Öppna denna publikation i ny flik eller fönster >>2025 (Engelska)Ingår i: Indagationes mathematicae, ISSN 0019-3577, E-ISSN 1872-6100, Vol. 36, nr 3, s. 838-879Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
We deduce factorization properties for Wiener amalgam spaces WLp,q, an extended family of modulation spaces M(omega, B), and for Schatten symbols s(p)(w) in pseudo-differential calculus under e. g. convolutions, twisted convolutions and symbolic products. Here M(omega, B) can be any quasi-Banach Orlicz modulation space. For example we show that WL1,r * WLp,q = WLp,q and WL1,r#s(p)(w) = s(p)(w) when r is an element of (0, 1], r _= p, q _ infinity. In particular we improve Rudin's identity L-1 * L-1 = L-1. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
Ort, förlag, år, upplaga, sidor
Elsevier BV, 2025
Nyckelord
Algebras, Approximation identity, Modulation spaces, Modules, Quasi-Banach spaces, Schatten–von Neumann, Wiener amalgam spaces
Nationell ämneskategori
Algebra och logik
Forskningsämne
Naturvetenskap, Matematik
Identifikatorer
urn:nbn:se:lnu:diva-138486 (URN)10.1016/j.indag.2024.09.005 (DOI)001479136000001 ()2-s2.0-105003167562 (Scopus ID)
2025-05-132025-05-132025-07-03Bibliografiskt granskad