lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the Estimation of the CO2 Emission, Economic Growth and Energy Consumption Nexus Using Dynamic OLS in the Presence of Multicollinearity
Jönköping University.
Florida International University, USA.
Linnéuniversitetet, Ekonomihögskolan (FEH), Institutionen för nationalekonomi och statistik (NS). Jönköping University. (Statistik)ORCID-id: 0000-0002-3416-5896
Jönköping University.
2018 (engelsk)Inngår i: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 10, nr 5, artikkel-id 1315Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper introduces shrinkage estimators (Ridge DOLS) for the dynamic ordinary least squares (DOLS) cointegration estimator, which extends the model for use in the presence of multicollinearity between the explanatory variables in the cointegration vector. Both analytically and by using simulation techniques, we conclude that our new Ridge DOLS approach exhibits lower mean square errors (MSE) than the traditional DOLS method. Therefore, based on the MSE performance criteria, our Monte Carlo simulations demonstrate that our new method outperforms the DOLS under empirically relevant magnitudes of multicollinearity. Moreover, we show the advantages of this new method by more accurately estimating the environmental Kuznets curve (EKC), where the income and squared income are related to carbon dioxide emissions. Furthermore, we also illustrate the practical use of the method when augmenting the EKC curve with energy consumption. In summary, regardless of whether we use analytical, simulation-based, or empirical approaches, we can consistently conclude that it is possible to estimate these types of relationships in a considerably more accurate manner using our newly suggested method.

sted, utgiver, år, opplag, sider
MDPI, 2018. Vol. 10, nr 5, artikkel-id 1315
HSV kategori
Forskningsprogram
Statistik
Identifikatorer
URN: urn:nbn:se:lnu:diva-73012DOI: 10.3390/su10051315ISI: 000435587100011Scopus ID: 2-s2.0-85046076098OAI: oai:DiVA.org:lnu-73012DiVA, id: diva2:1198748
Tilgjengelig fra: 2018-04-18 Laget: 2018-04-18 Sist oppdatert: 2020-01-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Shukur, Ghazi

Søk i DiVA

Av forfatter/redaktør
Shukur, Ghazi
Av organisasjonen
I samme tidsskrift
Sustainability

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 30 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf