lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MVN-Reduce: Dimensionality Reduction for the Visual Analysis of Multivariate Networks
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV). (ISOVIS)ORCID-id: 0000-0002-2901-935X
University of Groningen, The Netherlands ; École Nationale de l’Aviation Civile, France.
University of São Paulo, Brazil.
University of Groningen, The Netherlands.
Vise andre og tillknytning
2017 (engelsk)Inngår i: EuroVis 2017 - Short Papers / [ed] Barbora Kozlikova and Tobias Schreck and Thomas Wischgoll, Eurographics - European Association for Computer Graphics, 2017, s. 13-17Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The analysis of Multivariate Networks (MVNs) can be approached from two different perspectives: a multidimensional one, consisting of the nodes and their multiple attributes, or a relational one, consisting of the network’s topology of edges. In order to be comprehensive, a visual representation of an MVN must be able to accomodate both. In this paper, we propose a novel approach for the visualization of MVNs that works by combining these two perspectives into a single unified model, which is used as input to a dimensionality reduction method. The resulting 2D embedding takes into consideration both attribute- and edge-based similarities, with a user-controlled trade-off. We demonstrate our approach by exploring two real-world data sets: a co-authorship network and an open-source software development project. The results point out that our method is able to bring forward features of MVNs that could not be easily perceived from the investigation of the individual perspectives only. 

sted, utgiver, år, opplag, sider
Eurographics - European Association for Computer Graphics, 2017. s. 13-17
Emneord [en]
Multivariate Networks, Dimensionality Reduction, Visualization, Information Visualization, Visual Analytics, Network Visualization, Graph Drawing
HSV kategori
Forskningsprogram
Datavetenskap, Informations- och programvisualisering
Identifikatorer
URN: urn:nbn:se:lnu:diva-62133DOI: 10.2312/eurovisshort.20171126ISBN: 978-3-03868-043-7 (digital)OAI: oai:DiVA.org:lnu-62133DiVA, id: diva2:1087400
Konferanse
19th EG/VGTC Conference on Visualization (EuroVis '17), 12-16 June 2017, Barcelona, Spain
Tilgjengelig fra: 2017-04-06 Laget: 2017-04-06 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstVideoFull text

Personposter BETA

Martins, Rafael MessiasKerren, Andreas

Søk i DiVA

Av forfatter/redaktør
Martins, Rafael MessiasKerren, Andreas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 244 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf