lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of non-destructive test methods to predict bending properties of thermally modified timber
Linnaeus University, Faculty of Technology, Department of Forestry and Wood Technology. (GoFP)ORCID iD: 0000-0001-6756-3682
Linnaeus University, Faculty of Technology, Department of Forestry and Wood Technology. (GoFP)ORCID iD: 0000-0002-6909-2025
Linnaeus University, Faculty of Technology, Department of Building Technology.ORCID iD: 0000-0002-6410-1017
Linnaeus University, Faculty of Technology, Department of Building Technology.ORCID iD: 0000-0002-8513-0394
Show others and affiliations
2018 (English)In: 2018 World Conference on Timber Engineering (WCTE), August 20-23, 2018, Seoul, Republic of Korea, World Conference on Timber Engineering (WCTE) , 2018, p. 8-Conference paper, Published paper (Refereed)
Abstract [en]

Thermally modified wood is available through a number of manufacturers in Europe on today’s market for interior and exterior building products. Thermal modification of wood allows for improvement of dimensional stability and durability, but a considerable decrease in strength properties occurs. Despite this loss in strength, thermally modified wood shows potential to be further exploited in structures exposed to loading. For such applications, accurate prediction of its static bending behaviour is essential. This paper studies the applicability of two different non-destructive test (NDT) techniques in estimating the bending properties of thermally modified timber (TMT). The study was done on 100 Norway spruce logs. One hundred (100) boards (i.e. one from each log) were thermally modified and the mirrored 100 boards were used as controls. After modification, resonance-based and time-of-flight measurements of axial wave velocity were carried out. Subsequently, all 200 boards were bent to failure following European standard EN408. This study shows that although TMT has a lower bending strength than unmodified timber, predictions of bending strength and stiffness using the NDT techniques are possible and with sufficient accuracy. The resonance-based method gave better predictions of the bending properties of TMT in respect to time-of-flight method.

Place, publisher, year, edition, pages
World Conference on Timber Engineering (WCTE) , 2018. p. 8-
Keywords [en]
ThermoWood®, resonance method, time-of-flight method, four-point bending, Norway spruce
National Category
Wood Science Building Technologies
Research subject
Technology (byts ev till Engineering), Forestry and Wood Technology
Identifiers
URN: urn:nbn:se:lnu:diva-77976Scopus ID: 2-s2.0-85058158034OAI: oai:DiVA.org:lnu-77976DiVA, id: diva2:1250541
Conference
2018 World Conference on Timber Engineering (WCTE), August 20-23, 2018, Seoul, Republic of Korea
Available from: 2018-09-24 Created: 2018-09-24 Last updated: 2019-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records BETA

van Blokland, JoranAdamopoulos, StergiosOlsson, AndersOscarsson, Jan

Search in DiVA

By author/editor
van Blokland, JoranAdamopoulos, StergiosOlsson, AndersOscarsson, Jan
By organisation
Department of Forestry and Wood TechnologyDepartment of Building Technology
Wood ScienceBuilding Technologies

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf