lnu.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 61) Show all publications
Lindström, T. (2024). On the stochastic engine of contagious diseases in exponentially growing populations. Nonlinear Analysis: Real World Applications, 77, Article ID 104045.
Open this publication in new window or tab >>On the stochastic engine of contagious diseases in exponentially growing populations
2024 (English)In: Nonlinear Analysis: Real World Applications, ISSN 1468-1218, Vol. 77, article id 104045Article in journal (Refereed) Published
Abstract [en]

The purpose of this paper is to analyze the mechanism for the interplay of deterministic and stochastic models for contagious diseases. Deterministic models for contagious diseases are prone to predict global stability. Small natural birth and death rates in comparison to disease parameters like the contact rate and the removal rate ensures that the globally stable endemic equilibrium corresponds to a tiny average proportion of infected individuals. Asymptotic equilibrium levels corresponding to low numbers of individuals invalidate the deterministic results.

Diffusion effects force probability mass functions of the stochastic model to possess similar stability properties as the deterministic model. Particular simulations of the stochastic model predict, however, oscillatory patterns. Small and isolated populations show longer periods, more violent oscillations, and larger probabilities of extinction.

We prove that evolution maximizes the infectiousness of the disease as measured by the ability to increase the proportion of infected individuals. This holds provided the stochastic oscillations are moderate enough to keep the proportion of susceptible individuals near a deterministic equilibrium.

We close our paper with a discussion of the herd-immunity concept and stress its close relation to vaccination-programs.

Place, publisher, year, edition, pages
Elsevier, 2024
National Category
Mathematical Analysis
Research subject
Mathematics, Applied Mathematics
Identifiers
urn:nbn:se:lnu:diva-125806 (URN)10.1016/j.nonrwa.2023.104045 (DOI)001125982500001 ()2-s2.0-85183379977 (Scopus ID)
Available from: 2023-11-28 Created: 2023-11-28 Last updated: 2025-02-11Bibliographically approved
Olande, O. & Lindström, T. (2023). Exploring undergraduate thesis manuscript assessment feedback. The Curriculum Journal, 34(3), 437-456
Open this publication in new window or tab >>Exploring undergraduate thesis manuscript assessment feedback
2023 (English)In: The Curriculum Journal, ISSN 0958-5176, Vol. 34, no 3, p. 437-456Article in journal (Refereed) Published
Abstract [en]

The present case study explores the assessment practice of two examiners from different academic backgrounds on an undergraduate thesis work in mathematics education. Reflection notes and feedback from two instances of a thesis-writing process are interrogated using a framework based on a semiotics perspective to meaning-making. It is shown that the examiners utilize aspects that are ‘immediate and non-contested’ to successively make accessible that which is ‘withdrawn yet to be revealed.’ In this process, varied interventional approaches are observed to support desirable aspects of teacher professional knowledge including critical-analytical disposition. The study also highlights knowledge integration for teaching, scientific disposition, collaboration, and knowledge transformation as some of the desirable aspects of teacher professional knowledge. The findings indicate that knowledge integration and transformation remain an issue of concern for pre-service teachers. This raises the question of how desirable traits for a teacher-as-a researcher can be promoted within the context of thesis work.

Place, publisher, year, edition, pages
John Wiley & Sons, 2023
National Category
Mathematics Educational Sciences
Research subject
Mathematics, Mathematical Education
Identifiers
urn:nbn:se:lnu:diva-117100 (URN)10.1002/curj.188 (DOI)000871251900001 ()2-s2.0-85140366715 (Scopus ID)
Available from: 2022-10-25 Created: 2022-10-25 Last updated: 2023-09-19Bibliographically approved
Bacaër, N. (2022). Axplock i den matematiska populationsdynamikens historia. Paris: Nicolas Bacaër
Open this publication in new window or tab >>Axplock i den matematiska populationsdynamikens historia
Show others...
2022 (Swedish)Book (Other academic)
Place, publisher, year, edition, pages
Paris: Nicolas Bacaër, 2022. p. 167
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-113112 (URN)9791034390083 (ISBN)
Note

Detta är en översättning av Histoires de mathématiques et de populations av Nicolas Bacaër, ursprungligen utgiven på Cassini, 2008.

Carl-Joar Karlsson (15 kapitel), Torsten Lindström (6 kapitel), Philip Gerlee (4 kapitel), Torbjörn Lundh (1 kapitel) och Peter Olofsson (1 kapitel) har läst igenom och lämnat förslag på korrektur till Maskinöversättningen av DeepL.

Available from: 2022-05-30 Created: 2022-05-30 Last updated: 2022-05-30Bibliographically approved
Lindström, T. (2022). Med fokus på linjär algebra (4:eed.). Lund: Studentlitteratur AB
Open this publication in new window or tab >>Med fokus på linjär algebra
2022 (Swedish)Book (Other academic)
Abstract [sv]

Linjär algebra innehåller ett rikt spektrum av metoder, och en förståelse av dessa krävs inom nästan alla samhällsområden där datorer, beräkningar, bildbehandling eller liknande används. Även om verkligheten många gånger är icke-linjär, kräver icke-linjär analys ofta en mycket god förståelse av de linjära specialfallen. Få delområden i matematiken kan på en lika elementär nivå klargöra skillnaderna mellan effektiva och mindre effektiva algoritmer och åskådliggöra matematikens potential för den fortsatta samhällsutvecklingen.

Denna fjärde upplaga har kompletterats med flera nya avsnitt, såsom allmänna likformighets- och kongruensavbildningar, linjära differentialekvationer, kvadratiska former, singulärvärdeuppdelning och nya övningsuppgifter. Målet är att framställningen ska utgå från grunderna samtidigt som den når så långt som möjligt genom att tydliggöra strukturen i ämnet.

Boken riktar sig till studenter som behöver förstå egenvärden och egenvektorer redan under sin första kurs i linjär algebra. Ambitionerna sträcker sig dock betydligt längre än så och boken kan med fördel användas i såväl grundkurser i linjär algebra, vilka börjar med vektorgeometri, som i fortsättningskurser i ämnet där vektorrum och komplexa matriser behandlas. 

Place, publisher, year, edition, pages
Lund: Studentlitteratur AB, 2022. p. 434 Edition: 4:e
National Category
Mathematical Analysis
Research subject
Mathematics, Mathematics
Identifiers
urn:nbn:se:lnu:diva-116341 (URN)9789144157559 (ISBN)
Available from: 2022-09-19 Created: 2022-09-19 Last updated: 2022-09-19Bibliographically approved
Lindström, T. (2021). Mathematics and Recurrent Population Outbreaks (1sted.). In: Bharath Sriraman (Ed.), Handbook of the Mathematics of the Arts and Sciences: (pp. 2275-2290). Cham: Springer
Open this publication in new window or tab >>Mathematics and Recurrent Population Outbreaks
2021 (English)In: Handbook of the Mathematics of the Arts and Sciences / [ed] Bharath Sriraman, Cham: Springer, 2021, 1st, p. 2275-2290Chapter in book (Refereed)
Abstract [en]

Despite that outbreaks had been observed for hundreds of years for many populations, it took until the 1920s before the first mechanisms that did not involve human interference were suggested. Just a few mechanisms were included in the first models and the question whether the inclusion of other, very plausible, mechanisms could alter the predictions remained. In this chapter, we follow the development of models that have been proposed to explain oscillatory population dynamics from the early models suggested by Lotka (1925) and Volterra (1926) until global dynamical questions that are still open for models incorporating explicit resource dynamics, like the chemostat, cf Kuang (1989).

Place, publisher, year, edition, pages
Cham: Springer, 2021 Edition: 1st
Keywords
Global stability ; Limit cycle ; Lyapunov function ; Mechanistic population models ; Oscillatory dynamics ; Recurrent outbreaks
National Category
Computational Mathematics
Research subject
Mathematics, Applied Mathematics
Identifiers
urn:nbn:se:lnu:diva-127095 (URN)10.1007/978-3-319-57072-3_33 (DOI)2-s2.0-85159464941 (Scopus ID)9783319570716 (ISBN)9783319570723 (ISBN)
Note

Bidrag till encyklopedi

Available from: 2024-01-24 Created: 2024-01-24 Last updated: 2024-02-29Bibliographically approved
Lindström, T. & Sriraman, B. (2021). Mathematics, Science, and Dynamical Systems: An Introduction. In: B. Sriraman (Ed.), Handbook of the Mathematics of the Arts and Sciences: (pp. 1967-1968). Springer
Open this publication in new window or tab >>Mathematics, Science, and Dynamical Systems: An Introduction
2021 (English)In: Handbook of the Mathematics of the Arts and Sciences / [ed] B. Sriraman, Springer, 2021, p. 1967-1968Chapter in book (Other academic)
Abstract [en]

In this short introduction, the section “Mathematics, Science, and DynamicalSystems” of the Handbook of the Mathematics of the Arts and Sciences issummarized.

Place, publisher, year, edition, pages
Springer, 2021
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-103102 (URN)10.1007/978-3-319-70658-0_143-1 (DOI)2-s2.0-85159475040 (Scopus ID)9783319706580 (ISBN)
Available from: 2021-05-07 Created: 2021-05-07 Last updated: 2023-08-17Bibliographically approved
Lindström, T., Cheng, Y. & Subhendu, C. (2020). Destabilization, Stabilization, and Multiple Attractors in Saturated Mixotrophic Environments. SIAM Journal on Applied Mathematics, 80(6), 2338-2364
Open this publication in new window or tab >>Destabilization, Stabilization, and Multiple Attractors in Saturated Mixotrophic Environments
2020 (English)In: SIAM Journal on Applied Mathematics, ISSN 0036-1399, E-ISSN 1095-712X, Vol. 80, no 6, p. 2338-2364Article in journal (Refereed) Published
Abstract [en]

The ability of mixotrophs to combine phototrophy and phagotrophy is now well recognized and found to have important implications for ecosystem dynamics. In this paper, we examine the dynamical consequences of the invasion of mixotrophs in a system that is a limiting case of the chemostat. The model is a hybrid of a competition model describing the competition between autotroph and mixotroph populations for a limiting resource, and a predator--prey-type model describing the interaction between autotroph and herbivore populations. Our results show that mixotrophs are able to invade in both autotrophic environments and environments described by interactions between autotrophs and herbivores. The interaction between autotrophs and herbivores might be in equilibrium or cycle. We find that invading mixotrophs have the ability to both stabilize and destabilize autotroph-herbivore dynamics depending on the competitive ability of mixotrophs. The invasion of mixotrophs can also result in multiple attractors.

Place, publisher, year, edition, pages
United States: Society for Industrial and Applied Mathematics, 2020
Keywords
mixotrophy, saturation, bifurcation, limit cycle, multiple attractors, algae blooms
National Category
Computational Mathematics
Research subject
Mathematics, Applied Mathematics
Identifiers
urn:nbn:se:lnu:diva-98922 (URN)10.1137/19M1294186 (DOI)000600679500002 ()2-s2.0-85096862932 (Scopus ID)
Available from: 2020-11-12 Created: 2020-11-12 Last updated: 2023-02-01Bibliographically approved
Lindström, T. (2020). Limit cycles in planar systems of ordinary differential equations. In: Michael J. Ostwald; Kyeong-Hwa Lee; Torsten Lindström; Gizem Karaali; Ken Valente (Ed.), Handbook of the Mathematics in the Arts and the Sciences: (pp. 1-28). Switzerland: Springer
Open this publication in new window or tab >>Limit cycles in planar systems of ordinary differential equations
2020 (English)In: Handbook of the Mathematics in the Arts and the Sciences / [ed] Michael J. Ostwald; Kyeong-Hwa Lee; Torsten Lindström; Gizem Karaali; Ken Valente, Switzerland: Springer, 2020, p. 1-28Chapter in book (Refereed)
Abstract [en]

The idea of a dynamical system is predicting the future of a given system with respect to some initial conditions. If the dynamical system is formulated as a differential equation, then there is usually a direct relation between the dynamical system and the processes involved. Today, we can easily say that dynamical systems can predict a huge number of phenomena, including chaos. The real question is therefore, not whether complicated phenomena may occur, but whether restrictions on the possible dynamics exist.

In this chapter, we commence with major theorems that are frequently used for justifying phase space analysis. We continue with simple examples that either possess limit cycles and classes of differential equations that never possess limit cycles. We end up with the ideas behind two major theorems that put bounds for the number of limit cycles from above: Sansone's (1949) theorem and Zhang's (1986) theorem. Both theorems apply to systems that have a clear mechanistic interpretation. We outline the major arguments behind the quite precise estimates used in these theorems and describe their differences. Our objective is not to formulate these theorems in their most general form, but we give references to recent extensions.

Place, publisher, year, edition, pages
Switzerland: Springer, 2020
Keywords
Limit cycle, Hamiltonian system, Liénard's equation
National Category
Mathematical Analysis
Research subject
Mathematics, Mathematics
Identifiers
urn:nbn:se:lnu:diva-93170 (URN)10.1007/978-3-319-70658-0_34-1 (DOI)2-s2.0-85159494223 (Scopus ID)978-3-319-70658-0 (ISBN)
Available from: 2020-03-27 Created: 2020-03-27 Last updated: 2023-08-24Bibliographically approved
Lindström, T. (2020). ”Torsås kommun rakt in i ett eldprov”. Barometern, Article ID 31 mars.
Open this publication in new window or tab >>”Torsås kommun rakt in i ett eldprov”
2020 (Swedish)In: Barometern, ISSN 1103-906X, , p. 1article id 31 marsArticle in journal, News item (Other (popular science, discussion, etc.)) Published
Abstract [sv]

Coronakrisen "Så kom det väntade beskedet. Samhällspridning av coronaviruset förekommer i Torsås kommun"

Publisher
p. 1
National Category
Public Health, Global Health and Social Medicine
Research subject
Natural Science
Identifiers
urn:nbn:se:lnu:diva-102975 (URN)
Available from: 2021-05-05 Created: 2021-05-05 Last updated: 2025-02-20Bibliographically approved
Olande, O. & Lindström, T. (2019). Exploring an examiner’s comments to a thesis work in mathematics education. In: Mellony Graven, Hamsa Venkat, Anthony A Essien, Pamela Vale (Ed.), Proceedings of the 43rd Conference of the International Groupfor the Psychology of Mathematics Education: Pretoria, South Africa, 7 – 12 July 2019. Paper presented at The 43rd Conference of the International Group for the Psychology of Mathematics Education - Improving access to the power of mathematics, Pretoria, South Africa 7 – 12 July 2019 (pp. 80-80). IGPME, 4
Open this publication in new window or tab >>Exploring an examiner’s comments to a thesis work in mathematics education
2019 (English)In: Proceedings of the 43rd Conference of the International Groupfor the Psychology of Mathematics Education: Pretoria, South Africa, 7 – 12 July 2019 / [ed] Mellony Graven, Hamsa Venkat, Anthony A Essien, Pamela Vale, IGPME , 2019, Vol. 4, p. 80-80Conference paper, Oral presentation with published abstract (Refereed)
Place, publisher, year, edition, pages
IGPME, 2019
Series
Proceedings of the International Groups for the Psychology of Mathematics Education, ISSN 0771-100X
National Category
Educational Sciences
Research subject
Pedagogics and Educational Sciences
Identifiers
urn:nbn:se:lnu:diva-130353 (URN)2-s2.0-85180784735 (Scopus ID)978-0-6398215-6-6 (ISBN)978-0-6398215-7-3 (ISBN)
Conference
The 43rd Conference of the International Group for the Psychology of Mathematics Education - Improving access to the power of mathematics, Pretoria, South Africa 7 – 12 July 2019
Available from: 2024-06-13 Created: 2024-06-13 Last updated: 2024-06-13Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-7261-0399

Search in DiVA

Show all publications