lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of shear stress and carbon surface roughness on bioregeneration and performance of suspended versus attached biomass in metoprolol-loaded biological activated carbon systems
Kaunas Univ Technol, Lithuania ; Wetsus, European Ctr Excellence Sustainable Water Technol, Netherlands.
Kaunas Univ Technol, Lithuania.
WLN, Netherlands.
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). (Ctr Ecol & Evolut Microbial Model Syst EEMiS)
Vise andre og tillknytning
2017 (engelsk)Inngår i: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 317, s. 503-511Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The bioregeneration of activated carbon (AC) in biological activated carbon (BAC) systems is limited by sorption-desorption hysteresis and transport between the adsorbent and biomass. In this study, we investigated these limitations and whether a biofilm covering the AC surface is required. Consequently, BAC reactors were operated at different shear stress and AC surface smoothness, since this may affect biofilm formation. The experiments were carried out in BAC and blank reactors treating synthetic wastewater containing the pharmaceutical metoprolol. After start-up, all reactors removed metoprolol completely; however, after 840 h the removal dropped due to saturation of the AC. In the blank reactors, the removal dropped to 0% while in the BAC reactors removal recovered to >99%, due to increased biological activity. During the initial phase, the metoprolol was adsorbed, rather than biodegraded. At the end, the AC from the BAC reactors had higher pore volume and sorption capacity than from the blank reactors, showing that the AC had been bioregenerated. At high shear (G = 25 s(-1)), the rough AC granules (R-a = 13 mu m) were covered with a 50-400 gm thick biofilm and the total protein content of the biofilm was 2.6 mg/gAC, while at lower shear (G = 8.8 s(-1)) the rough AC granules were only partly covered. The biofilm formation at lower shear (G = 8.8 s(-1)) on smooth AC granules (R-a = 1.6 mu m) was negligible. However, due to the presence of suspended biomass the reactor performance or bioregeneration were not reduced. This showed that direct contact between the AC and biomass was not essential in mixed BAC systems. The microbial analyses of the suspended biomass and the biofilm on AC surface indicated that metoprolol was mainly biodegraded in suspension. (C) 2017 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 317, s. 503-511
Emneord [en]
Biofilm, Biological activated carbon, Bioregeneration, Metoprolol, Shear stress, Surface roughness
HSV kategori
Forskningsprogram
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-64426DOI: 10.1016/j.cej.2017.02.097ISI: 000400226700047Scopus ID: 2-s2.0-85014021195OAI: oai:DiVA.org:lnu-64426DiVA, id: diva2:1099063
Tilgjengelig fra: 2017-05-29 Laget: 2017-05-29 Sist oppdatert: 2019-08-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ni, GaofengDopson, Mark

Søk i DiVA

Av forfatter/redaktør
Ni, GaofengDopson, Mark
Av organisasjonen
I samme tidsskrift
Chemical Engineering Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 424 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf