Open this publication in new window or tab >>2006 (English)In: Mathematical ReviewsArticle, book review (Other (popular science, discussion, etc.)) Published
Abstract [en]
MR2232636
Boussaf, Kamal(F-CLEF2-LPM)
Uniqueness for $p$-adic meromorphic products. (English summary)
Bull. Belg. Math. Soc. Simon Stevin 9 (2002), suppl., 11--23.
32P05 (32H04)
PDF Doc Del Clipboard Journal Article Make Link
In the paper under review the author looks for bi-unique range sets (bi-urs) for the family of unbounded meromorphic products on an open disk. More precisely, let $K$ be a complete ultrametric algebraically closed field of characteristic zero, and let $\scr{M}(K)$ be the field of meromorphic functions in $K$. Denote by $\scr{MP}_{u}(K,R)$ the subset of meromorphic products admitting an irreducible form $\prod_{n=0}^{\infty}\frac{x-a_n}{x-b_n}$ such that $\prod_{n=0, b_n\neq 0}^{\infty}\frac{|b_n|}{R}=0$. The main result in the paper under review implies that for every $n\geq5$, there exist sets $S$ of $n$ elements in $K$ such that $(S,\{\infty\})$ is a bi-urs for $\scr{MP}_u(K,R)$.
Earlier, A. Boutabaa and A. Escassut proved that for every $n\geq5$, there exist sets $S$ of $n$ elements in $K$ such that $(S,\{w\})$ is a bi-urs for $\scr{M}(K)$. H. H. Khoi and T. T. H. An showed the existence of bi-urs for $\scr{M}(K)$ of the form $(\{a_1,a_2,a_3,a_4\},\{\infty\})$.
Reviewed by Karl-Olof Lindahl
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:vxu:diva-4442 (URN)
Note
15 December 2006
Review för American Mathematical Society
i serien Mathematical Reviews on the Web av artikeln
Bekräftas med följande e-post
X-Sieve: CMU Sieve 2.2
Date: Fri, 15 Dec 2006 00:17:41 -0500
From: mathrev@ams.org
Subject: Review received (MR2232636)
To: karl-olof.lindahl@vxu.se
X-VXU-MailScanner-Information: Please contact the ISP for more information
X-VXU-MailScanner: Found to be clean
X-VXU-MailScanner-SpamCheck: not spam, SpamAssassin (not cached, score=-1.638,
required 5, BAYES_00 -2.60, NO_REAL_NAME 0.96)
X-VXU-MailScanner-From: webrev@ams.org
http://www.ams.org/mathscinet/pdf/2232636.pdf?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=boussaf&s5=&s6=&s7=&s8=All&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=32007-03-302007-03-302014-02-20Bibliographically approved