Open this publication in new window or tab >>2025 (English)In: Indagationes mathematicae, ISSN 0019-3577, E-ISSN 1872-6100, Vol. 36, no 3, p. 838-879Article in journal (Refereed) Published
Abstract [en]
We deduce factorization properties for Wiener amalgam spaces WLp,q, an extended family of modulation spaces M(omega, B), and for Schatten symbols s(p)(w) in pseudo-differential calculus under e. g. convolutions, twisted convolutions and symbolic products. Here M(omega, B) can be any quasi-Banach Orlicz modulation space. For example we show that WL1,r * WLp,q = WLp,q and WL1,r#s(p)(w) = s(p)(w) when r is an element of (0, 1], r _= p, q _ infinity. In particular we improve Rudin's identity L-1 * L-1 = L-1. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
Algebras, Approximation identity, Modulation spaces, Modules, Quasi-Banach spaces, Schatten–von Neumann, Wiener amalgam spaces
National Category
Algebra and Logic
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-138486 (URN)10.1016/j.indag.2024.09.005 (DOI)001479136000001 ()2-s2.0-105003167562 (Scopus ID)
2025-05-132025-05-132025-05-26Bibliographically approved