lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design and development of nanoimprint-enabled structures for molecular motor devices
Lund University.
Tech Univ Dresden, Germany;Max Planck Inst Mol Cell Biol & Genet, Germany.
Lund University.
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).ORCID-id: 0000-0002-2797-2294
Vise andre og tillknytning
2019 (engelsk)Inngår i: Materials Research Express, E-ISSN 2053-1591, Vol. 6, nr 2, artikkel-id 025057Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Devices based on molecular motor-driven cytoskeletal filaments, e.g., actin filaments, have been developed both for biosensing and biocomputational applications. Commonly, these devices require nanoscaled tracks for guidance of the actin filaments which has limited the patterning technique to electron beam lithography. Thus, large scale systems become intractable to fabricate at a high throughput within a reasonable time-frame. We have studied the possibility to fabricate molecular motor-based devices using the high throughput, high resolution technique of nanoimprint lithography. Molecular motor-based devices require wide open regions (loading zones) to allow filaments to land for later propulsion into the nanoscale tracks. Such open zones are challenging to fabricate using nanoimprint lithography due to the large amount of material displaced in the process. We found that this challenge can be overcome by introducing nanoscaled pillars inside the loading zones, into which material can be displaced during imprint. By optimising the resist thickness, we were able to decrease the amount of material displaced without suffering from insufficient filling of the stamp. Furthermore, simulations suggest that the shape and positioning of the pillars can be used to tailor the overall cytoskeletal filament transportation direction and behaviour. This is a potentially promising design feature for future applications that however, requires further optimisations before experimental realisation.

sted, utgiver, år, opplag, sider
Institute of Physics Publishing (IOPP), 2019. Vol. 6, nr 2, artikkel-id 025057
Emneord [en]
nanoimprint lithography, molecular motors, actin-myosin, nanostructures, nanofabrication, nanodevice, patterning
HSV kategori
Forskningsprogram
Kemi, Biokemi
Identifikatorer
URN: urn:nbn:se:lnu:diva-79598DOI: 10.1088/2053-1591/aaed10ISI: 000452490000003Scopus ID: 2-s2.0-85057713106OAI: oai:DiVA.org:lnu-79598DiVA, id: diva2:1280154
Forskningsfinansiär
EU, Horizon 2020, 732482Swedish Research Council, 2015-05290Swedish Research Council, 2015-0612Swedish Foundation for Strategic Research , RIF14-0090Tilgjengelig fra: 2019-01-18 Laget: 2019-01-18 Sist oppdatert: 2019-08-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Rahman, Mohammad A.Månsson, Alf

Søk i DiVA

Av forfatter/redaktør
Rahman, Mohammad A.Månsson, Alf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 32 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf