lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Importance and Aptitude of Source code Density for Commit Classification into Maintenance Activities
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM). (DISA ; DSIQ)
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM). (DISA ; DSIQ)ORCID-id: 0000-0003-1173-5187
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM). (DISA ; DSIQ)ORCID-id: 0000-0002-7565-3714
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM). (DISA ; DSIQ)ORCID-id: 0000-0002-0835-823X
2019 (engelsk)Inngår i: QRS 2019 Proceedings / [ed] Dr. David Shepherd, 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Commit classification, the automatic classification of the purpose of changes to software, can support the understanding and quality improvement of software and its development process. We introduce code density of a commit, a measure of the net size of a commit, as a novel feature and study how well it is suited to determine the purpose of a change. We also compare the accuracy of code-density-based classifications with existing size-based classifications. By applying standard classification models, we demonstrate the significance of code density for the accuracy of commit classification. We achieve up to 89% accuracy and a Kappa of 0.82 for the cross-project commit classification where the model is trained on one project and applied to other projects. Such highly accurate classification of the purpose of software changes helps to improve the confidence in software (process) quality analyses exploiting this classification information.

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Software Quality, Commit Classification, Source Code Density, Maintenance Activities
HSV kategori
Forskningsprogram
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-85473OAI: oai:DiVA.org:lnu-85473DiVA, id: diva2:1325953
Konferanse
The 19th IEEE International Conference on Software Quality, Reliability, and Security, July 22-26, 2019, Sofia, Bulgaria
Tilgjengelig fra: 2019-06-17 Laget: 2019-06-17 Sist oppdatert: 2019-09-26

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Hönel, SebastianEricsson, MorganLöwe, WelfWingkvist, Anna

Søk i DiVA

Av forfatter/redaktør
Hönel, SebastianEricsson, MorganLöwe, WelfWingkvist, Anna
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf