lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting Student Dropout in a MOOC: An Evaluation of a Deep Neural Network Model
Norwegian University of Science and Technology (NTNU), Norway.
University of South-Eastern Norway, Norway.ORCID-id: 0000-0001-7520-695x
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM).ORCID-id: 0000-0002-0199-2377
2019 (engelsk)Inngår i: Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence, ACM Publications, 2019, s. 190-195Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Massive Open Online Courses (MOOCs) have transformed the way educational institutions deliver high-quality educational material to the onsite and distance learners across the globe. As a result, a new paradigm shifts as to how learners acquire and benefit from the wealth of knowledge provided by a MOOC at their doorstep nowadays in contrast to the brick and mortar settings is visible. Learners are therefore showing a profound interest in the MOOCs offered by top universities and industry giants. They have also attracted a vast number of students from far-flung areas of the world. The massive number of registered students in MOOCs, however, pose one major challenge, i.e., 'the dropouts'. Course planners and content providers are struggling to retain the registered students, which give rise to a new research agenda focusing on predicting and explaining student dropout and low completion rates in a MOOC. Machine learning techniques utilizing deep learning approaches can efficiently predict the potential dropouts and can raise an alert well before time. In this paper, we have focused our study on the application of feed-forward deep neural network architectures to address this problem. Our model achieves not only high accuracy, but also low false negative rate while predicting dropouts on the MOOC data. Moreover, we also provide an in-depth comparison of the proposed architectures concerning precision, recall, and F1 measure.

sted, utgiver, år, opplag, sider
ACM Publications, 2019. s. 190-195
Emneord [en]
ANN, Dropout prediction, MOOC, deep learning, distance learning, e-Learning, online learning
HSV kategori
Forskningsprogram
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-87087DOI: 10.1145/3330482.3330514ISBN: 978-1-4503-6106-4 (tryckt)OAI: oai:DiVA.org:lnu-87087DiVA, id: diva2:1340296
Konferanse
5th International Conference on Computing and Artificial Intelligence, April 19-22, 2019
Forskningsfinansiär
Knowledge Foundation, 67110033Tilgjengelig fra: 2019-08-04 Laget: 2019-08-04 Sist oppdatert: 2019-09-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Dalipi, FisnikKastrati, Zenun

Søk i DiVA

Av forfatter/redaktør
Dalipi, FisnikKastrati, Zenun
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 41 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf