: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 10, artikel-id 1259783Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Coastal upwelling areas are extraordinarily productive environments where prokaryotic communities, the principal remineralizers of dissolved organic matter (DOM), rapidly respond to phytoplankton bloom and decay dynamics. Nevertheless, the extent of variability of key microbial functions in such dynamic waters remains largely unconstrained. Our metatranscriptomics analyses of 162 marker genes encoding ecologically relevant prokaryotic functions showed distinct spatial-temporal patterns in the NW Iberian Peninsula upwelling area. Short-term (daily) changes in specific bacterial functions associated with changes in biotic and abiotic factors were superimposed on seasonal variability. Taxonomic and functional specialization of prokaryotic communities, based mostly on different resource acquisition strategies, was observed. Our results uncovered the potential influence of prokaryotic functioning on phytoplankton bloom composition and development (e.g., Cellvibrionales and Flavobacteriales increased relative gene expression related to vitamin B12 and siderophore metabolisms during Chaetoceros and Dinophyceae summer blooms). Notably, bacterial adjustments to C- or N-limitation and DMSP availability during summer phytoplankton blooms and different spatial-temporal patterns of variability in the expression of genes with different phosphate affinity indicated a complex role of resource availability in structuring bacterial communities in this upwelling system. Also, a crucial role of Cellvibrionales in the degradation of DOM (carbohydrate metabolism, TCA cycle, proteorhodopsin, ammonium, and phosphate uptake genes) during the summer phytoplankton bloom was found. Overall, this dataset revealed an intertwined mosaic of microbial interactions and nutrient utilization patterns along a spatial-temporal gradient that needs to be considered if we aim to understand the biogeochemical processes in some of the most productive ecosystems in the world ' s oceans.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2024
Nyckelord
bacterioplankton, upwelling systems, phytoplankton bloom, metatranscriptomics, metabarcoding
Nationell ämneskategori
Mikrobiologi Oceanografi, hydrologi och vattenresurser
Forskningsämne
Ekologi, Mikrobiologi; Ekologi, Akvatisk ekologi
Identifikatorer
urn:nbn:se:lnu:diva-127387 (URN)10.3389/fmars.2023.1259783 (DOI)001143516000001 ()2-s2.0-85182436775 (Scopus ID)
Tillgänglig från: 2024-02-01 Skapad: 2024-02-01 Senast uppdaterad: 2024-03-13Bibliografiskt granskad
Berggren, H., Yildirim, Y., Nordahl, O., Larsson, P., Dopson, M., Tibblin, P., . . . Forsman, A. (2024). Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes. Molecular Ecology, 33(18), Article ID e17496.
Öppna denna publikation i ny flik eller fönster >>Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes
Visa övriga...
2024 (Engelska)Ingår i: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 33, nr 18, artikel-id e17496Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2024
Nyckelord
16S rRNA amplicons, aquatic, ecology, environmental translocation, skin microbiota, teleost
Nationell ämneskategori
Mikrobiologi Ekologi
Forskningsämne
Ekologi, Mikrobiologi; Ekologi, Akvatisk ekologi
Identifikatorer
urn:nbn:se:lnu:diva-132473 (URN)10.1111/mec.17496 (DOI)001293450500001 ()39161196 (PubMedID)2-s2.0-85201565335 (Scopus ID)
Tillgänglig från: 2024-09-12 Skapad: 2024-09-12 Senast uppdaterad: 2024-09-20Bibliografiskt granskad
Pawlowski, K., Wibberg, D., Mehrabi, S., Obaid, N. B., Patyi, A., Berckx, F., . . . Sellstedt, A. (2024). Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss. FEMS Microbiology Ecology, 100(12), Article ID fiae147.
Öppna denna publikation i ny flik eller fönster >>Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss
Visa övriga...
2024 (Engelska)Ingår i: FEMS Microbiology Ecology, ISSN 0168-6496, E-ISSN 1574-6941, Vol. 100, nr 12, artikel-id fiae147Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Uptake hydrogenase (Hup) recycles H2 formed by nitrogenase during nitrogen fixation, thereby preserving energy. Among root nodule bacteria, most rhizobial strains examined are Hup-, while only one Hup- Frankia inoculum had been identified. Previous analyses had led to the identification of two different [NiFe] hydrogenase syntons. We analysed the distribution of different types of [NiFe] hydrogenase in the genomes of different Frankia species. Our results show that Frankia strains can contain four different [NiFe] hydrogenase syntons representing groups 1f, 1h, 2a, and 3b according to S & oslash;ndergaard, Pedersen, and Greening (HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016;6:34212. https://doi.org/10.1038/srep34212.); no more than three types were found in any individual genome. The phylogeny of the structural proteins of groups 1f, 1h, and 2a follows Frankia phylogeny; the phylogeny of the accessory proteins does not consistently. An analysis of different [NiFe] hydrogenase types in Actinomycetia shows that under the most parsimonious assumption, all four types were present in the ancestral Frankia strain. Based on Hup activities analysed and the losses of syntons in different lineages of genome reduction, we can conclude that groups 1f and 2a are involved in recycling H2 formed by nitrogenase while group 1 h and group 3b are not. Different types of [NiFe] hydrogenases in the genus Frankia and their roles in nitrogen fixation deduced from losses in lineages of genome erosion.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2024
Nyckelord
root nodules, actinorhiza, Frankia, nitrogen fixation, uptake hydrogenase
Nationell ämneskategori
Mikrobiologi
Forskningsämne
Ekologi, Mikrobiologi
Identifikatorer
urn:nbn:se:lnu:diva-134346 (URN)10.1093/femsec/fiae147 (DOI)001379168500001 ()39479807 (PubMedID)2-s2.0-85212794379 (Scopus ID)
Tillgänglig från: 2025-01-09 Skapad: 2025-01-09 Senast uppdaterad: 2025-01-15Bibliografiskt granskad
Prager, M., Lundin, D., Ronquist, F. & Andersson, A. F. (2023). ASV portal: an interface to DNA-based biodiversity data in the Living Atlas. BMC Bioinformatics, 24(1), Article ID 6.
Öppna denna publikation i ny flik eller fönster >>ASV portal: an interface to DNA-based biodiversity data in the Living Atlas
2023 (Engelska)Ingår i: BMC Bioinformatics, E-ISSN 1471-2105, Vol. 24, nr 1, artikel-id 6Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: The Living Atlas is an open source platform used to collect, visualise and analyse biodiversity data from multiple sources, and serves as the national biodiversity data hub in many countries. Although powerful, the Living Atlas has had limited func-tionality for species occurrence data derived from DNA sequences. As a step toward integrating this fast-growing data source into the platform, we developed the Ampli-con Sequence Variant (ASV) portal: a web interface to sequence-based biodiversity observations in the Living Atlas.Results: The ASV portal allows data providers to submit denoised metabarcoding output to the Living Atlas platform via an intermediary ASV database. It also enables users to search for existing ASVs and associated Living Atlas records using the Basic Local Alignment Search Tool, or via filters on taxonomy and sequencing details. The ASV portal is a Python-Flask/jQuery web interface, implemented as a multi-container docker service, and is an integral part of the Swedish Biodiversity Data Infrastructure. Conclusion: The ASV portal is a web interface that effectively integrates biodiversity data derived from DNA sequences into the Living Atlas platform.

Ort, förlag, år, upplaga, sidor
BioMed Central (BMC), 2023
Nyckelord
Biodiversity informatics, Species occurrence, Darwin core, Amplicon sequencing, Metabarcoding, eDNA, BLAST
Nationell ämneskategori
Ekologi
Forskningsämne
Naturvetenskap, Ekologi
Identifikatorer
urn:nbn:se:lnu:diva-118840 (URN)10.1186/s12859-022-05120-z (DOI)000909501700001 ()36604610 (PubMedID)2-s2.0-85145645757 (Scopus ID)
Tillgänglig från: 2023-01-30 Skapad: 2023-01-30 Senast uppdaterad: 2024-01-17Bibliografiskt granskad
Bensch, H., Tolf, C., Waldenström, J., Lundin, D. & Zöttl, M. (2023). Bacteroidetes to Firmicutes: captivity changes the gut microbiota composition and diversity in a social subterranean rodent. Animal Microbiome, 5(1), Article ID 9.
Öppna denna publikation i ny flik eller fönster >>Bacteroidetes to Firmicutes: captivity changes the gut microbiota composition and diversity in a social subterranean rodent
Visa övriga...
2023 (Engelska)Ingår i: Animal Microbiome, E-ISSN 2524-4671, Vol. 5, nr 1, artikel-id 9Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

BackgroundIn mammals, the gut microbiota has important effects on the health of their hosts. Recent research highlights that animal populations that live in captivity often differ in microbiota diversity and composition from wild populations. However, the changes that may occur when animals move to captivity remain difficult to predict and factors generating such differences are poorly understood. Here we compare the bacterial gut microbiota of wild and captive Damaraland mole-rats (Fukomys damarensis) originating from a population in the southern Kalahari Desert to characterise the changes of the gut microbiota that occur from one generation to the next generation in a long-lived, social rodent species.ResultsWe found a clear divergence in the composition of the gut microbiota of captive and wild Damaraland mole-rats. Although the dominating higher-rank bacterial taxa were the same in the two groups, captive animals had an increased ratio of relative abundance of Firmicutes to Bacteroidetes compared to wild animals. The Amplicon Sequence Variants (ASVs) that were strongly associated with wild animals were commonly members of the same bacterial families as those strongly associated with captive animals. Captive animals had much higher ASV richness compared to wild-caught animals, explained by an increased richness within the Firmicutes.ConclusionWe found that the gut microbiota of captive hosts differs substantially from the gut microbiota composition of wild hosts. The largest differences between the two groups were found in shifts in relative abundances and diversity of Firmicutes and Bacteroidetes.

Ort, förlag, år, upplaga, sidor
BioMed Central (BMC), 2023
Nyckelord
Captivity, Wild, Gut microbiota, Damaraland mole-rat, 16S amplicon sequencing
Nationell ämneskategori
Ekologi Mikrobiologi
Forskningsämne
Ekologi, Mikrobiologi
Identifikatorer
urn:nbn:se:lnu:diva-119958 (URN)10.1186/s42523-023-00231-1 (DOI)000932695300001 ()36765400 (PubMedID)2-s2.0-85159590559 (Scopus ID)
Tillgänglig från: 2023-03-27 Skapad: 2023-03-27 Senast uppdaterad: 2023-08-24Bibliografiskt granskad
Churakova, Y., Aguilera, A., Charalampous, E., Conley, D. J., Lundin, D., Pinhassi, J. & Farnelid, H. (2023). Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports, 15(4), 282-290
Öppna denna publikation i ny flik eller fönster >>Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle
Visa övriga...
2023 (Engelska)Ingår i: Environmental Microbiology Reports, E-ISSN 1758-2229, Vol. 15, nr 4, s. 282-290Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

It is well known that the biological control of oceanic silica cycling is dominated by diatoms, with sponges and radiolarians playing additional roles. Recent studies have revealed that some smaller marine organisms (e.g. the picocyanobacterium Synechococcus) also take up silicic acid (dissolved silica, dSi) and accumulate silica, despite not exhibiting silicon dependent cellular structures. Here, we show biogenic silica (bSi) accumulation in five strains of picoeukaryotes (<2-3 mu m), including three novel isolates from the Baltic Sea, and two marine species (Ostreococcus tauri and Micromonas commoda), in cultures grown with added dSi (100 mu M). Average bSi accumulation in these novel biosilicifiers was between 30 and 92 amol Si cell(-1). Growth rate and cell size of the picoeukaryotes were not affected by dSi addition. Still, the purpose of bSi accumulation in these smaller eukaryotic organisms lacking silicon dependent structures remains unclear. In line with the increasing recognition of picoeukaryotes in biogeochemical cycling, our findings suggest that they can also play a significant role in silica cycling.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2023
Nationell ämneskategori
Mikrobiologi
Forskningsämne
Ekologi, Mikrobiologi
Identifikatorer
urn:nbn:se:lnu:diva-120915 (URN)10.1111/1758-2229.13144 (DOI)000966621000001 ()36992638 (PubMedID)2-s2.0-85152072762 (Scopus ID)
Tillgänglig från: 2023-05-26 Skapad: 2023-05-26 Senast uppdaterad: 2024-07-04Bibliografiskt granskad
Aguilera, A., Alegria Zufia, J., Bas Conn, L., Gurlit, L., Śliwińska‐Wilczewska, S., Budzałek, G., . . . Farnelid, H. (2023). Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria. Environmental Microbiology, 25(9), 1674-1695
Öppna denna publikation i ny flik eller fönster >>Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria
Visa övriga...
2023 (Engelska)Ingår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 25, nr 9, s. 1674-1695Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcBandcpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10–30°C), light(10–190 μmol  photons  m-2s-1), and salinity (2–14  PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2023
Nationell ämneskategori
Miljövetenskap Ekologi Mikrobiologi
Forskningsämne
Naturvetenskap, Miljövetenskap; Ekologi, Akvatisk ekologi; Ekologi, Mikrobiologi
Identifikatorer
urn:nbn:se:lnu:diva-120317 (URN)10.1111/1462-2920.16384 (DOI)000973717000001 ()2-s2.0-85153326236 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 570630‐3095
Tillgänglig från: 2023-04-19 Skapad: 2023-04-19 Senast uppdaterad: 2023-09-07Bibliografiskt granskad
Bensch, H., Lundin, D., Tolf, C., Waldenström, J. & Zöttl, M. (2023). Environmental effects rather than relatedness determine gut microbiome similarity in a social mammal. Journal of Evolutionary Biology, 36(12), 1753-1760
Öppna denna publikation i ny flik eller fönster >>Environmental effects rather than relatedness determine gut microbiome similarity in a social mammal
Visa övriga...
2023 (Engelska)Ingår i: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 36, nr 12, s. 1753-1760Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In social species, group members commonly show substantial similarity in gut microbiome composition. Such similarities have been hypothesized to arise either by shared environmental effects or by host relatedness. However, disentangling these factors is difficult, because group members are often related, and social groups typically share similar environmental conditions. In this study, we conducted a cross-foster experiment under controlled laboratory conditions in group-living Damaraland mole-rats (Fukomys damarensis) and used 16S amplicon sequencing to disentangle the effects of the environment and relatedness on gut microbiome similarity and diversity. Our results show that a shared environment is the main factor explaining gut microbiome similarity, overshadowing any effect of host relatedness. Together with studies in wild animal populations, our results suggest that among conspecifics environmental factors are more powerful drivers of gut microbiome composition similarity than host genetics.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2023
Nyckelord
16S, environmental effects, group living, gut microbiome, relatedness
Nationell ämneskategori
Ekologi
Forskningsämne
Naturvetenskap, Ekologi
Identifikatorer
urn:nbn:se:lnu:diva-124071 (URN)10.1111/jeb.14208 (DOI)001049289200001 ()37584218 (PubMedID)2-s2.0-85168146294 (Scopus ID)
Tillgänglig från: 2023-09-05 Skapad: 2023-09-05 Senast uppdaterad: 2024-01-18Bibliografiskt granskad
Martinez-Varela, A., Casas, G., Berrojalbiz, N., Lundin, D., Pina, B., Dachs, J. & Vila-Costa, M. (2023). Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal Mediterranean and Antarctica. Environmental Science and Pollution Research, 30(57), 119988-119999
Öppna denna publikation i ny flik eller fönster >>Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal Mediterranean and Antarctica
Visa övriga...
2023 (Engelska)Ingår i: Environmental Science and Pollution Research, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 30, nr 57, s. 119988-119999Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 +/- 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.

Ort, förlag, år, upplaga, sidor
Springer, 2023
Nyckelord
Polycyclic aromatic hydrocarbons (PAH), Metatranscriptomics, 16S amplicon sequencing, PAH biodegradation rates, Antarctica, Mediterranean
Nationell ämneskategori
Mikrobiologi Miljövetenskap
Forskningsämne
Ekologi, Mikrobiologi; Naturvetenskap, Miljövetenskap
Identifikatorer
urn:nbn:se:lnu:diva-125935 (URN)10.1007/s11356-023-30650-1 (DOI)001100586300004 ()37934408 (PubMedID)2-s2.0-85178995648 (Scopus ID)
Tillgänglig från: 2023-12-08 Skapad: 2023-12-08 Senast uppdaterad: 2024-01-18Bibliografiskt granskad
Vila-Costa, M., Lundin, D., Fernandez-Pinos, M.-C., Iriarte, J., Irigoien, X., Pina, B. & Dachs, J. (2023). Responses to organic pollutants in the tropical Pacific and subtropical Atlantic Oceans by pelagic marine bacteria. Frontiers in Environmental Science, 11, Article ID 1110169.
Öppna denna publikation i ny flik eller fönster >>Responses to organic pollutants in the tropical Pacific and subtropical Atlantic Oceans by pelagic marine bacteria
Visa övriga...
2023 (Engelska)Ingår i: Frontiers in Environmental Science, E-ISSN 2296-665X, Vol. 11, artikel-id 1110169Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background and chronic pollution by organic pollutants (OPs) is a widespread threat in the oceans with still uncharacterized effects on marine ecosystems and the modulation of major biogeochemical cycles. The ecological impact and toxicity of this anthropogenic dissolved organic carbon (ADOC) is not related to the presence of a single compound but to the co-occurrence of a myriad of synthetic chemicals with largely unknown effects on heterotrophic microbial communities. We have analyzed the metabolic capacity of metagenome-assembled genomes (MAGs) of natural oceanic communities from the north Pacific (Costa Rica dome) and Atlantic oceans challenged with environmentally relevant levels of ADOC. In the Atlantic, ADOC-exposed MAGs responded transcriptionally more strongly compared to controls than in the Pacific, possibly mirroring the higher relevance of ADOC compounds as carbon source in oligotrophic environments. The largest proportions of transcripts originated from MAGs belonging in the families Rhodobacteraceae and Flavobacteriaceae, known to play a role on consumption of several OPs. In the Atlantic, archaeal Poseidoniales showed the highest transcription levels after 2 h of ADOC exposure, although no increase of relative abundances in the DNA pool was recorded after 24 h, whereas Methylophaga showed the opposite pattern. Both taxa are suggested to be actively involved in the consumption of biogenic alkanes produced by cyanobacteria. We observed similar gene expression profiles of alkane degradation and methylotrophy signature genes. These findings, plus the chemical degradation of alkanes measured in the experiments, provides experimental evidence of the consumption of anthropogenic hydrocarbons and synthetic chemicals at the low concentrations found in the ocean, and modulation of microbiomes by ADOC.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2023
Nyckelord
organic pollutants, surface seawater, anthropogenic organic matter, alkane biodegradation, polycyclic aromatic hydrocarbon degradation, Poseidonales, Methylophaga
Nationell ämneskategori
Mikrobiologi
Forskningsämne
Ekologi, Mikrobiologi; Ekologi, Akvatisk ekologi; Naturvetenskap, Miljövetenskap
Identifikatorer
urn:nbn:se:lnu:diva-120968 (URN)10.3389/fenvs.2023.1110169 (DOI)000970927000001 ()2-s2.0-85153355471 (Scopus ID)
Tillgänglig från: 2023-05-30 Skapad: 2023-05-30 Senast uppdaterad: 2023-09-07Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-8779-6464

Sök vidare i DiVA

Visa alla publikationer