Open this publication in new window or tab >>2018 (English)In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 12, no 11, Special Issue, article id 1800210Article in journal, Letter (Refereed) Published
Abstract [en]
Using the non-equilibrium Green’s function method and the Keldysh formalism, we study the effects of spin–orbit interactions and time-reversal symmetry breaking exchange fields on non-equilibrium quantum transport in graphene armchair nanoribbons. We identify signatures of the quantum spin Hall (QSH) and the quantum anomalous Hall (QAH) phases in nonequilibrium edge transport by calculating the spin-resolved real space charge density and local currents at the nanoribbon edges. We find that the QSH phase, which is realized in a system with intrinsic spin–orbit coupling, is characterized by chiral counter-propagating local spin currents summing up to a net charge flow with opposite spin polarization at the edges. In the QAH phase, emerging in the presence of Rashba spin–orbit coupling and a ferromagnetic exchange field, two chiral edge channels with opposite spins propagate in the same direction at each edge, generating an unpolarized charge current and a quantized Hall conductance
. Increasing the intrinsic spin–orbit coupling causes a transition from the QAH to the QSH phase, evinced by characteristic changes in the non-equilibrium edge transport. In contrast, an antiferromagnetic exchange field can coexist with a QSH phase, but can never induce a QAH phase due to a symmetry that combines time-reversal and sublattice translational symmetry.
Place, publisher, year, edition, pages
Wiley-Blackwell, 2018
Keywords
graphene nanoribbons, quantum anomalous Hall effect, quantum spin Hall effect, topological insulators
National Category
Condensed Matter Physics
Research subject
Physics, Condensed Matter Physics
Identifiers
urn:nbn:se:lnu:diva-76947 (URN)10.1002/pssr.201800210 (DOI)000450130300007 ()2-s2.0-85050622980 (Scopus ID)
Funder
Carl Tryggers foundation , CTS 14:178Swedish Research Council, 621‐2014‐4785
2018-07-192018-07-192024-09-05Bibliographically approved